WO2007114218A1 - チタン合金及びエンジン排気管 - Google Patents

チタン合金及びエンジン排気管 Download PDF

Info

Publication number
WO2007114218A1
WO2007114218A1 PCT/JP2007/056799 JP2007056799W WO2007114218A1 WO 2007114218 A1 WO2007114218 A1 WO 2007114218A1 JP 2007056799 W JP2007056799 W JP 2007056799W WO 2007114218 A1 WO2007114218 A1 WO 2007114218A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
titanium alloy
mass
temperature
temperature oxidation
Prior art date
Application number
PCT/JP2007/056799
Other languages
English (en)
French (fr)
Other versions
WO2007114218A9 (ja
Inventor
Takashi Yashiki
Kenji Yamamoto
Eiichiro Yoshikawa
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006095071A external-priority patent/JP4157893B2/ja
Priority claimed from JP2006095069A external-priority patent/JP4157891B2/ja
Priority claimed from JP2006095070A external-priority patent/JP4157892B2/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to DE112007000544.0T priority Critical patent/DE112007000544B4/de
Priority to CN200780003745.1A priority patent/CN101374967B/zh
Priority to US12/294,619 priority patent/US8431231B2/en
Publication of WO2007114218A1 publication Critical patent/WO2007114218A1/ja
Publication of WO2007114218A9 publication Critical patent/WO2007114218A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a titanium alloy excellent in high-temperature oxidation resistance, pure titanium, surface-treated titanium alloy, pure titanium, and an engine exhaust pipe that requires high-temperature acid resistance.
  • the titanium alloy and pure titanium referred to in the present invention refer to titanium alloy materials and pure titanium that are formed into various shapes such as plates, strips, wires, and pipes by plastic working such as rolling or forming. Further, the titanium alloy material and pure titanium are collectively referred to as a titanium material.
  • the surface-treated titanium material referred to in the present invention refers to a titanium material that has been shot blasted with aluminate fine particles.
  • Titanium alloys and pure titanium are being applied in the field of transportation equipment, especially automobiles, which have a high specific strength and light weight.
  • exhaust pipe materials for the exhaust system around the engine are currently the mainstream of stainless steel.
  • the temperature of the exhaust pipe may be as high as 500 ° C or higher depending on the location, so high-temperature oxidation resistance is required to improve durability because oxidation proceeds quickly.
  • the exhaust pipe of the exhaust system around the engine refers to an exhaust stoma hold, an exhaust pipe, a catalyst muffler, a pre-muffler, a silencer (main muffler), etc. in an automobile or motorcycle muffler
  • the muffler parts are included.
  • the fatigue characteristics are improved by suppressing crystal grain growth, the deterioration of corrosion resistance caused by the A1 additive is suppressed to a minimum, high-temperature oxidation resistance, scale loss resistance, and oxygen resistance Diffusion phase formation It is described to enhance.
  • Patent Document 3 a material in which a titanium alloy surface is clad with A shielding has been proposed.
  • Patent Document 4 a method has been proposed in which A1-Ti-based vapor deposition is applied to the titanium alloy surface.
  • Patent Document 5 a method of forming a TiCrAIN film on the surface of a titanium alloy by the PVD method has been proposed.
  • the clad method is expensive.
  • the vapor deposition method and the PVD method have problems such as high processing costs and difficulty in forming an acid-resistant coating on the inner surface of the tube when the titanium material has a tube shape such as the exhaust pipe. Have.
  • an inorganic binder and A1 powder are adhered to the surface of the titanium alloy and fired to form an oxygen barrier film (oxidation resistant film) that prevents diffusion of oxygen into the material.
  • an oxygen barrier film oxygen resistant film
  • a treatment method in which sealing is performed with a sealing material based on chromic acid in order to fill the voids formed between the A1 powders after the firing see Patent Document 6).
  • a surface-treated titanium material that has been improved to make the surface treatment itself inexpensive and safe has been proposed.
  • a surface-treated titanium material in which an oxidation-resistant fired coating layer of 5 m or more is formed on a substrate made of pure titanium or a titanium-based alloy, and the fired coating layer includes 10 at% or less of Si A1
  • a metal element M where M is one or more of Ti, Zr, Cr, Si, and Al
  • a compound that also has Z or zero force are filled between the alloy or pure particles. It has also been proposed (see Patent Document 7).
  • an A1 containing layer is formed on the surface of the titanium alloy by fusion bonding of A1, and blasting with hard particles such as alumina, glass and metal balls (air pressure) It has also been proposed that the voids generated in the A1-containing layer are filled and eliminated by projecting hard particles with (see Patent Document 8). Furthermore, the surface of the titanium alloy member containing A1 may be shot blasted with fine particles containing elements such as molybdenum, niobium, silicon, tantalum, tungsten, and chromium to form a protective film in which these fine particles are dispersed. It has been proposed (see Patent Document 9).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-234266 (Claims)
  • Patent Document 2 JP-A-2005-290548 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 10-99976 (Claims)
  • Patent Document 4 JP-A-6-88208 (Claims)
  • Patent Document 5 Japanese Patent Laid-Open No. 9-256138 (Claims)
  • Patent Document 6 Japanese Patent No. 3151713 (Claims)
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2006-9115 (Claims)
  • Patent Document 8 Japanese Patent Laid-Open No. 2005-36311 (full text)
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2000-34581 (full text)
  • the exhaust pipe material of the exhaust system around the engine may generate high-temperature oxidation at a high temperature such as 8 oo ° C as the temperature of the exhaust gas increases. Therefore, as an exhaust pipe material for the exhaust system around the engine, titanium materials are required to have excellent high-temperature oxidation resistance at higher temperatures. In other words, as an exhaust pipe material for the exhaust system, titanium materials are required to have excellent high-temperature acid resistance even at temperatures as high as 850 to 870 ° C, which is higher than 800 ° C depending on the model. There is.
  • the high-temperature acid resistance is limited to a performance of about 800 ° C.
  • the surface-treated titanium material in which fine particles are shot blasted on the surface of a titanium alloy member containing A1 of Patent Document 9 is tested by raising the oxidation conditions to a high temperature of 950 ° C, and is superior in high-temperature oxidation!
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a titanium alloy, pure titanium, or surface treatment with improved high-temperature oxidation resistance exceeding 800 ° C.
  • An object is to provide a titanium material, and an engine exhaust pipe composed of the titanium alloy, pure titanium, and surface-treated titanium material at low cost and efficiently.
  • a first aspect of the present invention is a titanium alloy and an engine exhaust pipe.
  • the titanium alloy excellent in high-temperature oxidation resistance according to the present invention contains 0.12 to 2% by mass of Si.
  • the content of A1 is regulated to less than 0.30% by mass, and the average crystal grain size of the equiaxed grain structure of the titanium alloy is 15 m or more.
  • the titanium alloy excellent in high temperature oxidation resistance of the present invention contains 0.1 to 2% by mass of Si, and the content of A1 is regulated to less than 0.30% by mass. Has a needle-like structure.
  • A1 is not restricted to less than 0.30% by mass
  • another titanium alloy having excellent high-temperature oxidation resistance according to the present invention contains 0.12 to 2% by mass of Si.
  • A1 is the total content of Si and 2
  • the titanium alloy has an equiaxed grain structure, and the average grain size is
  • another titanium alloy excellent in high-temperature acid resistance of the present invention contains 0.12 to 2% by mass of Si, and A1 is Si. And the titanium alloy has a needle-like structure.
  • the titanium alloy of the above-mentioned gist is further combined with the Si, at least one of which Nb, Mo, Cr internal forces are also selected.
  • the content or the total content of Si and A1 is preferably 2% by mass or less.
  • the above-described titanium alloy further has an average Si concentration of 0.5 at% or more on the outermost surface of the titanium alloy.
  • the titanium alloy according to the above gist is further provided with an average coating thickness after drying on the surface of 10 to LOO / zm, It is preferable to have an organometallic compound coating film in which the A1 content in the coating film after drying is 30 to 90% by mass
  • the titanium alloy according to the gist or the preferred embodiment described later is preferably applied to an engine exhaust pipe (for engine exhaust pipe use).
  • the engine exhaust pipe excellent in high-temperature acidity resistance of the present invention is composed of a titanium alloy having a preferable aspect described later or later.
  • a second aspect of the present invention is pure titanium and an engine exhaust pipe.
  • the pure titanium excellent in high-temperature oxidation resistance of the present invention has a needle-like structure formed by heating pure titanium to the ⁇ transformation point or higher and then cooling.
  • the pure titanium has, on its surface, an average coating thickness after drying of 10 to LOOm, and an A1 content in the coating after drying of 30 to 90% by mass. It is preferable to have a compound coating film.
  • the pure titanium of the above-described gist or a preferable aspect described later is applied to an engine exhaust pipe (for engine exhaust pipe use).
  • the engine exhaust pipe excellent in acid resistance of the present invention is made of pure titanium as described above. It is configured.
  • a third aspect of the present invention is pure titanium and an engine exhaust pipe.
  • the surface-treated titanium material excellent in high-temperature oxidation resistance of the present invention is formed on the surface of pure titanium or a titanium alloy by using aluminum oxide particles widely used as shot blast particles. It has a shot blast treatment layer, and the treatment layer has an aluminum average concentration force of at% or more.
  • the average crystal grain size of the equiaxed grain structure is 15 m or more is preferable.
  • an aspect in which the titanium alloy has a needle-like structure is preferable in order to increase the high temperature oxidation resistance of the titanium alloy as a base material.
  • the engine exhaust pipe excellent in high-temperature acid resistance of the present invention is that the exhaust pipe is made of the surface-treated titanium material.
  • a fourth aspect of the present invention is a method for producing a surface-treated titanium material.
  • the surface of pure titanium or a titanium alloy is shot blasted with aluminate particles, and the aluminate particles used for the shot blasting are used.
  • the aggregate as a whole contains 80% by mass or more of aluminate.
  • Another method for producing the surface-treated titanium material of the present invention is a method in which the surface of pure titanium or a titanium alloy is shot blasted with aluminate particles, and the aluminate particles subjected to the shot blasting process. Contains 80% by mass or more of aluminate in a single particle.
  • the titanium alloy of the present invention includes a specific amount of Si, and by actively regulating A1, it has a resistance to a higher temperature of about 850 ° C, which is higher than 800 ° C. High temperature acidity can be improved.
  • the structure of pure titanium is changed to the acicular grain structure of the conventional equiaxed grain force to improve the high temperature acid resistance.
  • Patent Documents 1 to 5 it is also known in Patent Documents 1 to 5 that various surface treatments of the A1 series are performed in order to increase the high temperature acid resistance of the titanium material.
  • the various A1 surface treatments of these titanium materials have an effect on high-temperature acidity resistance of about 800 ° C.
  • the strength exceeds 800 ° C and the higher temperature resistance of 850 ° C.
  • the present invention has a surface treatment layer in which aluminate particles are embedded in a titanium material by shot blasting to form a titanium matrix and an aluminate body.
  • This surface treatment layer improves the oxidation resistance at a higher temperature of 850 ° C exceeding 800 ° C.
  • FIG. 1 is a drawing-substituting photograph showing the fine equiaxed grain structure of the titanium alloy of the present invention.
  • FIG. 2 is a drawing-substituting photograph showing the coarse equiaxed grain structure of the titanium alloy of the present invention.
  • FIG. 3 is a drawing-substituting photograph showing the acicular structure of the titanium alloy of the present invention.
  • FIG. 4 is a drawing-substituting photograph showing an acicular structure of pure titanium of the present invention.
  • FIG. 5 is a drawing-substituting photograph showing the equiaxed grain structure of conventional pure titanium.
  • the titanium alloy according to the first embodiment of the present invention contains 0.1 to 2% by mass of Si, the content of A 1 is regulated to less than 0.30% by mass, and the titanium alloy has equiaxed crystal grains.
  • the average grain size of yarn and weave is 15 m or more.
  • the titanium alloy of the present invention contains 0.12 to 2% by mass of Si in order to improve high-temperature acid resistance (hereinafter also simply referred to as high-temperature oxidation resistance) exceeding 800 ° C.
  • A1 is regulated to less than 0.30% by mass, and the remainder is composed of titanium and inevitable impurities.
  • Si is an element essential for improving high-temperature acid resistance. Si also improves high temperature strength. For this purpose, it is necessary to contain 0.15% by mass or more of Si. On the other hand, if the Si content exceeds 2% by mass, it becomes difficult to form a calorie on the exhaust pipe of titanium alloy, which causes a significant deterioration in formability.
  • A1 like Si, Nb, Mo, and Cr, is an element that improves high temperature acid resistance.
  • A1 when the operating temperature of the titanium alloy exceeds 800 ° C, the action of causing the exfoliation of the oxide scale appears, and this exfoliation does not suppress the diffusion and entry of oxygen into the substrate. As a result, the acid resistance is deteriorated. Accordingly, in the present invention, A1 is positively regulated to less than 0.30% by mass, which is a range that does not cause the above-described adverse effects.
  • the high temperature oxidation resistance due to A1 is remarkably reduced, and it is necessary to positively regulate A1 to less than 0.30% by mass.
  • the titanium alloy has a fine equiaxed grain structure with an average grain size of less than 15 m (corresponding to claim 1).
  • the structure of the titanium alloy is a relatively coarse equiaxed grain structure with an average crystal grain size of 15 m or more, or when the titanium alloy is a needle-like structure
  • A1 is 0.30 mass It is not necessary to regulate to less than% (corresponding to claims 4 and 5). This is because the decrease in the high temperature acidity resistance due to A1 is suppressed by the improvement in the high temperature acidity resistance due to these relatively coarse equiaxed crystal grain structures or needle-like structures. Therefore, when the titanium alloy has these relatively coarse equiaxed grain structures or needle-like structures, it is allowed to contain A1 in a total content of 2% by mass or less with Si.
  • Nb, Mo, and Cr are effective in improving the high-temperature oxidation resistance of 800 ° C and higher temperatures of about 850 ° C. Synergistic effects can be expected by adding (coexisting) with Si. Therefore, the present invention titanium alloy is further, Nb, Mo, 1 kind or 2 or more internal forces Cr is also selected, 2 mass 0/0 or less in a total amount of the S Fireflys is Si and A1 May be included. If the total amount of these elements with Si, or if A1 is included in a substantial amount (0.30% by mass or more), if the total amount of Si and A1 exceeds force% by mass, the formability deteriorates. It becomes difficult to form the exhaust pipe. Therefore, if the total amount of these elements with Si, or the substantial amount of A1 (0.30 mass% or more) is included, the total amount of Si and A1 should be 2 mass% or less.
  • a titanium alloy contains oxygen and iron as main impurity elements in a melting raw material and a melting process. These oxygen and iron deteriorate the formability of the titanium alloy into the shape of the exhaust pipe. Therefore, even if it is included, the total content of oxygen and iron is preferably 0.20% by mass or less! /.
  • Cu deteriorates the high-temperature oxidation resistance.
  • Cu is effective in enhancing the high-temperature strength characteristics as an exhaust pipe. Therefore, Cu may be contained in an amount of 2% by mass or less in terms of the total content of S, Si, A, Si, A1, Nb, Mo, and Cr.
  • the Cu content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
  • the titanium alloy set of the present invention Weaving is a preferred embodiment described below. That is, the average concentration of Si on the outermost surface of the titanium alloy To increase the average grain size of the titanium alloy structure, and to have a needle-like structure
  • the titanium alloy structure is selected from one or more. A synergistic effect can also be expected by using these tissues in appropriate combination with the above component composition.
  • the average concentration of Si on the outermost surface of the titanium alloy is preferably 0.5 at% or more in order to further improve the high temperature oxidation resistance.
  • the Si concentrated on the outermost surface may be Si dissolved in titanium. Ti such as Ti Si and Si
  • the Si concentration on the outermost surface basically increases with the Si content of the titanium alloy (base material). If manufactured, the average concentration of Si on the outermost surface of the titanium alloy may be increased to 0.5 at% or more. However, on the other hand, depending on the manufacturing method, a surface contamination layer such as oxygen or carbon may exist up to a depth of several meters. In such a case, the average concentration of Si present on the outermost surface Is less than 0.5 at%, and it is highly possible that an excellent effect of improving high-temperature acid resistance is not expected. Therefore, the Si concentration on the outermost surface of the titanium alloy is not uniformly determined by the Si content of the titanium alloy. For this reason, when the average concentration of Si on the outermost surface of the titanium alloy is 0.5 at% or more, it is preferable to select manufacturing conditions that do not form a surface contamination layer such as oxygen or carbon.
  • the Si concentration on the outermost surface of the titanium alloy was determined by surface quantitative analysis using a wavelength dispersion method (Wave Dispersive Spectroscopy, abbreviated as WDS) in X-ray microanalysis analysis (Electron Probe Micro Analysis, abbreviated as EPMA). It can be measured. More specifically, the analysis part on the outermost surface is expanded to X500 to X1000, first the existing elements are examined by qualitative analysis, and then each concentration is quantitatively determined by semi-quantitative analysis using the ZAF method. I can do it. The concentration of the outermost surface varies depending on the penetration depth of the electron beam at the time of analysis.
  • WDS wavelength dispersion method
  • EPMA Electro Probe Micro Analysis
  • the Si concentration on the outermost surface in the present invention means the average concentration of Si from the surface to a depth of about 1 to 2.5 ⁇ m.
  • the Si concentration on the outermost surface means the concentration defined in this way.
  • the titanium alloy structure of the present invention When manufactured by a conventional method, the titanium alloy structure of the present invention becomes equiaxed grains as usual. This equiaxed grain structure ensures properties such as formability and mechanical properties (strength) of the titanium alloy.
  • the average crystal grain size greatly contributes to the high temperature acidity of the titanium alloy. That is, high temperature oxidation resistance is improved when the average crystal grain size is somewhat large. Specifically, this effect appears when the average crystal grain size is 15 m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the average crystal grain size becomes excessively large, problems such as rough skin during molding and a decrease in fatigue strength occur.
  • the upper limit of the average crystal grain size is It is about 100 / zm.
  • Ti-Si series titanium alloy of the present invention is manufactured by a conventional method, Ti such as Ti Si and Si and Si
  • Intermetallic compounds and j8 phases are dispersed and formed in the matrix titanium, which suppresses the growth of crystal grains.
  • This effect of suppressing crystal grain growth of Si is also described in Patent Document 2. For this reason, it is difficult to increase the average crystal grain size to 15 m or more, which is effective in suppressing high-temperature oxidation by a conventional method, particularly in a titanium alloy containing Si.
  • the rolling reduction of cold rolling which can be said to be a conventional method for producing a titanium alloy, is approximately 20 to 70% although it differs depending on the material.
  • the temperature of annealing performed thereafter is 600 to 800 ° C
  • the temperature on the low temperature side is about 600 to 700 ° C for annealing such as vacuum annealing that takes a long time of several hours to tens of hours.
  • the conditions are adopted, and in the short time treatment such as continuous annealing pickling, the temperature condition on the high temperature side of 700-800 ° C is adopted.
  • the average grain size of Ti-S titanium alloy of the present invention is cold-rolled and annealed, the average grain size is increased to 15 m or more. Difficult to do. In other words, when the average grain size of Ti-S titanium alloy is 15 / zm or less, it is manufactured within the range of this ordinary method.
  • the reduction ratio of the cold rolling is reduced to 20% or less, and the annealing temperature is decreased.
  • the preferred rolling reduction is 15% or less, more preferably 10% or less.
  • the preferable annealing temperature is 850 ° C. or higher and ⁇ transformation point or lower. When this annealing temperature exceeds 8) the transformation temperature, a needle-like structure described later is formed. Therefore, when it is important to make the crystal grains of the member equiaxed grains and to obtain good formability and mechanical properties stably industrially, the upper limit of the annealing temperature is set to the ⁇ transformation point temperature or lower.
  • the structure of the titanium alloy is a relatively coarse equiaxed grain structure with an average grain size of 15 / zm or more, as described above, A1 is not restricted to less than 0.30% by mass. It's okay. In other words, the action of these relatively coarse equiaxed grain structures improves the high-temperature oxidation resistance, and thus suppresses the high-temperature acidity reduction effect by A1. This effect becomes greater as the average grain size of the titanium alloy is larger.
  • the crystal grain size referred to in the present invention is an average crystal grain size in a cross section in the rolling (L) direction of a titanium alloy.
  • This crystal grain size was measured by using a 100x optical microscope to observe the surface of the sample (test piece) taken from the titanium alloy plate after mirror-polishing after 0.05-0.1 mm cross-section and mirror polishing.
  • the line intercept method is used to measure in the above direction.
  • the measurement line length is 0.95 mm
  • the total measurement line length is 0.95 x 15 mm by observing a total of 5 fields with 3 lines per field. In this way, the average grain size measured at any 10 locations in the center of the titanium alloy plate excluding the front and rear ends of the plate was further averaged to obtain the average grain size of the titanium alloy.
  • the diameter is an average crystal grain size in a cross section in the rolling (L) direction of a titanium alloy.
  • the oxidation resistance is higher than 800 ° C.
  • the titanium alloy may be made into a needle-like structure.
  • the structure of the titanium alloy is a needle-like structure, as described above, A1 may not be regulated to less than 0.30% by mass.
  • These needle-like structures suppress the decrease in high-temperature oxidation resistance due to A1 because the high-temperature oxidation resistance is improved. Note that when the annealing temperature of the titanium alloy of the present invention becomes higher than the ⁇ transformation point, the entire structure of the titanium alloy becomes the needle-like structure.
  • the structure of a titanium alloy exhibits an equiaxed structure because it is finally annealed at the ⁇ transformation point or less after cold rolling.
  • an acicular structure is preferred rather than an equiaxed grain.
  • the method for forming the needle-like structure is not particularly limited, but the titanium alloy can be formed by, for example, cold rolling, and finally heating and cooling after the j8 transformation point.
  • this needle-like structure is not related to the rolling reduction of cold rolling (even if the rolling reduction is not controlled), but only
  • FIGS. 1 and 2 The cross-sectional microstructure of the equiaxed grains of the present invention is shown in FIGS. 1 and 2 (drawing substitute photos), and the cross-sectional microstructure of the needle-like structure of the present invention is shown in FIG. 3 (drawing substitute photos).
  • Figs. 1 and 2 show the cross-sectional microstructure of the titanium alloy with a 100x optical microscope, and Fig. 3 with a 200x optical microscope.
  • the structure in the case of Fig. 1, it exhibits an equiaxed structure and the average grain size is 15 m or less. Yes.
  • the structure in the case of Fig. 2, the structure is equiaxed as in Fig. 1, but the average crystal grain size is increased to about 30 m by the combination of the low pressure reduction rate and high temperature annealing described later.
  • the structure in the case of Fig. 3, the structure is a needle-like structure because the force is cooled by heating above the ⁇ transformation point described later.
  • the titanium alloy in FIG. 1 is a Ti-0.5Si-0.1AH) .2Nb alloy of the present invention (both numbers are mass%), and after cold rolling at a rolling reduction of 40%, it is 6 ° C at 800 ° C. It has been subjected to minute atmospheric annealing.
  • the titanium alloy shown in Fig. 2 is obtained by cold rolling the above alloy at a reduction rate of 10% and then annealing at 850 ° C for 6 minutes.
  • the titanium alloy in Fig. 3 is obtained by cold rolling the above alloy at a rolling reduction of 40%, heating to 950 ° C exceeding j8 transformation point of about 900 ° C for 6 minutes, and then cooling.
  • this acicular structure is clearly defined by a manufacturing method that is a history. That is, this acicular structure is defined as an acicular structure generated by a heat treatment in which the titanium alloy is heated to the
  • the production method of the titanium alloy of the present invention has preferable aspects of the above production method and conditions for creating a structure
  • the process itself is ingot melting, hot forging, hot rolling, annealing, cold rolling, It can be manufactured by a conventional method that also has annealing or heat treatment.
  • the preferable structure for improving the high temperature oxidation resistance is changed by changing the cold rolling, annealing or heat treatment conditions.
  • the titanium alloy of the present invention obtained as described above is excellent in high-temperature oxidation resistance of about 850 ° C. and can be used without surface treatment. However, it is not limited to bare without surface treatment in this way, but it can be used with various surface treatments!
  • the surface treatment film itself has excellent high-temperature oxidation resistance at a higher temperature of about 850 ° C.
  • the average film thickness after drying is 10 to: LOO m, and A1 content in the film after drying
  • An organometallic compound coating film whose amount is 30 to 90% by mass is preferred.
  • This organometallic compound coating film is stable and handles, such as nursem titanium, nursem zirconium, chromium acetate, silicone, silica sol, alumina sol and aluminum isopropoxide containing A1 pieces or A1 powder.
  • This is a coating film of organometallic compounds that is easy to use and has low toxicity.
  • a well-known method such as application or dipping of a coating solution such as an aqueous solution or solvent of an organometallic compound containing a predetermined amount of A1 or a dispersion liquid onto the surface of the titanium alloy of the present invention. Paint at a temperature of 200 ° C or less. If the coating film is dried at 200 ° C or less after coating, higher resistance to high-temperature oxidation can be expected.
  • a coating solution such as an aqueous solution or solvent of an organometallic compound containing a predetermined amount of A1 or a dispersion liquid onto the surface of the titanium alloy of the present invention. Paint at a temperature of 200 ° C or less. If the coating film is dried at 200 ° C or less after coating, higher resistance to high-temperature oxidation can be expected.
  • An organic metal compound coating film having an average coating film thickness after drying of 10 to LOO m and an average A1 content of 30 to 90% by mass in the coating film after drying. To do. If the average film thickness (film thickness) after drying is less than 10 ⁇ m, the underlying titanium is exposed to the corrosive atmosphere through defects such as pinholes, and the thickness of the coating itself is too small. The protective property of the groundwork cannot be obtained, and there is no meaning as a paint film.
  • the average coating thickness (film thickness) after drying exceeds 100 m, the coating film is easily peeled off due to the influence of film stress and the like. Therefore, the average film thickness after drying should be in the range of 10 to: LOO / zm.
  • the average coating thickness after drying can be measured by observing, measuring, and averaging the coating film cross-section, for example, at any 10 locations with an optical microscope.
  • the average A1 content in the coating film after drying is less than 30% by mass, the effect of improving the high-temperature acidity resistance at higher temperatures is insufficient, and conversely if it exceeds 90% by mass Insufficient coating strength leads to premature destruction of the coating due to external forces or shrinkage of the substrate. Therefore, the average A1 content in the coating after drying is in the range of 30 to 90% by mass. A1 content in this coating The amount can be measured by analyzing the coating film surface or coating film cross section, for example, at any 10 locations by EPMA and averaging.
  • the shape of A1 (added) in the coating film is scale-like that has the best resistance to high-temperature oxidation, even in a powdery form or a mixture of scale-like and powdery form. It is possible to obtain high temperature oxidation characteristics.
  • the reason why the coating film (coating) improves the high-temperature oxidation resistance of about 850 ° C is that the coating film containing A1 itself has resistance to high-temperature oxidation. This is probably because when A1 is exposed to high temperature, A1 in the coating film reacts with titanium of the base material to form a layer having resistance to high temperature oxidation.
  • the titanium cold-rolled sheets having the component compositions shown in Tables 1 and 2 were evaluated for high-temperature oxidation resistance at high temperatures at 850 ° C. Specifically, about 120 g of soot having the composition shown in Tables 1 and 2 was melted in a button arc furnace. To add titanium, the surface was cleaned cleanly and JIS Class 1 pure titanium scrap material was used. Each ingot was hot-forged, hot-rolled, and annealed by conventional methods, and then cold-rolled at a predetermined reduction rate. Thereafter, the cold-rolled sheet was degreased and annealed at a predetermined temperature and condition, and a cold-rolled sheet having a thickness of 2 mm was produced in common. And harvested the specimen 2mmt X 25mm w X 25mm 1 from the cold-rolled plate.
  • examples in which the average crystal grain size of the test piece is 10 m or less indicate the rolling reduction ratio of the titanium alloy, About 40% within the range of ordinary methods. Thereafter, vacuum annealing was performed at 800 ° C for 6 minutes.
  • the average crystal grain size of the test piece exceeds 15 m is different from the above-mentioned conventional method.
  • the cold rolling of the titanium alloy is performed.
  • the rolling force was reduced by selecting a range force of 20% or less, and a vacuum annealing was selected at a temperature range of 825 ° C or more and a ⁇ transformation point or less, and the soaking time was 6 minutes.
  • the rolling reduction of the cold rolling was approximately 40% within the range of the ordinary method, and this cold rolled sheet was soaked at 950 ° C exceeding the / 3 transformation point of the titanium alloy. Vacuum heating for 6 minutes.
  • the structure of the whole specimen collected from the specimen thus obtained was a needle-like structure.
  • the average concentration of Si on the outermost surface of the titanium alloy is 0.5 at% or more.
  • the example of enrichment of the outermost surface Si is that after cold rolling with a rolling reduction of about 40%, instead of vacuum annealing, After atmospheric annealing for 5 minutes, a 600 ° C molten salt (NaNO 55% by mass, NaOH 35% by mass, remaining so as not to have a surface contamination layer such as oxygen or carbon on the outermost surface of the titanium alloy to a depth of several meters) KC1, NaCl
  • the average crystal grain size of the test piece under this production condition is 10 ⁇ m or less, and an example in which the average crystal grain size of the test piece exceeds 15 m is that the reduction ratio in cold rolling is 20% or less.
  • the range force was also selected, and the reduction rate was made smaller to obtain a larger average grain size.
  • the concentration of the outermost surface Si in the example in which the structure was a needle-like structure was performed by replacing only the above-mentioned atmospheric annealing process with a condition of 950 ° C exceeding the ⁇ transformation point of the titanium alloy for 6 minutes. The same process and conditions for the concentration of the uppermost surface Si were performed.
  • the amount of Si on the outermost surface of each test piece was analyzed by the following method. In other words, the number of samples before analysis After ultrasonic cleaning with acetone for 5 minutes to remove contaminants such as oil adhering to the surface, analysis was performed using an EPMA analyzer JXA-8900RL manufactured by JEOL. The analysis magnification was X500, the acceleration voltage was 15 kv, the elements present on the surface were examined by qualitative analysis, and the abundance of the existing elements was determined by semi-quantitative analysis using the ZAF method.
  • High temperature oxidation resistance was evaluated by a high temperature oxidation test. That is, when these specimens were exposed to a high-temperature atmosphere at a higher temperature of 850 ° C, higher than 800 ° C for 100 hours, the weight increase of the specimens before and after the high-temperature oxidation test (oxidation increase: mgZcm 2 ) was measured. And the smaller the increase in weight, the better the high-temperature oxidation resistance. For samples in which exfoliation of the oxide scale was observed, the weight of the exfoliated oxide scale was taken into account for this weight measurement. Tables 1 and 2 show these results.
  • Inventive Examples 1 to 11 satisfy the component composition requirements within the range on the assumption that the structure is a fine equiaxed grain having an average crystal grain size of less than 10 m.
  • Invention Example 3 containing Si alone, close to its lower limit of 0.15% by mass, is 850 ° C. in comparison with the other Invention Examples 4 and 5 having a higher Si content.
  • High temperature resistance to acidity at Therefore, the effect of improving the high-temperature acid resistance at 850 ° C of Si alone is supported.
  • Inventive Example 5 had a Vickers hardness of 230 points when the Si content was close to the upper limit of 2% by mass, which was about 50 to 80 points higher than the other inventive examples. For this reason, it is expected that the forming force of the titanium alloy on the exhaust pipe is difficult.
  • Inventive example 2 which has a relatively high A1 content, has the same Si content and a relatively low A1 content, compared to Inventive example 1, each of which has a high temperature resistance to high temperatures at 850 ° C. However, it is relatively inferior because the scale peeling easily occurs.
  • the significance of regulating the A1 content to less than 0.30% by mass in order to improve the high-temperature acid resistance at higher temperatures is supported. It is done.
  • Nb, Mo, and Cr Si is added in combination with Si, and the Si content is the same. High temperature and high temperature resistance is relatively excellent. Therefore, the higher temperature resistance to high temperature resistance of titanium alloys of Nb, Mo and Cr is supported.
  • Inventive Examples 12 to 26 assume the average crystal grain size and the average concentration of the outermost surface Si on the assumption that the structure is equiaxed grains.
  • the average crystal grain size is 15 m or more, and the average crystal grain size is The larger the example, the better the high-temperature acidity resistance at 850 ° C. Therefore, the effect of improving the high-temperature resistance to high-temperature acidity due to the coarsening of the crystal grain size is supported.
  • Inventive examples 27 to 35 in Table 2 have an average concentration of Si on the outermost surface, assuming a needle-like structure.
  • Inventive Examples 28, 30, and 31 are compared with Inventive Examples 27 and 29 in which the A1 content is suppressed to 0.30 mass% or less even though the A1 content exceeds 0.30 mass%. Although they are slightly inferior, they each have excellent high-temperature acid resistance at 850 ° C. This confirms the effect of improving the high-temperature oxidation resistance at higher temperatures while suppressing the adverse effects of A1 content due to the needle-like structure.
  • Inventive Example 35 in which the outermost surface Si concentration is enriched is superior in high temperature acid resistance at 850 ° C to Inventive Example 27 in which no enrichment is performed. Therefore, the combined effect of acicular organization and concentration of the outermost surface Si concentration supports the effect of improving the high-temperature high-temperature acid resistance.
  • Inventive Examples 32 and 33, Nb, Mo and Cr are added in combination with Si, and the Si content is the same. High temperature oxidation resistance is relatively excellent. Therefore, the combination of the needle-like structure and the addition of Nb, Mo, and Cr supports the higher temperature resistance to high temperature resistance of titanium alloys.
  • Comparative Examples 36 to 40 although the A1 content is suppressed to 0.30 mass% or less, the Si content is too small.
  • Comparative Examples 37 to 40 include the use of Nb, Mo, Cr combined addition, crystal grain coarsening, acicular organization, etc. for improving high temperature acid resistance. Regardless, the high-temperature acid resistance at 850 ° C is remarkably inferior. Therefore, the improvement effect of high-temperature acid resistance at 850 ° C of Si compared to these other means is supported.
  • Comparative Examples 41 and 42 have too much Si content. For this reason, the Vickers hardness was 280 to 300 points, which was about 50 to 70 points higher than that of Invention Example 5 having an upper Si content. For this reason, it is expected that molding of the titanium alloy into the exhaust pipe cannot be performed. These support the significance of the upper limit of Si content.
  • Comparative Examples 43 and 44 are fine equiaxed grains with an average crystal grain size of less than 10 ⁇ m, and there is no thickening of the outermost surface Si concentration. In addition, the A1 content exceeds the upper limit. Pass. As a result, Comparative Examples 43 and 44 are significantly inferior in high-temperature acid resistance at 850 ° C. Combined with the results of the invention examples having a high A1 content, the significance of regulating the A1 content to less than 0.30% by mass in order to improve high temperature acid resistance at 850 ° C is supported. .
  • the high temperature acidity test of the titanium alloy test piece of the present invention provided with the coating film is performed under the same conditions as described above, and each oxidation increase is measured.
  • Each of these oxidation increases (A) and the titanium alloy of the present invention shown in Tables 1 and 2 corresponding to the titanium alloy of the present invention provided with this coating film (without the coating film) were used in the high-temperature oxidation test.
  • the ratio (AZB) to the increase in amount (B) was determined, and the high temperature oxidation resistance of the coating film was evaluated. It can be said that the smaller the acid increase ratio AZB, the higher the contribution to the high temperature acid resistance on the coating film side, and the higher the high temperature acid resistance of the coating film.
  • the evaluation of high-temperature oxidation resistance is ⁇ when the acid-to-acid increase ratio AZB is 0.45 or less, ⁇ exceeding 0.45 to 0.65, and X exceeding 0.65. evaluated.
  • test piece For the coating, use the same test piece as in the above example, and have a film thickness (film thickness after drying) as shown in Table 3 and an A1 content in the coating film (A1 content after drying).
  • the test piece was dip-coated in a solution containing a non-modified silicone resin containing scaly A1 and an organic solvent.
  • Drying after painting is as follows: (1) Temporary drying at 120 ° CX for 15 minutes, followed by main drying at 190 ° CX for 30 minutes (shown in Table 3 as a drying temperature of 190 ° C), (2) Preliminary drying was performed at 120 ° CX for 15 minutes, followed by main drying at 210 ° CX for 30 minutes (described in Table 3 as a drying temperature of 210 ° C).
  • the average film thickness after drying which is the above-mentioned preferable condition range, is 10 to: LOO / zm, and the A1 content in the coating film after drying is 30 to 90.
  • Examples 48 and 55 to 57 of the organic metal compound coating film having a mass% are excellent in high temperature oxidation property of the coating film.
  • the difference in the oxidation increase in the high-temperature oxidation test is small, and the difference in the oxidation increase is relatively large. Excellent in properties.
  • Examples 47 and 49 in which the average film thickness after drying is the lower limit and upper limit of the preferred range, Examples 50, A1 content in the coating film after drying is the lower limit and upper limit of the preferred range 50 51, or drying temperature is preferred, and out of range is too high.Example 52 is preferred and out of range.
  • the high temperature oxidation property of the coating film is superior.
  • the high-temperature acidity of the coating film is inferior to Examples 48 and 55 to 57 in which the coating film condition is the above-described preferable condition range.
  • the pure titanium is heated above the transformation point. It has the needle-like structure
  • pure titanium itself of the present invention
  • ordinary pure titanium having the purity of 99.5% by mass or more and from the fourth type to the first type as defined in the JIS standard can be used.
  • the purity of JIS standard type 1 pure titanium is 99.8 mass% or more
  • the purity of type 2 pure titanium is 99.7 mass% or more.
  • the crystal grain of pure titanium has a needle-like structure that is not equiaxed grains.
  • the method for forming this needle-like structure is not particularly limited, and it can be made into a needle-like structure by heating pure titanium above the j8 transformation point.
  • a needle-like structure can be obtained by heating after cooling above the 8 transformation point and cooling.
  • the cooling may be air cooling, water cooling or furnace cooling.
  • Fig. 4 shows the cross-sectional microstructure of the needle-like structure of Type 2 pure titanium of the present invention
  • Fig. 5 drawing substitute shows the cross-sectional microstructure of the equiaxed grain structure of Type 2 pure titanium for comparison.
  • Photo shows each.
  • the pure titanium in Fig. 4 is Invention Example 2 in Table 4 to be described later, and after the second type pure titanium is cold-rolled at a rolling reduction of 40%, it exceeds the ⁇ transformation point at 950 ° C for 6 minutes. It is air-heated and then cooled (cooled).
  • the pure titanium in Fig. 4 is Comparative Example 5 in Table 4 described later, and is obtained by subjecting Type 2 pure titanium to atmospheric annealing at 800 ° C for 6 minutes after cold rolling at a rolling reduction of 40%. is there.
  • the acicular structure of Fig. 4 is clearly defined by the manufacturing method that is the history of the acicular structure. That is, this needle-like structure is a needle-like structure generated by a heat treatment in which pure titanium is heated to the
  • the formation of the needle-like structure or the equiaxed grain structure is the temperature of the final annealing as described above. After cold rolling, the needle-like structure is heated to more than 8 transformation points to cool the force, so that it is necessarily pure titanium and pure titanium material regardless of the previous cold rolling reduction ratio. Can be obtained over the entire surface.
  • an equiaxed grain structure is inevitably obtained by annealing at a temperature below the ⁇ transformation point after cold rolling in the case of pure titanium. In this regard, even if heating at a temperature lower than the j8 transformation point is not performed immediately after the cold rolling, and heating is performed at a low temperature during this time, if it is finally heated above the j8 transformation point (the final heating temperature is ⁇ transformation). If it is above the point, a needle-like structure is obtained.
  • This needle-like structure (used in the present invention) may be made into a needle-like structure using pure titanium itself having a commercially available equiaxed structure.
  • pure titanium until it becomes a needle-like structure is ingot-melted, hot forged, hot rolled, annealed, cold It can be manufactured by conventional methods (commercially pure titanium manufacturing method), which are hot-rolled and annealed or heat-treated as necessary.
  • the pure titanium of the present invention obtained as described above is excellent in high-temperature oxidation resistance of about 800 ° C. and can be used without surface treatment. However, it may be used after being subjected to various surface treatments as well as naked without surface treatment.
  • the surface treatment film itself is excellent in high-temperature acid resistance at about 800 ° C.
  • the average film thickness after drying is 10 to: LOO ⁇ m, and the A1 content in the dried film is 30 to 90% by mass.
  • a metal compound coating film is preferred.
  • This organometallic compound coating film contains A1 scale or A1 powder, nursem titan, nursem zirconium, chromium acetate, silicone, silica sol, alumina sol, and alumina sol. It is a coating film of organometallic compounds, such as lumi-mu isopropoxide, which is stable, easy to handle, and has low toxicity.
  • Such an organic metal compound solution containing a predetermined amount of A1 or a solution using a solvent, or a coating material having a dispersion force is applied to the pure titanium surface of the present invention by a known method such as coating or dipping.
  • a known method such as coating or dipping.
  • the coating film is dried at 200 ° C or lower after coating, the coating film can be expected to have high-temperature acid resistance.
  • the coating film is dried at a high temperature exceeding 200 ° C after coating, the drying and curing reaction of the coating film occurs rapidly, depending on the type of the coating film.
  • the powder is fixed in a state where a lot of space is formed in the coating film, and this space allows oxygen to enter, and as a result, it may be difficult to obtain excellent high-temperature acid resistance.
  • the coating film is dried at 200 ° C or less, it takes time to dry, so the A1 scales and A1 powder move to the position to fill the space and harden, so the space in the coating film is reduced. As a result, excellent high-temperature oxidation resistance can be obtained.
  • An organic metal compound coating film having an average coating film thickness after drying of 10 to: LOO m and an average A1 content of 30 to 90% by mass in the coating film after drying. To do. If the average film thickness (film thickness) after drying is less than 10 ⁇ m, the underlying titanium is exposed to the corrosive atmosphere through defects such as pinholes, and the thickness of the coating itself is too small. The protective property of the groundwork cannot be obtained, and there is no meaning as a paint film.
  • the average coating thickness (film thickness) after drying exceeds 100 m, the coating film is easily peeled off due to the influence of film stress and the like. Therefore, the average film thickness after drying should be in the range of 10 to: LOO / zm.
  • the average coating film thickness after drying can be measured by observing, measuring, and averaging the coating film cross section, for example, at any 10 locations with an optical microscope.
  • the average A1 content in the coating after drying is less than 30% by mass, the effect of improving high-temperature acid resistance is insufficient. Conversely, if the content exceeds 90% by mass, Insufficient strength leads to premature destruction of the coating film due to external forces and shrinkage of the substrate. Therefore, the average A1 content in the dried film is in the range of 30 to 90% by mass.
  • the A1 content in the coating film can be measured by analyzing the coating film surface or coating film cross-section, for example, at any 10 locations by EPMA and averaging.
  • the shape of A1 (added) in the coating film is the scale having the highest resistance to oxidation resistance at high temperatures. Even in powder form, or in a mixture of scale form and powder form, it is resistant to higher temperatures.
  • High temperature oxidation resistance was evaluated by a high temperature oxidation test. That is, when these test pieces were exposed to a high-temperature atmosphere at 800 ° C. for 100 hours, the weight gain of the test pieces before and after the high-temperature oxidation test was measured (acid salt increase: mgZcm 2 ). And it was evaluated that the pure titanium example with a small weight increase was excellent in high temperature oxidation resistance. Table 4 shows these results.
  • Invention Examples 1 to 4 have a needle-like structure defined in the present invention. As a result, it has excellent high-temperature oxidation resistance and excellent high-temperature oxidation resistance, as well as first-class power and fourth-class pure titanium.
  • Comparative Examples 5 to 8 are conventional equiaxed grain yarns and weaves, compared with Invention Examples 1 to 4, 1 type power Even to the 4th type pure titanium, the high temperature acid resistance is remarkably inferior.
  • the high-temperature acidity test of the pure titanium test piece of the present invention provided with the coating film is performed under the same conditions as described above, and each oxidation increase is measured.
  • (A) corresponding to the pure titanium of the present invention provided with this coating film, the pure titanium of the present invention shown in Table 4 (without the coating film).
  • the ratio (AZB) to the amount of increase in acid (B) was determined, and the high temperature oxidation resistance of the coating film was evaluated.
  • the smaller the oxidation increase ratio AZB is, The contribution ratio to the high temperature acidity is high, and it can be said that the high temperature acid resistance of the coating film is high.
  • Table 5 in the high temperature oxidation resistance evaluation, the oxidation increase ratio AZB was evaluated as ⁇ when the AZB ratio was 0.5 or less, ⁇ exceeding 0.5 and 0.7, and X exceeding 0.7.
  • test piece For coating, use the same test piece as in the above example, and have a film thickness (film thickness after drying) as shown in Table 5 and an A1 content in the coating film (A1 content after drying).
  • the test piece was dip-coated in a solution containing a non-modified silicone resin containing scaly A1 and an organic solvent.
  • Drying after painting is as follows: (1) Temporary drying at 120 ° CX for 15 minutes, followed by main drying at 190 ° CX for 30 minutes (shown in Table 5 as a drying temperature of 190 ° C), (2) Preliminary drying was performed at 120 ° CX for 15 minutes, followed by main drying at 210 ° CX for 30 minutes (indicated in Table 5 as a drying temperature of 210 ° C).
  • the average film thickness after drying which is the above-mentioned preferable condition range, is 10 to: LOO / zm, and the A1 content in the coating film after drying is 30 to 90.
  • Examples 10 and 17 to 19 of the organic metal compound coating film having a mass% are excellent in high-temperature oxidation property of the coating film. That is, the increase in the amount of acid in the high-temperature acid test is less than the corresponding pure titanium of the present invention shown in Table 4 where no coating film is provided, and the high-temperature acidity of the coating film is excellent. .
  • Examples 9 and 11 in which the average coating thickness after drying is the lower limit and upper limit of the preferred range, Examples where the A1 content in the coating after drying is the lower limit and upper limit of the preferred range Examples 12, 13 or 14 where drying temperature is preferred and range power is too high are higher than Example 14, and examples 15 and 16 where range power is also out of favor are superior in high-temperature oxidation properties of the coating film.
  • the high-temperature oxidizability of the coating film is inferior to Examples 10 and 17 to 19, which are the preferable condition ranges described above.
  • the surface-treated titanium material according to the third embodiment of the present invention has a shot blast treatment layer made of aluminate particles on the surface of pure titanium or a titanium alloy, and the aluminum average concentration force of this treatment layer. It is at% or more.
  • the aluminate particles are used as a shot. By blasting, it is jetted and projected onto the titanium material surface at high speed. Then, aluminum oxide particles are embedded in the surface of pure titanium or titanium alloy, which is a titanium material, and a treatment layer integrated with the base material titanium mainly composed of aluminum oxide is formed. As described above, this aluminum oxide is the main component.
  • the treatment layer integrated with the base material titanium improves the high-temperature oxidation resistance at higher temperatures such as 850 ° C exceeding 800 ° C.
  • the aluminum oxide content (aluminum oxide concentration) of the buried layer of aluminum oxide particles (shot blasting layer) is 4 at% or more as the aluminum concentration.
  • the average aluminum concentration (content: at%) in the shot blast treatment layer is the wavelength dispersion method (Wave Dispersive Spectroscopy, abbreviated WDS) in X-ray microanalysis (Electron Probe Micro Analysis, abbreviated EPMA).
  • WDS Wide Dispersive Spectroscopy
  • EPMA Electro Probe Micro Analysis
  • the concentration of the outermost surface varies depending on the penetration depth of the electron beam at the time of analysis. By making the acceleration voltage at the time of analysis constant at 15 kv, the penetration depth of the electron beam is about 1 to 2.5 m. Therefore, the average aluminum concentration in the present invention means the average aluminum concentration from the surface of the shot blasting layer to a depth of about 1 to 2.5 ⁇ m.
  • the average aluminum concentration in the shot blasted layer is the concentration defined in this way. means.
  • the shot blasted layer tends to be a film or layer having a discontinuous thickness greatly different from a film or layer having a continuous thickness on the titanium surface. For this reason, it is very difficult to measure the actual thickness of the shot blasted layer, average it, quantify it, or numerically define it as a preferred thickness. Even if the film or layer has a continuous thickness, it is very difficult to determine the same amount because the thickness varies greatly.
  • the cross-sectional observation ability of an optical microscope at a magnification of about 100 times at an arbitrary number of locations on the surface of the titanium can be described as an average thickness measured and discontinuous, even if it is a continuous layer with a continuous thickness.
  • the shot blasted layer preferably has an average thickness of 1 / zm or more.
  • the shot blasted layer is too thick, there is a risk of excessive shot blasting causing deformation of the titanium base material, and it is not necessary to increase the thickness beyond 20 m on average.
  • a treatment layer integrated with titanium oxide base material titanium by embedding aluminate particles in the surface of pure titanium or titanium alloy, which is a titanium material, it is necessary to use a shot. Select blasting. According to the shot blasting process, the aluminate particles can be jetted and projected at a high speed on the surface of the titanium material, and can be embedded in the aluminum oxide substrate. As a result, a treatment layer integrated with the base material titanium mainly composed of aluminum oxide can be formed.
  • the shot blasting projection pressure is preferably 3 to 7 atm. This projection pressure is too low In such a case, the embedding power of the aluminate in the base material is insufficient. As a result, the formation of the treatment layer on the surface is not sufficient, and it is difficult to make the average aluminum concentration of the treatment layer 4 at% or more. On the other hand, if the projection pressure is too high, an increase in the thickness of the treatment layer that saturates the titanium material itself (base material) is saturated, which is not suitable.
  • the aluminate particles that can be used for shot blasting in the present invention may be any particle aggregate (powder, powder) in which aluminum oxide acts effectively.
  • the aggregate of particles may not contain 100% aluminate particles, but may contain other oxide particles or compound particles.
  • the single particle strength of aluminum oxide may not contain 100% aluminate composition, but other single oxides or compounds may be contained in single particles of aluminate.
  • the aggregate strength of the aluminum oxide particles (powder, powder) to be shot blasted as a whole It is preferable to contain 80% by mass or more of aluminum oxide (A10).
  • the oxide particle aggregate contains other oxide particles or compounds other than aluminum oxide, the aluminum oxide particles containing a large amount of the aluminate in a single particle may be separated from the aggregate.
  • the aggregate should contain 80% by mass or more of aluminum oxide as a whole.
  • the ratio of the aluminum oxide as the whole particle aggregate can be secured.
  • the power of using commercially available aluminate particles to be shot blasted The particle size of aluminate particles that can be used for shot blasting in the present invention is 90% or more.
  • the particle size of the product particles is preferably in the range of 180 to 425 ⁇ m.
  • the particle size of the aluminum oxide particles of 90% or more becomes smaller or coarser than this, the aluminate is embedded in the titanium surface by shot blasting.
  • aluminate particles are generally used for direct powdering of molten metal, atomizing method, molten metal stirring method, rotating disk dropping method, mechanical powdering, stamp mill method, ball mill method, vibration milling. It is manufactured by a known method such as a method or an attritor method.
  • the titanium material referred to in the present invention refers to pure titanium or a titanium alloy formed into various shapes such as plates, strips, wires, and pipes by plastic processing such as rolling or forming.
  • titanium alloys such as ⁇ alloy, a-j8 alloy, j8 alloy, etc., or pure titanium are used depending on the required properties (mechanical properties, etc.) of the application that do not limit the titanium material to be surface-treated. (JIS 1 to 4 types) can be used.
  • Ti-1.5A1, Ti-0.5 Al-0.45Si-0.2Nb, 6-6A ⁇ 4V, Ti-3A1-2.5V, Ti-15V-3A and 3Sn-3Cr, Ti- lCu and other alloys with modified alloy components can be used.
  • the titanium material itself which is the base material (base material)
  • the base material must be excellent in high-temperature acid resistance against the above-mentioned commonly used titanium alloys or pure titanium. Preferred. Preferred and embodiments of these titanium materials excellent in high-temperature acid resistance are described below.
  • the titanium alloy when the titanium alloy contains 0.12 to 2% by mass of Si, the high-temperature oxidation resistance at higher temperatures such as 850 ° C is improved. That is, it is preferable that the titanium alloy contains 0.12 to 2% by mass of Si, and the remaining titanium and inevitable impurity power.
  • Si is effective in improving high-temperature acid resistance. It also improves high temperature strength. For this reason Contains 0.15% by mass or more of Si. On the other hand, when the Si content exceeds 2% by mass, it becomes difficult to form a titanium alloy into an exhaust pipe, where the formability deteriorates significantly.
  • Nb, Mo, and Cr are also inferior in the effect of SU, but are effective in improving high-temperature acid resistance, and a synergistic effect can be expected by adding (coexisting) with Si. Therefore, one or more selected from Nb, Mo, and Cr may be included in a total content of 2% by mass or less with Si. If the total amount of these elements with Si exceeds 2% by mass, the formability deteriorates and it becomes difficult to form the exhaust pipe.
  • the titanium material structure of the present invention is set as a preferred embodiment described below. That is, titanium selected from one or more of the following: increasing the average Si concentration on the outermost surface of the Si-containing titanium alloy, increasing the average crystal grain size of the titanium material structure, and making the titanium material a needle-like structure It is preferable to have an alloy structure. A synergistic effect can also be expected by using these tissues in appropriate combination with the above component composition.
  • the additive of A1 induces peeling of the oxide scale in an acid environment of 800 ° C or higher, it is necessary to limit the amount of addition to, for example, less than 0.30% by mass.
  • Addition of A1 for adjustment of mechanical properties at high temperatures, etc., can be actively performed, for example, at 0.30% by mass or more.
  • the average concentration of Si on the outermost surface of the titanium alloy be 0.5 &% or more. Concentrated on this outermost surface, Si can be Si dissolved in titanium. Ti Si and other intermetallic compounds such as Ti Si and Si oxides and carbides are compounded.
  • This Si concentration on the outermost surface basically increases with the Si content of the titanium alloy (base material), and satisfies the specified range of Si content. If you manufacture The average concentration of Si on the outermost surface of the titanium alloy may be increased to 0.5 at% or more. However, on the other hand, depending on the manufacturing method, a surface contamination layer such as oxygen or carbon may exist at a depth of several zm, and in such a case, the amount of Si present on the outermost surface There is a high possibility that the average concentration of Nb will be less than 0.5 at%, and an excellent effect of improving high-temperature acidity resistance cannot be expected. Therefore, the Si concentration on the outermost surface of the titanium alloy is not uniformly determined by the Si content of the titanium alloy. For this reason, when the average concentration of Si on the outermost surface of the titanium alloy is 0.5 at% or more, the production conditions such as V in which a surface contamination layer such as oxygen or carbon is not formed in the production of the titanium alloy. Especially preferred to choose.
  • the final process may be a process in which the surface layer is removed. That is, pickling finish and polishing finish.
  • the Si concentration on the outermost surface of this titanium alloy was determined by surface quantitative analysis using the wavelength dispersion method (Wave Dispersive Spectroscopy, abbreviated as WDS) in X-ray microanalysis analysis (EPMA, for short). It can be measured. More specifically, the analysis part on the outermost surface is expanded to X500 to X1000, first the existing elements are examined by qualitative analysis, and then each concentration is quantitatively determined by semi-quantitative analysis using the ZAF method. I can do it.
  • the concentration on the outermost surface varies depending on the penetration depth of the electron beam at the time of analysis. By making the acceleration voltage at the time of analysis constant at 15 kv, the penetration depth of the electron beam is about 1 to 2.5 m. Therefore, the Si concentration on the outermost surface means the average concentration of Si from the surface to a depth of about 1 to 2.5 ⁇ m.
  • the Si concentration on the outermost surface means the concentration defined in this way.
  • the titanium material structure When manufactured by a conventional method, the titanium material structure becomes equiaxed grains. This equiaxed grain structure ensures properties such as formability and mechanical properties (strength) of the titanium alloy.
  • the average crystal grain size greatly contributes to the high temperature acidity of titanium. That is, the resistance to high-temperature acidity is improved when the average crystal grain size is somewhat large. Specifically, this effect appears when the average grain size is 15 m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the average result If the crystal grain size becomes excessively large, there will be a problem of rough skin at the time of molding.For applications where this problem is important, the upper limit of the average grain size is about 150 to 200 111, more preferably It is about 100 m.
  • the rolling reduction in cold rolling which can be said to be a conventional method for producing titanium materials, is approximately 20 to 70%, although it varies depending on the material.
  • the temperature of subsequent annealing is 600 to 800 ° C, and in the case of annealing such as vacuum annealing that takes a long time of several hours to tens of hours, the temperature on the low temperature side is about 600 to 700 ° C.
  • the conditions are adopted, and in the short time treatment such as continuous annealing pickling, the temperature condition on the high temperature side of 700-800 ° C is adopted.
  • the alloy element In the case of a titanium alloy, the alloy element often inhibits the grain growth, and within this range of conventional methods, even if the titanium material is cold-rolled and annealed, the average grain size should be 15 m or more. Is difficult.
  • the rolling reduction of the cold rolling is reduced to 20% or less
  • the annealing temperature is 825 ° C or more
  • j8 The temperature rises to a temperature below the transformation point.
  • the preferred rolling reduction is 15% or less, more preferably 10% or less.
  • the preferable annealing temperature is 850 ° C. or more and j8 transformation point or less.
  • the titanium material has a relatively coarse equiaxed grain structure with an average crystal grain size of 15 / zm or more, as described above, A1 is not restricted to less than 0.30% by mass. It's okay. In other words, the action of these relatively coarse equiaxed grain structures improves the high-temperature oxidation resistance, and therefore suppresses the high-temperature acidity reduction effect by A1. This effect increases as the average crystal grain size of the titanium material increases. [0189] (Method for measuring crystal grain size)
  • the crystal grain size referred to in the present invention is an average crystal grain size of a cross section in the rolling (L) direction of a titanium material such as a titanium alloy or pure titanium.
  • This crystal grain size was obtained by roughly polishing a cross section of a sample (test piece) taken from a titanium material by 0.05 to 0.1 mm, followed by mirror polishing, and then observing the etched surface using a 100 ⁇ optical microscope. Measured by the line intercept method in the vertical direction. The length of one measurement line is 0.95mm, and the total measurement line length is 0.95 x 15mm by observing a total of five fields with three lines per field. In this way, the average crystal grain size measured at any 10 locations in the center of the titanium material excluding the front and rear ends of the plate was further averaged to obtain the average crystal grain size of the titanium material. To do.
  • the high temperature oxidation resistance is further improved.
  • a needle-like thread and weave produced by heating the titanium material at the j8 transformation point or higher may be used.
  • the structure of a titanium material is final annealed after the ⁇ -transformation point after cold rolling!
  • the structure of the titanium material may be a needle-like structure that is not an equiaxed grain.
  • This method of forming a needle-like structure can be obtained by heating a titanium material not particularly limited to a temperature above the j8 transformation point.
  • a titanium material it can be produced by heating to 8 transformation points or higher and then cooling.
  • the structure of the titanium material is such a needle-like structure that is not the above equiaxed crystal grain structure, the average crystal grain size cannot be obtained as in the case of the equiaxed structure.
  • the needle-like structure itself is difficult to be defined by the normal average crystal grain size and aspect ratio, but is clearly defined by the manufacturing method which is the history of the needle-like structure.
  • this acicular structure is defined as an acicular structure generated by heat treatment in which pure titanium or a titanium alloy is heated to the ⁇ transformation point or higher. It is. If the structure of the titanium material is this acicular structure, as described above, A1 may not be regulated to less than 0.30 mass%. Due to the improvement in high-temperature oxidation resistance due to these needle-like structures, the decrease in high-temperature oxidation resistance due to A1 is suppressed.
  • this needle-like structure is not related to the rolling reduction rate of the cold rolling (even if the rolling reduction rate is not controlled), but finally the ⁇ transformation. It is inevitably (simple) obtained by cooling to a temperature above the point and then cooling. Depending on the product thickness constraints that come from the actual application, there may be cases where the cold rolling reduction cannot be freely selected and controlled. In such a case, in order to improve the high-temperature acid resistance, it is also useful to select this acicular structure regardless of the equiaxed grain structure. Note that the cooling after the heating does not require rapid cooling or forced cooling, which is good as it is allowed to cool.
  • the structure of the titanium material is a relatively coarse equiaxed grain structure with an average crystal grain size of 15 m or more, or after cold rolling of the titanium material)) 8 transformation points
  • A1 may not be regulated to less than 0.30% by mass. This is because the decrease in the high-temperature acidity resistance due to A1 is suppressed by the improvement in the high-temperature acidity resistance due to these relatively coarse equiaxed grain structure forces and needle-like structures. Therefore, when the titanium material has such a relatively coarse equiaxed grain structure force needle-like structure, it is allowed to contain A1 in a total content of 2% by mass or less with Si.
  • the production method of the titanium material used in the present invention has preferable aspects of the above production method and conditions for structure preparation
  • the process itself is ingot melting, hot forging, hot rolling, annealing, cold It can be produced by a conventional method that can be rolled, annealed or heat treated.
  • the preferred structure for improving the high temperature acid resistance is changed by changing the cold rolling, annealing or heat treatment conditions.
  • Example 3 Shot blasting using three kinds of aluminate powder particles (aggregates) a to c shown in Table 6 on one side of each titanium material test piece shown in Tables 7 and 8 Went. The shot blasted surface on one side of these specimens was evaluated for high-temperature oxidation resistance at higher temperatures exceeding 800 ° C.
  • each titanium material about 120 g of ingots of each component composition were melted in a button arc furnace, and these ingots were subjected to hot forging, hot rolling, annealing, and cold rolling in a conventional manner.
  • a cold-rolled sheet having a thickness of 2 mm was produced.
  • the cold-rolled sheet was degreased and annealed at a predetermined temperature and condition to adjust the structure. Further, descaling was performed as necessary.
  • the from the cold-rolled sheets were taken test piece 2mmt X 25mm w X 25mm 1.
  • 21 to 24 general-purpose pure titanium and 25 to 29 general-purpose titanium alloys are commercially available. Among these, only 21 and 22 general-purpose pure titanium have a needle-like structure by the following heating. Only adjustments were made.
  • the shot blasting conditions were performed under the projection pressure conditions shown in Tables 9 to 12, and the distance between the test piece and the shiyot blast nozzle was about 5 cm in common.
  • each aluminum oxide particle powder was repeatedly injected and projected onto the surface of the titanium material at a high speed until the surface of the test piece became almost uniform shot blast skin.
  • the projection time was 2 to 5 seconds on each side in common for each test piece.
  • examples in which the average crystal grain size of the test specimen is 10 m or less indicate that the rolling reduction ratio of the titanium material is usually 40% within the scope of the law.
  • the annealing conditions to be performed thereafter were also vacuum annealing at 800 ° C x soaking time of 6 minutes.
  • the example in which the average crystal grain size of the test piece exceeds 15 m is different from the conventional method, and the rolling reduction of the titanium alloy is reduced depending on the desired average crystal grain size.
  • the rate was reduced by selecting a range force of 20% or less, and the annealing temperature in vacuum annealing was selected by selecting a range of range force above 825 ° C and below the ⁇ transformation point.
  • the soaking time was 6 minutes. Within this condition range, the rolling reduction of cold rolling is reduced and the annealing temperature is increased. However, the average crystal grain size becomes large.
  • the rolling reduction of cold rolling was approximately 40% within the range of ordinary methods, and the cold-rolled sheet exceeded the j8 transformation point of titanium material.
  • Vacuum heating was performed at ° C for a soaking time of 6 minutes. Only the commercially available general-purpose pure titanium 21 and 22 were adjusted to the needle-like structure by this heating.
  • the entire structure of the test specimen collected from the test material was the acicular structure.
  • the average concentration of Si on the outermost surface of the titanium alloy shown in Table 7 is 0.5 at% or more, and the example of concentration of the outermost surface Si is, after cold rolling with a rolling reduction of approximately 0%, instead of vacuum annealing, After atmospheric annealing at 850 ° C for 6 minutes, 600 ° C molten salt (NaNO 55% by mass, NaOH 35% by mass) so that a surface contamination layer such as oxygen or carbon does not exist up to a depth of several meters on the outermost surface of the titanium alloy. %,
  • the average crystal grain size of the test piece under these production conditions is 10 ⁇ m or less, and an example in which the average crystal grain size of the test piece exceeds 15 m is that the reduction rate in cold rolling is 20% or less.
  • the range force was also selected, and the reduction rate was made smaller to obtain a larger average grain size.
  • the concentration of the outermost surface Si in the example in which the organization is a needle-like structure is performed by replacing only the above-described atmospheric annealing process with a condition of 950 ° C exceeding the 13 transformation point of the titanium alloy for 6 minutes. Is the concentration of the outermost Si The same process and conditions for ⁇ were carried out.
  • the average Si concentration (at%) on the outermost surface of each test piece shown in Table 7 was analyzed by the following method.
  • the titanium sample before analysis was subjected to ultrasonic cleaning with acetone for several minutes to adhere to the surface to remove contaminants such as oil, and then analyzed using an EPMA analyzer JXA-8900RL manufactured by JEOL Ltd. .
  • the analysis magnification was X500
  • the acceleration voltage was 15 kv
  • the elements present on the surface were examined by qualitative analysis
  • the abundance of the existing elements was determined by semi-quantitative analysis using the ZAF method.
  • the average aluminum concentration (shown as average A1 content at% in the table) of the shot blasting layer shown in Tables 9 to 12 was also determined by the analysis method described above using an EPMA analyzer.
  • the thickness of the shot blasting layer was in the range of a preferable average thickness of 1 m to 20 / z m in common in the measurement results obtained by the cross-sectional observation described above.
  • the high temperature oxidation resistance of each test piece shown in Tables 9 to 12 was evaluated by a high temperature oxidation test. That is, when these specimens were exposed to a high-temperature atmosphere for 100 hours at 850 ° C exceeding 800 ° C, the weight increase (oxidation increase: mgZcm 2 ) before and after the high-temperature oxidation test was measured. Set. The smaller the weight increase, the better the high-temperature oxidation resistance at 850 ° C.
  • the weight increase is 5 mg / cm 2 or less for exhaust mufflers, the high-temperature oxidation resistance is very excellent. ⁇ If the weight increase is 20 mg / cm 2 or less, the exhaust muffler As a result, the high-temperature acid resistance was evaluated as ⁇ . When the weight increase exceeded 20 mg / c, the high-temperature acid resistance for exhaust mufflers was rejected and evaluated as X.
  • All of the invention examples shown in Table 9, all of the invention examples shown in Table 10, and all of the invention examples shown in Table 11 have a shot blast treatment layer made of aluminum oxide particles.
  • the average concentration of aluminum is 4 at% or more, which satisfies the requirements of the present invention.
  • the base material is the same as the titanium material, and there is no shot blasting layer made of aluminate particles.
  • the pure titanium having the titanium material numbers 21 and 22 in the invention examples (comparative examples) shown in Table 11 has an equiaxed grain formed into a needle-like structure.
  • inventive examples in which the base material titanium material was shot blasted with aluminate particles were high temperature oxidation resistance at 850 ° C. You can see that it is excellent.
  • Each comparative example shown in Table 12 has a shot blasting layer of aluminate oxide particles.
  • the projection pressure is as shown in Table 12 as the force using the powder of c in which the aluminate particles in the aggregate of aluminate particles to be shot blasted are less than 80% by mass.
  • the shot blasting process is performed under conditions that are less than 2 atmospheres and less than 3 atmospheres, which are not preferable.
  • the average aluminum concentration of the shot blasted layer is insufficient, being less than 4 at%.
  • these comparative examples have excellent high-temperature acid resistance at 850 ° C due to the needle-like structure of the base material, but high-temperature acid resistance at 850 ° C due to the shot blast treatment layer. There is no improvement in sex.
  • the particle size of the remainder (less than 10%) of the aluminum oxide particle size is less than 180 ii m
  • the present invention it is possible to provide a titanium alloy and an engine exhaust pipe having excellent high-temperature oxidation resistance at higher temperatures such as 850 ° C exceeding 800 ° C.
  • the engine exhaust pipe composed of the titanium alloy of the present invention includes all those having various joint structures such as a welded part structure and a mechanical joint structure. Further, the present invention is particularly excellent in acid resistance at higher temperatures exceeding 800 ° C., but even in an environment of 800 ° C. or less, it has superior oxidation resistance than conventional materials and is useful. Needless to say.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Silencers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 本願発明は、800°Cを越えるより高温での耐高温酸化性を向上させたチタン材や、このチタン材で構成されたエンジン排気管を提供する。Siを0.15~2質量%含むとともに、Alの含有量を0.30質量%未満に規制し、チタン合金が有する等軸結晶粒組織の平均結晶粒径を15μm以上とする。更に、Nb、Mo、CrのSiとの複合添加、等軸結晶粒の粗大化、針状組織化、チタン合金最表面Siの濃化、銅、酸素、炭素などの不純物の低減などの手段を適宜付加して、チタン合金の800°Cを越える850°Cなどより高温での耐高温酸化性を向上させる。

Description

明 細 書
チタン合金及びエンジン排気管
技術分野
[0001] 本発明は、耐高温酸化性に優れたチタン合金、純チタン、表面処理されたチタン合 金、純チタンおよび耐高温酸ィ匕性が必要とされるエンジン排気管に関するものである 。本発明で言うチタン合金、純チタンとは、圧延などの塑性加工や成形加工によって 、板、条、線、管などの種々の形状とされたチタン合金材、純チタンのことを言う。また 、チタン合金材と純チタンを総称してチタン材と言う。また、本発明で言う表面処理チ タン材とは、アルミ酸ィ匕物微粒子によるショットブラスト処理されたチタン材のことを言
背景技術
[0002] チタン合金、純チタンは一般的な鉄鋼材料に比較して、比強度が高ぐ軽量ィ匕が強 く指向されている自動車を中心とする輸送機分野への適用が進みつつある。その中 でエンジン周りの排気系の排気管材料は、現在ステンレス鋼が主流である力 上記 軽量ィ匕目的のために排気管のチタンィ匕が検討されつつある。し力しながら排気管の 温度は部位によっては 500°C以上の高温になるため、酸化の進行が早ぐ耐久性向 上のためには、耐高温酸化性が要求される。
[0003] ここで、エンジン周りの排気系の排気管とは、 自動車用や自動二輪用のマフラーに おける、ェキゾ一ストマ-ホールド、ェキゾ一ストパイプ、触媒マフラー、プリマフラー、 サイレンサー (メインマフラー)などのマフラー部品などを含むものである。
[0004] このチタン材の耐高温酸ィ匕性(以下、単に耐酸ィ匕性とも言う)を高めるために、各種 表面処理の他に、従来力もチタン合金自体の改善が提案されている。例えば、 A1を 0. 5〜2. 3質量%含有させ、組織を α相主体とするチタン合金が提案されている( 特許文献 1参照)。また、 Α1: 0. 3〜1. 5質量%と、 Si: 0. 1〜1. 0質量%とを複合添 カロしたチタン合金も提案されている(特許文献 2参照)。ここでは、 Siの作用として、結 晶粒成長の抑制による疲労特性向上とともに、 A1添カ卩により生じる耐食性の低下を 最小限に抑制することと、耐高温酸化性、耐スケールロス性や耐酸素拡散相形成性 を高めることが記載されて 、る。
[0005] また、チタン材の耐酸ィ匕性を高めるために、従来から各種表面処理が提案されて 、 る。例えば、チタン合金表面に A蔽をクラッドィ匕した材料が提案されている(特許文 献 3参照)。また、チタン合金表面に A1— Ti系の蒸着めつきを施す方法が提案されて いる(特許文献 4参照)。あるいは、チタン合金表面に PVD法により TiCrAIN系皮膜 を形成する方法なども提案されて ヽる (特許文献 5参照)。
[0006] し力しながら、上記クラッド法ではコストが高 、。また、蒸着法や PVD法では、処理 コストが高い上に、前記排気管など、チタン材が管形状である場合に、管内面への耐 酸ィ匕性皮膜形成が困難であるなどの問題を有している。
[0007] これに対して、チタン合金表面に、無機質バインダーと A1粉末とを付着させ、焼成し て、材料内部への酸素の拡散を防止する酸素バリヤ被膜 (耐酸化性皮膜)を形成す る方法、あるいは前記焼成後に、 A1粉末間に生じた空隙を埋めるためにクロム酸をべ ースとしたシール材にて封孔を実施する処理方法が提案されて!ヽる(特許文献 6参 照)。更に、これを改良して、表面処理自体を安価で安全なものとした表面処理チタ ン材も提案されている。例えば、純チタン又はチタン基合金よりなる基材上に、 5 m 以上の耐酸化性焼成被覆層が形成された表面処理チタン材であって、焼成被覆層 を、 10at%以下の Siを含む A1合金又は純 ょりなる粒子間に、金属元素 M (但し Mは 、 Ti、 Zr、 Cr、 Si、 Alの一種または二種以上)とじ及び Z又は 0力もなる化合物が充 填されて ヽるものとすることも提案されて ヽる (特許文献 7参照)。
[0008] また、高温酸ィ匕性向上のために、チタン合金表面に A1の溶融めつきなどによる A1 含有層を設け、更に、アルミナ、ガラス、金属玉などの硬質粒子でブラスト処理 (空気 圧で硬質粒子を投射)することにより、この A1含有層中に生じる空隙ゃ不めっき部分 を埋めて無くすことなども提案されている (特許文献 8参照)。更に、 A1を含有するチ タン合金部材表面に、モリブデン、ニオブ、ケィ素、タンタル、タングステン、クロムな どの元素を含む微粒子をショットブラスト処理して、これら微粒子が分散した保護皮膜 を形成することも提案されて ヽる (特許文献 9参照)。
[0009] 特許文献 1:特開 2001-234266号公報(特許請求の範囲)
特許文献 2 :特開 2005-290548号公報(特許請求の範囲) 特許文献 3:特開平 10-99976号公報(特許請求の範囲)
特許文献 4:特開平 6-88208号公報(特許請求の範囲)
特許文献 5:特開平 9-256138号公報(特許請求の範囲)
特許文献 6:特許第 3151713号公報(特許請求の範囲)
特許文献 7:特開 2006-9115号公報(特許請求の範囲)
特許文献 8:特開 2005-36311号公報(全文)
特許文献 9:特開 2000-34581号公報(全文)
発明の開示
発明が解決しょうとする課題
[0010] しかし、エンジン周りの排気系の排気管材料は、排ガスの温度が高くなるにつれ、 8 oo°cなどの高温での高温酸ィ匕が生じる懸念がある。したがって、エンジン周りの排気 系の排気管材料として、チタン材には、より高温での優れた耐高温酸化性が求めら れる。即ち、排気系の排気管材料として、チタン材には、車種によっては 800°Cを越 えるより高温の 850〜870°C程度の高温でも、優れた耐高温酸ィ匕性が求められる場 合がある。この場合、 800°Cを越える温度では、使用温度が上がるにつれて、耐高温 酸化性は加速度的に低下するため、 800°Cにおける耐高温酸ィ匕性が優れて 、ても、 より高温の 850°C程度の耐高温酸ィ匕性が優れているとは限らない。言い換えると、 8 00°Cにおける耐高温酸ィ匕性評価によっては、より高温の 850°C程度の耐高温酸ィ匕 性を保証できない。
[0011] 一方、前記した通り、従来から、チタン材の耐高温酸ィ匕性を高めるためには、 A1を 含有させることが有効とされているが、前記特許文献 2に記載されている通り、 A1添 加によって耐食性の低下が必然的に生じる。このため、 A1添加によって耐食性の低 下を抑制するために、特許文献 2のように、 Siを複合添加している。し力しながら、こ の Siの複合添加効果は、前記特許文献 2に記載されている通り、 800°C程度の高温 酸ィ匕に限定され、より高温の 850°C程度の耐高温酸ィ匕性を保証できない。
[0012] 純チタンでは、耐高温酸化性(以下、単に耐酸ィ匕性とも言う)を高めるために、前記 特許文献 1、 2に開示されている、チタン合金のような成分組成での改善が、純チタン 自体の成形性を低下させるために、採用できな ヽと ヽぅ特徴がある。 [0013] それゆえ、これまでは、排気管に純チタンを使用した場合の耐高温酸化性の向上 対策は、未だ具体的には提案されていな力つたのが実情である。
[0014] これに対して、前記した特許文献 7、 8などの表面処理チタン材では、その耐高温 酸ィ匕性は 800°C程度の性能に限定される。一方、特許文献 9の A1を含有するチタン 合金部材表面に微粒子をショットブラスト処理した表面処理チタン材では、酸化条件 を 950°Cの高温まで上げて試験し、高温酸化性が優れるとして!/、る。
[0015] しかし、チタン合金部材表面に適用されている、モリブデン、ニオブ、ケィ素、タンタ ル、タングステン、クロムなどの金属単体粉末、合金粉末、酸化物粉末は高価であり、 また、硬さもショットブラスト粒子としては十分ではないものが多ぐこのため保護皮膜 を安価に、かつ安定的に、かつ効率的に形成することは難しい。また、これら粒子は 特殊なものであるので入手性の問題がある。これらのこと力 ショットブラスト処理の非 効率性や処理の高価格化を招く。以上のことから、上記粒子は、一般工業的には、 ショットブラスト粒子としてとして使用されて 、な 、。
[0016] 本発明はこのような事情に鑑みてなされたものであって、その目的は、 800°Cを越 える、より高温の耐高温酸化性を向上させたチタン合金や純チタン、表面処理チタン 材、およびこのチタン合金や純チタン、表面処理チタン材で構成されたエンジン排気 管を安価かつ効率的に提供することを目的とする。
課題を解決するための手段
[0017] この目的を達成するための、本発明の第 1の局面はチタン合金及びエンジン排気 管である。
[0018] 本発明の耐高温酸化性に優れたチタン合金は、 Siを 0. 15〜2質量%含むとともに
、 A1の含有量が 0. 30質量%未満に規制され、前記チタン合金が有する等軸結晶粒 組織の平均結晶粒径が 15 m以上である。
[0019] また、本発明の耐高温酸化性に優れたチタン合金は、 Siを 0. 15〜2質量%含むと ともに、 A1の含有量が 0. 30質量%未満に規制され、前記チタン合金が針状組織を 有する。
[0020] また、 A1を 0. 30質量%未満に規制しな 、場合にぉ 、て、本発明の耐高温酸化性 に優れた別のチタン合金は、 Siを 0. 15〜2質量%含み、 A1を Siとの合計含有量で 2 質量%以下含み、前記チタン合金が等軸結晶粒組織を有し、その平均結晶粒径が
15 m以上である。
[0021] 同じく A1を 0. 30質量%未満に規制しない場合において、本発明の耐高温酸ィ匕性 に優れた別のチタン合金は、 Siを 0. 15〜2質量%含み、 A1を Siとの合計含有量で 2 質量%以下含み、前記チタン合金が針状組織を有する。
[0022] また、より耐高温酸ィ匕性を向上させるためには、上記各要旨のチタン合金が、更に 、 Nb、 Mo、 Crの内力も選択される少なくとも 1種を、前記 Siとの合計含有量または Si および A1との合計含有量で 2質量%以下含むことが好ましい。
[0023] また、より耐高温酸ィ匕性を向上させるためには、上記各要旨のチタン合金が、更に 、チタン合金最表面の Siの平均濃度が 0. 5at%以上であることが好ましい。
[0024] また、より耐高温酸ィ匕性を向上させるためには、上記各要旨のチタン合金が、更に 、その表面に、乾燥後の平均塗膜厚みが 10〜: LOO /z mであり、乾燥後の塗膜中の A 1含有量が 30〜90質量%である、有機金属化合物塗装皮膜を有することが好ましい
[0025] 更に、これら要旨あるいは後述する好ましい態様のチタン合金は、エンジン排気管 に適用されること (エンジン排気管用途)が好ましい。
[0026] 本発明の耐高温酸ィ匕性に優れたエンジン排気管旨は、これら要旨あるいは後述す る好まし ヽ態様のチタン合金で構成される。
[0027] 前記目的を達成するための、本発明の第 2の局面は純チタン及びエンジン排気管 である。
[0028] 本発明の耐高温酸化性に優れた純チタンは、純チタンを β変態点以上に加熱後、 冷却することにより生成した針状組織を有する。
[0029] 前記純チタンが、その表面に、乾燥後の平均塗膜厚みが 10〜: LOO mであり、乾 燥後の塗膜中の A1含有量が 30〜90質量%である、有機金属化合物塗装皮膜を有 することが好ましい。
[0030] また、上記要旨あるいは後述する好ましい態様の純チタンは、エンジン排気管に適 用されること (エンジン排気管用途)が好ましい。
[0031] 本発明の耐酸ィ匕性に優れたエンジン排気管は、排気管が上記要旨の純チタンで 構成されている。
[0032] 前記目的を達成するための、本発明の第 3の局面は純チタン及びエンジン排気管 である。
[0033] 上記目的を達成するための、本発明耐高温酸化性に優れた表面処理チタン材は、 純チタンまたはチタン合金の表面に、ショットブラスト粒子として汎用されているアルミ 酸ィ匕物粒子によるショットブラスト処理層を有し、この処理層のアルミニウム平均濃度 力 at%以上である。
[0034] このためのチタン合金の成分としては、 Siを 0. 15〜2質量%含む態様が好ましい。
このためのチタン合金の組織としては、等軸結晶粒組織の平均結晶粒径が 15 m 以上である態様が好ま 、。
[0035] また、チタン合金組織の他の態様として、基材であるチタン合金の耐高温酸化性を 高めるために、チタン合金が針状組織を有する態様も好ま ヽ。
[0036] また、基材である純チタンの耐高温酸ィ匕性を高めるために、純チタンが針状組織を 有する態様も好ましい。
[0037] 本発明の耐高温酸ィ匕性に優れたエンジン排気管は、排気管が上記表面処理チタ ン材で構成されて ヽることである。
[0038] 前記目的を達成するための、本発明の第 4の局面は表面処理チタン材を製造する 方法である。
[0039] 本発明の表面処理チタン材を製造する方法は、純チタンまたはチタン合金の表面 をアルミ酸ィ匕物粒子によりショットブラスト処理し、前記ショットブラスト処理に用いられ るアルミ酸ィ匕物粒子集合体が全体でアルミ酸ィ匕物を 80質量%以上含む。
[0040] 本発明の表面処理チタン材を製造する別の方法は、純チタンまたはチタン合金 の表面をアルミ酸ィ匕物粒子によりショットブラスト処理し、前記ショットブラスト処理され るアルミ酸ィ匕物粒子が単一粒子中にアルミ酸ィ匕物を 80質量%以上含む。
発明の効果
[0041] (第 1の局面による発明の効果)
本発明では、従来の発想を変えて、チタン材の耐高温酸ィ匕性を高めるために有効 とされる A1を敢えて添加せず、これに代えて、 Siのみを単独添カ卩した場合に、却って 、 800°Cを越える、より高温の 850°C程度の耐高温酸ィ匕性を向上させることを知見し た。
[0042] この点、本発明チタン合金の上記要旨のように、 Siを特定量含むとともに、 A1を積 極的に規制することによって、 800°Cを越える、より高温の 850°C程度の耐高温酸ィ匕 性を向上させることができる。
[0043] (第 2の局面による発明の効果)
本発明では、純チタンの組織を、従来の等軸粒力も針状組織に変更して、耐高温 酸ィ匕性を向上させる。
[0044] (第 3,第 4の局面による発明の効果)
従来から、チタン材の耐高温酸ィ匕性を高めるために、 A1系の各種表面処理を行な うことは、前記特許文献 1〜5でも公知である。しかし、これらチタン材の A1系各種表 面処理は、 800°C程度の耐高温酸ィ匕性に対して効果を有するものである力 800°C を越える 850°Cの、より高温の耐高温酸ィ匕性を実用的な意味で高めることができない
[0045] これは、従来の A1系の各種表面処理では、本発明表面処理に比して、処理層の基 材との一体化が十分に達成されておらず、 800°Cを越える 850°Cの、より高温の耐高 温酸ィ匕性には効果が弱くなるものと推考する。
[0046] これに対して、本発明では、ショットブラスト処理によってアルミ酸ィ匕物粒子がチタン 材中に埋め込まれ、チタンマトリックスとアルミ酸ィ匕物とがー体となった表面処理層を 有しており、この表面処理層が、 800°Cを越える 850°Cの、より高温の耐高温酸化性 を向上させる。
図面の簡単な説明
[0047] [図 1]本発明チタン合金の微細等軸粒組織を示す図面代用写真である。
[図 2]本発明チタン合金の粗大等軸粒組織を示す図面代用写真である。
[図 3]本発明チタン合金の針状組織を示す図面代用写真である。
[図 4]本発明純チタンの針状組織を示す図面代用写真である。
[図 5]従来の純チタンの等軸粒組織を示す図面代用写真である。
発明を実施するための最良の形態 [0048] 第 1実施形態
[0049] 以下に、本発明の第 1実施形態と各要件の限定理由とを具体的に説明する。
本発明の第 1実施形態に係るチタン合金は、 Siを 0. 15〜2質量%含むとともに、 A 1の含有量が 0. 30質量%未満に規制され、前記チタン合金が有する等軸結晶粒糸且 織の平均結晶粒径が 15 m以上である。
[0050] (チタン合金成分組成)
本発明のチタン合金は、 800°Cを越える、より高温の耐高温酸ィ匕性 (以下、単に耐 高温酸化性とも言う)に優れさせるために、 Siを 0. 15〜2質量%含むとともに、 A1を 0 . 30質量%未満に規制し、残部チタンおよび不可避的不純物からなる。
[0051] (Si)
Siは、耐高温酸ィ匕性の向上に必須の元素である。また、 Siは高温強度も向上させ る。このためには、 Siを 0. 15質量%以上含有させることが必要である。一方、 Si含有 量が 2質量%を越えると、成形性の劣化が著しぐチタン合金の排気管への成形カロ ェが困難となる。
[0052] (A1)
A1は、 Siや Nb、 Mo、 Crと同様に耐高温酸ィ匕性を向上させる元素である。しかし、 A1の場合、チタン合金の使用温度が 800°Cを超えると、酸化スケールの剥離を起こ しゃすくする作用が発現し、この剥離により基材への酸素の拡散進入が抑制されず、 この結果耐酸ィ匕性の劣化につながる。したがい本発明では、 A1を上記弊害を及ぼさ ない範囲である 0. 30質量%未満に積極的に規制する。この A1含有量が 0. 30質量 %以上に多いと、酸化スケールの剥離による耐高温酸ィ匕性の低下が必然的に生じ、 800°Cを越える、より高温の 850°C程度の耐高温酸ィ匕性が達成できな!/、。
[0053] なお、このように、チタン合金において、 A1による耐高温酸ィ匕性の低下が著しく生じ 、 A1を 0. 30質量%未満に積極的に規制する必要があるのは、通常の組織として、 平均結晶粒径が 15 m未満の微細等軸結晶粒組織を有するチタン合金である(請 求項 1に対応)。
[0054] ここで、チタン合金の組織を、その平均結晶粒径を 15 m以上とした比較的粗大 な等軸結晶粒組織とするか、チタン合金を針状組織とした場合には、 A1を 0. 30質量 %未満に規制しなくても良い (請求項 4、 5に対応)。これら比較的粗大な等軸結晶粒 組織か針状組織による耐高温酸ィ匕性が向上する分、 A1による耐高温酸ィ匕性低下が 抑制されるからである。したがって、チタン合金が、これら比較的粗大な等軸結晶粒 組織か針状組織を有する場合には、 A1を Siとの合計含有量で 2質量%以下含むこと を許容する。
[0055] (Nb、 Mo、 Cr)
Nb、 Mo、 Crは、 800°Cを越える、より高温の 850°C程度の耐高温酸化性向上に有 効であり、 Siと複合添加(共存)することで相乗効果が期待できる。このため、本発明 チタン合金は、更に、 Nb、 Mo、 Crの内力も選択される 1種または 2種以上を、前記 S ほたは Siと A1との合計含有量で 2質量0 /0以下含んでも良い。これらの元素の、 Siとの 合計量、または、 A1を実質量( 0. 30質量%以上)含む場合には Siと A1との合計量、 力^質量%を超えると、成形性が劣化し、排気管への成形加工が困難となる。したが つて、これらの元素の、 Siとの合計量、または、 A1を実質量( 0. 30質量%以上)含む 場合には Siと A1との合計量を 2質量%以下とする。
[0056] (その他不純物)
なお、チタン合金には、一般的に、溶解原料や溶解工程において、酸素、鉄が主 な不純物元素として含まれる。これら酸素、鉄は、排気管形状へのチタン合金の成形 性を低下させる。したがって、含むとしても、酸素、鉄の含有量は、合計で 0. 20質量 %以下であることが好まし!/、。
[0057] また、 Cuは、耐高温酸化性を劣化させる。ただ、 Cuは排気管としての高温強度特 性を高めるためには有効である。このため、 Cuは前記 Sほたは Siと Aほたは Siと A1と Nb、 Mo、 Crとの合計含有量で 2質量%以下含んでも良い。ただし、成形性の劣化 も勘案すると、好ましくは Cu量は 0. 5質量%以下、より好ましくは 0. 3質量%以下が 推奨される。
[0058] (チタン合金組織)
本発明のチタン合金を、更に、 800°Cを越える、より高温の 850°C程度の耐高温酸 化性に優れさせるためには、以上説明した成分組成の他に、本発明のチタン合金組 織を以下に説明する好ましい態様とする。即ち、チタン合金最表面の Siの平均濃度 を高める、チタン合金組織の平均結晶粒径を大きくする、針状組織とする、の内から
1種または 2種以上選択されるチタン合金組織とする。これらの組織を上記成分組成 と適宜組み合わせて用いることで、相乗効果も期待できる。
[0059] (最表面の Si濃化)
チタン合金最表面に Siを濃化させ、 Siの平均濃度を高めるほど、耐高温酸化性に 優れる。このため、本発明チタン合金組織では、更に耐高温酸化性に優れさせるた めに、チタン合金最表面の Siの平均濃度が 0. 5at%以上であることが好ましい。この 最表面に濃化している Siはチタン中に固溶した Siであってもよぐ Ti Si 等の Tiと Si
5 3
との金属間化合物や、 Siの酸化物、炭化物等の化合物形で存在してもよい。
[0060] この最表面の Si濃度は、基本的には、チタン合金 (基材)の Si含有量ともに高くなる ものであり、規定の範囲の Si含有量を満足して、通常通りチタン合金を製造すれば、 チタン合金最表面の Siの平均濃度が 0. 5at%以上に濃化される可能性がある。しか し、一方で、製造方法によっては、酸素や炭素等の表面汚染層が数 mの深さまで 存在するような場合があり、このような場合には、最表面に存在する Si量の平均濃度 が 0. 5at%未満となり、優れた耐高温酸ィ匕性向上効果が望めない可能性も高い。そ れゆえ、チタン合金最表面の Si濃度は、チタン合金の Si含有量によって一律に決ま るものではない。このため、チタン合金最表面の Siの平均濃度を 0. 5at%以上とする 場合には、酸素や炭素等の表面汚染層が形成されないような製造条件を特に選択 することが好ましい。
[0061] このチタン合金最表面の Si濃度は、 X線マイクロアナリシス分析(Electron Probe Mi cro Analysis、略して EPMA)の中の波長分散方式(Wave Dispersive Spectroscopyゝ 略して WDS )での表面定量分析により測定できる。より詳細には、最表面の分析部を X500〜X1000に拡大し、まず定性分析により存在元素を調べた後、それぞれの存在 量を ZAF法を用いた半定量分析により定量的に濃度を求めることが出来る。最表面 の濃度は分析時の電子線の侵入深さにより変わるが、分析時の加速電圧を 15kvの 一定にすることで、 1〜2.5 m程度の電子線侵入深さとなる。したがって、本発明 における最表面の Si濃度とは、表面から 1〜2.5 μ m程度の深さまでの Siの平均濃 度を意味する。以下、最表面の Si濃度とはこのように定義される濃度を意味する。 [0062] (等軸粒)
常法により製造した場合、本発明チタン合金組織は、通常通り等軸粒となる。この 等軸粒組織により、チタン合金の成形性や機械的特性 (強度)などの特性が確保さ れる。
[0063] (平均結晶粒径)
一方、この等軸粒組織の場合に、チタン合金の高温酸ィ匕性に対しては、その平均 結晶粒径が大きく関与する。すなわち平均結晶粒径がある程度大きい方が耐高温酸 化性が向上する。具体的には平均結晶粒径が 15 m以上でこの効果が現れ、好ま しくは 20 μ m以上、より好ましくは 30 μ m以上でこの効果は顕著になる。一方で、平 均結晶粒径が過度に大きくなると、成形時の肌荒れの問題や疲労強度の低下が生じ るので、この問題が重要視される用途の場合には、平均結晶粒径の上限は 100 /z m 程度となる。
[0064] 800°Cを越える、より高温の 850°C程度の耐高温酸ィ匕性に結晶粒径が影響する理 由は、現時点では明確にできて ヽな 、が高温酸ィ匕の進行のメカニズムに関係すると 推測される。すなわち高温に曝された際に生じる表面力 の酸素の拡散進入は、結 晶粒界において起こりやすぐこのため粒界部の存在割合が小さい平均結晶粒径の 大きい材料の方が高温酸ィ匕が抑制されるものと考えられる。
[0065] なお、本発明の Ti— Si系チタン合金を常法で製造した場合、 Ti Si 等の Tiと Siと
5 3
の金属間化合物や j8相がマトリックスのチタン中に分散、形成され、これにより結晶 粒の成長が抑制される。この Siの結晶粒成長抑制作用は、前記特許文献 2にも記載 されている。このため、特に Siを含有させたチタン合金において、常法により、平均結 晶粒径を、高温酸ィ匕抑制に有効な、 15 m以上に大きくすることは困難である。
[0066] より具体的に、チタン合金製造の常法と言える冷間圧延の圧下率は、材質で異なる が概ね 20〜70%である。またその後実施される焼鈍の温度は 600〜800°Cであり、 真空焼鈍のような焼鈍時間が数時間〜十数時間の長時間になる焼鈍では 600〜70 0°C程度の低温側の温度条件が採用され、連続焼鈍酸洗のような短時間の処理で は 700〜800°Cの高温側の温度条件が採用される。このような常法の範囲で、本発 明の Ti— Si系チタン合金を冷間圧延、焼鈍しても、平均結晶粒径を 15 m以上に することは難しい。言い換えると、 Ti— S係チタン合金の平均結晶粒径を 15 /z m以 下にする場合には、この常法の範囲で製造する。
[0067] これに対して、本発明 Ti— Si系チタン合金の平均結晶粒径を 15 m以上に大きく するためには、冷間圧延の圧下率を 20%以下に小さくするとともに、焼鈍温度を 825 °C以上かつ j8変態点以下の条件に高温ィ匕する。更に、好ましい圧下率は 15%以下 で、さらに好ましくは 10%以下である。また、好ましい焼鈍温度は 850°C以上、 β変 態点以下である。この焼鈍温度が )8変態点温度を越えると、後述する針状組織とな る。したがって、部材の結晶粒を等軸粒にし、良好な成形性や機械的特性を工業的 に安定して得ることを重視する場合には、焼鈍温度の上限は、 β変態点温度以下と する。
[0068] (A1含有量との関係)
ここで、チタン合金の組織を、その平均結晶粒径を 15 /z m以上とした比較的粗大 な等軸結晶粒組織とすれば、前記した通り、 A1を 0. 30質量%未満に規制しなくても 良い。即ち、これら比較的粗大な等軸結晶粒組織の作用により、耐高温酸化性が向 上する分、 A1による耐高温酸ィ匕性低下作用が抑制される。そして、この効果は、チタ ン合金の前記した平均結晶粒径が大きいほど、大きくなる。
[0069] (結晶粒径の測定方法)
本発明で言う結晶粒径とは、チタン合金の圧延 (L)方向断面の平均結晶粒径である 。この結晶粒径は、チタン合金板から採取した試料(試験片)断面を 0.05〜0.1mm粗 研磨した後、鏡面研磨し、この後エッチングした表面を、 100倍の光学顕微鏡を用い て観察し、前記し方向にラインインターセプト法で測定する。 1測定ライン長さは 0.95 mmとし、 1視野当たり各 3本で合計 5視野を観察することにより、全測定ライン長さを 0.95 X 15mmとする。このように、板の先端部と後端部とを除ぐチタン合金板中央部 の任意の 10箇所において測定した各平均結晶粒径を、更に平均化したものを、チタ ン合金の平均結晶粒径とする。
[0070] (針状組織)
これら等軸粒により、チタン合金の上記成形性や機械的特性などの特性を多少犠 牲にしても差し支えのない用途の場合には、 800°Cを越える、より高温の耐高温酸化 性の更なる向上のために、チタン合金を針状組織にしても良 、。
[0071] ここで、チタン合金の組織を針状組織とすれば、前記した通り、 A1を 0. 30質量% 未満に規制しなくても良い。これら針状組織により、耐高温酸化性が向上する分、 A1 による耐高温酸化性低下が抑制される。なお、本発明チタン合金の焼鈍温度が β変 態点を越えて高くなると、チタン合金の組織全体が上記針状組織となる。
[0072] 一般的にチタン合金の組織は、冷間圧延後 β変態点以下で最終焼鈍されている ので等軸組織を呈している。これに対して本発明では、耐高温酸化性に優れさせる ために、等軸粒ではなぐ好ましくは針状組織とする。この針状組織の形成法は特に 限定するものではないが、チタン合金を、例えば冷間圧延後に、 j8変態点以上に最 終的に加熱後冷却することにより生成させることができる。この点、冷間圧延後に直 に j8変態点以上に加熱後冷却せずとも、この間に低温での加熱が入っても、最終的 に β変態点以上に加熱すれば(最終加熱温度が β変態点以上であれば)針状組織 は得られる。例えば、冷間圧延後、等軸糸且織になるように j8変態点以下で焼鈍され て、元々等軸組織を呈しているコイル、シート、加工成型部材等であっても、 β変態 点以上に再加熱冷却することによつても、針状組織を生成させることができる。
[0073] この針状組織は、前記した等軸粒における結晶粒径の制御と違って、冷間圧延の 圧下率にかかわりなく(圧下率を制御しなくとも)、ただ、 |8変態点以上の温度に加熱 後、冷却することで、必然的に (簡便に)得られる。実際の用途からくる製品厚さの制 約条件によっては、冷間圧延の圧下率を自由に選択、制御できないような場合も起こ り得る。そのような場合には、耐高温酸ィ匕性を向上させるためには、等軸粒組織にこ だわらず、この針状組織ィ匕を選択することも有用である。なお、上記加熱後の冷却は 放冷で良ぐ急冷乃至強制冷却する必要は無い。
[0074] (断面ミクロ組織)
本発明の等軸粒の断面ミクロ組織を図 1、 2 (図面代用写真)に、本発明の針状組 織の断面ミクロ組織を図 3 (図面代用写真)に、各々示す。図 1、 2はチタン合金の断 面ミクロ組織を 100倍の光学顕微鏡で、図 3は 200倍の光学顕微鏡で観察したもの である。
ここで、図 1の場合、等軸組織を呈しており、平均結晶粒径は 15 m以下になって いる。図 2の場合、図 1と同様に等軸組織であるが、後述する低圧下率と高温焼鈍の 組合せにより、平均結晶粒径が 30 m程度に大きくなつている。図 3の場合、後述す る β変態点以上に加熱して力も冷却を行ったため、針状組織となっている。
[0075] 図 1のチタン合金は、本発明の Ti-0.5Si-0.1AH).2Nb合金(数字はいずれも質量% )で、 40%の圧下率で冷間圧延後、 800°Cで 6分大気焼鈍したものである。図 2のチ タン合金は、上記合金を 10%の圧下率で冷間圧延後、 850°Cで 6分大気焼鈍したも のである。図 3のチタン合金は、上記合金を 40%の圧下率で冷間圧延後、 j8変態点 約 900°Cを超える 950°Cに 6分間加熱後、冷却したものである。
[0076] 図 3の針状組織の場合、等軸組織の場合のように平均結晶粒径を求めることはでき ない。本発明では、この針状組織自体は、通常の平均結晶粒径やアスペクト比など で規定しにくい。このため、この針状組織は、明確には、履歴である製造方法により 規定される。即ち、この針状組織は、チタン合金を |8変態点以上に加熱する熱処理 により生成した針状組織と規定される。なお、この針状組織とする β変態点以上に加 熱後冷却する熱処理の前後に、低温での熱処理などが入っても良いことは、前記し た通りである。
[0077] (製造方法)
本発明チタン合金の製造方法は、上記製造方法の好ましい態様や、組織作り分け の条件はあるものの、その工程自体は、铸塊溶製、熱間鍛造、熱延、焼鈍、冷間圧 延、焼鈍あるいは熱処理等力もなる常法により製造できる。そして、耐高温酸化性を 向上させるための好ましい組織などの作り分けは、前記した通り、冷間圧延、焼鈍あ るいは熱処理条件を変えて行なう。
[0078] (表面処理)
以上のようにして得られた本発明チタン合金は、 850°C程度の耐高温酸化性に優 れているため、表面処理無しで用いられ良い。ただ、このように表面処理無しの裸だ けではなく、種々の表面処理を施して用 、られても良!、。
[0079] この際の表面処理としては、その表面処理皮膜自身力 850°C程度のより高温の 耐高温酸化性に優れて ヽることが好ま ヽ。このような特性を有する表面処理皮膜と しては、乾燥後の平均塗膜厚みが 10〜: LOO mであり、乾燥後の塗膜中の A1含有 量が 30〜90質量%であるような、有機金属化合物塗装皮膜が好ましい。
[0080] この有機金属化合物塗装皮膜は、 A1片または A1粉体を含有する、ナーセムチタン、 ナーセムジルコニウム、酢酸クロム、シリコーン、シリカゾル、アルミナゾルおよびアル ミニゥムイソプロボキシドなどの、安定で取り扱 、が容易で毒性が低 、有機金属化合 物の塗装皮膜である。
[0081] このような、所定量の A1を含有する有機金属化合物の水溶液あるいは溶剤による 溶液、あるいは分散液カゝらなる塗料を、本発明チタン合金表面に、塗布あるいは浸 漬などの周知の方法により塗装し、 200°C以下の温度で乾燥する。塗装後の塗膜乾 燥を 200°C以下で行うと一層の耐高温酸ィ匕性が期待できる。 200°C以上の高温で乾 燥をすると、塗膜の乾燥硬化反応が急激に起こり、塗膜中の A1鱗片、 A1粉体が塗膜 中に空間を多く作った状態で固定されてしまい、この空間が酸素の侵入を許し、結果 的に優れた耐高温酸化性が得られ難くなる。これに対し、 200°C以下で塗膜乾燥を 行うと、乾燥に時間を要するため、 A1鱗片、 A1粉体が空間を埋める位置まで移動して 硬化するため、塗膜中の空間が少なくなり、結果的に優れた耐高温酸化性が得られ る。
[0082] そして、この乾燥後の平均塗膜厚みが 10〜: LOO mであり、乾燥後の塗膜中の A1 平均含有量が 30〜90質量%であるような、有機金属化合物塗装皮膜とする。乾燥 後の平均塗膜厚み (膜厚)が 10 μ m未満であれば、ピンホール等の欠陥部を通して 、下地チタンが腐食雰囲気に曝され、また、塗膜自身の減肉しろが少なすぎて下地 の保護性が得られず、塗装皮膜としての意味が無い。
[0083] 一方、乾燥後の平均塗膜厚み (膜厚)が 100 mを越えた場合、膜応力等の影響で 塗膜が剥離しやすくなる。したがって、乾燥後の平均塗膜厚みは 10〜: LOO /z mの範 囲とする。乾燥後の平均塗膜厚みは、塗膜断面を、例えば任意の 10箇所で、光学顕 微鏡で観察、測定し、平均化することにより測定できる。
[0084] 乾燥後の塗膜中の A1平均含有量が 30質量%未満であれば、より高温での耐高温 酸ィ匕性向上効果が不十分であり、逆に、 90質量%を越えると、塗膜の強度が不足す るため、外力や基材の収縮等による塗膜の早期破壊につながる。したがって、乾燥 後の塗膜中の A1平均含有量が 30〜90質量%の範囲とする。この塗膜中の A1含有 量は、塗膜表面または塗膜断面を、例えば任意の 10箇所、 EPMAにより分析して平 均化することにより測定できる。
[0085] なお、塗膜中の(添加する) A1の形状は、鱗片状が最も耐高温酸化特性に優れる 力 粉体状でも、また鱗片状と粉体状の混合物でも、より高温での耐高温酸化特性を 得ることは可能である。本塗膜 (塗装)により、 850°C程度の耐高温酸化性が向上す る理由は、このような A1を含有する塗膜自身が、高温酸化に対しての耐性を有するの と、チタン合金が高温に曝された際に、塗膜中の A1と基材のチタンが反応し、高温酸 化に対しての耐性を有する層を形成するためと考えられる。
[0086] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実 施例によって制限を受けるものではなぐ前記、後記の趣旨に適合し得る範囲で適当 に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的 範囲に包含される。
実施例 1
[0087] 表 1、 2に記載した成分組成のチタン冷延板について、 850°Cでの高温の耐高温酸 化性を評価した。具体的には、表 1、 2に記載した成分組成の約 120gの铸塊をボタ ンアーク炉にて溶製した。チタン分の添加には表面を清浄に洗浄し^ JIS1種純チタ ンのスクラップ材を使用した。各铸塊を、熱間鍛造、熱延、焼鈍を常法にて行った後 、所定の圧下率で冷間圧延を行った。この後、冷延板を脱脂し、所定の温度と条件 で焼鈍を行い、共通して、厚さ 2mmの冷間圧延板を作製した。そしてこの冷間圧延 板から 2mmt X 25mmw X 25mm1の試験片を採取した。
[0088] (平均結晶粒径制御)
各表 1、 2に記載したチタン合金の内、試験片の平均結晶粒径が 10 m以下 (表 1 、 2に < 10と記載)の例は、チタン合金の冷間圧延の圧下率を、常法の範囲内の概 ね 40%とした。その後 800°C、均熱時間 6分の真空焼鈍を行った。
[0089] これに対して、試験片の平均結晶粒径が 15 mを越える例は、上記常法とは異な り、所望の平均結晶粒径の大きさと材質によって、チタン合金の冷間圧延の圧下率 を 20%以下の範囲力も選択して小さくするとともに、真空焼鈍を温度 825°C以上か つ β変態点以下の条件範囲力 選択し、時間は均熱時間 6分とした。 [0090] (針状組織)
また、針状組織を得た例は、冷間圧延の圧下率は常法の範囲内の概ね 40%とし、 この冷延板を、チタン合金の /3変態点を超える 950°Cで均熱時間 6分間の真空加熱 した。このようにして得られた供試材から採取した試験片全体の組織が針状組織であ つた o
[0091] (最表面 Siの平均濃度制御)
チタン合金最表面の Siの平均濃度が 0. 5at%以上である、最表面 Siの濃化例は、 概ね圧下率が 40%の冷間圧延後、真空焼鈍に代えて、 850°Cで 6分間大気焼鈍し た後、チタン合金最表面に酸素や炭素等の表面汚染層を数 mの深さまで存在さ せないように、 600°Cの溶融ソルト(NaNO 55質量%、 NaOH35質量%、残 KC1、 NaCl
3
等を含有)に 1分間浸漬した後、 HF 1質量%、 HNO 20質量%、 60°Cの水溶液に浸
3
漬して、板厚で片面 50 m酸洗除去した後、直ちに水流により十分に撹拌された流 水中に 2分浸漬し、次いで撹拌された 80°Cの水に 3分間浸漬し湯洗を実施して供試 材とした。
[0092] 焼鈍後の、このような条件の酸洗処理を施し、表面を 100 μ mだけ酸洗溶削(片面 当たり 50 m溶肖 ij)したのは、冷間圧延時に圧延油との反応で最表面に生じた酸素 や炭素等の表面汚染層 (濃化層)などを完全に除去するためである。また、酸洗後十 分な流水浸漬と湯洗を実施したのは、酸洗後の洗浄が不十分となり、酸洗後のチタ ン表面に厚い酸化皮膜や酸洗液中の不純物の付着膜が形成され、表面 Si濃度が低 下するのを防ぐためである。以上のような処理の結果、最表面の Si濃度が相対的に 増加していると推考される。
[0093] この製造条件での試験片の平均結晶粒径は 10 μ m以下であり、試験片の平均結 晶粒径が 15 mを越える例は、冷間圧延における圧下率を 20%以下の範囲力も選 択し、より大きな平均結晶粒径を得たい場合には、より圧下率を小さくした。また、組 織を針状組織とした例での、最表面 Siの濃化は、上記大気焼鈍の工程のみをチタン 合金の β変態点を超える 950°Cで 6分間の条件に代えて、後は、上記最表面 Siの濃 ィ匕のための同じ工程、条件で行なった。
[0094] 各試験片の最表面の Si量は以下の方法で分析した。すなわち分析前の試料に数 分間アセトンによる超音波洗浄を施し、表面に付着している油分等の汚染物を除去 した後、日本電子社製 EPMA分析装置 JXA-8900RLを用い分析した。分析倍率は X5 00、加速電圧は 15kvとし、定性分析により表面に存在する元素を調べた後、存在元 素の存在量を ZAF法を用いた半定量分析により求めた。
[0095] (耐高温酸化性)
耐高温酸化性は、高温酸化試験により評価した。即ち、これらの試験片を、 800°C を越える、より高温の 850°Cで 100時間の高温大気中に曝した場合の、高温酸化試 験前後における試験片の重量増加 (酸化増量: mgZcm2 )を測定した。そして、重 量増加が少ないものほど、耐高温酸化性に優れると評価した。なお、酸化スケールの 剥離が認められた試料にっ 、ては、剥離した酸化スケールの重量も本重量測定に 加味した。表 1、 2にこれらの結果を示す。
[0096] 表 1、 2に示す通り、本発明の成分組成要件を満足する発明例 1〜11、また、本発 明の組織要件または Si表面濃化要件を満足する発明例 12〜26、 27〜35は、各々 8 50°Cにおける高温の耐高温酸ィ匕性に優れている。
[0097] (成分組成の影響)
発明例 1〜11は、平均結晶粒径が 10 m未満の微細等軸粒である組織を前提に 、成分組成要件を範囲内でふっている。この発明例の中でも、単独で Siのみを、その 下限 0. 15質量%に近く含有させた発明例 3は、 Si含有量がより高い他の発明例 4、 5に比して各々 850°Cにおける耐高温酸ィ匕性力 相対的に劣る。したがって、 Si単独 の 850°Cにおける耐高温酸ィ匕性向上効果が裏付けられる。発明例 5は Si含有量が 上限 2質量%に近ぐビッカース硬度が 230ポイントであり、他の発明例に比して 50 〜80ポイント程度増加していた。このため、チタン合金の排気管への成形力卩ェが困 難であると予想される。
[0098] A1含有量が比較的高い発明例 2は、 Si含有量が同じで、 A1含有量が比較的低い 発明例 1に比して、各々 850°Cにおける高温の耐高温酸ィ匕性が、スケール剥離が生 じやすくなることを理由に相対的に劣る。後述する A1含有量が高過ぎる比較例の結 果と合わせて、より高温の耐高温酸ィ匕性を向上させるための、 A1含有量を 0. 30質量 %未満に規制することの意義が裏付けられる。 [0099] 発明例 6〜 11は、 Nb、 Mo、 Crが、 Siと複合添加されており、 Si含有量が同じであ る Si単独添加の発明例 1に比して、各々 850°Cにおける高温の耐高温酸ィ匕性が相 対的に優れる。したがって、 Nb、 Mo、 Crのチタン合金のより高温の耐高温酸ィ匕性向 上効果が裏付けられる。
[0100] (結晶粒径と最表面 Si濃度の影響)
発明例 12〜26は、等軸粒である組織を前提に、平均結晶粒径と最表面 Siの平均 濃度をふっている。発明例 12〜14同士、発明例 15、 16同士、発明例 17、 18同士、 発明例 22〜24同士の各比較において、平均結晶粒径が 15 m以上であって、平 均結晶粒径が大きい例ほど、各々 850°Cにおける高温の耐高温酸ィ匕性力 相対的 に優れる。したがって、結晶粒径の粗大化による、より高温の耐高温酸ィ匕性向上効果 が裏付けられる。
[0101] また、結晶粒径を粗大化させた発明例 15〜18では、 A1含有量が 0. 30質量%以 上と高いにもかかわらず、 A1含有量を 0. 30質量%以下に抑制した上で結晶粒径を 粗大化させた発明例 12〜14に比較して、若干は劣るものの、各々 850°Cにおける 耐高温酸化性が優れている。したがって、結晶粒径の粗大化による、 A1含有の悪影 響を抑制した、より高温の耐高温酸化性向上効果が裏付けられる。
[0102] また、発明例 25、 26では、 A1含有量が 0. 30質量%を越えているにもかかわらず、 A1含有量を 0. 30質量%以下に抑制した上で最表面 Si濃度を濃化させた発明例 23 , 24に比較して、若干は劣るものの、各々 850°Cにおける耐高温酸化性が優れてい る。したがって、これから、最表面 Si濃度の濃化による、 A1含有の悪影響を抑制した 、より高温の耐高温酸化性向上効果が裏付けられる。
[0103] (針状組織の影響)
表 2の発明例 27〜35は、針状組織を前提に、成分ゃ最表面 Siの平均濃度をふつ ている。
[0104] 発明例 28, 30, 31では、 A1含有量が 0. 30質量%を越えているにもかかわらず、 A1含有量を 0. 30質量%以下に抑制した発明例 27、 29に比較して、若干は劣るも のの、各々 850°Cにおける耐高温酸ィ匕性が優れている。したがって、針状組織化に よる、 A1含有の悪影響を抑制した、より高温の耐高温酸化性向上効果が裏付けられ る。
[0105] また、最表面 Si濃度を濃化させている発明例 35は、濃化させていない発明例 27に 比して、各々 850°Cにおける耐高温酸ィ匕性が優れている。したがって、針状組織化と 最表面 Si濃度の濃化の複合による、より高温の耐高温酸ィ匕性向上効果が裏付けら れる。
[0106] 発明例 32、 33は、 Nb、 Mo、 Crが、 Siと複合添加されており、 Si含有量が同じであ る Si単独添加の発明例 29に比して、各々 850°Cにおける耐高温酸化性が相対的に 優れる。したがって、針状組織ィ匕と Nb、 Mo、 Cr添加の複合による、チタン合金のより 高温の耐高温酸ィ匕性向上効果が裏付けられる。
[0107] (比較例)
表 2の 36〜46は比較例であり、上記した発明例に比して、 850°Cにおける耐高温 酸化性が著しく劣る。
[0108] 比較例 36〜40は、 A1含有量を 0. 30質量%以下に抑制しているにもかかわらず、 Si含有量が少な過ぎる。特に、比較例 37〜40は、耐高温酸ィ匕性向上のための、 Nb 、 Mo、 Crの複合添加、結晶粒径粗大化、針状組織化、などの手段が用いられてい るにもかかわらず、 850°Cにおける耐高温酸ィ匕性が著しく劣る。したがって、これら他 の手段に比した、 Siの 850°Cにおける耐高温酸ィ匕性の高い向上効果が裏付けられ る。
[0109] 比較例 41、 42は、 Si含有量が多過ぎる。このため、ビッカース硬度が 280〜300ポ イントであり、 Si含有量が上限の発明例 5に比しても、 50〜70ポイント程度増大して いた。このため、チタン合金の排気管への成形カ卩ェはできないと予想される。これら から、 Si含有量の上限の意義が裏付けられる。
[0110] 比較例 43、 44は、組織が平均結晶粒径 10 μ m未満の微細等軸粒で、最表面 Si 濃度の濃化も無いのに加えて、 A1含有量が上限を越えて多過ぎる。この結果、比較 例 43、 44は各々 850°Cにおける耐高温酸ィ匕性が著しく劣る。前記 A1含有量が高い 発明例の結果と合わせて、 850°Cにおける耐高温酸ィ匕性を向上させるための、 A1含 有量を 0. 30質量%未満に規制することの意義が裏付けられる。
[0111] 比較例 45、 46は、酸素、鉄の含有量が不純物の域 (規定上限値)を越えて多過ぎ る。このため、成形性が極めて悪ぐ排気管への成形加工はできないと予想される。
[0112] なお、これら比較例 36〜46にっき、従来の耐高温酸化性の評価基準であった、比 較的低温の 800°Cで高温酸ィ匕試験を行なった結果、高温酸化試験前後における試 験片の酸化増崃 ¾1Ϊ量は、各例とも 2〜15mgZcm2程度減少した。
[0113] [表 1]
+o + U-U- -LL- U-.
Figure imgf000022_0001
Figure imgf000023_0001
〔〕^0114 [0115] (表面処理チタン合金)
次ぎに、これら表 1、 2から選択した本発明チタン合金に対して、 A1を含有する有機 金属化合物塗装皮膜を設けた本発明態様につき、この塗装皮膜の耐高温酸化性を 評価した。この結果を表 3に示す。
[0116] より具体的には、この塗装皮膜を設けた本発明チタン合金試験片の高温酸ィ匕試験 を前記した条件と同じ条件にて行い、各酸化増量を測定する。この各酸化増量と (A )、この塗装皮膜を設けた本発明チタン合金に対応する、表 1、 2の本発明チタン合 金の(塗装皮膜を設けな 、)前記高温酸ィ匕試験における酸ィ匕増量 (B)との比 (AZB )を求めて、塗膜の耐高温酸化性を評価した。この酸ィ匕増量比 AZBが小さいほど、 塗膜側の耐高温酸ィ匕性に対する寄与率が高いこととなり、塗膜の耐高温酸ィ匕性が高 いと言える。この点、表 3において、耐高温酸化性評価は、酸ィ匕増量比 AZBが 0. 4 5以下を〇、 0. 45を越え 0. 65までを△、 0. 65を越えるものを Xと評価した。
[0117] 塗装は、前記実施例と同じ試験片を用い、表 3に示すような膜厚 (乾燥後の膜厚)、 塗膜中の A1含有量 (乾燥後の A1含有量)となるように、鱗片状の A1を含有させた非 変性のシリコーン榭脂と有機溶剤を含調整した溶液に、試験片を浸漬塗装した。この 塗装後の乾燥は、 (1) 120°C X 15分の仮乾燥を行い、その後 190°C X 30分の本乾 燥を実施 (表 3には乾燥温度 190°Cと記載)、 (2) 120°C X 15分の仮乾燥を行い、そ の後 210°C X 30分の本乾燥を実施 (表 3には乾燥温度 210°Cと記載)、の二通りで 実施した。
[0118] 表 3から分力る通り、前記した好ましい条件範囲である、乾燥後の平均塗膜厚みが 10〜: LOO /z mであり、乾燥後の塗膜中の A1含有量が 30〜90質量%である、有機金 属化合物塗装皮膜の例 48、 55〜57は、塗膜の高温酸化性が優れている。即ち、塗 装皮膜を設けない表 1、 2の対応する本発明チタン合金よりも、前記高温酸化試験に おける酸ィヒ増量が少なぐ前記酸化増量の差が比較的大きぐ塗膜の高温酸化性が 優れている。
[0119] これに対して、乾燥後の平均塗膜厚みが好ましい範囲の下限や上限である例 47、 49、乾燥後の塗膜中の A1含有量が好ましい範囲の下限や上限である例 50、 51、あ るいは乾燥温度が好まし 、範囲から外れて高過ぎる例 52は、この好まし 、範囲から 外れる例 53、 54に比しては、塗膜の高温酸化性が優れている。しかし、塗膜条件が 前記した好ましい条件範囲である例 48、 55〜57よりは、塗膜の高温酸ィ匕性が劣って いる。
[0120] したがって、前記好ま U、塗膜条件範囲や、前記好ま U、乾燥条件範囲の、塗膜 の耐高温酸ィヒ性に対する臨界的な意義が分力る。
[0121] [表 3]
CD CD
C=>
CT5 C CD < >
L OO CH
:
n
CD CD
Figure imgf000026_0001
[0122] 第 2実施形態
[0123] 以下に、本発明の第 2実施形態と各要件の限定理由とを具体的に説明する。
本発明の第 2実施形態に係る純チタンは、純チタンを 変態点以上に加熱すること により生成した針状組織を有する。
[0124] (純チタン)
本発明の純チタン自体は、 99. 5質量%以上のチタン純度を有する、 JIS規格に定 められた、第 4種から第 1種までの、通常の純チタンが使用可能である。因みに、 JIS 規格の第 1種純チタンの純度は 99. 8質量%以上、第 2種純チタンの純度は 99. 7 質量%以上である。
[0125] (純チタン組織)
常法により製造した場合、市販の純チタン組織は、冷間圧延後 β変態点以下で最 終焼鈍されているので等軸粒となる。これに対して本発明では、耐高温酸化性に優 れさせるために、純チタンの結晶粒を等軸粒ではなぐ針状組織とする。この針状組 織の形成法は、特に限定されるものではなぐ純チタンを j8変態点以上に加熱するこ とにより針状組織とすることができる。例えば、純チタンを冷間圧延後に、)8変態点以 上に加熱後冷却しても針状組織とすることができる。また、冷間圧延後、等軸組織に なるように β変態点以下で焼鈍され、もともと等軸糸且織を呈しているコイル、シート、加 工成型部材等を、 j8変態点以上に再加熱、冷却すること〖こよっても生成させることが できる。すなわち、最終加熱温度が β変態点以上であれば、針状組織は得られる。 なお、冷却は空冷でも水冷でも炉冷でも良い。
[0126] (断面ミクロ組織)
本発明の第 2種純チタンにおける針状組織の断面ミクロ組織を図 4 (図面代用写真 )に、比較のための第 2種純チタンにおける等軸粒組織の断面ミクロ組織を図 5 (図面 代用写真)に、各々示す。
[0127] 図 4の純チタンは、後述する表 4の発明例 2であり、第 2種純チタンを、 40%の圧下 率で冷間圧延後、 β変態点を超える 950°Cで 6分間大気加熱した後冷却 (放冷)した ものである。
[0128] 図 4の純チタンは、後述する表 4の比較例 5であり、第 2種純チタンを、 40%の圧下 率で冷間圧延後、 800°Cで 6分大気焼鈍したものである。
[0129] 図 4の針状組織の場合、等軸組織の場合のように平均結晶粒径を求めることはでき ない。このため、この針状組織自体は、通常の平均結晶粒径やアスペクト比などで規 定しにくい。この点、本発明の針状組織は、この針状組織の履歴である製造方法によ り明確に規定される。即ち、この針状組織は、純チタンを |8変態点以上に加熱する熱 処理により生成した針状組織である。
[0130] (組織作り分け)
針状組織か等軸粒組織かの作り分けは、前記した通り、焼鈍最終加熱の温度であ る。針状組織は、冷間圧延後、 |8変態点以上に加熱して力も冷却を行うことで、前の 冷延の圧下率にかかわらず、純チタンであれば必然的に、かつ純チタン材の全面に 亙って得られる。一方、等軸粒組織は、純チタンであれば冷間圧延後の β変態点以 下の温度での焼鈍で必然的に得られる。この点、冷間圧延後に直に j8変態点以上 に加熱後冷却せずとも、この間に低温での加熱が入っても、最終的に j8変態点以上 に加熱すれば(最終加熱温度が β変態点以上であれば)針状組織は得られる。この 針状組織化させる (本発明で用いる)純チタン自体は市販の等軸組織を有するもの を用いて針状組織化させても構わな ヽ。
[0131] (製造方法)
上記針状組織を得るための冷間圧延後の β変態点以上の加熱、冷却を除き、針 状組織化するまでの純チタンは、铸塊溶製、熱間鍛造、熱延、焼鈍、冷間圧延、必 要に応じて焼鈍あるいは熱処理する、常法 (市販の純チタンの製法)により製造でき る。
[0132] (表面処理)
以上のようにして得られた本発明純チタンは、 800°C程度の耐高温酸化性に優れ ているため、表面処理無しで用いられ良い。ただ、このように表面処理無しの裸だけ ではなぐ種々の表面処理を施して用いられても良い。
[0133] この際の表面処理としては、その表面処理皮膜自身が、 800°C程度の耐高温酸ィ匕 性に優れていることが好ましい。このような特性を有する表面処理皮膜としては、乾燥 後の平均塗膜厚みが 10〜: LOO μ mであり、乾燥後の塗膜中の A1含有量が 30〜90 質量%であるような有機金属化合物塗装皮膜が好ましい。
[0134] この有機金属化合物塗装皮膜は、 A1鱗片または A1粉体を含有する、ナーセムチタ ン、ナーセムジルコニウム、酢酸クロム、シリコーン、シリカゾル、アルミナゾルおよびァ ルミ-ゥムイソプロボキシドなどの、安定で取り扱 、が容易で毒性が低 、有機金属化 合物の塗装皮膜である。
[0135] このような、所定量の A1を含有する有機金属化合物の水溶液あるいは溶剤による 溶液、あるいは分散液力もなる塗料を、本発明純チタン表面に、塗布あるいは浸漬な どの周知の方法により塗装し、 200°C以下の温度で乾燥することが好ましい。 200°C 以下で塗装後の塗膜乾燥を行うと、塗膜の一層の耐高温酸ィ匕性が期待できる。
[0136] 一方、塗装後の塗膜乾燥を 200°Cを越える高温で行うと、塗膜の種類にもよるが、 塗膜の乾燥硬化反応が急激に起こり、塗膜中の A1鱗片、 A1粉体が塗膜中に空間を 多く作った状態で固定されてしまい、この空間が酸素の侵入を許し、結果的に優れた 耐高温酸ィ匕性が得られ難くなる可能性がある。これに対し、 200°C以下で塗膜乾燥 を行うと、乾燥に時間を要するため、 A1鱗片、 A1粉体が空間を埋める位置まで移動し て硬化するため、塗膜中の空間が少なくなり、結果的に優れた耐高温酸化性が得ら れる。
[0137] そして、この乾燥後の平均塗膜厚みが 10〜: LOO mであり、乾燥後の塗膜中の A1 平均含有量が 30〜90質量%であるような、有機金属化合物塗装皮膜とする。乾燥 後の平均塗膜厚み (膜厚)が 10 μ m未満であれば、ピンホール等の欠陥部を通して 、下地チタンが腐食雰囲気に曝され、また、塗膜自身の減肉しろが少なすぎて下地 の保護性が得られず、塗装皮膜としての意味が無い。
[0138] 一方、乾燥後の平均塗膜厚み (膜厚)が 100 mを越えた場合、膜応力等の影響で 塗膜が剥離しやすくなる。したがって、乾燥後の平均塗膜厚みは 10〜: LOO /z mの範 囲とする。乾燥後の平均塗膜厚みは、塗膜断面を、例えば任意の 10箇所、光学顕 微鏡で観察、測定し、平均化することにより測定できる。
[0139] 乾燥後の塗膜中の A1平均含有量が 30質量%未満であれば、耐高温酸ィ匕性向上 効果が不十分であり、逆に、 90質量%を越えると、塗膜の強度が不足するため、外 力や基材の収縮等による塗膜の早期破壊につながる。したがって、乾燥後の塗膜中 の A1平均含有量は 30〜90質量%の範囲とする。この塗膜中の A1含有量は、塗膜表 面または塗膜断面を、例えば任意の 10箇所、 EPMAにより分析して平均化することに より測定できる。 [0140] なお、塗膜中の(添加する) A1の形状は、鱗片状が最も耐高温酸化特性に優れる 力 粉体状でも、また鱗片状と粉体状の混合物でも、より高温での耐高温酸化特性を 得ることは可能である。本塗膜 (塗装)により、耐高温酸ィ匕性が向上する理由は、この ような A1を含有する塗膜自身が、高温酸化に対しての耐性を有するのと、純チタンが 高温に曝された際に、塗膜中の A1と基材の純チタンとが反応し、高温酸化に対して の耐性を有する層を形成するためと考えられる。
[0141] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実 施例によって制限を受けるものではなぐ前記、後記の趣旨に適合し得る範囲で適当 に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的 範囲に包含される。
実施例 2
[0142] 表 4に記載した各 JIS規格組成の純チタン冷延板の耐高温酸化性を評価した。即ち 、市販の JIS1種、 2種、 3種、 4種の純チタン板から 2mmt X 25mmw X 25mm1の試 験片を採取し、その組織を変化させた上で、耐高温酸化性を評価した。
[0143] ここで、針状組織を有する発明例は、純チタンの j8変態点を超える 950°Cで 6分間 大気加熱した後冷却 (放冷)し、この後溶融ソルトと硝ふつ酸を使った常法による脱ス ケールを行った。このようにして得られた冷間圧延板力 採取した試験片の組織は全 体が針状組織であった。
[0144] また、等軸粒組織を有する比較例は、上記市販の純チタン板をそのまま用いた。
[0145] (耐高温酸化性)
耐高温酸化性は、高温酸化試験により評価した。即ち、これらの試験片を、 800°Cで 100時間の高温大気中に曝した場合の、高温酸化試験前後における試験片の重量 増カロ(酸ィ匕増量: mgZcm2 )を測定した。そして、重量増加が少ない純チタン例ほど 、耐高温酸化性に優れると評価した。表 4にこれらの結果を示す。
[0146] 表 4に示す通り、発明例 1〜4は、本発明で規定する針状組織となっている。この結 果、第 1種力 第 4種の純チタンまで、各々耐高温酸化性に優れるとともに、耐高温 酸ィ匕性に非常に優れている。
[0147] これに対して、比較例 5〜8は従来の等軸粒糸且織であり、発明例 1〜4に比して、第 1種力 第 4種の純チタンまで、耐高温酸ィ匕性が著しく劣る。
[0148] このように、第 1種力 第 4種の純チタンまで、針状組織と等軸粒組織との組織の違 いだけで、耐高温酸化性が著しく異なり、針状組織の耐高温酸化性の高い向上効果 が裏付けられる。
[0149] [表 4]
Figure imgf000031_0001
[0150] (表面処理純チタン)
次ぎに、これら表 4から選択した本発明純チタンに対して、 A1を含有する有機金属 化合物塗装皮膜を設けた本発明態様につき、この塗装皮膜の耐高温酸化性を評価 した。この結果を表 5に示す。
[0151] より具体的には、この塗装皮膜を設けた本発明純チタン試験片の高温酸ィ匕試験を前 記した条件と同じ条件にて行い、各酸化増量を測定する。この各酸ィ匕増量と (A)、こ の塗装皮膜を設けた本発明純チタンに対応する、表 4の本発明純チタンの (塗装皮 膜を設けな 、)前記高温酸ィ匕試験における酸ィ匕増量 (B)との比 (AZB)を求めて、 塗膜の耐高温酸化性を評価した。この酸化増量比 AZBが小さいほど、塗膜側の耐 高温酸ィ匕性に対する寄与率が高いこととなり、塗膜の耐高温酸ィ匕性が高いと言える。 この点、表 5において、耐高温酸化性評価は、酸化増量比 AZBが 0. 5以下を〇、 0 . 5を越え 0. 7までを△、〇. 7を越えるものを Xと評価した。
[0152] 塗装は、前記実施例と同じ試験片を用い、表 5に示すような膜厚 (乾燥後の膜厚)、 塗膜中の A1含有量 (乾燥後の A1含有量)となるように、鱗片状の A1を含有させた非 変性のシリコーン榭脂と有機溶剤を含調整した溶液に、試験片を浸漬塗装した。この 塗装後の乾燥は、 (1) 120°C X 15分の仮乾燥を行い、その後 190°C X 30分の本乾 燥を実施 (表 5には乾燥温度 190°Cと記載)、 (2) 120°C X 15分の仮乾燥を行い、そ の後 210°C X 30分の本乾燥を実施 (表 5には乾燥温度 210°Cと記載)、の二通りで 実施した。
[0153] 表 5から分力る通り、前記した好ましい条件範囲である、乾燥後の平均塗膜厚みが 10〜: LOO /z mであり、乾燥後の塗膜中の A1含有量が 30〜90質量%である、有機金 属化合物塗装皮膜の例 10、 17〜19は、塗膜の高温酸化性が優れている。即ち、塗 装皮膜を設けない表 4の対応する本発明純チタンよりも、前記高温酸ィ匕試験におけ る酸ィ匕増量が少なくなつており塗膜の高温酸ィ匕性が優れている。
[0154] これに対して、乾燥後の平均塗膜厚みが好ましい範囲の下限や上限である例 9、 1 1、乾燥後の塗膜中の A1含有量が好ましい範囲の下限や上限である例 12、 13、ある いは乾燥温度が好まし 、範囲力も外れて高過ぎる例 14は、この好ま 、範囲力も外 れる例 15、 16に比しては、塗膜の高温酸化性が優れている。しかし、塗膜条件が前 記した好ましい条件範囲である例 10、 17〜19よりは、塗膜の高温酸化性が劣ってい る。
[0155] したがって、前記好ま U、塗膜条件範囲や、前記好ま U、乾燥条件範囲の、塗膜 の耐高温酸ィヒ性に対する臨界的な意義が分力る。
[0156] [表 5] 表面処理純チタン
号 表 4の 謹 酸化 酸化増量 Aの 塗膜の 対応する 増量 、 表 4, 5 の対 耐髙温 純チタン A 応する純チタン 酸化性
膜厚 A1 乾燥 の酸化增量 B 評価
含有量 皿 との比
mg/ cm" A/B*
μ m 質 S% 。C
9 表 4 の 2 1 1 59 190 7. 1 0. 70 Δ
10 表 4 の 2 61 61 190 4. 5 0. 44 〇
11 表 4 の 2 102 60 190 6. 2 0. 61 Δ
12 表 4 の 2 63 31 190 5. 8 0. 59 Δ
13 表 4 の 2 61 88 190 6. 6 0. 65 Δ
14 表 4 の 2 60 62 210 6. 8 0. 67 Δ
15 表 4 の 2 7 64 190 9. 4 0. 92 X
16 表 4 の 2 62 25 190 8. 9 0. 87 X
17 表 4 の 2 45 46 190 4. 8 0. 47 〇
18 表 4 の 2 58 73 190 4. 9 0. 48 〇
19 表 4 の 2 79 81 190 4. 9 0. 48 〇
*酸化増量比 A/B が小さいほど、 塗膜の耐高温酸化性が高いと評価できる。
[0157] 第 3実施形態
[0158] 以下に、本発明の第 3実施形態と各要件の限定理由とを具体的に説明する。
本発明の第 3実施形態に係る表面処理チタン材は、純チタンまたはチタン合金の 表面に、アルミ酸ィ匕物粒子によるショットブラスト処理層を有し、この処理層のアルミ- ゥム平均濃度力 at%以上である。
[0159] (アルミ酸ィ匕物粒子ショットブラスト処理層)
本発明では、チタン材の 800°Cを越える、より高温の耐高温酸ィ匕性 (以下、単に耐 高温酸ィ匕性とも言う)を向上させるために、アルミ酸ィ匕物粒子を、ショットブラスト処理 により、チタン材表面に高速で噴射投射する。そして、チタン材である純チタンまたは チタン合金の表面に、アルミ酸化物粒子を埋め込み、アルミ酸化物を主体とする基材 チタンと一体となった処理層を形成する。前記した通り、このアルミ酸化物を主体とす る基材チタンと一体となった処理層が、 800°Cを越える 850°Cなどの、より高温の耐 高温酸化性を向上させる。
[0160] (アルミニウム平均濃度)
このアルミ酸ィ匕物粒子の埋め込み層(ショットブラスト処理層)のアルミ酸化物含有 量 (アルミ酸ィ匕物濃度)は、アルミニウムとしての濃度として 4at%以上とする。このァ ルミ-ゥム平均濃度力 at%未満の場合、アルミ酸ィ匕物粒子のショットブラスト処理層 における、アルミ酸化物含有量が不足し、純チタンやチタン合金などのチタン材の耐 高温酸化性が不足する。また、耐高温酸化性も低下する。
[0161] このアルミニウム平均濃度の上限は特になぐアルミニウム平均濃度が高ければ高 いほど、優れた耐高温酸化性の向上効果が期待できる。このため、実質的なアルミ- ゥム平均濃度の上限は、ショットブラスト処理能力や処理条件の限界により決定され る。なお、前記した特許文献 6でも、アルミナなどの硬質粒子をショットブラスト処理し ているが、これは、ショットブラストされた硬質粒子の圧縮作用によりチタン合金表面 の A1溶融めつきなどの A1含有層中に生じる空隙ゃ不めっき部分を無くすためである 。したがって、本発明のようにショットブラストされたアルミナをチタン表面に埋め込む ものでは決してない。即ち、特許文献 8では、ショットブラストされたアルミナは A1含有 層表面に衝突後に順次脱落していく。
[0162] (アルミニウム平均濃度測定)
ショットブラスト処理層中のアルミニウム平均濃度(含有量: at%)は、 X線マイクロアナ リシス分析(Electron Probe Micro Analysis、略して EPMA)の中の波長分散方式(Wa ve Dispersive Spectroscopy,略して WDS )での表面定量分析により測定できる。より 詳細には、最表面の分析部を X500〜X1000に拡大し、まず定性分析により存在元 素を調べた後、それぞれの存在量を ZAF法を用いた半定量分析により定量的に濃 度を求めることが出来る。最表面の濃度は分析時の電子線の侵入深さにより変わる 力 分析時の加速電圧を 15kvの一定にすることで、 1〜2.5 m程度の電子線侵入 深さとなる。したがって、本発明におけるアルミニウム平均濃度とは、ショットブラスト処 理層表面から 1〜2.5 μ m程度の深さまでのアルミニウム平均濃度を意味する。以下 、ショットブラスト処理層中のアルミニウム平均濃度とは、このように定義される濃度を 意味する。
[0163] (ショットブラスト処理層厚み)
ショットブラスト処理層は、チタン表面における連続的な厚みを有する膜乃至層では なぐ不連続な厚みが大きく異なる膜乃至層となりやすい。このため、ショットブラスト 処理層の実際の厚みを計測し、平均化して定量ィ匕する、あるいは好ましい厚みとして 数値的に規定することは非常に困難である。また、連続的な厚みを有する膜乃至層 となったとしても、厚みが大きく異なるために、同じく定量ィ匕することは非常に困難で ある。この点、チタン表面の任意の数箇所の 100倍程度の光学顕微鏡による断面観 察力 計測して平均化した厚みとして敢えて言うならば、連続的な厚みを有する膜乃 至層にせよ、不連続な膜乃至層にせよ、ショットブラスト処理層は平均で 1 /z m以上 の厚さが好ましい。一方、ショットブラスト処理層をあまり厚くすると、過度のショットブラ ストによりチタン基材の変形を招く恐れがあり、平均で 20 mを越えて厚くする必要 は無い。
[0164] (ショットブラスト処理)
チタン材である純チタンまたはチタン合金の表面に、アルミ酸ィ匕物粒子を埋め込み 、アルミ酸化物を主体とする基材チタンと一体となった処理層を形成するためには、 前提として、ショットブラスト処理を選択する。ショットブラスト処理によれば、チタン材 表面に高速でアルミ酸ィ匕物粒子を噴射、投射でき、アルミ酸化物の基材へ埋め込む ことができる。この結果、アルミ酸化物を主体とする基材チタンと一体となった処理層 を形成できる。
[0165] これに対して、従来の蒸着法や PVD法、焼成法では、チタン材表面に高速でアル ミ酸化物粒子を噴射、投射できず、アルミ酸ィ匕物の基材への埋め込み力は無い。こ のため、チタン材表面に、アルミ酸ィ匕物からなる表面層は形成できるものの、この表 面層にはチタン成分が殆ど含まれない。したがって、この表面層は、基材チタンとは 組成的に分離乃至区分された表面層であり、本発明のアルミ酸ィ匕物を主体とする基 材チタンと一体となった処理層を形成できな 、。
[0166] 本発明のアルミ酸化物を主体とする基材チタンと一体となった処理層を形成するた めには、ショットブラストの投射圧は 3〜7気圧が好適である。この投射圧が低すぎる 場合は、アルミ酸ィ匕物の基材への埋め込み力が不足する。この結果、表面での処理 層の形成が十分でなぐまた、処理層のアルミニウム平均濃度を 4at%以上とすること も困難である。一方、この投射圧が高すぎると、チタン材自体 (基材)の変形を招くだ けではなぐ処理層の厚さの増加も飽和してくるので不適である。
[0167] (アルミ酸ィ匕物粒子)
本発明でショットブラスト用に使用できるアルミ酸ィ匕物粒子としては、実質的に、ァ ルミ酸化物が有効に作用する粒子集合体 (粉体、粉末)であればよい。この具体的な 態様として、粒子の集合体が 100%アルミ酸ィ匕物粒子カゝらならずとも、他の酸化物粒 子や化合物粒子を含んでも良い。また、アルミ酸化物の単一粒子力 100%アルミ酸 化物組成力もならずとも、アルミ酸ィ匕物の単一粒子中に他の酸ィ匕物やィ匕合物を含ん でも良い。
[0168] 但し、チタン材表面のショットブラスト処理層のアルミニウム平均濃度を 4at%以上 に確保するためには、ショットブラスト処理されるアルミ酸ィ匕物粒子集合体 (粉体、粉 末)力 全体でアルミ酸化物 (A1 0 )を 80質量%以上含むことが好まし 、。アルミ酸
2 3
化物粒子集合体に、アルミ酸化物以外の、他の酸化物粒子や化合物を含む場合で も、単一粒子中にアルミ酸ィ匕物を多く含むアルミ酸ィ匕物粒子の、集合体に対する割 合を多くして、集合体が全体でアルミ酸化物を 80質量%以上含むようにする。
[0169] この際、前記ショットブラスト処理されるアルミ酸ィ匕物粒子が単一粒子としても、単一 粒子中にアルミ酸化物 (A1 0 )を 80質量%以上含むことが更に好ましい。言い換え
2 3
ると、アルミ酸化物単一粒子中の他の酸化物や化合物を 20質量%未満に抑制する ことが好ましい。このように、アルミ酸化物単一粒子中にアルミ酸化物(A1 0 )を 80質
2 3 量%以上含むことによって、前記粒子集合体全体としての、前記アルミ酸化物割合も 確保できる。
[0170] アルミ酸化物以外の混合 (混入)されやす!/ヽ他の酸化物(不純物)としては、 Na 0、
2
TiO、 Fe〇 、 SiO等がある。これらの酸化物は、粒子としてアルミ酸化物粒子の他に
2 2 3 2
粒子集合体 (粉体、粉末)に混合 (混入)される場合でも、アルミ酸ィ匕物単一粒子中に 成分として混合 (混入)される場合でも、前記アルミ酸ィ匕物量を確保できる量とする。
[0171] なお、ここで、アルミ酸化物粒子の混合形態のように、アルミ酸ィ匕物を含まな 、他の 粒子と混合して使用する場合も、高温塩害腐食抑制効果へのアルミ酸ィ匕物の寄与が 主体となって!/、る場合は本発明に含まれる。
[0172] ショットブラスト処理されるアルミ酸ィ匕物粒子は市販のものが使用できる力 本発明で ショットブラスト用に使用できるアルミ酸ィ匕物粒子の粒径は、 90%以上のアルミ酸ィ匕 物粒子の粒径が 180〜425 μ mの範囲程度が好ましい。 90%以上のアルミ酸化物 粒子の粒径が、これよりも、細力べあるいは粗くなると、アルミ酸ィ匕物をショットブラスト によりチタン表面に埋め込みに《なる。
[0173] これらアルミ酸ィ匕物粒子は、一般的に、溶湯直接粉化として、アトマイズ法や溶湯 攪拌法、回転円盤滴下法、機械的粉化として、スタンプミル法、ボールミル法、振動ミ ル法、アトライター法など、公知の方法で製造される。
[0174] (適用チタン材)
本発明で言うチタン材とは、圧延などの塑性加工や成形加工によって、板、条、線、 管などの種々の形状とされた、純チタンまたはチタン合金のことを言う。本発明では、 表面処理される対象となるチタン材を限定するものではなぐ用途の要求特性 (機械 的性質等)に応じて、 α合金、 a— j8合金、 j8合金などのチタン合金あるいは純チタ ン (JIS 1種〜 4種)が使用できる。チタン合金としては、汎用される、 Ti-1.5A1、 Ti-0.5 Al-0.45Si-0.2Nb、 Ή- 6A卜 4V、 Ti-3A1-2.5V、 Ti- 15V- 3Aト 3Sn- 3Cr、 Ti- lCu等や、 これら合金成分を変更した合金が使用できる。
[0175] (耐高温酸化性に優れたチタン材)
また、特に排気管用途に使用する場合は、基材 (母材)となるチタン材自身が上記 した汎用されるチタン合金あるいは純チタンに対して、耐高温酸ィ匕性に優れているこ とが好ま 、。これらの耐高温酸ィ匕性に優れるチタン材の好ま 、態様を以下に説 明する。
[0176] (Si含有)
成分的には、チタン合金が Siを 0. 15〜2質量%含む場合に、 850°Cなどのより高 温での耐高温酸化性が向上する。即ち、チタン合金として、 Siを 0. 15〜2質量%含 み、残部チタンおよび不可避的不純物力 なることが好ま 、。
[0177] Siは、耐高温酸ィ匕性の向上に効果がある。また、高温強度も向上させる。このため には、 Siを 0. 15質量%以上含有させる。一方、 Si含有量が 2質量%を越えると、成 形性の劣化が著しぐチタン合金の排気管への成形加工が困難となる。
[0178] (Nb、 Mo、 Cr)
Nb、 Mo、 Crも、 SUりは効果が劣るが、耐高温酸ィ匕性向上に有効であり、 Siと複合 添加(共存)することで相乗効果が期待できる。このため、更に、 Nb、 Mo、 Crの内か ら選択される 1種または 2種以上を、前記 Siとの合計含有量で 2質量%以下含んでも 良い。これらの元素の Siとの合計量が 2質量%を超えると、成形性が劣化し、排気管 への成形加工が困難となる。
[0179] (チタン材組織)
チタン材を、耐高温酸ィ匕性に優れさせるためには、以上説明した成分組成の他に、 本発明のチタン材組織を以下に説明する好ましい態様とする。即ち、 Si含有チタン 合金最表面の Siの平均濃度を高める、チタン材組織の平均結晶粒径を大きくする、 チタン材を針状組織とする、の内から 1種または 2種以上選択されるチタン合金組織 とすることが好ま 、。これらの組織を上記成分組成と適宜組み合わせて用いること で、相乗効果も期待できる。また、 A1の添カ卩は 800°C以上の酸ィ匕環境では酸化スケ ールの剥離を誘発するので、例えば 0. 30質量%未満に添加量を制限する必要が ある。これに対して、上記 Si含有チタン合金最表面の Siの平均濃度を高める、チタン 材組織の平均結晶粒径を大きくする、チタン材を針状組織と!/ヽつた方策を併用する ことで、高温等での機械的特性の調整のための A1の添加を例えば 0. 30質量%以 上に積極的に行うことができるようになる。
[0180] (最表面の Si濃化)
上記 Si含有チタン合金最表面に Siを濃化させ、 Siの平均濃度を高めるほど、耐高 温酸化性に優れる。このためには、チタン合金最表面の Siの平均濃度を 0. 5&%以 上とすることが好ま 、。この最表面に濃化して 、る Siはチタン中に固溶した Siであ つてもよぐ Ti Si 等の Tiと Siとの金属間化合物や、 Siの酸化物、炭化物等の化合
5 3
物形で存在してもよい。
[0181] この最表面の Si濃度は、基本的には、チタン合金 (基材)の Si含有量とともに高くな るものであり、規定の範囲の Si含有量を満足して、通常通りチタン合金を製造すれば 、チタン合金最表面の Siの平均濃度が 0. 5at%以上に濃化される可能性がある。し かし、一方で、製造方法によっては、酸素や炭素等の表面汚染層が数/ z mの深さま で存在するような場合があり、このような場合には、最表面に存在する Si量の平均濃 度が 0. 5at%未満となり、優れた耐高温酸ィ匕性向上効果が望めない可能性も高い。 それゆえ、チタン合金最表面の Si濃度は、チタン合金の Si含有量によって一律に決 まるものではない。このため、チタン合金最表面の Siの平均濃度を 0. 5at%以上とす る場合には、チタン合金の製造において、酸素や炭素等の表面汚染層が形成されな V、ような製造条件を特に選択することが好ま 、。
表面汚染層が形成されない製造条件としては、例えば、最終工程を、そこで表面層 が除去されるような工程とすることが考えられる。すなわち、酸洗仕上げや、研磨仕上 げなどである。
[0182] このチタン合金最表面の Si濃度は、 X線マイクロアナリシス分析(Electron Probe Mi cro Analysis、略して EPMA)の中の波長分散方式(Wave Dispersive Spectroscopyゝ 略して WDS )での表面定量分析により測定できる。より詳細には、最表面の分析部を X500〜X1000に拡大し、まず定性分析により存在元素を調べた後、それぞれの存在 量を ZAF法を用いた半定量分析により定量的に濃度を求めることが出来る。最表面 の濃度は分析時の電子線の侵入深さにより変わるが、分析時の加速電圧を 15kvの 一定にすることで、 1〜2.5 m程度の電子線侵入深さとなる。したがって、最表面 の Si濃度とは、表面から 1〜2.5 μ m程度の深さまでの Siの平均濃度を意味する。 以下、最表面の Si濃度とはこのように定義される濃度を意味する。
[0183] (等軸粒)
常法により製造した場合、チタン材組織は等軸粒となる。この等軸粒組織により、チ タン合金の成形性や機械的特性 (強度)などの特性が確保される。
[0184] (平均結晶粒径)
一方、この等軸粒組織の場合に、チタンの高温酸ィ匕性に対しては、その平均結晶 粒径が大きく関与する。すなわち平均結晶粒径がある程度大きい方が耐高温酸ィ匕性 が向上する。具体的には平均結晶粒径が 15 m以上でこの効果が現れ、好ましくは 20 μ m以上、より好ましくは 30 μ m以上でこの効果は顕著になる。一方で、平均結 晶粒径が過度に大きくなると、成形時の肌荒れの問題が生じるので、この問題が重 要視される用途の場合には、平均結晶粒径の上限は150〜200 111程度、より好ま しくは 100 m程度となる。
[0185] 耐高温酸化性に結晶粒径が影響する理由は、現時点では明確にできて 、な!/、が 高温酸ィ匕の進行のメカニズムに関係すると推測される。すなわち、高温に曝された際 に生じるチタン表面からの酸素の拡散進入は、結晶粒界において起こりやすぐこの ため、粒界部の存在割合が小さい平均結晶粒径の大きい材料の方が高温酸ィ匕が抑 制されるものと考えられる。
[0186] チタン材製造の常法と言える冷間圧延の圧下率は、材質で異なるが概ね 20〜70 %である。またその後実施される焼鈍の温度は 600〜800°Cであり、真空焼鈍のよう な焼鈍時間が数時間〜十数時間の長時間になる焼鈍では 600〜700°C程度の低 温側の温度条件が採用され、連続焼鈍酸洗のような短時間の処理では 700〜800 °Cの高温側の温度条件が採用される。チタン合金の場合、合金元素が結晶粒成長 を阻害する場合が多ぐこのような常法の範囲で、チタン材を冷間圧延、焼鈍しても、 平均結晶粒径を 15 m以上にすることは難しい。
[0187] これに対して、チタン合金の平均結晶粒径を 15 m以上に大きくするためには、冷 間圧延の圧下率を 20%以下に小さくするとともに、焼鈍温度を 825°C以上かつ j8変 態点以下の条件に高温化する。更に、好ましい圧下率は 15%以下で、さらに好まし くは 10%以下である。また、好ましい焼鈍温度は 850°C以上、 j8変態点以下である。 この焼鈍温度が β変態点温度を越えると、後述する針状組織となる。したがって、部 材の結晶粒を等軸粒にし、良好な成形性や機械的特性を工業的に安定して得ること を重視する場合には、焼鈍温度の上限は、)8変態点温度以下とする。
[0188] (A1含有量との関係)
ここで、チタン材の組織を、その平均結晶粒径を 15 /z m以上とした比較的粗大な 等軸結晶粒組織とすれば、前記した通り、 A1を 0. 30質量%未満に規制しなくても良 い。即ち、これら比較的粗大な等軸結晶粒組織の作用により、耐高温酸化性が向上 する分、 A1による耐高温酸ィ匕性低下作用が抑制される。そして、この効果は、チタン 材の前記した平均結晶粒径が大きいほど大きくなる。 [0189] (結晶粒径の測定方法)
発明で言う結晶粒径とは、チタン合金や純チタンなどのチタン材の圧延 (L)方向断面 の平均結晶粒径である。この結晶粒径は、チタン材から採取した試料(試験片)断面 を 0.05〜0.1mm粗研磨した後、鏡面研磨し、この後エッチングした表面を、 100倍の 光学顕微鏡を用いて観察し、前記し方向にラインインターセプト法で測定する。 1測 定ライン長さは 0.95mmとし、 1視野当たり各 3本で合計 5視野を観察することにより、 全測定ライン長さを 0.95 X 15mmとする。このように、板の先端部と後端部とを除ぐチ タン材中央部の任意の 10箇所において測定した各平均結晶粒径を、更に平均化し たものをチタン材の平均結晶粒径とする。
[0190] (針状組織)
ここで、これら等軸粒により、チタン合金や純チタンなどのチタン材の上記成形性や 機械的特性などの特性を多少犠牲にしても差し支えのない用途の場合には、耐高温 酸化性の更なる向上のために、チタン材を j8変態点以上で加熱して生成させた針状 糸且織にしても良い。
[0191] 一般的にチタン材の組織は、冷間圧延後 β変態点以下で最終焼鈍されて!、るの で等軸組織を呈している。これに対して本発明では、耐高温酸化性に優れさせるた めに、チタン材の組織を、等軸粒ではなぐ針状組織としても良い。この針状組織の 形成法は、特に限定するものではなぐチタン材を j8変態点以上に加熱することによ り得られる。例えばチタン材を冷間圧延後、)8変態点以上に加熱後冷却することによ り生成させることができる。また、冷間圧延後、等軸組織になるように )8変態点以下で 焼鈍され、もともと等軸組織を呈しているコイル、シート、加工成型部材等を、 β変態 点以上に再加熱、冷却すること〖こよっても生成させることができる。すなわち、最終カロ 熱温度が β変態点以上であれば、針状組織は得られる。
[0192] チタン材の組織を、上記等軸結晶粒組織ではなぐこのような針状組織とした場合、 等軸組織の場合のように平均結晶粒径を求めることはできない。このように、針状組 織自体は、通常の平均結晶粒径やアスペクト比などで規定しにくいが、この針状組織 の履歴である製造方法により明確に規定される。即ち、この針状組織は、純チタンま たはチタン合金を β変態点以上に加熱する熱処理により生成した針状組織と規定さ れる。チタン材の組織をこの針状組織とすれば、前記した通り、 A1を 0. 30質量%未 満に規制しなくても良い。これら針状組織により、耐高温酸化性が向上する分、 A1に よる耐高温酸化性低下が抑制される。
[0193] この針状組織は、前記した等軸粒における結晶粒径の制御と違って、冷間圧延の 圧下率にかかわりなく(圧下率を制御しなくとも)、ただ、最終的に β変態点以上の温 度に加熱後、冷却することで、必然的に (簡便に)得られる。実際の用途からくる製品 厚さの制約条件によっては、冷間圧延の圧下率を自由に選択、制御できないような 場合も起こり得る。そのような場合には、耐高温酸ィ匕性を向上させるためには、等軸 粒組織にこだわらず、この針状組織ィ匕を選択することも有用である。なお、上記加熱 後の冷却は放冷で良ぐ急冷乃至強制冷却する必要は無い。
[0194] 前記した通り、チタン材の組織を、その平均結晶粒径を 15 m以上とした比較的粗 大な等軸結晶粒組織とするか、チタン材を冷間圧延後、)8変態点以上に加熱後冷 却することにより生成した針状組織とした場合には、 A1を 0. 30質量%未満に規制し なくても良い。これら比較的粗大な等軸結晶粒組織力ゝ針状組織による耐高温酸ィ匕性 が向上する分、 A1による耐高温酸ィ匕性低下が抑制されるからである。したがって、チ タン材が、これら比較的粗大な等軸結晶粒組織力ゝ針状組織を有する場合には、 A1を Siとの合計含有量で 2質量%以下含むことを許容する。
[0195] (製造方法)
本発明で用いるチタン材の製造方法は、上記製造方法の好ましい態様や、組織作 り分けの条件はあるものの、その工程自体は、铸塊溶製、熱間鍛造、熱延、焼鈍、冷 間圧延、焼鈍あるいは熱処理等力もなる常法により製造できる。そして、耐高温酸ィ匕 性を向上させるための好ましい組織などの作り分けは、前記した通り、冷間圧延、焼 鈍あるいは熱処理条件を変えて行なう。
[0196] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記 実施例によって制限を受けるものではなぐ前記、後記の趣旨に適合し得る範囲で適 当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術 的範囲に包含される。
実施例 3 [0197] 表 7、 8に記載した各チタン材の試験片の片面に対して、表 6に示す a〜cの 3種の アルミ酸ィ匕物粒子粉末 (集合体)を用いたショットブラスト処理を行った。そして、これ らの試験片片面側のショットブラスト処理面について、 800°Cを越える、より高温の耐 高温酸化性を評価した。
[0198] (チタン材の製造)
各チタン材については、各成分組成の約 120gの铸塊をボタンアーク炉にて溶製し 、これら各铸塊を、熱間鍛造、熱延、焼鈍、冷間圧延を常法にて行い、共通して、厚 さ 2mmの冷間圧延板を作製した。この冷延板を脱脂し、所定の温度と条件で焼鈍を 行い組織を各々調整した。また、必要に応じて脱スケールを行なった。この冷間圧延 板から 2mmt X 25mmw X 25mm1の試験片を採取した。なお、表 8の中の 21〜24 の汎用純チタン、 25〜29の汎用チタン合金は市販のものを用い、この中でも、 21、 2 2の汎用純チタンのみは、下記加熱による針状組織への調整のみを行なった。
[0199] (ショットブラスト処理)
ショットブラスト処理条件は、表 9〜12に示す、各投射圧条件で行い、試験片面とシ ヨットブラストノズル間の距離は共通して約 5cmとした。そして、共通して、試験片表面 がほぼ均一なショットブラスト肌になるまで、各アルミ酸化物粒子粉末を、繰り返し、チ タン材表面に高速で噴射投射した。投射時間は、各試験片について、共通して、片 面 2〜5秒とした。
[0200] (平均結晶粒径制御)
表 7、 8に記載したチタン材の内、試験片の平均結晶粒径が 10 m以下 (表 6、 7に く 10と記載)の例は、チタン材の冷間圧延の圧下率を、常法の範囲内の概ね 40%と した。また、その後実施される焼鈍条件も、 800°C X均熱時間 6分の真空焼鈍とした
[0201] これに対して、試験片の平均結晶粒径が 15 mを越える例は、上記常法とは異な り、所望の平均結晶粒径の大きさによって、チタン合金の冷間圧延の圧下率を 20% 以下の範囲力も選択して小さくするとともに、真空焼鈍における焼鈍温度を 825°C以 上かつ β変態点以下の条件範囲力 選択して高温ィ匕した。均熱時間は 6分とした。 この条件範囲内で、冷間圧延の圧下率をより小さくし、焼鈍温度をより高温化するほ ど、平均結晶粒径は大きくなる。
[0202] (針状組織)
また、表 7、 8に示す、針状組織を得た例は、冷間圧延の圧下率は常法の範囲内の 概ね 40%とし、冷延板を、チタン材の j8変態点を超える 950°Cで均熱時間 6分間の 真空加熱をした。なお、 21、 22の市販の汎用純チタンのみは、この加熱による針状 組織への調整のみを行なった。針状組織を得た例は供試材から採取した試験片全 体の組織が針状組織であった。
[0203] (最表面 Siの平均濃度制御)
表 7に示す、チタン合金最表面の Siの平均濃度が 0. 5at%以上である、最表面 Si の濃化例は、概ね圧下率力 0%の冷間圧延後、真空焼鈍に代えて、 850°Cで 6分 間大気焼鈍した後、チタン合金最表面に酸素や炭素等の表面汚染層を数 mの深 さまで存在させないように、 600°Cの溶融ソルト(NaNO 55質量%、 NaOH35質量%、
3
残 KC1、 NaCl等を含有)に 1分間浸漬した後、 HF 1質量%、 HNO 20質量%、 60°C
3
の水溶液に浸漬して、板厚で片面 50 m酸洗除去した後、直ちに水流により十分に 撹拌された流水中に 2分浸漬し、次いで撹拌された 80°Cの水に 3分間浸漬し湯洗を 実施して供試材とした。なお、酸洗後十分な流水浸漬と湯銭を実施したのは、酸洗 後の洗浄が不十分となり、酸洗後のチタン表面に厚い酸ィヒ皮膜や酸洗液中の不純 物の付着膜が形成され、表面 Si濃度が低下するのを防ぐためである。
[0204] 焼鈍後の、このような条件の酸洗処理を施し、 200 μ m表面を酸洗溶削(片面 100 m )したことで、冷間圧延時に圧延油との反応で最表面に生じた酸素や炭素等の 表面汚染層 (濃化層)などが完全に除去され、またこれに加えて酸洗後十分な流水 浸漬と湯銭を実施したため、その分、最表面の Si濃度が相対的に増カロしていると推 考される。
[0205] この製造条件での試験片の平均結晶粒径は 10 μ m以下であり、試験片の平均結 晶粒径が 15 mを越える例は、冷間圧延における圧下率を 20%以下の範囲力も選 択し、より大きな平均結晶粒径を得たい場合には、より圧下率を小さくした。また、組 織を針状組織とした例での、最表面 Siの濃化は、上記大気焼鈍の工程のみをチタン 合金の 13変態点を超える 950°Cで 6分間の条件に代えて、後は、上記最表面 Siの濃 ィ匕のための同じ工程、条件で行なった。
[0206] (最表面 Siの平均濃度測定)
表 7に示す、各試験片の最表面の Si平均濃度 (at%)は以下の方法で分析した。す なわち分析前のチタン試料に数分間アセトンによる超音波洗浄を施し、表面に付着 して 、る油分等の汚染物を除去した後、日本電子社製 EPMA分析装置 JXA-8900RL を用い分析した。分析倍率は X500、加速電圧は 15kvとし、定性分析により表面に存 在する元素を調べた後、存在元素の存在量を ZAF法を用いた半定量分析により求 めた。
[0207] (ショットブラスト処理層のアルミニウム平均濃度測定)
表 9〜12に示す、ショットブラスト処理層のアルミニウム平均濃度(表には平均 A1含 有量 at%と記載)も、 EPMA分析装置を用いた前記した分析方法により行なった。
[0208] (ショットブラスト処理層厚み)
表 9〜12に示す各例とも、ショットブラスト処理層の厚みは、前記した断面観察によ る測定結果では、共通して、好ましい平均厚み 1 m〜20 /z mの範囲内であった。
[0209] (耐高温酸化性)
表 9〜12に示す、各試験片の耐高温酸化性は、高温酸化試験により評価した。即 ち、これらの試験片を、 800°Cを越える 850°Cで 100時間の高温大気中に曝した場 合の、高温酸化試験前後における試験片の重量増加 (酸化増量: mgZcm2 )を測 定した。そして、重量増加が少ないものほど、 850°Cでの耐高温酸化性に優れると評 価し 7こ。
[0210] 具体的には、重量増加が 5 mg/cm2以下を排気マフラー用として耐高温酸化性 が非常に優れているとして◎、重量増加が 20mg/cm2以下であれば、排気マフラ 一用として耐高温酸ィ匕性が一応合格であり〇と評価した。そして、重量増加が 20mg /c を越える場合には、排気マフラー用として耐高温酸ィ匕性が不合格であり、 Xと 評価した。
[0211] 表 9に示す発明例すベて、表 10に示す発明例すベて、表 11に示す発明例すベて は、アルミ酸化物粒子によるショットブラスト処理層を有し、この処理層のアルミニウム 平均濃度が 4at%以上であり、本発明の要件を満足する。また、表 9〜12に示すショ ットブラスト処理も好ま 、条件範囲内である。
[0212] この結果、これら発明例は、母材 (基材)チタン材は同じだ力 アルミ酸ィ匕物粒子に よるショットブラスト処理層が無い、表 9に示す比較例すベて、表 10に示す比較例す ベて、および表 11に示す比較例すべてに比して、各々 850°Cでの耐高温酸化性に 優れている。
[0213] また、これら発明例のショットブラスト処理層を 100倍の光学顕微鏡で組織観察した 結果、チタンマトリックス内にアルミ酸ィ匕物粒子が一体に埋め込まれた組織を有して いた。
[0214] (成分、組織の影響)
なお、表 9に示す全発明例 (全比較例)、表 10に示す発明例 (比較例)でチタン材 番号が 12、 13、 19のものは、表 7に示す通り、母材のチタン材カ Siを単独で含有さ せたり、更に、 Siを Nb、 Mo、 Crと複合添カ卩した、 Si入りチタン合金である。また、これ に加えて、等軸粒平均結晶粒径を 15 m以上に大きくしたり、最表面 Si濃度を濃化 させたり、等軸粒を針状組織化させたりしている。
[0215] また、表 11に示す発明例(比較例)でチタン材番号が 21、 22の純チタンは、表 8に 示す通り、等軸粒を針状組織化させている。
[0216] これらの母材の耐高温酸ィ匕性向上手段によって、これらの表 9に示す全比較例、表 10に示す比較例でチタン材番号が 12、 13、 19のもの、表 11に示す比較例でチタン 材番号が 21、 22のものは、アルミ酸ィ匕物粒子によるショットブラスト処理層が無くても 、各々 850°Cでの耐高温酸ィ匕性に優れている
[0217] ただ、これら各々対応する発明例と比較例との対比において、これら母材のチタン 材にアルミ酸ィ匕物粒子によるショットブラスト処理した発明例は、 850°Cでの耐高温 酸化性に優れて ヽることが分かる。
[0218] 表 12に示す、各比較例は、アルミ酸ィ匕物粒子によるショットブラスト処理層を有する 。しかし、表 6に示す、ショットブラスト処理されるアルミ酸ィ匕物粒子集合体中のアルミ 酸ィ匕物が 80質量%未満の cの粉末を用いている力 表 12に示す通り、投射圧が 2気 圧と 3気圧未満であり、好ましい条件から外れた条件で、ショットブラスト処理を行なつ ている。 [0219] このため、表 12に示す、比較例でチタン材番号が 21、 22のものは、ショットブラスト 処理層のアルミニウム平均濃度は 4at%未満と不足している。この結果、それら比較 例は、母材の針状組織により、各々 850°Cでの耐高温酸ィ匕性に優れているものの、 ショットブラスト処理層による、 850°Cでの耐高温酸ィ匕性の向上効果は見られない。
[0220] また、表 12に示す、比較例でチタン材番号が 23、 24のものも、ショットブラスト処理 層のアルミニウム平均濃度は 4at%未満と不足している。この結果、各比較例 23〜2 4は、母材に耐高温酸ィ匕性の向上効果が無ため、 850°Cでの耐高温酸ィ匕性に劣つ ており、ショットブラスト処理層による、耐高温酸ィ匕性の向上効果は見られない。
[0221] [表 6]
Figure imgf000047_0001
* アルミ酸化物粒子径において、 残部 (10%未満) の粒子径は 180 ii m未満
[0222] [表 7] チ ショットブラスト処理用チタン材その 1 チタン 、金 備考 号 タ
材 成分組成 (数値は質 4%) 組織 最表面 種
基本組成 選択元素 組織 平均結 Si平均 晶粒径 濃度
μ m at%
1 Ti-0.2Si-0.05A1 等軸粒 < 10 0.4 Si下限
2 Ti-1.0Si-0.05A1 等軸粒 < 10 0.9
3 Si Ti-2 Si-0.05A1 等軸粒 < 10 1.5 Si上限
4 含 Ti-0.5Si- 0.05A1- 0.2Nb 等軸粒 < 10 0.4
5 有 Ti-0.5Si- 0.05A1- 0.2Nb- 0.2Mo 等軸粒 < 10 0.4
6 等 Ti-0.5Si- 0.05A1- 0.2Nb- 0.2Mo- 0.2Cr 等軸粒 < 10 0.4
7 軸 Ti-0.5Si-0.05Al- 0.2Mo 等軸粒 < 10 0.4
8 Ti-0.5Si-0.05Al- 0.2Cr 等軸粒 < 10 0.4
9 Ti-0.5Si-0.05A1 等軸粒 50 0.4 結晶粒大
10 Ti-1.0Si-0.05A1 等軸粒 < 10 1.5 Si濃化
11 Ti-1.5Si-0.05A1 等軸粒 54 2.1 Si濃化
12 針 Ti-1.0Si-0.05A1 針状 0.4
13 状 Ti-1.0Si-0.1 Al 針状 1.6 Si濃化
14 組 Ti-0. lSi-0.05A1 針状 ― 0.4 Si過小
15 織 Ti-0. ISi- 0.05A1- 0.2Nb-0.2Mo-0.2Cr 針状 0.4 Si過小
16 Si Ti-0. lSi-0.05A1 等軸粒 < 10 0.4 Si過小
17 含 Ti-0. lSi-0.05A1 等軸粒 58 0.4 Si過小
18 有 Ti-0. ISi- 0.05A1- 0.2Nb-0.2Mo-0.2Cr 等軸粒 57 0.4 Si過小
19 等 Ti-2.5Si-0.05A1 等軸粒 < 10 0.4 Si過多
20 軸 Ti-0.5Si-0.4 Al 等軸粒 < 10 0.4 A1過多
8] チ ショットブラスト処理用チタン材その 2
号 タ
材 JIS 規格組成 冷延後の加熱 組織 平均結晶 種 温度 粒径
IX m
21 純 ェ 種 β変態点以上 針状 _
22 チ 2 種 β変態点以上 針状
23 タ 1 種 β変態点未満 等軸粒 ぐ 10
24 ン β変態点未満 等軸粒 ぐ 10
25 チ Ti-1. 5A1 β変態点未満 等軸粒 < 10
26 タ Ti-0. 5A1-0. 45Si-0. 2Nb β変態点未満 等軸粒 ぐ 10
27 ン Ti - 6A1 - 4V β変態点未満 等軸粒 < 10
28 π Ti-3Al-2. 5V β変態点未満 等軸粒 ぐ 10
29 金 Ti- 15V- 3A1- 3Sn-3Cr β変態点未満 等軸粒 ぐ 10
9]
チ チ ショットブラスト処理 チタン材 備 考 号 タ タ
ン ン
材 材 アルミ 投射圧 処輜 酸化
種 表 酸化物 の 増量
類 7 形態 平均 A1
8 ( E) at% mg/cm^
Si 1 a 5 7.2 ◎ Si下限 含 2 a 5 7.5
有 3 a 5 7.3 ◎ Si上限 発 等 4 a 5 8.0 Nb, Cr, Mo入り 軸 5 a 2 4.9 ◎ Nb Cr, Mo入り 明 In 6 b 5 5.8 ◎ Nb, Cr, Mo入り チ 7 b 2 4.6 Nb, Cr, Mo入り 例 タ 8 b 5 5.2 Nb, Cr, Mo入り ン 9 a 5 6.3 ◎ 結晶粒大 a 10 a 5 6.7 ◎ Si濃化 金 11 b 2 4.2 Si濃化
Si 1 _ _ _ 〇 Si下限 含 2 〇
有 3 〇 Si上限 比 等 4 ― 〇 Nb, Cr, Mo入り 軸 5 〇 Nb, Cr, Mo入り 較 粒 6 〇 Nb, Cr, Mo入り チ 7 ― 〇 Nb, Cr, Mo入り 例 タ 8 ― 〇 Nb, Cr, Mo入り ン 9 〇 結晶粒大
10 〇 Si濃化 金 11 〇 Si濃化
10] チ チ ショットブラスト処理 チタン材 備 考 号 タ タ
ン ン
材 材 アルミ 投射圧 処輞 酸化 種 表 酸化物 の 増量 類 7 形態 平均 A1
〜 A
8 (気圧) at% mg/cm^
発 針 12 a 5 7.2 © 明 状 13 b 5 5.3 ◎ Si濃化 例 組 14 a 5 6.4 ◎ Si過小 織 15 b 5 4.7 © Si過小 比 針 12 〇 較 状 13 〇 Si濃化 例 組 14 X Si過小 織 15 X Si過小
― ― ― 発 Si 16 a 5 6.0 〇 Si過小 明 含 17 a 5 6.9 〇 Si過小 例 有 18 a 5 6.5 〇 Si過小 等 19 a 5 7.2 Si過多 軸 20 a 5 8.5 〇 A1過多 比 Si 16 _ _ _ X Si過小 較 含 17 X Si過小 例 有 18 X Si過小 等 19 〇 Si過多 軸 20 X A1過多
― ― ― 11] チ チ ショットブラスト処理 チタン材 備 考 号 タ タ
ン ン
材 材 アルミ 投射圧 処輞 酸化 種 表 酸化物 の 増量 類 7 形態 平均 A1
〜 A
8 (気圧) at% mg/cm^
発 純 21 a 5 7.3 © 針状 明 チ 22 b 5 5.7 ◎ 針状 例 タ 23 a 5 7.4 〇 等辦立 ン 24 b 5 5.9 〇 等辦立 比 純 21 〇 針状 較 チ 22 〇 針状 例 タ 23 X 等辦立 ン 24 X 等辦立
― ― ― 発 チ 25 a 5 7.3 〇 等辦立 明 タ 26 a 5 7.9 〇 等辦立 例 ン 27 a 5 8.3 〇 等辦立
28 a 5 9.0 〇 等辦立 金 29 a 5 7.3 〇 等辦立 比 チ 25 _ _ _ X 等辦立 較 タ 26 X 等觀 例 ン 27 X 等辦立
28 X 等辦立 金 29 X 等辦立
― ― ― 12] チ チ ショ ットブラスト処通 チタン材 備 考
号 タ タ
ン ン
材 材 アルミ 投射圧 処理層 酸化
種 表 酸化物 の 増量
類 7 形態 平均 A1
〜 含有量
8 (気圧) at% mg/cm"
21 c 5 3. 5 〇 針状
22 c 5 3. 2 〇 針状
比 純 23 C 5 3. 3 X 等軸粒
較 チ 24 C 5 3. 3 X 等軸粒
例 タ
21 a 2 2. 3 〇 針状
21 b 2 2. 4 〇 針状
23 a 2 2. 0 X 等軸粒
23 b 2 1. 9 X 等軸粒
産業上の利用可能性
本発明によれば、 800°Cを越える 850°Cなど、より高温での耐高温酸化性が優れた チタン合金およびエンジン排気管を提供できる。この本発明チタン合金で構成された エンジン排気管とは、溶接部構造や機械的な接合構造などの種々の接合構造を有 するものを全て含むものである。また、本発明は 800°Cを超えるより高温での耐酸ィ匕 性に特に優れるが、 800°C以下の環境においても、従来材よりも優れた耐酸化性を 有し、有用であることは言うまでもない。

Claims

請求の範囲
[I] Siを 0. 15〜2質量%含むとともに、 A1の含有量が 0. 30質量%未満に規制され、 前記チタン合金が有する等軸結晶粒組織の平均結晶粒径が 15 m以上である耐 高温酸化性に優れたチタン合金。
[2] Siを 0. 15〜2質量%含むとともに、 A1の含有量が 0. 30質量%未満に規制され、 前記チタン合金が針状組織を有する耐高温酸化性に優れたチタン合金。
[3] Siを 0. 15〜2質量%含み、 A1を Siとの合計含有量で 2質量%以下含み、前記チタ ン合金が等軸結晶粒組織を有し、その平均結晶粒径が 15 m以上である耐高温酸 化性に優れたチタン合金。
[4] Siを 0. 15〜2質量%含み、 A1を Siとの合計含有量で 2質量%以下含み、前記チタ ン合金が針状組織を有する耐高温酸化性に優れたチタン合金。
[5] 前記チタン合金が、更に、 Nb、 Mo、 Crの内力も選択される少なくとも 1種を、前記
Siとの合計含有量または Siおよび A1との合計含有量で 2質量%以下含む請求項 1 乃至 4のいずれか 1項に記載の耐高温酸ィ匕性に優れたチタン合金。
[6] 前記チタン合金最表面の Siの平均濃度が 0. 5at%以上である請求項 1乃至 4のい ずれか 1項に記載の耐高温酸化性に優れたチタン合金。
[7] 前記チタン合金が、その表面に、乾燥後の平均塗膜厚みが 10〜: L00 mであり、 乾燥後の塗膜中の A1含有量が 30〜90質量%である、有機金属化合物塗装皮膜を 有する請求項 1乃至 4のいずれ力 1項に記載の耐高温酸ィヒ性に優れたチタン合金。
[8] 請求項 1乃至 4の 、ずれか 1項のチタン合金で構成されたエンジン排気管。
[9] 純チタンを β変態点以上に加熱後、冷却することにより生成した針状組織を有する ことを特徴とする耐高温酸化性に優れた純チタン。
[10] 前記純チタン力 その表面に、乾燥後の平均塗膜厚みが 10〜: L00 mであり、乾 燥後の塗膜中の A1含有量が 30〜90質量%である、有機金属化合物塗装皮膜を有 する請求項 9に記載の耐高温酸化性に優れた純チタン。
[II] 請求項 9または 10の純チタンで構成されたエンジン排気管。
[12] 純チタンまたはチタン合金の表面に、アルミ酸ィ匕物粒子によるショットブラスト処理 層を有し、この処理層のアルミニウム平均濃度力 at%以上であることを特徴とする耐 高温酸化性に優れた表面処理チタン材。
[13] 前記チタン合金が Siを 0. 15〜2質量%含むものである請求項 12に記載の耐高温 酸化性に優れた表面処理チタン材。
[14] 前記チタン合金が有する等軸結晶粒組織の平均結晶粒径が 15 m以上である請 求項 12に記載の耐高温酸化性に優れた表面処理チタン材。
[15] 前記チタン合金または前記純チタンが針状組織を有する請求項 12に記載の耐高 温酸化性に優れた表面処理チタン材。
[16] 請求項 12乃至 15のいずれか 1項の表面処理チタン材で構成されたエンジン排気 管。
[17] 請求項 12に記載の表面処理チタン材を製造する方法であって、純チタンまたはチ タン合金の表面をアルミ酸ィ匕物粒子によりショットブラスト処理し、前記ショットブラスト 処理に用いられるアルミ酸化物粒子集合体が全体でアルミ酸化物を 80質量%以上 含むことを特徴とする表面処理チタン材を製造する方法。
[18] 請求項 12に記載の表面処理チタン材を製造する方法であって、純チタンまたはチ タン合金の表面をアルミ酸ィ匕物粒子によりショットブラスト処理し、前記ショットブラスト 処理されるアルミ酸ィ匕物粒子が単一粒子中にアルミ酸ィ匕物を 80質量%以上含むこと を特徴とする表面処理チタン材を製造する方法。
PCT/JP2007/056799 2006-03-30 2007-03-29 チタン合金及びエンジン排気管 WO2007114218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007000544.0T DE112007000544B4 (de) 2006-03-30 2007-03-29 Titanmaterial und Abgasrohr für Motor
CN200780003745.1A CN101374967B (zh) 2006-03-30 2007-03-29 钛合金和引擎排气管
US12/294,619 US8431231B2 (en) 2006-03-30 2007-03-29 Titanium Material and Exhaust Pipe for Engine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006095071A JP4157893B2 (ja) 2006-03-30 2006-03-30 耐高温酸化性に優れた表面処理チタン材およびエンジン排気管
JP2006-095070 2006-03-30
JP2006095069A JP4157891B2 (ja) 2006-03-30 2006-03-30 耐高温酸化性に優れたチタン合金およびエンジン排気管
JP2006095070A JP4157892B2 (ja) 2006-03-30 2006-03-30 耐高温酸化性に優れた純チタンおよびエンジン排気管
JP2006-095069 2006-03-30
JP2006-095071 2006-03-30

Publications (2)

Publication Number Publication Date
WO2007114218A1 true WO2007114218A1 (ja) 2007-10-11
WO2007114218A9 WO2007114218A9 (ja) 2008-02-28

Family

ID=38563486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056799 WO2007114218A1 (ja) 2006-03-30 2007-03-29 チタン合金及びエンジン排気管

Country Status (3)

Country Link
US (1) US8431231B2 (ja)
DE (1) DE112007000544B4 (ja)
WO (1) WO2007114218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750248A (zh) * 2017-11-06 2019-05-14 中国科学院金属研究所 一种γ-TiAl表面喷丸处理促进Al2O3膜热生长的方法及应用
CN112553554A (zh) * 2020-12-17 2021-03-26 中国航发北京航空材料研究院 一种提高亚稳定的高氧超弹钛合金弹性应变极限的短时时效方法
WO2023181654A1 (ja) * 2022-03-24 2023-09-28 株式会社神戸製鋼所 チタン合金材及びチタン合金部品の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957836B2 (en) 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
DE102016112139B3 (de) * 2016-07-01 2018-01-04 Infineon Technologies Ag Verfahren zum Reduzieren einer Verunreinigungskonzentration in einem Halbleiterkörper
JP6789035B2 (ja) * 2016-08-24 2020-11-25 株式会社神戸製鋼所 電極用チタン合金板
JP6911651B2 (ja) * 2017-08-31 2021-07-28 セイコーエプソン株式会社 チタン焼結体、装飾品および時計
CN113278850B (zh) * 2021-05-24 2021-11-16 中山大学 一种耐高温钛合金防护涂层及其制备方法
CN114214584B (zh) * 2021-11-16 2022-08-23 四川大学 一种低温1800MPa级超高强度纯钛及其应用
CN115106532B (zh) * 2022-07-04 2023-04-18 浙江兰欣复合材料科技有限公司 一种含有耐磨涂层的金属基材及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193850A (ja) * 1989-12-22 1991-08-23 Nippon Steel Corp 微細針状組織をなすチタンおよびチタン合金の製造方法
JPH04105659A (ja) * 1990-08-27 1992-04-07 Shinya Iwamoto 生体用チタン合金およびその製造方法
JPH1088258A (ja) * 1996-09-12 1998-04-07 Sumitomo Metal Ind Ltd 硫化水素環境用チタン材および製造方法
JPH1136029A (ja) * 1997-05-21 1999-02-09 Sumitomo Metal Ind Ltd 高強度チタン合金鋳造品
JP2001089883A (ja) * 1999-09-22 2001-04-03 Daido Steel Co Ltd チタン又はチタン合金製品の製造方法
JP2001089821A (ja) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd 耐高温大気酸化性に優れた高強度、高延性チタン合金
JP2002003968A (ja) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd 成形性に優れたチタン板とその製造方法
JP2004300569A (ja) * 2003-03-20 2004-10-28 Kobe Steel Ltd 建材用純チタン材およびその製造方法
JP2005036311A (ja) * 2003-06-27 2005-02-10 Kobe Steel Ltd チタン材、その製造方法および排気管
JP2005290448A (ja) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd ハイドロフォーム用チタン管とその製造方法とハイドロフォーム成形品
JP2006009115A (ja) * 2004-06-29 2006-01-12 Kobe Steel Ltd 耐酸化性に優れる表面処理チタン材及びその製造方法、エンジン排気管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165502A (en) * 1980-05-23 1981-12-19 Kobe Steel Ltd Manufacture of cold rolled titanium sheet
US5188677A (en) * 1989-06-16 1993-02-23 Nkk Corporation Method of manufacturing a magnetic disk substrate
JPH0688208A (ja) 1992-09-03 1994-03-29 Kobe Steel Ltd 高耐食性表面処理金属材およびその製造方法
JP3151713B2 (ja) 1993-02-03 2001-04-03 本田技研工業株式会社 チタン材の表面処理方法
JPH09256138A (ja) 1996-03-19 1997-09-30 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れたTi基合金部材
EP0834586B1 (en) * 1996-03-29 2002-09-04 Kabushiki Kaisha Kobe Seiko Sho High strength titanium alloy, product made therefrom and method for producing the same
JPH1099976A (ja) 1996-09-27 1998-04-21 Daido Steel Co Ltd Ti被覆クラッド板の製造方法
JP3361072B2 (ja) 1998-02-20 2003-01-07 株式会社豊田中央研究所 耐酸化性に優れた金属製部材の製造方法
JP3967515B2 (ja) 2000-02-16 2007-08-29 株式会社神戸製鋼所 マフラー用チタン合金材およびマフラー
US20040094241A1 (en) * 2002-06-21 2004-05-20 Yoji Kosaka Titanium alloy and automotive exhaust systems thereof
US20040187983A1 (en) 2003-03-20 2004-09-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Pure titanium building material and method of manufacturing the same
JP2005034581A (ja) 2003-07-18 2005-02-10 Kazuo Tsuruta 座浴装置
JP4516440B2 (ja) 2004-03-12 2010-08-04 株式会社神戸製鋼所 耐高温酸化性および耐食性に優れたチタン合金
EP1574589B1 (en) * 2004-03-12 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy having excellent high-temperature oxidation and corrosion resistance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193850A (ja) * 1989-12-22 1991-08-23 Nippon Steel Corp 微細針状組織をなすチタンおよびチタン合金の製造方法
JPH04105659A (ja) * 1990-08-27 1992-04-07 Shinya Iwamoto 生体用チタン合金およびその製造方法
JPH1088258A (ja) * 1996-09-12 1998-04-07 Sumitomo Metal Ind Ltd 硫化水素環境用チタン材および製造方法
JPH1136029A (ja) * 1997-05-21 1999-02-09 Sumitomo Metal Ind Ltd 高強度チタン合金鋳造品
JP2001089883A (ja) * 1999-09-22 2001-04-03 Daido Steel Co Ltd チタン又はチタン合金製品の製造方法
JP2001089821A (ja) * 1999-09-22 2001-04-03 Sumitomo Metal Ind Ltd 耐高温大気酸化性に優れた高強度、高延性チタン合金
JP2002003968A (ja) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd 成形性に優れたチタン板とその製造方法
JP2004300569A (ja) * 2003-03-20 2004-10-28 Kobe Steel Ltd 建材用純チタン材およびその製造方法
JP2005036311A (ja) * 2003-06-27 2005-02-10 Kobe Steel Ltd チタン材、その製造方法および排気管
JP2005290448A (ja) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd ハイドロフォーム用チタン管とその製造方法とハイドロフォーム成形品
JP2006009115A (ja) * 2004-06-29 2006-01-12 Kobe Steel Ltd 耐酸化性に優れる表面処理チタン材及びその製造方法、エンジン排気管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109750248A (zh) * 2017-11-06 2019-05-14 中国科学院金属研究所 一种γ-TiAl表面喷丸处理促进Al2O3膜热生长的方法及应用
CN112553554A (zh) * 2020-12-17 2021-03-26 中国航发北京航空材料研究院 一种提高亚稳定的高氧超弹钛合金弹性应变极限的短时时效方法
WO2023181654A1 (ja) * 2022-03-24 2023-09-28 株式会社神戸製鋼所 チタン合金材及びチタン合金部品の製造方法

Also Published As

Publication number Publication date
DE112007000544T5 (de) 2009-01-15
US20100173171A1 (en) 2010-07-08
DE112007000544B4 (de) 2018-04-05
WO2007114218A9 (ja) 2008-02-28
US8431231B2 (en) 2013-04-30

Similar Documents

Publication Publication Date Title
WO2007114218A1 (ja) チタン合金及びエンジン排気管
JP4157891B2 (ja) 耐高温酸化性に優れたチタン合金およびエンジン排気管
EP2532762B1 (en) Alumina-forming cobalt-nickel base alloy and method of making an article therefrom
US5498484A (en) Thermal barrier coating system with hardenable bond coat
JP6226087B2 (ja) チタン合金部材およびチタン合金部材の製造方法
JP5328694B2 (ja) 耐熱性に優れたチタン合金製自動車用エンジンバルブ
EP2644736A1 (en) Al-Zn-BASED HOT-DIP PLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
Lin et al. Surface damage mitigation of titanium and its alloys via thermal oxidation: A brief review
Huang et al. Improvement of the oxidation resistance of NiCrAlY coatings by the addition of rhenium
JP2007100666A (ja) 高強度チタン合金製自動車用エンジンバルブ
WO2018216589A1 (ja) 溶融金属メッキ浴用部材
Gizynski et al. Formation and subsequent phase evolution of metastable Ti-Al alloy coatings by kinetic spraying of gas atomized powders
Ren et al. Microstructure and oxidation behavior of a Ni+ CrAlYSiHfN/AlN multilayer coating fabricated by reactive magnetron sputtering
Huang et al. Thermal growth of exclusive alumina scale on a TiAl based alloy: shot peening effect
Li et al. Effects of Cr content on microstructure and tribological properties of laser cladding Ti-based coatings
JP3361072B2 (ja) 耐酸化性に優れた金属製部材の製造方法
JP4157893B2 (ja) 耐高温酸化性に優れた表面処理チタン材およびエンジン排気管
Chen et al. A comparative investigation on bi-layer Al–Cr/Al–Si coating and mono-layer Al–Cr–Si coating synthesized on Ti–6Al–4V alloy substrate by mechanical alloying method
JPH09256138A (ja) 耐酸化性および耐摩耗性に優れたTi基合金部材
JP6712801B2 (ja) 遮熱コーティング方法、及び遮熱コーティング材
US11198927B1 (en) Niobium alloys for high temperature, structural applications
RU2410456C2 (ru) Титановый материал и выхлопная труба для двигателя
Zhang et al. Hot-dip aluminizing fabrication of TiAl3 coating on TA15 alloy and its high temperature oxidation behaviors
JP5097027B2 (ja) チタン材、その製造方法および排気管
JP4492959B2 (ja) 耐熱チタン合金及びそれによって形成されたエンジンバルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780003745.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12294619

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008142959

Country of ref document: RU

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112007000544

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07740237

Country of ref document: EP

Kind code of ref document: A1