WO2007108514A1 - 抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品 - Google Patents

抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品 Download PDF

Info

Publication number
WO2007108514A1
WO2007108514A1 PCT/JP2007/055915 JP2007055915W WO2007108514A1 WO 2007108514 A1 WO2007108514 A1 WO 2007108514A1 JP 2007055915 W JP2007055915 W JP 2007055915W WO 2007108514 A1 WO2007108514 A1 WO 2007108514A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
glass plate
film
antibacterial film
glass
Prior art date
Application number
PCT/JP2007/055915
Other languages
English (en)
French (fr)
Inventor
Hidemasa Yoshida
Tsuyoshi Otani
Akira Fujisawa
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2007108514A1 publication Critical patent/WO2007108514A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • the present invention relates to a glass plate with an antibacterial film, a manufacturing method thereof, and an article having the glass plate.
  • the present invention relates to a glass plate with an antibacterial film and a method for producing the same, and further relates to an article having the glass plate.
  • Japanese Patent Application Laid-Open No. 2001-72438 discloses an antibacterial processed plate glass material that can form an antibacterial effect by forming a coating film made of a resin composition containing acid titanium or the like as an antibacterial agent.
  • the antibacterial strength plate glass material is selected from roll coating, dip coating, spray coating, electrostatic coating, electrodeposition coating, wire coating, flow coating, doctor coating, etc. Since the coating film was formed by this method, the thickness of the coating film became 10-50 / ⁇ ⁇ and a micron unit, and a film thinner than these could not be formed uniformly.
  • an antibacterial film a film formed on the surface of a member in order to impart antibacterial properties to the member is referred to as an “antibacterial film”.
  • the antibacterial film metal materials such as silver, zinc and copper and photocatalytic materials such as titanium oxide are used.
  • Titanium oxide is widely used as a photocatalytic material because of its high photocatalytic activity and excellent chemical stability. When titanium oxide is irradiated with ultraviolet rays, electrons and holes are generated.
  • WO94Z11092 pamphlet discloses a technique in which powdered titanium oxide titanium is sintered on a glass plate. Although this technique can be used to obtain a plate-like antibacterial member, when coating particulate glass titanium oxide on a glass plate, the acidity is reduced. Tan particles aggregate to inevitably increase the particle size of titanium oxide. When the particle diameter of the acid titanium is increased, the thickness of the antibacterial film containing the acid titanium is increased. As a result, there was a problem that the reflectance of the antibacterial film increased and the interference color of the reflection became conspicuous.
  • the method of International Publication No. 94Z11092 pamphlet has another problem that the antibacterial film is low in mechanical durability because the antibacterial film is formed using powdered titanium oxide. Furthermore, it is not only difficult to form an antibacterial film uniformly on a large-area glass substrate, but it is also necessary to carry out a baking process and a coating process. It is unsuitable for continuous mass production of large area glass plates.
  • the method for producing a nitrogen-doped titanium oxide film disclosed in WO 01/10552 is an invention relating to a method for producing a glass plate having an antibacterial film formed on the surface thereof, and a sputtering method. After forming the TiO film with the atmosphere containing ammonia and nitrogen
  • the present invention has been completed by paying attention to the above-described problems. Its purpose is to provide a glass plate with an antibacterial film, which has an antibacterial film, which has produced interference colors of reflection. It is another object of the present invention to provide a method for manufacturing a large-sized glass plate with an antibacterial film formed thereon, which is a large area glass plate with improved mechanical durability.
  • the glass plate with an antibacterial film of the present invention is a glass plate with an antibacterial film comprising an antibacterial film directly or via a base film on the glass plate, and the film thickness of the antibacterial film is 2 nm or more and lOOnm or less. is there.
  • the antimicrobial performance of the antimicrobial film is antimicrobial product technology Council irradiation film adhesion method 10 ⁇ WZcm 2 of the ultraviolet light quantity irradiation 24 hours based on the stipulated Antibacterial performance that reduces the number of Staphylococcus aureus or Escherichia coli after irradiation to less than lZio 0 relative to the number of bacteria before irradiation.
  • the antibacterial performance of the antibacterial film is such that the yellow grapes are irradiated with ultraviolet light having a light intensity of 10 ⁇ WZcm 2 for 8 hours based on the light irradiation film adhesion method defined by the Antibacterial Product Technical Council. Antibacterial performance that reduces the number of cocci or E. coli to 1Z100 or less with respect to the number of bacteria before light irradiation.
  • the antibacterial performance of the antibacterial film is based on a light irradiation film adhesion method stipulated by the Antibacterial Product Technical Council, and after irradiating a white fluorescent lamp with an amount of lOOOLx for 24 hours.
  • Antibacterial performance to reduce the number of Staphylococcus aureus or Escherichia coli to 1Z100 or less with respect to the number of bacteria before light irradiation.
  • the antibacterial performance of the antibacterial film is yellow after irradiating a white fluorescent lamp with a light quantity of 500Lx for 24 hours based on the light irradiation film adhesion method defined by the Antibacterial Product Technical Council.
  • Antibacterial performance that reduces the number of Staphylococcus or Escherichia coli to 1Z100 or less compared to the number of bacteria before light irradiation.
  • the antibacterial performance of the antibacterial film is yellow after irradiating a white fluorescent lamp with a light quantity of 250Lx for 24 hours based on the light irradiation film adhesion method defined by the Antibacterial Product Technical Council.
  • Antibacterial performance that reduces the number of Staphylococcus or Escherichia coli to 1Z100 or less compared to the number of bacteria before light irradiation.
  • the antibacterial performance is an antibacterial performance that reduces the number of Staphylococcus aureus or Escherichia coli to 1 Z 10,000 or less.
  • the film thickness of the antibacterial film is 5 nm or more and 80 nm or less, and in a further preferred embodiment, the film thickness of the antibacterial film is more than 25 nm and less than 70 nm.
  • the main component of the antibacterial film is one selected from the group force consisting of titanium oxide, nitrogen-doped titanium oxide, titanium oxynitride, and titanium nitride power.
  • the main component of the antibacterial film is nitrogen-doped titanium oxide.
  • a method for producing a glass plate with an antibacterial film is provided. This For the manufacturing method, the antibacterial film is formed by a thermal decomposition method.
  • the film forming gas is supplied to the surface of the glass plate in which the antibacterial film is maintained at a temperature higher than the temperature at which the film forming gas is decomposed or the glass ribbon surface in the glass plate manufacturing process. To form.
  • the film forming gas contains a titanium-containing compound, a nitrogen-containing compound, and an oxidizing gas.
  • the film-forming gas further includes a reaction inhibitor that suppresses a chemical reaction between the titanium-containing compound and the nitrogen-containing compound.
  • the nitrogen-containing compound is ammonia.
  • the acidic gas is oxygen
  • the molar specific power of the acidic gas such as oxygen to the nitrogen-containing compound such as ammonia in the coating forming gas is 0.05 or more. is there.
  • the reaction inhibitor is salt hydrogen.
  • the thermal decomposition method is a CVD method performed in a nose for forming a molten glass ribbon into a plate shape in a glass manufacturing process by a float method.
  • a glass window for a building has the above glass plate with antibacterial film.
  • living windows or glass windows in medical facilities, indoor glass, etc. are provided.
  • a glass partition in a building has the above glass plate with antibacterial film.
  • furniture has the above-mentioned glass plate with an antibacterial film.
  • glass tables, glass shelves, glass showcases or glass food cases are provided.
  • a glass window for a transport machine has the above glass plate with antibacterial film.
  • vehicle, ship or aircraft glass windows are provided.
  • an information display glass panel is provided. They have the above glass plate with antibacterial film.
  • display panels and touch panels are provided.
  • the thickness of the antibacterial film is set in a range of 2 nm or more and lOOnm or less, generation of reflection interference colors is suppressed even when a titanium compound having a relatively high refractive index is used.
  • An antibacterial film-coated glass plate comprising an antibacterial film is provided.
  • a large area is obtained by performing a pyrolysis method in a bath for forming a molten glass ribbon into a plate shape.
  • a method for producing a glass plate with an antibacterial film in which the mechanical durability of the antibacterial film is enhanced in large quantities at a low cost.
  • an article having an antibacterial film-coated glass is provided.
  • FIG. 1 is a cross-sectional view showing an example of a glass plate with an antibacterial film of the present invention.
  • FIG. 1 (a) shows an example in which the antibacterial film is directly formed on the glass plate. Shows an example in which a base film is interposed between the glass plate and the antibacterial film.
  • FIG. 2 This is a schematic diagram of the equipment used for the on-line CVD method.
  • antibacterial means that the growth of bacteria or microorganisms attached to an object is suppressed, and the viable number of bacteria or microorganisms decreases with the passage of time.
  • main component means a component that occupies 50% by weight or more.
  • light irradiation film adhesion method defined by the Antibacterial Product Technology Council means the light irradiation film adhesion method (2003 version) established by the Antibacterial Product Technology Council. Antibacterial performance is evaluated based on the conditions stipulated in the dressing law. This measurement method was one of the most common measurement methods for assessing the antibacterial properties of products for those skilled in the art until JIS R1702: 2006 was issued after the basic application of this application was filed. .
  • FIG. 1 is a schematic cross-sectional view illustrating two forms of the antibacterial film-coated glass plate 4 according to the present invention. .
  • an antibacterial film 2 is formed on the glass plate 1 as shown in FIG.
  • the base film 3 it is preferable to configure the base film 3 so as to have one or more layers between the glass plate 1 and the antibacterial film 2.
  • This base film preferably has a role such as an alkali barrier function.
  • the glass plate 1 is a glass plate containing an alkali component, for example, when the alkali component moves to the antibacterial membrane 2 during the film formation process of the antibacterial membrane 2, the crystallinity of the antibacterial membrane deteriorates and the antibacterial performance deteriorates. In that case, if the base film is sandwiched, adverse effects due to the movement of the alkali component can be prevented.
  • the thickness of the antibacterial film is preferably in the range of 2 nm to lOOnm and more preferably in the range of 5 nm to 80 nm. Furthermore, the range of more than 20 nm and less than 70 nm is most preferable.
  • the antibacterial performance of the antibacterial film of the present invention is as follows: after the irradiation with ultraviolet light of 10 ⁇ WZcm 2 for 24 hours in the light irradiation film adhesion method (2003 version) established by the Antibacterial Product Technical Council.
  • Antibacterial performance that reduces the number of Staphylococcus aureus or Escherichia coli to 1Z100 or less with respect to the number of bacteria before light irradiation is preferred. More preferably, the antibacterial performance is to reduce the number of Staphylococcus aureus or Escherichia coli after irradiation with ultraviolet light of 10 / z WZcm 2 for 8 hours to 1Z100 or less with respect to the number of bacteria before light irradiation. .
  • the number of Staphylococcus aureus or Escherichia coli after 24 hours of irradiation with a white fluorescent lamp with a light intensity of lOOOLx is measured before light irradiation.
  • Antibacterial performance that reduces the number of bacteria to 1Z100 or less is preferable. More preferably, the antibacterial performance is to reduce the number of Staphylococcus aureus or Escherichia coli after irradiation with a white fluorescent lamp with a light quantity of 500 Lx for 24 hours to 1Z100 or less with respect to the number of bacteria before light irradiation.
  • a staphylococcus aureus or Escherichia coli after being irradiated with a white fluorescent lamp with a light intensity of 25 OLx for 24 hours.
  • Antibacterial performance that reduces the number to less than ⁇ against the number of bacteria before light irradiation. Since antibacterial performance evaluation is a test using microorganisms, the evaluation test error is larger than other physical property evaluations. If the number of bacteria after light irradiation is 1Z100 or less (the sterilization rate is 99% or more), it can be said that there is clearly an advantageous effect on antibacterial performance that is not within the error range.
  • the bacteria survival rate is 1% or less (the number of bacteria is reduced to 1Z100 or less), the difference between antibacterial processed products and unprocessed products Can be judged significantly.
  • the number of bacteria after light irradiation is 1 Ziooo or less.
  • the number of bacteria after light irradiation is 1Z10000 or less.
  • the intensity of the ultraviolet light to be irradiated and the illuminance of the white fluorescent lamp are typified by the following locations.
  • Ultraviolet light WZcm 2 ⁇ ⁇ 'In the daytime room about 1.5m away from the window where sunlight enters.
  • the intensity of the ultraviolet light in the fluorescent lamp lOOOLx is, 4 / z WZcm 2 about.
  • the intensity of ultraviolet light in fluorescent lamp 1000 Lx is about 2 / z WZcm 2 .
  • the bacteria to be reduced by the present invention is not particularly limited, but the present invention can be used for the following fungi.
  • examples include bacteria of Gram-positive bacteria (S. aureus, Bacillus, etc.) or Gram-negative bacteria (E. coli, Salmonella, etc.), fungi such as fungi, mushrooms, yeasts, other viruses, and protists.
  • the main component of the antibacterial film of the present invention is preferably one selected from the group power of titanium oxide, nitrogen-doped titanium oxide, titanium oxynitride, and titanium nitride power. This is because an antibacterial film containing these as main components has high antibacterial performance and excellent chemical stability.
  • the main component is preferably nitrogen-doped acid titanium.
  • nitrogen-doped acid Titanium fluoride is a photocatalytic material that responds to the light of visible light, so it is preferable in that it can use light in the visible light region that is often contained in sunlight and fluorescent lamps.
  • the raw material for the antibacterial membrane of the present invention contains at least one titanium-containing compound, at least one nitrogen-containing compound, and at least one acid gas. is required.
  • the titanium-containing compound is preferably a titanium chloride, a titanium alkoxide or a titanium chelate compound. These titanium-containing compounds are preferably in the form of a gas or liquid at room temperature, and when they are liquid at room temperature, the lower boiling point is preferable. These preferable titanium-containing compounds can be vaporized as they are or by heating a little, and can be used as components of the raw material gas. In addition, a titanium-containing compound that sublimes even if it is solid at room temperature, or a titanium-containing compound that can be dissolved in an organic solvent such as alcohol or toluene can be used.
  • titanium-containing compounds include, for example, tetrasalt-titanium (TiCl), titanium ethoxy
  • Ti Titanium Isoproxide
  • Ti Titanium Normal Butoxide
  • TiCl titanium isoproxide
  • Ti (OC H) titanium isoproxide
  • N-butanol (Ti (OCH)) is preferably used.
  • ammonia NH
  • amines NH
  • hydrazine derivatives are preferable.
  • ammonia easily liquefies by compression and is a gas at room temperature and normal pressure, and is particularly preferable in that it can be obtained in a large amount at a preferred low cost because it can be easily introduced into the raw material gas.
  • Aminyahydrazine derivatives are excellent in that they can easily produce high quality films because of their high reactivity. On the other hand, it is disadvantageous in that it is expensive.
  • the acidic gas it is preferable to use oxygen (O 2). Carbon dioxide (CO 2), acid
  • liquid raw materials such as O
  • esters When liquid raw materials such as O) and esters are used, facilities for vaporizing the liquid raw materials are required. In addition, the amount of vaporization tends to be unstable. It is preferable to use a gas raw material whose supply amount is easy to control. Of these, it is particularly preferable to use oxygen. Air can also be used. When air is used as an acidic gas, nitrogen (N) contained in the air can act as a reaction diluent.
  • N nitrogen
  • the molar ratio of oxygen to ammonia is preferably 0.05 or more.
  • the crystallinity of the film can be improved by setting the molar ratio of oxygen to air to 0.05 or more.
  • the recombination of the generated electrons and holes is thought to occur at the crystal defect site. Therefore, by improving the crystallinity, that is, by reducing the defect sites of the crystal, the rate of successful recombination with electrons can be reduced and antibacterial properties can be enhanced.
  • the raw material of the antibacterial membrane of the present invention preferably further contains a reaction inhibitor that suppresses a chemical reaction between the titanium-containing compound and the nitrogen-containing compound.
  • reaction inhibitor it is preferable to use salt hydrogen.
  • the gas phase reaction may proceed before the raw material gas reaches the glass plate.
  • a solid reaction product is generated in the raw gas piping.
  • This reaction product may block the piping.
  • this reaction product is transported to the surface of the glass plate by the flow of the raw material gas, is taken into the film to be formed, and causes defects such as pinholes.
  • the manufacturing method of the antibacterial film is not particularly limited, but a known thermal decomposition method such as a thermal CVD method or a spray method is used.
  • a fine powder of the antibacterial film is attached to the glass surface, and then the entire glass. Examples thereof include a method of agglomerating the fine powder by heating.
  • the antibacterial film may be crystal-grown by the thermal decomposition method using the agglomerated fine powder as a nucleus.
  • the thermal decomposition method particularly the thermal CVD method, can easily form a film with high mechanical durability.
  • the film formation by the thermal CVD method uses, for example, a glass plate as a substrate and a glass having a predetermined size. This can be done by heating the glass plate and spraying a gaseous raw material on the surface of the heated glass plate.
  • this can be performed as follows.
  • the glass plate is transported on a mesh belt and passed through a tunnel-shaped heating furnace.
  • the glass plate is conveyed into a heating furnace and heated to a temperature at which the film-forming gas decomposes (hereinafter abbreviated as “film-forming gas decomposition temperature”).
  • film-forming gas decomposition temperature a temperature at which the film-forming gas decomposes
  • the source gas is supplied into the heating furnace.
  • the source gas reacts with the heat of the surface of the glass plate, and an antibacterial film having antibacterial action is formed on the glass plate.
  • the film-forming gas decomposition temperature is preferably 500 ° C or higher from the viewpoint of obtaining high crystallinity and high film formation rate. That is, it is preferable to form an antibacterial film on the surface of a glass plate at 500 ° C or higher. TiNCl, TiCl ⁇ ⁇ , etc. when the temperature is below 500 ° C
  • the glass plate in the glass plate manufacturing process, the glass plate is heated at a high temperature in the step of forming the glass melt into the glass plate or in the slow cooling step after the glass plate is formed. It is preferable to utilize that. This is because if a raw material gas is supplied onto a high-temperature glass plate, a thin film can be formed without using a separate heating facility. In addition, in this way, a thin film can be formed at high speed on a glass plate having a large area, and a glass plate with a thin film can be produced for applications that require a large area such as buildings, vehicles, and display panels. it can. As described above, the method of forming a film on a high-temperature glass plate in the middle of the manufacturing process is called an online CVD method.
  • the above-described process of forming the glass melt and the glass plate is performed in a molten tin tank (referred to as a float bath) in the glass plate manufacturing process by the float process.
  • the glass melt melted in the melting furnace (called the float kiln) flows into the float bath.
  • the glass melt is drawn into a long strip without interruption and is called a glass ribbon.
  • a method in which the online CVD method is performed in a float bath is called an in-bus CVD method.
  • the intra-CVD method has the following advantages. First, the atmosphere inside the float bath is controlled so that air does not enter. Therefore, pinhole etc. It is possible to suppress defects.
  • the temperature of the glass ribbon in the float bath is very high. The temperature depends on the strength of the glass ribbon. In the case of ordinary soda lime silicate glass, the temperature is, for example, in the range of 650 to 1150 ° C.
  • the crystallinity of the thin film having antibacterial performance can be improved and the antibacterial performance can be improved.
  • the raw material gas exhibits sufficient reactivity, a thin film having a sufficient thickness of antibacterial performance can be easily formed on the glass ribbon without lowering the conveyance speed of the glass ribbon. As a result, productivity can be expected to increase, and it becomes possible to manufacture a large number of glass plates with antibacterial films at low cost.
  • Fig. 2 shows an embodiment of an apparatus for forming a film on a glass ribbon by the in-bus CVD method in the float method.
  • the surface force of the glass ribbon 10 that flows out from the float kiln 11 into the float bath 12 and moves in a strip shape on the molten tin 15 is also separated by a predetermined distance, and a predetermined number of coaters 16 Is arranged in the float bath.
  • three coaters 16a, 16b and 16c are shown. The number of coaters can be appropriately designed according to the design of the membrane configuration.
  • the on-line CVD method can also be performed in a slow cooling step (called “rare”) after being formed into a glass plate.
  • the raw material gas is introduced at the inlet of the rare (slow cooling kiln) and Z or inside the rare.
  • this method is referred to as a rare-layer CVD method.
  • the glass ribbon near the rare entrance or the rare entrance in the rare is at a lower temperature than in the bath, it has a sufficiently high temperature for the film formation reaction.
  • the rare CVD method has the following features, unlike the chemical CVD method. First of all, it is not suitable for bus CVD method.
  • a raw material whose reaction rate is too high at the glass ribbon temperature of the CVD method in the bath, or a raw material that may have an unfavorable effect on the float bath can be used. It can also be applied to glass plate manufacturing processes that do not have a float bath. For example, it can be applied to a glass plate manufacturing process by a roll-out method, and a plate glass, a netted glass, and a wire glass having an antibacterial film having an antibacterial action can be manufactured.
  • a non-alkali glass plate having a thickness of 0.7 mm was cut into a square having a side of 10 cm, washed, and then dried.
  • a nitrogen-doped titanium oxide film was formed by atmospheric pressure CVD using a transfer furnace of an atmospheric pressure thermal CVD apparatus.
  • the above glass plate was placed on a mesh belt and conveyed in the above furnace to heat the glass plate.
  • a nitrogen-doped titanium oxide film was formed by supplying a source gas to the surface of the glass plate.
  • This source gas includes titanium tetrachloride (TiCl), oxygen (O), ammonia (NH), and hydrogen chloride as a reaction inhibitor.
  • HC1 HC1
  • a gas diluted with nitrogen gas to a predetermined concentration was used.
  • a nitrogen-doped titanium oxide film was formed by adjusting the concentration of the source gas and the conveying speed.
  • a thin film was formed on the surface of the glass ribbon by the CVD method in the bus. Specifically, it is as follows.
  • the first coater (16a in Fig. 2) formed an SiO film with a thickness of 50 nm on the glass ribbon as a base film.
  • the raw material gases include tetrasalt ⁇ titanium (TiCl), ethyl acetate (CHO
  • a titanium oxide film was formed by adjusting the conveyance speed.
  • Example 14 a nitrogen-doped titanium oxide film was formed using the same source gas as in Examples 1 to 12 and the comparative example.
  • the cross section of the glass plate on which the thin film was formed was measured by observing it with a scanning electron microscope (SEM).
  • the antibacterial properties of the obtained films were evaluated by the light irradiation film adhesion method established by the Antibacterial Product Technical Council.
  • the number of Staphylococcus aureus after 24 hours of ultraviolet irradiation is reduced to 1Z100 or less, and has good antibacterial properties.
  • the number of E. coli after 24 hours of ultraviolet irradiation was reduced to 1Z100 or less, and had good antibacterial properties.
  • the UV intensity was adjusted to 10 / z WZcm 2 and the irradiation time of ultraviolet rays was set to 8 hours, as in (Antibacterial performance test 1) above. Test gave.
  • the test strain was evaluated using Staphylococcus aureus NBRC12732.
  • Example 3 For Examples 3, 5, and 8-14, based on the light irradiation film adhesion method defined by the Antibacterial Product Technical Council, using a white fluorescent lamp, adjusting the illuminance to lOOOLx, the white fluorescent lamp The test was conducted in the same manner as the above (Antibacterial performance test 1) except that the irradiation time was 24 hours.
  • the test bacteria were evaluated using Staphylococcus aureus NBRC12732 and Escherichia coli NBRC3972.
  • the white fluorescent lamp was adjusted so that the illuminance was 500 Lx.
  • the test was conducted in the same manner as the above (Antibacterial performance test 1) except that the irradiation time was 24 hours.
  • the test bacteria were evaluated using Staphylococcus aureus NBRC12732.
  • the white fluorescent lamp was adjusted so that the illuminance was 250 Lx, and the white fluorescent lamp was irradiated.
  • the test was conducted in the same manner as (Antibacterial performance test 1) except that the time was 24 hours.
  • the test bacteria were evaluated using Staphylococcus aureus NBRC12732.
  • the thin films of Examples 1 to 14 had a thickness in the range of 5 to 80 nm, and thus had no interference color. On the other hand, an interference color occurred in the comparative thin film having a thickness of 150 nm.
  • the glass plate with an antibacterial film of the present invention is different from conventional ones in the fields of glass windows for buildings, glass windows for transportation machinery, glass panels for information display, etc. It has a great utility value in that it can provide a glass plate with an antibacterial film with improved mechanical durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明は、反射の干渉色が生じがたい抗菌膜を備える抗菌膜付きガラス板を提供する。また抗菌膜が成膜された大面積のガラス板であり、抗菌膜の機械的耐久性が高められたガラス板を、大量に安価に製造する方法を提供する。本発明では、直接または下地膜を介して、ガラス板上に、膜厚を2nm以上100nm以下とする抗菌膜を形成し、抗菌膜付きガラス板とする。また、抗菌膜を、被膜形成ガスが分解する温度以上に保持されたガラス板表面またはガラス板製造工程におけるガラスリボン表面に、被膜形成ガスを供給することによって、熱分解法により形成する。

Description

明 細 書
抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品 技術分野
[0001] 本発明は、抗菌膜付きガラス板とその製造方法に関し、さらにはそのガラス板を有 する物品に関する。
背景技術
[0002] 快適な生活空間に対するニーズはきわめて高ぐ高温多湿の環境下では細菌、微 生物等の繁殖が活発になる。このような細菌、微生物等は、人体に悪影響のあること も多ぐこれらの繁殖を効果的に阻害するために、生活空間の構成部材として使用可 能な板状の抗菌性部材および安価で大量生産可能な当該部材の製造方法が求め られている。
[0003] 例えば、特開 2001— 72438号公報には、抗菌剤として酸ィ匕チタン等を含む榭脂 組成物による塗膜を形成し、抗菌効果を発揮し得る抗菌性加工板硝子材が開示され ている。し力しながら、当該抗菌性力卩工板硝子材では、ロールコーティング、ディップ コーテング、スプレー塗布、静電塗装、電着塗装、ワイヤーコート、フローコート、ドク ターコート等の中から選ばれたいずれかの方法により塗膜を形成するので、塗膜の 厚みは、 10〜50 /ζ πιとミクロン単位となってしまい、これらより更に薄い膜を均一に成 膜することはできなかった。本明細書においては、部材に抗菌性を付与するために 部材表面に形成する膜を、「抗菌膜」と称する。抗菌膜としては、銀、亜鉛、銅などの 金属材料や、酸化チタンなどの光触媒材料が用いられる。
[0004] 酸化チタンは光触媒活性が高ぐ化学的安定性に優れていることから、光触媒材料 として、広く用いられている。酸化チタンに紫外線を照射すると、電子と正孔が生成し
、光誘起分解反応や光誘起親水反応を示すようになる。これらの反応を利用した抗 菌タイル等が既に商品化されている。
[0005] 国際公開第 94Z11092号パンフレットには、粉末の酸ィ匕チタンをガラス板上に焼 結させた技術が開示されている。当該技術を用いれば、板状の抗菌性部材を得るこ とができるものの、粒子状の酸ィ匕チタンをガラス板上にコーティングする際に、酸ィ匕チ タン粒子が凝集して、酸ィ匕チタンの粒径が不可避的に大きくなる。酸ィ匕チタンの粒径 が大きくなると、酸ィ匕チタンを含む抗菌膜の膜厚が大きくなつてしまう。この結果、抗 菌膜の反射率が高くなり、反射の干渉色が目立つようになるという問題があった。
[0006] また、国際公開第 94Z11092号パンフレットの方法では、粉末状の酸化チタンを 用いて抗菌膜を形成するので、抗菌膜の機械的耐久性も低 、と 、つた問題がある。 さらに、大面積のガラス基板に均一に抗菌膜を形成することが困難であるばかりか、 焼成処理やコーティング処理を施す必要があり、製造工程が多くなつた結果、製造コ ストが高くなる問題もあり、大面積のガラス板の連続大量生産には不向きであった。
[0007] 更に、国際公開第 01/10552号パンフレットに開示された窒素ドープ酸ィ匕チタン 膜の製造方法は、抗菌膜をその表面に成膜したガラス板の製造方法に関する発明 であり、スパッタリング法で TiO膜を成膜した後に、アンモニアや窒素を含む雰囲気
2
で焼成処理する方法である。し力しながら、国際公開第 01Z10552号パンフレットの 方法では、板状の抗菌性部材を得ることができるものの、大がかりな真空装置が必要 であり、成膜装置に莫大な費用が力かる場合が多い。また、焼成処理を施す必要が あり、製造工程が多くなり、製造コストが高くなる問題があった。このように国際公開第 01/10552号パンフレットに開示された窒素ドープ酸ィ匕チタン膜の製造方法は、大 面積のガラス板の連続大量生産には不向きであった。
発明の開示
[0008] 本発明は、上述のような問題点に着目して完成されたものである。その目的とすると ころは、反射の干渉色が生じがた ヽ抗菌膜を備える抗菌膜付きガラス板を提供する ことにある。また、抗菌膜が成膜された大面積のガラス板であり、抗菌膜の機械的耐 久性が高められたガラス板を、大量に安価に製造する方法を提供することを目的とす る。
[0009] 本発明の抗菌膜付きガラス板は、ガラス板上に、直接または下地膜を介した抗菌膜 を備える抗菌膜付きガラス板であって、前記抗菌膜の膜厚が 2nm以上 lOOnm以下 である。
[0010] 好ま 、実施形態にぉ 、ては、上記抗菌膜の抗菌性能が、抗菌製品技術協議会 が定める光照射フィルム密着法に基づき 10 μ WZcm2の光量の紫外光を 24時間照 射した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して lZio 0以下に減少させる抗菌性能である。
[0011] 好ましい実施形態においては、上記抗菌膜の抗菌性能が、抗菌製品技術協議会 が定める光照射フィルム密着法に基づき 10 μ WZcm2の光量の紫外光を 8時間照 射した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z10 0以下に減少させる抗菌性能である。
[0012] 好ま 、実施形態にぉ 、ては、上記抗菌膜の抗菌性能が、抗菌製品技術協議会 が定める光照射フィルム密着法に基づき lOOOLxの光量の白色蛍光灯を 24時間照 射した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z10 0以下に減少させる抗菌性能である。
[0013] 好ま 、実施形態にぉ 、ては、上記抗菌膜の抗菌性能が、抗菌製品技術協議会 が定める光照射フィルム密着法に基づき 500Lxの光量の白色蛍光灯を 24時間照射 した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100 以下に減少させる抗菌性能である。
[0014] 好ま 、実施形態にぉ 、ては、上記抗菌膜の抗菌性能が、抗菌製品技術協議会 が定める光照射フィルム密着法に基づき 250Lxの光量の白色蛍光灯を 24時間照射 した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100 以下に減少させる抗菌性能である。
[0015] 好ましい実施形態においては、上記抗菌性能が、黄色ブドウ球菌又は大腸菌の菌 数を、 1 Z 10000以下に減少させる抗菌性能である。
[0016] 好ましい実施形態においては、上記抗菌膜の膜厚が、 5nm以上 80nm以下であり 、更に好ましい実施形態においては、上記抗菌膜の膜厚が、 25nmを超え 70nm未 満である。
[0017] 好ましい実施形態においては、上記抗菌膜の主成分が、酸化チタン、窒素ドープ 酸化チタン、酸窒化チタンおよび窒化チタン力 なる群力 選択される 1種である。
[0018] 好ましい実施形態においては、上記抗菌膜の主成分が、窒素ドープ酸化チタンで ある。
[0019] 本発明の別の局面によれば、抗菌膜付きガラス板の製造方法が提供される。この 製造方法にお!ヽては、上記抗菌膜を熱分解法により形成する。
[0020] 好ま 、実施形態にぉ ヽては、上記抗菌膜を、被膜形成ガスが分解する温度以上 に保持されたガラス板表面またはガラス板製造工程におけるガラスリボン表面に、被 膜形成ガスを供給することによって形成する。
[0021] 好ましい実施形態においては、上記被膜形成ガスが、チタン含有化合物、窒素含 有化合物および酸化性ガスを含む。
[0022] 好ま 、実施形態にぉ ヽては、上記被膜形成ガスが、前記チタン含有化合物と前 記窒素含有化合物との化学反応を抑制する反応抑制剤をさらに含む。
[0023] 好ましい実施形態においては、上記窒素含有化合物が、アンモニアである。
[0024] 好ま 、実施形態にぉ 、ては、上記酸ィ匕性ガスが、酸素である。
[0025] 好まし 、実施形態にぉ 、ては、上記被覆形成ガス中における、上記アンモニアなど の窒素含有ィ匕合物に対する上記酸素などの酸ィ匕性ガスのモル比力 0. 05以上で ある。
[0026] 好ま 、実施形態にぉ 、ては、上記反応抑制剤が、塩ィ匕水素である。
[0027] 好ましい実施形態においては、上記熱分解法が、フロート法によるガラスの製造ェ 程における、熔融状態のガラスリボンを板状に成形するためのノ ス内で行う CVD法 である。
[0028] 本発明の更に別の局面によれば、建築物のガラス窓が提供される。それらは、上記 抗菌膜付きガラス板を有する。例えば、居住空間もしくは医療施設内のガラス窓、室 内ガラスなどが提供される。
[0029] 本発明の更に別の局面によれば、建築物内のガラス間仕切りが提供される。それら は、上記抗菌膜付きガラス板を有する。
[0030] 本発明の更に別の局面によれば、家具が提供される。それらは、上記抗菌膜付き ガラス板を有する。例えば、ガラステーブル、ガラス棚、ガラスショーケースまたはガラ ス食品ケースなどが提供される。
[0031] 本発明の更に別の局面によれば、輸送機械のガラス窓が提供される。それらは、上 記抗菌膜付きガラス板を有する。例えば、車輛、船舶又は航空機のガラス窓などが提 供される。 [0032] 本発明の更に別の局面によれば、情報表示用ガラスパネルが提供される。それら は、上記抗菌膜付きガラス板を有する。例えば、ディスプレイパネル、タツチパネルな どが提供される。
[0033] 上記本発明によれば、抗菌膜の厚さを 2nm以上 lOOnm以下といった範囲に設定 するので、比較的高!、屈折率を有するチタン化合物を用いても反射の干渉色の発生 が抑制された、抗菌膜を備える抗菌膜付きガラス板が提供される。
[0034] また、本発明によれば、フロートガラスの製造工程にお 、て、熔融状態のガラスリボ ンを板状に成形するためのバス内で熱分解法を行うことにより、大面積であり、抗菌 膜の機械的耐久性が高められた抗菌膜付きガラス板を大量に安価に製造する方法 が提供される。
[0035] また、本発明によれば、抗菌膜付きガラスを有する物品が提供される。
図面の簡単な説明
[0036] [図 1]本発明の抗菌膜付きガラス板の一例を示す断面図であり、図 1 (a)は抗菌膜が ガラス板上に直接形成されている例を、図 1 (b)はガラス板と抗菌膜との間に下地膜 が介在している例を示す。
[図 2]オンライン CVD法に使用する装置の略図である。
発明を実施するための最良の形態
[0037] 以下、本発明の好ましい実施形態について図面を参照しながら説明する力 本発 明はこれらの実施形態には限定されない。
[0038] 本明細書において、用語「抗菌」とは、物体に付着する細菌または微生物の増殖を 抑制し、細菌または微生物の生菌数が時間の経過とともに減少することを意味する。 用語「主成分」とは、 50重量%以上を占める成分を意味する。用語「抗菌製品技術 協議会が定める光照射フィルム密着法」とは、抗菌製品技術協議会により定められた 光照射フィルム密着法 (2003年度版)を意味し、特に注記しない場合には、当該密 着法に定められた条件に基づき、抗菌性能の評価を行う。この測定方法は、本件出 願の基礎出願の出願後に JIS R1702 : 2006が発行されるまでは、当業者にとって 、製品の抗菌特性を評価するための最も一般的な測定方法の一つであった。
[0039] 図 1は、本発明による抗菌膜付きガラス板 4の二形態を説明する断面模式図である 。本発明によるガラス板では、第一の形態として、図 1 (a)に示すように、ガラス板 1上 に、抗菌膜 2が形成されている。
[0040] また、第二の形態として、図 1 (b)に示すように、ガラス板 1と抗菌膜 2との間に、 1層 以上の下地膜 3を挟むように構成することが好ましい。この下地膜は、アルカリバリア 機能などの役割を持っていると好ましい。ガラス板 1がアルカリ成分を含むガラス板で ある場合、例えば、抗菌膜 2の成膜工程中にアルカリ成分が抗菌膜 2に移動すると、 抗菌膜の結晶性が悪くなり、抗菌性能が劣化する。その場合、下地膜を挟むように構 成しておけば、アルカリ成分が移動することによる悪影響を防止することができる。
[0041] [膜厚の好ましい範囲] 抗菌膜の膜厚が大きいと反射干渉色を示し、外観品質を著しく低下させる。一方、 膜厚が小さすぎると、反射干渉色は抑制されるものの抗菌性能が低下してしまう。こ のため、抗菌膜の膜厚としては、 2nm以上 lOOnm以下の範囲が望ましぐさらには 5 nm以上 80nm以下の範囲が好ましい。さらに 20nmを超え 70nm未満の範囲が最も 好ましい。
[0042] [抗菌性能]
本発明の抗菌膜の抗菌性能としては、抗菌製品技術協議会が定める光照射フィル ム密着法(2003年度版)にお 、て、 10 μ WZcm2の光量の紫外光を 24時間照射し た後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100以 下に減少させる抗菌性能が好ましい。より好ましくは、 10 /z WZcm2の光量の紫外光 を 8時間照射した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対 して 1Z100以下に減少させる抗菌性能である。また、抗菌製品技術協議会が定め る光照射フィルム密着法(2003年度版)において、 lOOOLxの光量の白色蛍光灯を 24時間照射した後の黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対 して 1Z100以下に減少させる抗菌性能が好ましい。より好ましくは、 500Lxの光量 の白色蛍光灯を 24時間照射した後の黄色ブドウ球菌または大腸菌の菌数を、光照 射前の菌数に対して 1Z100以下に減少させる抗菌性能である。より好ましくは、 25 OLxの光量の白色蛍光灯を 24時間照射した後の黄色ブドウ球菌または大腸菌の菌 数を、光照射前の菌数に対して ΐΖΐοο以下に減少させる抗菌性能である。抗菌性 能評価は微生物を使用した試験であることから、他の物性評価などに比べ、評価試 験誤差が大きくなる。光照射後の菌数が 1Z100以下 (減菌率 99%以上)であれば、 誤差範囲ではなぐ明らかに抗菌性能に関する有利な効果があると言える。社団法 人日本建材 ·住宅設備産業協会においても、抗菌性能評価において、細菌の生存 率が 1%以下 (菌数が 1Z100以下に減少)であれば、抗菌加工品と未加工品との相 違が有意に判定できるとされている。より好ましい範囲としては、光照射後の菌数が 1 Ziooo以下である。更に好ましい範囲としては、光照射後の菌数が 1Z10000以下 である。
[0043] 抗菌性能評価において、照射する紫外光の強度および白色蛍光灯の照度は、使 用される状況に応じて設定する必要がある。紫外光の強度および白色蛍光灯の照度 は、以下の使用場所に代表される。
紫外光 WZcm2 · · '昼間の室内で、太陽光の入る窓から 1. 5m程度離れ た場所。
蛍光灯 lOOOLx · · ·蛍光灯のみが点灯した室内の床から lm程度の高さの場 所。なお、蛍光灯 lOOOLx中の紫外光の強度は、 4 /z WZcm2程度。
蛍光灯 500Lx · · ·蛍光灯のみが点灯した室内の床面。なお、蛍光灯 1000 Lx中の紫外光の強度は、 2 /z WZcm2程度。
[0044] 本発明により減少させる菌については、特に制限はないが、以下のような菌類に対 して、本発明を用いることができる。例えば、グラム陽性菌 (黄色ブドウ球菌、バチル ス菌など)もしくはグラム陰性菌(大腸菌、サルモネラ菌など)の細菌類、またはカビ、 キノコ、酵母などの真菌類、その他ウィルス、原生生物などがある。
[0045] [抗菌膜の成分]
本発明の抗菌膜の主成分としては、酸化チタン、窒素ドープ酸ィ匕チタン、酸窒化チ タンおよび窒化チタン力 なる群力 選択される 1種であることが好ま 、。これらを主 成分とする抗菌膜であれば、抗菌性能が高ぐ化学的安定性に優れているからであ る。
[0046] 特に、主成分が窒素ドープ酸ィ匕チタンであることが好ま 、。特に、窒素ドープ酸 化チタンは可視光城の光に応答する光触媒材料であるため、太陽光や蛍光灯に多 く含まれる可視光域の光を利用できる点で好ましい。
[0047] [原料]
(抗菌膜の原料)
本発明の抗菌膜の原料には、少なくとも 1種以上のチタン含有ィ匕合物と、少なくとも 1種以上の窒素含有ィヒ合物と、少なくとも 1種以上の酸ィヒ性ガスとを含むことが必要 である。
[0048] チタン含有化合物としては、チタン塩化物、チタンアルコキシドゃチタンキレートイ匕 合物などが好ましい。これらチタン含有化合物は、常温では気体または液体であるこ と力 子ましく、常温で液体である場合は、沸点が低い方が好ましい。これら好ましいチ タン含有化合物は、そのまま、あるいは少し加熱するだけで気化し、原料ガスの成分 とすることができる。また、常温で固体であっても、昇華するチタン含有化合物や、ァ ルコールやトルエンなど有機溶媒に溶解できるチタン含有ィ匕合物も用いることができ る。
[0049] このようなチタン含有ィ匕合物として、例えば、四塩ィ匕チタン (TiCl ) ,チタンエトキシ
4
ド(Ti(OCH) ),チタンイソプロキシド (Ti(OCH) ),チタンノルマルブトキシド (Ti
2 5 4 3 7 4
(OC H ) ),チタンァセチルァセトナート((C HO) Ti(CHO) )などを例示でき
4 9 4 3 7 2 2 5 7 2 2
る。特に、四塩ィ匕チタン (TiCl ),チタンイソプロキシド (Ti(OC H) ),あるいはチタ
4 3 7 4
ンノルマルブトキシド(Ti(OCH) ),が好適に用いられる。
4 9 4
[0050] 窒素含有ィ匕合物としては、アンモニア (NH )、アミン類およびヒドラジン誘導体が好
3
適であると例示できる。この中でも、アンモニアは、圧縮することにより容易に液ィ匕し、 常温常圧では気体であるため、原料ガスへの導入が容易である点で好ましぐ安価 に大量に入手できる点で特に好ましい。アミンゃヒドラジン誘導体は、反応性が高い ため、品質の良い膜を容易に製造できる点が優れている。一方、高価である点が短 所である。
[0051] 酸ィ匕性ガスとしては、酸素(O )を用いることが好ましぐ二酸化炭素(CO ),—酸
2 2 化炭素 (CO),水蒸気 (H O)など、酸素を含む化合物を用いることができる。水 (H
2 2
O)やエステルなどの液体原料を用いた場合、液体原料を気化するための設備が必 要であり、さらに、気化量が不安定になり易い。供給量の制御が容易である気体原料 を用いることが好ましい。これらのうち、酸素を用いることが特に好ましい。また、空気 を用いることもできる。空気を酸ィ匕性ガスとして用いた場合、空気中に含まれる窒素( N )は反応希釈剤として作用させることができる。
2
[0052] 窒素含有ィ匕合物としてアンモニアを、酸ィ匕性ガスとして酸素を用いた場合、アンモ ユアに対する酸素のモル比(O ZNH比)を 0. 05以上とすることが好ましい。アンモ
2 3
ユアに対する酸素のモル比を 0. 05以上とすることにより、膜の結晶性を向上させるこ とができるからである。生成した電子と正孔の再結合は、結晶の欠陥部位で起こると 考えられる。従って、結晶性を向上させる、すなわち結晶の欠陥部位を低減させるこ とにより、電子と成功の再結合される割合が減少し、抗菌性を高めることができる。
[0053] 本発明の抗菌膜の原料には、チタン含有化合物と、窒素含有化合物との化学反応 を抑制する反応抑制剤をさらに含むことが好ましい。
[0054] 反応抑制剤としては、塩ィ匕水素を用いることが好ま 、。
[0055] チタン含有化合物に四塩化チタンを、窒素含有ィ匕合物にアンモニアを用いた場合 、原料ガスのガラス板への到達までに、気相反応が進行してしまうことがある。この気 相反応が進行すると、原料ガス配管中で固体の反応生成物が生じる。この反応生成 物によって、配管が閉塞することがある。また、この反応生成物は、原料ガスの流れ によってガラス板表面まで輸送され、成膜される膜に取り込まれ、ピンホールなどの 欠点の原因になる。この気相反応を防止するため、反応抑制として塩化水素を用い ることが好ましい。
[0056] [抗菌膜付きガラス板の製造方法]
上記の抗菌膜の製造方法は、とくに限定されるものではなぐ熱 CVD法もしくはス プレー法などの公知の熱分解法の他、ガラス表面に上記の抗菌膜の微粉末を付着 させ、その後ガラスごと加熱して前記微粉末を凝集させる方法などが例示される。ま た、この微粉末を凝集させた後に熱分解法により、凝集した微粉末を核として、抗菌 膜を結晶成長させてもよい。これらの中でも、熱分解法とくに熱 CVD法によれば、機 械的耐久性の高 、膜を容易に形成することができる。
[0057] 熱 CVD法による成膜は、例えば、ガラス板を基板として用い、所定の大きさのガラ ス板を加熱し、その加熱したガラス板の表面に、ガス状の原料を吹き付けることによつ て行なうことができる。
[0058] 具体的には、以下のようにして行なうことができる。ガラス板をメッシュベルトに載せ て搬送し、トンネル状の加熱炉内を通過させる。ガラス板は加熱炉内に搬送され、被 膜形成ガスが分解する温度 (以下、「被膜形成ガス分解温度」と略す。)まで加熱され る。ガラス板が被膜形成ガス分解温度に加熱されているときに、原料ガスを加熱炉内 に供給する。原料ガスはガラス板の表面の熱によって反応し、ガラス板上に抗菌作用 を有する抗菌膜が形成される。
[0059] 被膜形成ガス分解温度は、高 ヽ結晶性が得られ、高 ヽ成膜速度が得られる、との 観点から、 500°C以上であることが好ましい。即ち 500°C以上のガラス板の表面に抗 菌膜を形成することが好ましい。 500°C未満の場合には、 TiNCl、 TiCl ·ηΝΗなど
4 3 の低温生成物ができやすくなるからである。
[0060] また、熱 CVD法では、ガラス板の製造工程にお 、て、ガラス融液がガラス板に成形 される工程、あるいはガラス板に成形された後の徐冷工程で、ガラス板が高温である ことを利用することが好ましい。なぜなら、高温のガラス板上に原料ガスを供給すれば 、別段の加熱設備を用いることなぐ薄膜を形成できるからである。また、このようにす れば、大きな面積のガラス板に高速で薄膜を形成することができ、建物、車両、デイス プレイパネルなど大面積を必要とする用途の薄膜付きガラス板を製造することができ る。なお、上述のように、製造工程途中の高温のガラス板に成膜する方法は、オンラ イン CVD法と呼ばれる。
[0061] (バス内 CVD法)
上述したガラス融液カゝらガラス板に成形される工程は、フロート法によるガラス板製 造工程においては、熔融スズ槽 (フロートバスと呼ぶ)にて行なわれる。熔融炉 (フロ ート窯と呼ぶ)で融解したガラス融液は、フロートバスに流入する。そのガラス融液は 、途切れることなく長い帯状の板に引き伸ばされており、ガラスリボンと呼ばれる。
[0062] オンライン CVD法をフロートバス内で行なう方法は、バス内 CVD法と呼ばれる。ノ ス内 CVD法には、上述した利点の他に、以下の長所がある。まず、フロートバスの内 部は、大気が侵入しないように雰囲気を制御されている。そのため、ピンホールなど 欠点の抑制が可能である。また、フロートバスにおけるガラスリボンの温度は、非常に 高温である。その温度は、ガラスリボンの糸且成に依存する力 通常のソーダライムシリ ケートガラスの場合、例えば 650〜1150°Cの範囲である。
[0063] このような温度範囲であれば、抗菌性能を有する薄膜の結晶性を向上させ、抗菌 性能を高めることができる。また、原料ガスが十分な反応性を示すことから、ガラスリボ ンの搬送速度を落さなくとも、そのガラスリボン上に十分な厚さの抗菌性能を有する 薄膜を容易に形成できるようになる。その結果、生産性の向上を見込めるので、抗菌 膜付きガラス板を大量に安価に製造することが可能となる。
[0064] フロート法において、ガラスリボン上にバス内 CVD法で成膜するための装置の一形 態を図 2に示す。図 2に示したように、この装置では、フロート窯 11からフロートバス 1 2内に流れ出し、熔融スズ 15上を帯状に移動するガラスリボン 10の表面力も所定距 離を隔て、所定個数のコータ 16がフロートバス内に配置されている。なお、図 2には 3 つのコータ 16a, 16b, 16cが示されている力 コータの数は膜構成などの設計により 適切に設計し得る。これらのコータからは、抗菌作用を有する抗菌膜、下地膜の原料 がガス状態で供給され、ガラスリボン 10上に連続的に各薄膜が形成されていく。また 、複数のコータを利用すれば、ガラスリボン 10上に、薄膜を積層することができる。ガ ラスリボンの温度は、コータ 16の直前で所定温度となるように、フロートバス内に配置 されたヒータおよびクーラ(図示省略)により調整される。薄膜が形成されたガラスリボ ン 10は、ローラ 17により引き上げられてレア (徐冷窯) 13へと送り込まれる。なお、レ ァ 13で徐冷されたガラス板は、図示を省略する汎用の切断装置により、所定の大き さのガラス板へと切断される。
[0065] (レア内 CVD法)
また、上述した通り、オンライン CVD法を、ガラス板に成形された後の徐冷工程 (レ ァと呼ばれる)で行なうこともできる。この場合、原料ガスの導入は、レア (徐冷窯)の 入り口および Zまたはレアの内部で行なわれる。以下、この方法をレア内 CVD法と 呼ぶ。レア入り口あるいはレア内のレア入り口近傍のガラスリボンは、バス内と比較し て低温ではあるが、成膜反応には充分な高い温度を有している。レア内 CVD法では 、ノ ス内 CVD法とは異なり、以下の特長がある。まず、バス内 CVD法に適さない原 料、例えば、バス内 CVD法のガラスリボン温度では反応速度が速すぎるような原料 や、フロートバスに好ましくない影響を及ぼす懸念のあるような原料であっても、採用 することができる。また、フロートバスを持たないガラス板製造工程に適用することが できる。例えば、ロールアウト法によるガラス板製造工程に適用して、抗菌作用を有 する抗菌膜を形成した型板ガラスや網入りガラス,線入りガラスを製造することができ る。
実施例
[0066] 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に より制限されるものではない。
[0067] (実施例 1〜12、比較例)
厚さ 0. 7mmの無アルカリガラス板を、一辺が 10cmの正方形となるように切断し、 洗浄した後に乾燥させた。このガラス板の一方の表面に、常圧熱 CVD装置の搬送 炉を用いて、常圧熱 CVD法により窒素ドープ酸ィ匕チタン膜を成膜した。具体的には
、以下の通りである。
[0068] 前述のガラス板をメッシュベルトに載せ、前述の炉内を搬送してガラス板を加熱した 。ガラス板の温度が約 850°Cに達する炉内の領域において、ガラス板の表面に原料 ガスを供給することによって、窒素ドープ酸ィ匕チタン膜を成膜した。この原料ガスには 、四塩化チタン (TiCl )、酸素(O )、アンモニア (NH )、反応抑制剤として塩化水素
4 2 3
(HC1)を採用し、窒素ガスで所定濃度に希釈したガスを用いた。原料ガスの濃度お よび搬送速度を調節することによって、窒素ドープ酸ィ匕チタン膜を形成した。
[0069] (実施例 13〜14)
図 2に示した装置を用いて、バス内 CVD法により、ガラスリボン表面に薄膜を形成し た。具体的には、以下のとおりである。
[0070] フロート窯で熔融し、温度を 1150〜: L 100°Cに制御したガラス融液を、フロートバス に流入させた。フロートバスにおいて、ガラス融液は冷却されつつガラスリボンに成形 された。ガラスリボンは厚さが 4. Ommになるように成形した。第 1のコータ(図 2中 16a )により、ガラスリボン上に下地膜として SiO膜を、 50nmの厚みとなるように形成した
2
。その後、第 2のコータ(図 2中 16b)から、原料ガスを吹き付けて薄膜を形成した。 [0071] 実施例 13においては、原料ガスには、四塩ィ匕チタン (TiCl )、酢酸ェチル (C H O
4 4 8
)を採用し、窒素ガスで所定濃度に希釈したガスを用いた。原料ガスの濃度および
2
搬送速度を調節することによって、酸化チタン膜を形成した。
[0072] 実施例 14においては、実施例 1〜 12および比較例同様の原料ガスを用い、窒素ド ープ酸化チタン膜を形成した。
[0073] (抗菌膜の膜厚)
薄膜を形成したガラス板の断面を走査型電子顕微鏡 (SEM)で観察することにより 測定した。
[0074] (干渉色)
目視観察にて干渉色の有無を判断した。
[0075] (抗菌性能)
得られた膜の抗菌特性を、抗菌製品技術協議会が定める光照射フィルム密着法に より評価した。
[0076] (抗菌性能試験 1)
上記、抗菌製品技術協議会が定める光照射フィルム密着法に基づき、ブラックライ ト蛍光ランプ (東芝ライテック製 FL20S 'BLB'JET20W)を用い、紫外線強度計(ト プコン製 UVR— 2、受光部 UD— 36)にて測定した紫外線強度が 10 WZcm2とな るように調節し、湿度 95%、温度 25°Cの条件下で、紫外線を 24時間照射させた。試 験菌には黄色ブドウ菌種(Staphylococcus aureus NBRC12732)を用いた評価を実 施した。また、実施例 3、 5、 8〜14については、試験菌に大腸菌(Escherichiacoli N BRC3972)を用いた評価も実施した。
[0077] 実施例 1〜14および比較例のいずれの薄膜についても、紫外線照射 24時間後の 黄色ブドウ球菌の数は、 1Z100以下に減少しており、良好な抗菌性を有している。 また、実施例 3、 5、 8〜14の薄膜においては、紫外線照射 24時間後の大腸菌の数 は、 1Z100以下に減少しており、良好な抗菌性を有していた。
[0078] (抗菌性能試験 2)
実施例 3、 5、 8〜14について、紫外線強度を 10 /z WZcm2となるように調節し、紫 外線の照射時間を 8時間とした以外は、上記の (抗菌性能試験 1)と同様に試験を実 施した。試験菌には黄色ブドウ菌種(Staphylococcus aureus NBRC12732)を用いた 評価を実施した。
[0079] 実施例 3、 5、 8〜14のいずれの薄膜についても、紫外線照射 8時間後の細菌数は 、 1Z100以下に減少しており、良好な抗菌性を有していた。
[0080] (抗菌性能試験 3)
実施例 3、 5、 8〜14について、上記、抗菌製品技術協議会が定める光照射フィル ム密着法に基づき、白色蛍光灯を用い、照度が lOOOLxとなるように調節し、白色蛍 光灯の照射時間を 24時間とした以外は、上記の (抗菌性能試験 1)と同様に試験を 実施した。試験菌には黄色ブドウ菌種(Staphylococcus aureus NBRC12732)および 大腸菌(Escherichia coli NBRC3972)を用いた評価を実施した。
[0081] 実施例 3、 5、 8〜14のいずれの薄膜についても、紫外線照射 24時間後の細菌数 は、 1Z100以下に減少しており、良好な抗菌性を有していた。
[0082] (抗菌性能試験 4)
実施例 3、 5、 9〜14について、上記、抗菌製品技術協議会が定める光照射フィル ム密着法に基づき、白色蛍光灯を用い、照度が 500Lxとなるように調節し、白色蛍 光灯の照射時間を 24時間とした以外は、上記の (抗菌性能試験 1)と同様に試験を 実施した。試験菌には黄色ブドウ菌種(Staphylococcus aureus NBRC12732)を用 いた評価を実施した。
[0083] 実施例 3、 5、 9〜14のいずれの薄膜についても、紫外線照射 24時間後の細菌数 は、 1Z100以下に減少しており、良好な抗菌性を有していた。
[0084] (抗菌性能試験 5)
実施例 4、 9、 12〜13について、上記、抗菌製品技術協議会が定める光照射フィ ルム密着法に基づき、白色蛍光灯を用い、照度が 250Lxとなるように調節し、白色 蛍光灯の照射時間を 24時間とした以外は、上記の (抗菌性能試験 1)と同様に試験 を実施した。試験菌には黄色ブドウ菌種(Staphylococcus aureus NBRC12732)を用 いた評価を実施した。
[0085] 実施例 4、 9、 12〜13のいずれの薄膜についても、紫外線照射 24時間後の細菌 数は、 1Z100以下に減少しており、良好な抗菌性を有していた。 [0086] 以上の結果を表に示す。
[0087] [表 1]
Figure imgf000018_0001
Figure imgf000018_0002
[0088] 表に示すように、実施例 1〜14の薄膜は、膜厚が 5〜80nmの範囲にあるので、干 渉色は生じていな力つた。他方、膜厚が 150nmである比較例の薄膜には、干渉色が 生じていた。
産業上の利用可能性
[0089] 本発明の抗菌膜付きガラス板は、建築物のガラス窓、輸送機械のガラス窓、情報表 示用ガラスパネル等の分野において、従来と異なり、反射の干渉色が生じがたぐ機 械的耐久性が高められた抗菌膜付きガラス板を提供できるという点で大きな利用価 値を有する。

Claims

請求の範囲
[1] ガラス板上に、直接又は下地膜を介した抗菌膜を備える抗菌膜付きガラス板であつ て、前記抗菌膜の膜厚が 2nm以上 lOOnm以下である抗菌膜付きガラス板。
[2] 前記抗菌膜の抗菌性能が、抗菌製品技術協議会が定める光照射フィルム密着法 に基づき 10 μ WZcm2の光量の紫外光を 24時間照射した後の黄色ブドウ球菌また は大腸菌の菌数を、光照射前の菌数に対して 1Z100以下に減少させる抗菌性能で ある請求項 1に記載の抗菌膜付きガラス板。
[3] 前記抗菌膜の抗菌性能が、抗菌製品技術協議会が定める光照射フィルム密着法 に基づき 10 μ WZcm2の光量の紫外光を 8時間照射した後の黄色ブドウ球菌または 大腸菌の菌数を、光照射前の菌数に対して 1Z100以下に減少させる抗菌性能であ る請求項 1に記載の抗菌膜付きガラス板。
[4] 前記抗菌膜の抗菌性能が、 lOOOLxの光量の白色蛍光灯を 24時間照射した後の 黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100以下に減 少させる抗菌性能である請求項 1に記載の抗菌膜付きガラス板。
[5] 前記抗菌膜の抗菌性能が、 500Lxの光量の白色蛍光灯を 24時間照射した後の 黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100以下に減 少させる抗菌性能である請求項 1に記載の抗菌膜付きガラス板。
[6] 前記抗菌膜の抗菌性能が、 250Lxの光量の白色蛍光灯を 24時間照射した後の 黄色ブドウ球菌または大腸菌の菌数を、光照射前の菌数に対して 1Z100以下に減 少させる抗菌性能である請求項 1に記載の抗菌膜付きガラス板。
[7] 前記抗菌性能が、黄色ブドウ球菌又は大腸菌の菌数を、 1Z10000以下に減少さ せる抗菌性能である請求項 1に記載の抗菌膜付きガラス板。
[8] 前記抗菌膜の膜厚が、 5nm以上 80nm以下である請求項 1に記載の抗菌膜付きガ ラス板。
[9] 前記抗菌膜の膜厚が、 25nmを超え 70nm未満である請求項 1に記載の抗菌膜付 きガラス板。
[10] 前記抗菌膜の主成分が、酸化チタン、窒素ドープ酸ィ匕チタン、酸窒化チタンおよび 窒化チタン力 なる群力 選択される 1種である請求項 1に記載の抗菌膜付きガラス 板。
[11] 前記抗菌膜の主成分が、窒素ドープ酸ィ匕チタンである請求項 10に記載の抗菌膜 付きガラス板。
[12] 請求項 1に記載の抗菌膜付きガラス板の製造方法であって、前記抗菌膜を熱分解 法により形成する抗菌膜付きガラス板の製造方法。
[13] 前記抗菌膜を、被膜形成ガスが分解する温度以上に保持されたガラス板表面また はガラス板製造工程におけるガラスリボン表面に、被膜形成ガスを供給することによ つて形成する請求項 12記載の抗菌膜付きガラス板の製造方法。
[14] 前記被膜形成ガスが、チタン含有化合物、窒素含有化合物および酸化性ガスを含 む請求項 13に記載の抗菌膜付きガラス板の製造方法。
[15] 前記被膜形成ガスが、前記チタン含有ィ匕合物と前記窒素含有ィ匕合物との化学反 応を抑制する反応抑制剤をさらに含む請求項 14に記載の抗菌膜付きガラス板の製 造方法。
[16] 前記窒素含有ィ匕合物が、アンモニアである請求項 14に記載の抗菌膜付きガラス板 の製造方法。
[17] 前記酸ィ匕性ガスが、酸素である請求項 14に記載の抗菌膜付きガラス板の製造方 法。
[18] 前記被覆形成ガス中における、窒素含有化合物に対する酸化性ガスのモル比が、 0. 05以上である請求項 14に記載の抗菌膜付きガラス板の製造方法。
[19] 前記反応抑制剤が、塩ィ匕水素である請求項 15に記載の抗菌膜付きガラス板の製 造方法。
[20] 前記熱分解法が、フロート法によるガラスの製造工程における、熔融状態のガラスリ ボンを板状に成形するためのバス内で行う CVD法である請求項 12に記載の抗菌膜 付きガラス板の製造方法。
[21] 請求項 1に記載の抗菌膜付きガラス板を有する、建築物のガラス窓。
[22] 請求項 1に記載の抗菌膜付きガラス板を有する、建築物内のガラス間仕切り。
[23] 請求項 1に記載の抗菌膜付きガラス板を有する、家具。
[24] 請求項 1に記載の抗菌膜付きガラス板を有する、輸送機械のガラス窓。 [25] 請求項 1に記載の抗菌膜付きガラス板を有する、情報表示用ガラスパネル。
PCT/JP2007/055915 2006-03-22 2007-03-22 抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品 WO2007108514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006078818A JP2007254192A (ja) 2006-03-22 2006-03-22 抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品
JP2006-078818 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007108514A1 true WO2007108514A1 (ja) 2007-09-27

Family

ID=38522540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055915 WO2007108514A1 (ja) 2006-03-22 2007-03-22 抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品

Country Status (2)

Country Link
JP (1) JP2007254192A (ja)
WO (1) WO2007108514A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246213A (ja) * 2011-05-02 2012-12-13 Hoya Corp 電子機器用カバーガラスのガラス基板及びその製造方法
DE102014013528A1 (de) 2014-09-12 2016-03-17 Schott Ag Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
GB202011249D0 (en) 2020-07-21 2020-09-02 Pilkington Group Ltd Antimicrobial substrate
WO2022090708A1 (en) 2020-10-26 2022-05-05 Pilkington Group Limited Use of coated substrates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048048A (ja) * 2020-09-14 2022-03-25 日本板硝子株式会社 表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187604A (ja) * 1994-12-28 1996-07-23 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2000143299A (ja) * 1998-11-10 2000-05-23 Nippon Sheet Glass Co Ltd 光触媒機能を有する窓ガラス
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
JP2003190809A (ja) * 2001-10-15 2003-07-08 Jfe Steel Kk 光触媒被膜を形成した複合材料の製造方法
JP2004105904A (ja) * 2002-09-20 2004-04-08 Toto Ltd 光触媒による塩基性物質の分解方法および分解に用いる光触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187604A (ja) * 1994-12-28 1996-07-23 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2000143299A (ja) * 1998-11-10 2000-05-23 Nippon Sheet Glass Co Ltd 光触媒機能を有する窓ガラス
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
JP2003190809A (ja) * 2001-10-15 2003-07-08 Jfe Steel Kk 光触媒被膜を形成した複合材料の製造方法
JP2004105904A (ja) * 2002-09-20 2004-04-08 Toto Ltd 光触媒による塩基性物質の分解方法および分解に用いる光触媒

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246213A (ja) * 2011-05-02 2012-12-13 Hoya Corp 電子機器用カバーガラスのガラス基板及びその製造方法
DE102014013528A1 (de) 2014-09-12 2016-03-17 Schott Ag Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
DE102014013528B4 (de) 2014-09-12 2022-06-23 Schott Ag Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
WO2021260370A1 (en) 2020-06-23 2021-12-30 Pilkington Group Limited Antimicrobial substrate
GB202011249D0 (en) 2020-07-21 2020-09-02 Pilkington Group Ltd Antimicrobial substrate
WO2022090708A1 (en) 2020-10-26 2022-05-05 Pilkington Group Limited Use of coated substrates

Also Published As

Publication number Publication date
JP2007254192A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
EP2069252B1 (en) Low-maintenance coating technology
US6228502B1 (en) Material having titanium dioxide crystalline orientation film and method for producing the same
US7211513B2 (en) Process for chemical vapor desposition of a nitrogen-doped titanium oxide coating
CN105517968B (zh) 可热处理的涂覆玻璃板
SK287462B6 (sk) Fotokatalyticky aktivovateľný samočistiaci článok a spôsob jeho výroby
US20120258858A1 (en) Method for deposition by sputtering, resulting product, and sputtering target
JP5607180B2 (ja) 改善されたヘイズを有するシリコン薄膜太陽電池及びその製造方法
EP2817433B1 (en) Chemical vapor deposition process for depositing a silica coating on a glass substrate
EP2758350B1 (en) Process for forming a silica coating on a glass substrate
JPWO2006054730A1 (ja) 薄膜付きガラス板の製造方法
EP1608793B1 (en) Titania coatings
WO2007108514A1 (ja) 抗菌膜付きガラス板とその製造方法、及びそのガラス板を有する物品
TW201313946A (zh) 藉由大氣壓化學氣相沉積來沉積氧化矽
JP5886832B2 (ja) 抗菌性及び/又は抗真菌性コーティングを有する被覆物品の製造方法並びにそれから製造される製品
EP1730087B1 (en) Process for the deposition of aluminium oxide coatings
NL9400329A (nl) Bekleed glas en werkwijze voor de vervaardiging ervan.
EP2714607B1 (de) Verfahren und vorrichtung zum beschichten eines floatglasbandes
EP3162773B1 (en) Substrate provided with low-reflection coating, method for its production and photoelectric conversion device containing it.
JP2012020936A (ja) ガラス基材上への酸化鉄コーティングの蒸着
EP3417088B1 (en) Chemical vapor deposition process for depositing a coating
JP2003238205A (ja) 薄膜形成方法およびその方法で形成した薄膜を備える基体
EP3191423B1 (en) Chemical vapour deposition process for depositing a titanium oxide coating
GB2466805A (en) Deposition of an antibacterial coating using flame assisted chemical vapour deposition
JP2007185641A (ja) 光触媒膜付きガラス板およびその製造方法
JP3676824B6 (ja) 光触媒活性化自浄式物品及びその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739358

Country of ref document: EP

Kind code of ref document: A1