WO2007108077A1 - 基地局装置、移動局装置およびサブキャリア割り当て方法 - Google Patents

基地局装置、移動局装置およびサブキャリア割り当て方法 Download PDF

Info

Publication number
WO2007108077A1
WO2007108077A1 PCT/JP2006/305450 JP2006305450W WO2007108077A1 WO 2007108077 A1 WO2007108077 A1 WO 2007108077A1 JP 2006305450 W JP2006305450 W JP 2006305450W WO 2007108077 A1 WO2007108077 A1 WO 2007108077A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
subcarrier
information
mobile station
station apparatus
Prior art date
Application number
PCT/JP2006/305450
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Oota
Takanori Iwamatsu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/305450 priority Critical patent/WO2007108077A1/ja
Priority to JP2008506094A priority patent/JP4627801B2/ja
Publication of WO2007108077A1 publication Critical patent/WO2007108077A1/ja
Priority to US12/232,170 priority patent/US8249001B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • Base station apparatus mobile station apparatus, and subcarrier allocation method
  • the present invention relates to a base station apparatus, a mobile station apparatus, and a mobile station apparatus, which allocate subcarriers used for downlink communication performed in a base station when performing orthogonal frequency division multiple access (OFDMA) communication. It relates to the subcarrier allocation method.
  • OFDMA orthogonal frequency division multiple access
  • subcarrier allocation in OFDMA communication is configured such that adjacent base stations use different frequencies and avoid frequency interference between base stations (cells).
  • the subcarrier channel and interference are detected on the subscriber (mobile station) side, provided to the base station side, and used for subcarrier allocation on the base station side.
  • the control information and data exchanged between the base station and the mobile station are individually controlled based on the cell pattern.
  • Patent Document 3 below.
  • FIG. 8 is a diagram showing a subcarrier allocation state according to the conventional technique. As shown in Fig. 8, in the case of a three-cell configuration, each cell (cell 1, 2, 3) is assigned a unique frequency band in advance, and a subcarrier is assigned to each user within the allocated frequency band. I was going.
  • FIG. 9-1 is a diagram for explaining carrier sense according to the prior art. 2 base stations
  • BS Base Station
  • MS Mobile Station
  • MSI Mobile Station
  • MS2 Mobile Station
  • UL Up Link
  • Mobile station MSI, MS3 exists in cell 201 of base station BS1, and mobile station MS2 exists in cell 202 of base station BS2.
  • Mobile station MS1 uses frequency fl
  • mobile station MS2 uses frequency f2
  • the reach for each field strength is shown in a circle in the figure.
  • the carrier sense threshold value of mobile station MS3 is set to —lOOdBm
  • mobile station MS3 exists at a position below the threshold value of the electric field strength at the time of carrier sense of mobile stations MSI and MS2. Yes.
  • Patent Document 1 JP 2005-502218
  • Patent Document 2 Special Table 2004-529524
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-80286
  • FIG. 9 2 is a diagram showing frequency interference that occurs after the carrier sense of FIG. 9-1.
  • the mobile station MS3 on the transmitting side determines that both frequencies fl and f2 are free as a result of carrier sensing.
  • the frequency fl or f2 will be used for transmission.
  • interference occurs in the same area F1 as the frequency fl used by the mobile station MS1, and when the mobile station MS3 uses the frequency f 2, the mobile station Interference occurs at frequency f2 and area F2 used by MS2.
  • the base station BS1 affects the reception from the mobile station MS (for example, an error). Communication rate is poor) Problem arises.
  • the present invention eliminates the problems caused by the above-described prior art, so that it is possible to prevent frequency interference on the receiving side of communication, and a base station apparatus that can bring the reuse factor close to 1, and mobile Means for solving the problems with the object of providing a station apparatus and a subcarrier allocation method
  • a base station apparatus is a base station apparatus that performs subcarrier allocation for downlink communication in orthogonal frequency division multiple access (OFDMA), Before starting downlink communication with the mobile station apparatus, as a result of carrier sense performed by the mobile station apparatus, acquisition means for acquiring information of the free subcarrier to be notified; and the free subcarrier acquired by the acquisition means Information is notified to the adjacent base station apparatus, and is shared by the information sharing means when starting downlink communication between the information sharing means shared by the adjacent base station apparatuses and the mobile station apparatus. And subcarrier setting means for setting an empty subcarrier for the downlink communication.
  • OFDMA orthogonal frequency division multiple access
  • a base station apparatus is a base station apparatus that performs uplink subcarrier allocation in orthogonal frequency division multiple access (OFDMA), and before starting uplink communication with a mobile station apparatus, Detecting means for performing carrier sense and detecting empty subcarriers; information on the empty subcarriers detected by the detecting means being notified to an adjacent base station apparatus; and information shared by the adjacent base station apparatuses And a sharing means and a subcarrier setting means for setting an empty subcarrier shared by the information sharing means for uplink communication when starting uplink communication with the mobile station apparatus. It is a sign.
  • OFDMA orthogonal frequency division multiple access
  • a mobile station apparatus is a mobile station apparatus that performs communication with a base station apparatus that performs uplink subcarrier allocation in orthogonal frequency division multiple access (OFDMA), Before starting downlink communication with the base station apparatus, carrier sense is performed to detect an empty subcarrier, and information on the subcarrier detected by the detection means is used as an upstream communication signal to the base station apparatus. And a notification means for inserting and notifying It is characterized by that.
  • OFDMA orthogonal frequency division multiple access
  • a subcarrier allocation method is a subcarrier allocation method in orthogonal frequency division multiplexing (OFDMA), and before communication between a base station device and a mobile station device is started.
  • OFDMA orthogonal frequency division multiplexing
  • a station apparatus on the signal receiving side performs carrier sense to detect a vacant subcarrier, and information on the vacant subcarrier detected by the detection process is the base station.
  • An information sharing step that is shared between adjacent base station devices including the device, and when communication is started between the base station device and the mobile station device, the empty subcarriers shared by the information sharing step are And an allocating step for allocating to.
  • carrier sensing is performed on the communication receiving side, and the carrier sensing result and information on empty subcarriers are notified to the base station apparatus.
  • the base station apparatus shares information on the empty subcarriers with the adjacent base station apparatus.
  • Each adjacent base station apparatus sets a subcarrier to be used for communication from among the empty subcarriers.
  • the present invention information on empty subcarriers obtained as a result of communication-side carrier sense of communication is shared between base station apparatuses, and each base station apparatus uses an empty subcarrier for communication. Since the configuration is set from among the carriers, there is an effect that it is possible to prevent frequency interference on the receiving side of communication and to improve the communication quality of reception. In addition, since the subcarriers can be dynamically allocated, the reuse factor can be brought close to 1!
  • FIG. 1 is an explanatory diagram showing an outline of a subcarrier allocation method according to the present invention.
  • FIG. 2-1 is a flowchart showing the processing contents of downlink subcarrier allocation.
  • Fig. 2-2 is a flowchart showing the processing contents of uplink subcarrier allocation.
  • FIG. 3-1 is a block diagram showing a configuration of a base station apparatus of the present invention.
  • FIG. 3-2 is a block diagram showing the configuration of the mobile station apparatus of the present invention.
  • FIG. 4-1 is a diagram showing a carrier sense state of uplink subcarrier setting example 1.
  • FIG. 42 is a diagram showing a subcarrier allocation state in uplink subcarrier setting example 1.
  • FIG. 5-1 is a diagram showing a carrier sense state of uplink subcarrier setting example 2.
  • Fig. 5-2 is a diagram showing a subcarrier allocation state in uplink subcarrier setting example 2.
  • FIG. 6-1 is a diagram illustrating a carrier sense state of downlink subcarrier setting example 1.
  • Fig. 6-2 is a diagram showing a subcarrier allocation state in downlink subcarrier setting example 1.
  • FIG. 7-1 is a diagram showing a carrier sense state of downlink subcarrier setting example 2.
  • FIG. 7-2 is a diagram showing a subcarrier allocation state in downlink subcarrier setting example 2.
  • FIG. 8 is a diagram showing a subcarrier allocation state according to the prior art.
  • FIG. 9-1 is a diagram for explaining carrier sense according to the prior art.
  • FIG. 9 2 is a diagram showing frequency interference that occurs after the carrier sense of FIG. 91. Explanation of symbols
  • Base station (BS1 ⁇ : BS3) Base station
  • the present invention relates to subcarrier allocation used for downlink (DLZUL) performed in a base station.
  • DL downlink
  • UL uplink
  • uplink carrier sense is performed at the base station, and subcarriers below the threshold are detected as a result of carrier sense.
  • the base station adjoins this carrier sense result information.
  • a plurality of base stations such as cells are notified, and each base station shares the notified information, and sets an uplink subcarrier in each mobile station so that interference does not occur.
  • Each mobile station uses uplink subcarriers based on the uplink subcarrier setting.
  • carrier sense is performed by the mobile station, and subcarriers below the threshold are detected as a result of carrier sense.
  • the mobile station periodically sends the carrier sense result information to the base station in the form of feedback.
  • the base station shares the collected carrier sense result information from each mobile station with a plurality of base stations such as neighboring cells, and the frequency band used as a downlink subcarrier for each mobile station so that interference does not occur.
  • the mobile station may determine a vacant subcarrier based on a subcarrier that has fallen below the threshold by carrier sense and notify the base station of this vacant subcarrier information.
  • any of the downlink Z and uplink 1. carrier sense is executed, 2. this carrier sense is executed by the data transmission receiving side, and 3. the result of carrier sense is adjacent. 4.
  • Reuse factor 1 by dynamically setting subcarriers.
  • each of the above processes can be executed independently irrespective of the other process.
  • FIG. 1 is an explanatory diagram showing an outline of the subcarrier allocation method of the present invention.
  • FIG. 1 shows uplink subcarriers (frequency) carrier sensed by adjacent base station # 1 and base station #m.
  • the subcarriers at frequencies fl, f3, f4, f5, f6, f8, flO, fl l are below the threshold, and at base station #m, frequencies f2, f3, f4, f5, f7, The subcarriers of f8, f9, fl l are below the threshold.
  • these adjacent base stations # 1 and #m notify and share information on the result of carrier sense between them. Although not shown, it is assumed that there are other base stations #n adjacent to these base stations # 1, #m. This base station #n also shares information on the result of carrier sensing by base stations # 1, #m. [0024] Then, in base station #n, subcarriers to be used are allocated from subcarriers (empty subcarriers) that are below the threshold in both base stations # 1 and #m. In the case of Fig. 1, the frequencies f3, f4, f5, f8, fl l are vacant subcarriers for both base stations # 1, #m.
  • Base station #n is the uplink (UL), from among these free subcarriers f3, f4, f5, f8, fll, the upstream bandwidth request, the number of users, the priority associated with each data type, etc.
  • Subcarriers are allocated based on one or a combination of QoS (Quality of Service) and propagation environment.
  • QoS Quality of Service
  • Downlink (DL) informs the nearest base station (for example, # 1) the information sensed by each mobile station, and information on all mobile station power (the above-mentioned empty subcarriers f3, f4, f5, f8, fl l ) Is shared between base stations # 1, #m, and #n, and subcarriers below the threshold are allocated based on one or a combination of the amount of transmitted data, number of users, QoS, propagation environment, and so on.
  • downlink Z uplink subcarrier allocation Next, specific processing contents of downlink Z uplink subcarrier allocation will be described.
  • the base station BS receives the result of carrier sense in the mobile station MS, shares information (carrier sense result) between the designated base station BSs, finds a free subcarrier from it,
  • the downlink subcarrier for each mobile station MS is set based on one or a combination of downlink data volume, number of users, QoS, propagation environment, and so on.
  • FIG. 2-1 is a flowchart showing processing details of downlink subcarrier allocation.
  • the base station BS sets a downlink carrier sense threshold value for the mobile station MS (step S201). This setting is performed using a setting notification from the base station BS to the mobile station MS.
  • each mobile station MS performs downlink carrier sense (step S 202), and the base station BS receives the result of carrier sensing of each mobile station MS force by feedback (step S 203).
  • the process proceeds to the following process.
  • this base station BS information is transmitted between a plurality of base stations BS whose cells are adjacent to the base station BS. Make settings related to sharing (shared BS settings) (step S205). The plurality of base stations BS set in step S205 share the information (carrier sense result) fed back from the mobile station MS. Thereafter, it is determined whether or not collection of subcarriers (frequency) used by each of the plurality of base stations BS set in step S205 is completed (step S206). Since the subcarriers used are different for each base station BS, collection from all base station BSs is completed until the collection of the subcarrier (frequency) used from each base station BS is completed ( Step S206: No loop).
  • step S206 When the collection of information on subcarriers (frequency) that are also used by each base station is completed (step S206: Yes), this base station (own base station) BS then shares with other base stations BS Based on the information on the carrier sense result, the subcarriers that are not used (empty subcarriers) are detected (step S207). It receives information such as the amount of downlink transmission data, number of users (of mobile station MS), QoS, propagation environment, etc., and based on one or a combination of these, for each mobile station MS under its own base station BS A subcarrier (frequency) is determined (step S208). Then, the downlink subcarrier is set based on the determination in step S208 (step S209).
  • the processing in step S209 is frequency setting in OFDM.
  • the frequency band of the downlink subcarrier used by the base station BS is changed according to the number of users in step S208.
  • the frequency band of In other words, the frequency range used by one cell shown in Fig. 8 can be expanded, and the reuse factor can be brought closer to 1. Also, if more subcarriers are used for data transmission, more data can be transmitted.
  • step S210 it is determined whether downlink subcarrier (frequency) assignment to all mobile stations MS has been completed (step S210). If not completed (step S210: No), the process returns to step S209 and remains. Downlink subcarriers are allocated to the mobile station MS. When the allocation of downlink subcarriers (frequency) to all mobile stations MS is completed (step S21 0: Yes), it is determined whether the processing related to the above downlink subcarrier allocation is completed (system termination) (step S211). When the process is continued (Step S211: No), if the power to re-execute the process after Step S201 is completed (Step S211: Yes), the above process is terminated. Make it.
  • Uplink shares the information of the result of carrier sense in the base station BS between the specified base station BSs, finds an empty subcarrier from among them, determines the uplink bandwidth request, number of users, QoS, propagation
  • a subcarrier for each mobile station MS is set based on one or a combination of the environment, etc., and the setting information is superimposed on the downlink and notified to each mobile station MS.
  • the mobile station MS transmits on the uplink subcarrier according to the information.
  • FIG. 2-2 is a flowchart showing processing details of uplink subcarrier allocation.
  • an uplink carrier sense threshold value is set in advance in the base station BS (step S221). Then, uplink carrier sense is performed at the base station BS (step S222).
  • this base station BS settings related to information sharing (shared BS settings) are made in advance between a plurality of base stations BS whose cells are adjacent to the base station BS (step S223).
  • the plurality of base stations BS set in step S223 share the carrier sense result.
  • step S224 When the collection of information on subcarriers (frequency) that are also used by each base station is completed (step S224: Yes), this base station (own base station) BS then shares it with other base stations BS Based on the information on the detected carrier sense result, a subcarrier that is not used (empty subcarrier) is detected (step S225). It receives information on uplink bandwidth request, number of users (of mobile station MS), QoS, propagation environment, etc., and based on one or a combination, subcarriers for all mobile stations MS under its base station BS Determine (Frequency) (Step S226).
  • the substation allocation notification is sent to each mobile station MS under the base station BS (step S227).
  • the mobile station MS that has received the assignment notification sets the assigned subcarriers (step S228).
  • the frequency band of the uplink subcarrier is changed according to the number of users in step S226. If the number of users is large, the frequency band of the uplink subcarrier is expanded. In other words, the frequency range used by one cell shown in Fig. 8 can be expanded, and the reuse factor can be brought close to 1. Also, if more subcarriers are used for data transmission, more data can be transmitted. Note that the mobile station MS performs transmission using the subcarrier (frequency) assigned in step S228.
  • step S229 it is determined whether uplink subcarrier (frequency) assignment to all mobile stations MS has been completed. If not completed (step S229: No), the process returns to step S227 and remains. Uplink subcarriers are allocated to the mobile station MS. When the allocation of uplink subcarriers (frequency) to all mobile stations MS is completed (step S22 9: Yes), it is determined whether the processing related to the above uplink subcarrier allocation is completed (system termination) (step S230). When continuing (step S230: No), if the power to re-execute the processing after step S221 ends (step S230: Yes), the above processing is terminated.
  • FIG. 3-1 is a block diagram showing the configuration of the base station apparatus of the present invention.
  • the base station BS (100 00) transmits the input user data (USERDATA) as a downlink signal via the transmission unit 1100, and the uplink reception signal is output as user data (USERDATA) via the reception unit 1200.
  • Figure 3-1 shows base station # 1 and other base station #m.
  • Transmission section 1100 includes FEC 1001 that performs error correction on input user data, information insertion section (information insert section) 1002 that inserts information into transmission data, and modulation section 1003 that modulates transmission data.
  • FEC IFFT1004 that performs inverse Fourier transform on the modulated transmission data
  • filter unit FIL
  • DAC1 006 that performs DZA conversion on the transmission data
  • RF band transmission signal for digitized transmission data
  • An RF transmitter (R FTX) 1007 for converting to The output of the RF transmission unit 1007 is transmitted as a downlink signal from the antenna 1008 to the mobile station MS via a Switchl 009 for time division simultaneous transmission / reception (TDD: Time Division Duplex).
  • the uplink signal from mobile station MS received by antenna 1008 is received via Switchl009. It is input to Nobu 1200.
  • the reception unit 1200 includes an RF reception unit (RFRX) 1010 that converts an upstream signal in the RF band into a reception signal, an ADC 1011 that converts AZD-converted digitized transmission data, a filter unit (FIL) 1012, and reception data FFT 1013 for performing a Fourier transform, a demodulating unit 1014 for demodulating received data, and a DEFEC 1016 for decoding received data and outputting it as user data (USERD ATA).
  • RFRX RF reception unit
  • ADC that converts AZD-converted digitized transmission data
  • FIL filter unit
  • reception data FFT 1013 for performing a Fourier transform
  • demodulating unit 1014 for demodulating received data
  • DEFEC 1016 for decoding received data and outputting it as user data
  • the above configuration is the basic configuration of the base station BS except for the information insert unit 1002.
  • an uplink carrier sense unit 1017, an uplink subcarrier setting unit 1018, and an uplink subcarrier information sharing unit 1020 are provided for uplink in addition to the above configuration.
  • a downlink subcarrier setting unit 1015 and a downlink subcarrier information sharing unit 1019 are provided for downlink.
  • the downlink subcarrier information sharing unit 1019 and the uplink subcarrier information sharing unit 1020 can be configured using storage means such as memory.
  • the uplink subcarrier setting unit 1018 and the downlink subcarrier setting unit 1015 can be configured by a control means such as a CPU, and execute the processing related to subcarrier allocation shown in FIGS. 2-1 and 2-2.
  • Uplink carrier sense section 1017 performs uplink carrier sense on the received data demodulated by demodulation section 1014 based on the setting of the uplink threshold value input in advance, and the result of carrier sense is obtained. Store in uplink subcarrier information sharing section 1020.
  • Uplink subcarrier information sharing section 1020 is notified by uplink carrier sense section 1017 of uplink subcarrier information that is equal to or lower than the threshold value, shared BS setting information, and other base stations. Information on the uplink carrier sense result is stored. As shown in the figure, the information stored in uplink subcarrier information sharing section 1020 is information shared with base stations # 1 to #m.
  • Uplink subcarrier setting section 1018 shares (stores) the above-described uplink bandwidth request, information on the number of users (of mobile station MS), QoS, propagation environment, and the like, and uplink subcarrier information sharing section 1020.
  • information uplink carrier sense result and shared BS information
  • an uplink subcarrier is set based on these information.
  • the configured uplink subcarrier configuration information (uplink configuration notification) is inserted into the transmission data (downlink signal) via the information insert unit 1002 and transmitted to the mobile station MS.
  • the information insert section 1002 further receives the setting of the downlink threshold value, and transmits it. Inserted into data and transmitted to mobile station MS.
  • Downlink subcarrier information sharing section 1019 stores the result of downlink carrier sense in which the mobile station MS power is also fed back. More specifically, the downlink signal sense result (empty subcarrier information) is also extracted by the demodulator 1014 of the receiver 1200. This demodulator 1014 outputs the downlink carrier sense result information fed back from the mobile station MS to the downlink subcarrier information sharing unit 1019, and functions as an acquisition means for acquiring the downlink carrier sense result.
  • Downlink subcarrier information sharing section 1019 further stores the downlink carrier sense result notified from other base stations and the information on the shared BS setting described above. As shown in the figure, the information stored in the downlink subcarrier information sharing unit 1019 is information shared with the base stations # 1 to #m.
  • Downlink subcarrier setting section 1015 shares (stores) information such as the above-mentioned downlink transmission data amount, the number of users (of mobile station MS), QoS, propagation environment, and the like, and downlink subcarrier information sharing section 1019.
  • information downlink carrier sense result and shared BS information
  • the set downlink subcarrier setting information is inserted into transmission data via modulation section 1003 and transmitted to mobile station MS.
  • FIG. 3-2 is a block diagram showing the configuration of the mobile station apparatus of the present invention.
  • own mobile station # 1 and other mobile station #n are shown.
  • Downlink signals from the base station (BS) 1000 are input from the antenna 2106 to the reception unit (RX) 2104 via the Switch 2105, and output as user data (USERDATA).
  • the downlink threshold value extraction unit 2107 extracts the downlink threshold value included in the downlink signal from the base station BS and outputs it to the downlink carrier sense unit 2103.
  • the downlink carrier sense unit 2103 performs carrier sense of the subcarrier, compares the electric field strength at the time of this carrier sense with the downlink threshold value, and outputs the comparison result to the feedback unit 2102 as the carrier sense result.
  • TX transmission section
  • User data (USERDATA) input to the mobile station (MS) 2100 is transmitted as an uplink signal from the antenna 2106 to the base station (BS) 1 000 via the switch 2105 from the transmission unit (T X) 2101.
  • FIG. 41 is a diagram showing a carrier sense state of uplink subcarrier setting example 1.
  • the carrier sense range is configured up to the first adjacent cell.
  • the base station is assumed to be base station BS1.
  • One base station belonging to the adjacent first cell 202 adjacent to the cell 201 of the base station BS1 is defined as a base station BS2.
  • FIG. 42 shows a subcarrier allocation state in uplink subcarrier setting example 1.
  • the base station BS1 Based on the carrier sense shown in Fig. 4-1, the base station BS1 also shares information on the carrier sense results of the other base station BS2. As a result, the base station BS1 determines that the subcarriers of the frequencies fl and f2 are used, and the subcarriers of the frequencies fl and f2 cannot be used. Then, the base station BS1 assigns a subcarrier having a frequency f3 different from the frequencies fl and f2 to the new mobile station MS3. Mobile station MS3 communicates with its own base station BS1 using a subcarrier of frequency f3. As a result, frequency interference at the base station BS1 can be reduced, and uplink reception communication quality can be improved.
  • FIG. 5-1 is a diagram illustrating a carrier sense state of uplink subcarrier setting example 2.
  • the carrier sense range is configured up to the second adjacent cell.
  • the base station is base station BS1.
  • One base station belonging to the adjacent first cell 202 adjacent to the cell 201 of the base station BS 1 is referred to as base station BS2, and one base station belonging to the adjacent second cell 203 is referred to as base station BS3.
  • FIG. 5-2 is a diagram illustrating a subcarrier allocation state in uplink subcarrier setting example 2.
  • the base station BS1 Based on the carrier sense shown in Figure 5-1, the base station BS1 also shares the carrier sense results of the other base stations BS2 and BS3. As a result, the base station BS1 determines that the subcarriers of the frequencies fl, f2, and f3 are used, and the subcarriers of the frequencies fl, f2, and f3 cannot be used. Then, the base station BS1 allocates a subcarrier having a frequency f4 different from the frequencies fl, f2, and f3 to the new mobile station MS3. As a result, frequency interference at the base station BS1 can be reduced, and uplink reception communication quality can be improved.
  • FIG. 6A is a diagram showing a carrier sense state of downlink subcarrier setting example 1.
  • the carrier sense range is configured up to the first adjacent cell.
  • the base station is base station BS1.
  • One base station belonging to the adjacent first cell 202 adjacent to the cell 201 of the base station BS 1 is defined as a base station BS2.
  • the subcarrier of the frequency f1 of the base station BS1 is detected, and the carrier sense result is fed back to the base station BS1.
  • FIG. 6-2 is a diagram illustrating a subcarrier allocation state in downlink subcarrier setting example 1.
  • the base station BS1 Based on the carrier sense shown in Fig. 6-1, the base station BS1 also shares the carrier sense result of the mobile station MS in the other base station BS2. Thereby, the base station BS1 determines that the subcarriers of the frequencies fl and f2 are used, and the subcarriers of the frequencies fl and f2 cannot be used. Then, the base station BS1 allocates a subcarrier having a frequency f3 different from the frequencies fl and f2 to the new mobile station MS3. As a result, frequency interference at each mobile station MS The communication quality of downlink reception can be improved.
  • FIG. 7-1 is a diagram illustrating a carrier sense state of downlink subcarrier setting example 2.
  • the carrier sense range is configured up to the second adjacent cell.
  • Base station BS1 is its own base station, one base station belonging to adjacent first cell 202 adjacent to cell 201 of base station BS1 is base station BS2, and one base station belonging to adjacent second cell 203 is The base station is BS3.
  • FIG. 7-2 is a diagram showing a subcarrier allocation state in downlink subcarrier setting example 2.
  • the base station BS1 Based on the carrier sense shown in FIG. 7-1, the base station BS1 also shares the carrier sense results of the mobile stations MS in the base station BS2 and the base station BS3. As a result, the base station BS1 determines that the subcarriers of the frequencies fl, f2, and f3 are used, and the subcarriers of the frequencies fl, f2, and f3 cannot be used. Then, the base station BS1 allocates a subcarrier having a frequency f4 different from the frequencies fl, f2, and f3 to the new mobile station MS3. As a result, frequency interference at each mobile station MS can be reduced and communication quality of downlink reception can be improved.
  • the threshold value of the carrier sense is not fixed but can be arbitrarily changed.
  • the carrier sense threshold set on the mobile station MS side Since the threshold value can be set from the base station BS, the threshold value can be easily set for a plurality of mobile stations MS. As described above, this threshold value can be changed according to the carrier sensing range (adjacent cell range), the communication state in the cell, the number of mobile stations MS, and the like.
  • the frequency range of subcarriers assigned to each cell in a predetermined frequency band can be changed by detecting a free subcarrier, the above frequency is interfered according to the number of users, the amount of data, etc.
  • the reuse factor can be made closer to 1 after preventing the problem.
  • the subcarrier allocation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by reading the recording medium force by the computer.
  • this program may be a transmission medium that can be distributed through a network such as the Internet.
  • the base station apparatus, mobile station apparatus, and subcarrier allocation method that are effective in the present invention are useful for subcarrier allocation in OFDMA communication, and in particular, frequent movement to adjacent cells is performed. It is suitable for each device of a communication system that stably performs communication quality between a mobile station device and a base station device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 直交周波数分割多重アクセス(OFDMA)における下り通信のサブキャリア割り当てを行う基地局(1000)は、移動局との下り通信開始前に、移動局が行ったキャリアセンスの結果、通知される空きサブキャリアの情報を復調部(1014)により下り信号から抽出し、下りサブキャリア情報共有部(1019)に格納される。この空きサブキャリアの情報は、隣接する基地局へ通知し、隣接する基地局同士で共有される。移動局との下り通信を開始する際、下りサブキャリア設定部(1015)は、下りサブキャリア情報共有部(1019)に共有されている空きサブキャリアを下り通信用として設定する。

Description

明 細 書
基地局装置、移動局装置およびサブキャリア割り当て方法
技術分野
[0001] 本発明は、直交周波数分割多重アクセス(OFDMA: Orthogonal Frequency Division Multiple Access)通信する場合に、基地局で行う下り上りの通信に使 用するサブキャリアを割り当てる基地局装置、移動局装置およびサブキャリア割り当 て方法に関するものである。
背景技術
[0002] 従来、 OFDMA通信におけるサブキャリアの割り当ては、隣接する基地局がそれぞ れ異なる周波数を用い基地局(セル)間での周波数干渉を避ける構成となって 、る。 各基地局のサブキャリアの割り当てに関する技術としては、加入者 (移動局)側でサ ブキャリアのチャネルと干渉を検出し、基地局側に提供して基地局側でのサブキヤリ ァの割り当てに利用する構成 (例えば、下記特許文献 1、 2参照。)や、順方向チヤネ ルの割り当てにおいて、基地局と移動局間でやりとりする制御情報とデータとをセル のパターンに基づきそれぞれ個別に伝送制御する構成 (例えば、下記特許文献 3参 照。)がある。
[0003] 図 8は、従来技術によるサブキャリアの割り当て状態を示す図である。図 8に示すよ うに 3つのセル構成の場合、予め各セル (セル 1, 2, 3)にそれぞれ固有の周波数帯 域を割り当て、割り当てた周波数帯域の範囲内で各ユーザにサブキャリアの割り当て を行っていた。
[0004] また、図 9—1は、従来技術によるキャリアセンスを説明する図である。 2つの基地局
(BS : Base Station) BS1, BS2と、 3つの移動局(MS : Mobile Station) MSI, MS2, MS3を示し、移動局 MS側で上り(UL:Up Link)キャリアセンスする場合の 例を示している。
[0005] 基地局 BS1のセル 201内には、移動局 MSI, MS3が存在し、基地局 BS2のセル 202内に移動局 MS2が存在している。移動局 MS1が周波数 flを使用し、移動局 M S2が周波数 f 2を使用し、その電界強度ごとの到達距離が図中円に示す状態である とする。このとき、移動局 MS3のキャリアセンスのスレツショールド値 =— lOOdBmと し、移動局 MS3は、移動局 MSI, MS2のキャリアセンス時の電界強度のスレツショ 一ルド値以下の位置に存在している。この状態では、この移動局 MS3がキャリアセン スしたとき、移動局 MS1の周波数 flおよび移動局 MS2の周波数 f2のいずれも検出 できないので、この移動局 M3は、周波数 fl, f2のどちらでも割り当てが可能であると 判断する。
[0006] 特許文献 1 :特表 2005— 502218号公報
特許文献 2:特表 2004— 529524号公報
特許文献 3:特開 2005 - 80286号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、図 8に示す構成によると、ある特定のセルにトラッフィックの偏りがあつ た場合、他のセルに割り当てたサブキャリアを振り替えて割り当てることができないと いう問題があった。図 8に示す従来の構成では、ある基地局と他の基地局とは、それ ぞれ周波数帯域を別々にして周波数干渉を避ける構成であるため、ある周波数帯域 にお 、て一つのセルが占有する割合を変更 (増大)させることができな力つた。図 8の 状態では、リユース 'ファクター(Reuse factor) = 3であり、 Reuse factor= lの実 現が困難であった。このリュース'ファクターを 1に近づけることができれば (Reuse f actor = 1)、セルに対して柔軟かつダイナミックに周波数の割り当てが可能となる。
[0008] 図 9 2は、図 9—1のキャリアセンス後に生じる周波数干渉を示す図である。図 9 1の状態の後、移動局 MSからの上り通信時 (UL)には、送信側である移動局 MS3 がキャリアセンスした結果、周波数 fl, f 2のいずれも空いていると判断して周波数 fl あるいは f 2を送信に使用することになる。移動局 MS 3が周波数 flを使用した場合は 、移動局 MS1が使用している周波数 flと同じ領域 F1部分で干渉が生じ、移動局 M S3が周波数 f 2を使用した場合には、移動局 MS2が使用している周波数 f2と領域 F 2部分で干渉が生じる。さらに、時間と共に移動局 MS3が移動したり、アンテナの向 きによって、これら干渉の領域 Fl, F2が基地局 BS1にも位置すると基地局 BS1では 移動局 MSからの受信に影響を与え (例えばエラーレートが悪ィ匕し)、通信品質が劣 化する問題も生じる。
[0009] この発明は、上述した従来技術による問題点を解消するため、通信の受信側にお ける周波数干渉を防ぐことができ、リユース'ファクターを 1に近づけることができる基 地局装置、移動局装置およびサブキャリア割り当て方法を提供することを目的とする 課題を解決するための手段
[0010] 上述した課題を解決し、目的を達成するため、この発明にかかる基地局装置は、直 交周波数分割多重アクセス (OFDMA)における下り通信のサブキャリア割り当てを 行う基地局装置であって、移動局装置との下り通信開始前に、当該移動局装置が行 つたキャリアセンスの結果、通知される空きサブキャリアの情報を取得する取得手段と 、前記取得手段により取得された前記空きサブキャリアの情報を隣接する基地局装 置に通知し、当該隣接する基地局装置同士で共有する情報共有手段と、前記移動 局装置との下り通信を開始する際に、前記情報共有手段に共有されている空きサブ キャリアを当該下り通信用として設定するサブキャリア設定手段と、を備えたことを特 徴とする。
[0011] また、この発明に力かる基地局装置は、直交周波数分割多重アクセス (OFDMA) における上り通信のサブキャリア割り当てを行う基地局装置であって、移動局装置と の上り通信開始前に、キャリアセンスを行い、空きサブキャリアを検出する検出手段と 、前記検出手段により検出された前記空きサブキャリアの情報を隣接する基地局装 置に通知し、当該隣接する基地局装置同士で共有する情報共有手段と、前記移動 局装置との上り通信を開始する際に、前記情報共有手段に共有されている空きサブ キャリアを当該上り通信用として設定するサブキャリア設定手段と、を備えたことを特 徴とする。
[0012] また、この発明に力かる移動局装置は、直交周波数分割多重アクセス (OFDMA) における上り通信のサブキャリア割り当てを行う基地局装置との間で通信を行う移動 局装置であって、前記基地局装置との下り通信開始前に、キャリアセンスを行い、空 きサブキャリアを検出する検出手段と、前記検出手段により検出されたサブキャリアの 情報を前記基地局装置への上り通信の信号に挿入して通知する通知手段と、を備え たことを特徴とする。
[0013] また、この発明にかかるサブキャリア割り当て方法は、直交周波数分割多重ァクセ ス (OFDMA)におけるサブキャリア割り当て方法であって、基地局装置と移動局装 置との間の通信開始前に、当該基地局装置あるいは移動局装置のうち信号の受信 側の局装置がキャリアセンスを行い、空きサブキャリアを検出する検出工程と、前記 検出工程により検出された前記空きサブキャリアの情報を前記基地局装置を含み隣 接する基地局装置同士で共有する情報共有工程と、基地局装置と移動局装置との 間で通信を開始する際に、前記情報共有工程により共有された空きサブキャリアを当 該通信に割り当てる割り当て工程と、を含むことを特徴とする。
[0014] 上記構成によれば、通信の受信側でキャリアセンスを行 、、このキャリアセンス結果 、空きサブキャリアの情報を基地局装置に通知する。基地局装置は、隣接する基地 局装置との間で、空きサブキャリアの情報を共有する。そして、隣接する各基地局装 置は、通信に使用するサブキャリアを空きサブキャリアの中から設定する。
発明の効果
[0015] 本発明によれば、通信の受信側キャリアセンスを行った結果の空きサブキャリアの 情報を基地局装置間で共有し、各基地局装置は、通信に使用するサブキャリアを空 きサブキャリアの中から設定する構成であるため、通信の受信側における周波数干 渉を防ぐことができ受信の通信品質を向上できるという効果を奏する。また、サブキヤ リアをダイナミックに割り当てることができるため、リユース'ファクターを 1に近づけるこ とができると!、う効果を奏する。
図面の簡単な説明
[0016] [図 1]図 1は、本発明のサブキャリア割り当て方法の概要を示す説明図である。
[図 2-1]図 2— 1は、下りサブキャリアの割り当ての処理内容を示すフローチャートであ る。
[図 2-2]図 2— 2は、上りサブキャリアの割り当ての処理内容を示すフローチャートであ る。
[図 3-1]図 3— 1は、この発明の基地局装置の構成を示すブロック図である。
[図 3-2]図 3— 2は、この発明の移動局装置の構成を示すブロック図である。 [図 4-1]図 4—1は、上りサブキャリア設定例 1のキャリアセンス状態を示す図である。
[図 4-2]図 4 2は、上りサブキャリア設定例 1のサブキャリア割り当て状態を示す図で ある。
[図 5-1]図 5—1は、上りサブキャリア設定例 2のキャリアセンス状態を示す図である。
[図 5-2]図 5— 2は、上りサブキャリア設定例 2のサブキャリア割り当て状態を示す図で ある。
[図 6-1]図 6—1は、下りサブキャリア設定例 1のキャリアセンス状態を示す図である。
[図 6-2]図 6— 2は、下りサブキャリア設定例 1のサブキャリア割り当て状態を示す図で ある。
[図 7-1]図 7—1は、下りサブキャリア設定例 2のキャリアセンス状態を示す図である。
[図 7-2]図 7— 2は、下りサブキャリア設定例 2のサブキャリア割り当て状態を示す図で ある。
[図 8]図 8は、従来技術によるサブキャリアの割り当て状態を示す図である。
[図 9-1]図 9—1は、従来技術によるキャリアセンスを説明する図である。
[図 9-2]図 9 2は、図 9 1のキャリアセンス後に生じる周波数干渉を示す図である。 符号の説明
201, 202, 203 セル
1000 基地局
1001 FEC
1002 情報挿入部 (情報 insert部)
1003 変調部
1004 IFFT
1005 フィルタ部(FIL)
1006 DAC
1007 RF送信部(RFTX)
1008 アンテナ
1009 witcn
1010 RF受信部 (RFRX) 1011 ADC
1012 フィルタ部(FIL)
1013 FFT
1014 復調部
1015 下りサブキャリア設定部
1016 DEFEC
1017 上りキャリアセンス咅
1018 上りサブキャリア設定部
1019 下りサブキャリア情報共有部
1020 上りサブキャリア情報共有部
2100 移動 J
2101 送信部 (TX)
2102 フィードバック部
2103 下りキャリアセンス部
2104 受信部 (RX)
2105 ¾witcn
2106 ァ、ノテナ
BS (BS1〜: BS3) 基地局
MS (MS1〜MS4) 移動局
発明を実施するための最良の形態
[0018] (発明の概要)
以下に添付図面を参照して、この発明にかかる基地局装置、移動局装置およびサ ブキャリア割り当て方法の好適な実施の形態を詳細に説明する。本発明は、基地局 で行う下り上り(DLZUL)に使用するサブキャリアの割り当てに関する。以下の説明 において、下り(DL)とは、基地局力も移動局へのデータ伝送を示し、上り(UL)とは 、移動局力 基地局へのデータ伝送を示している。
[0019] 上り(UL)は、基地局でキャリアセンスを行 、、キャリアセンスの結果、スレツショール ド以下のサブキャリアを検出する。基地局はこのキャリアセンスの結果の情報を隣接 セル等の複数の基地局に通知し、各基地局はこの通知された情報を共有し、干渉が 起こらないように、各移動局に上りサブキャリアを設定する。各移動局は、上りサブキ ャリアの設定に基づ 、て上りサブキャリアを使用する。
[0020] 一方、下り(DL)では、移動局でキャリアセンスを行 、、キャリアセンスの結果、スレ ッショールド以下のサブキャリアを検出する。移動局は、キャリアセンスの結果の情報 を基地局に周期的にフィードバック (Feedback)の形で送る。基地局は、収集した各 移動局からのキャリアセンスの結果の情報を、隣接セル等の複数の基地局で共有し 、干渉が起こらないように、各移動局に下りサブキャリアとして使用する周波数帯域を 設定する。上記構成において、移動局は、キャリアセンスによりスレツショールド以下 となったサブキャリアによって空きサブキャリアを判断し、この空きサブキャリア情報を 基地局に通知する構成としてもょ 、。
[0021] このように、この発明では、下り Z上りのいずれも、 1.キャリアセンスを実行し、 2.こ のキャリアセンスをデータ伝送の受信側が実行し、 3.キャリアセンスの結果を隣接す る基地局で共有し、 4.基地局がキャリアセンスの結果に基づいて、下り Z上りサブキ ャリアの周波数帯域をダイナミックに変更して設定する、構成である。このように、ダイ ナミックにサブキャリアを設定することにより、 Reuse factor = 1に近づけることがで きるようになる。なお、下り Z上りは、それぞれ独立してサブキャリアを割り当てるため 、上記処理についても一方と他方の処理は関係なく独立して実行できる。
[0022] (実施の形態)
図 1は、本発明のサブキャリア割り当て方法の概要を示す説明図である。図 1には、 隣接する基地局 # 1と基地局 # mでキャリアセンスした上りのサブキャリア (周波数)を 示す。基地局 # 1では、周波数 fl, f3, f4, f5, f6, f8, flO, fl lのサブキャリアがス レツショールド以下であり、基地局 # mでは、周波数 f2, f3, f4, f5, f7, f8, f9, fl l のサブキャリアがスレツショールド以下である。
[0023] そして、これら隣接する基地局 # 1, # mでは両者間でキャリアセンスした結果の情 報を通知し、共有する。また、図示しないがこれら基地局 # 1, # mに隣接する他の 基地局 # nがあるとする。この基地局 # nにおいても基地局 # 1, # mによるキャリア センスした結果の情報を共有する。 [0024] そして、基地局 # nでは、基地局 # 1, # mの両方でスレツショールド以下となった サブキャリア (空きサブキャリア)の中から使用するサブキャリアを割り当てる。図 1の場 合では、周波数 f3, f4, f5, f8, fl lが両方の基地局 # 1, # mに対する空きサブキ ャリアとなっている。基地局 # nは、上り(UL)は、これら空きサブキャリア f 3, f4, f5, f 8, fl lの中から、上りバンド幅リクエスト、 User数、データの種別ごとに付随したプラ ィオリティ等を示す QoS (Quality of Service)、伝搬環境等の一つあるいは複数 の組み合わせに基づきサブキャリアを割り当てる。下り(DL)は、各移動局でキャリア センスした情報を最寄りの基地局 (例えば # 1)に通知し、全ての移動局力もの情報( 上記空きサブキャリア f3, f4, f5, f8, fl l)を基地局 # 1, # m, # n間で共有し、下 り送信データ量、 User数、 QoS、伝搬環境等の一つあるいは組み合わせに基づきス レツショールド以下のサブキャリアを割り当てる。
[0025] (下りサブキャリアの割り当て処理の具体例について)
次に、下り Z上りサブキャリアの割り当ての具体的処理内容について説明する。下 り(DL)は、移動局 MSにてキャリアセンスした結果を基地局 BSが受け取り、指定され た基地局 BS間で情報 (キャリアセンス結果)を共有し、その中から空きサブキャリアを 求め、下りデータ量、 User数、 QoS、伝搬環境等の一つあるいは組み合わせに基づ き、各移動局 MSに対する下りサブキャリアを設定する。
[0026] 図 2— 1は、下りサブキャリアの割り当ての処理内容を示すフローチャートである。下 り(DL)では、基地局 BSは、移動局 MSに対して下りキャリアセンススレツショールド 値を設定する (ステップ S201)。この設定は、基地局 BSから移動局 MSに対する設 定通知を用いて行う。そして、各移動局 MSにて下りキャリアセンスを行い (ステップ S 202)、基地局 BSは、各移動局 MS力もキャリアセンスした結果をフィードバックで受 け取る(ステップ S203)。そして、全ての移動局 MS力 フィードバックされた情報(キ ャリアセンス結果)を受け取つたか (前 MS終了か)を判断し (ステップ S204)、まだ受 け取って!/ヽな 、移動局 MSのキャリアセンス結果があれば (ステップ S204: No)、ス テツプ S202に戻る。全ての移動局 MSからフィードバックされた情報(キャリアセンス 結果)を受け取ると (ステップ S 204 : Yes)、以下の処理に移行する。
[0027] この基地局 BSでは、予め自基地局とセルが隣接する複数の基地局 BS間で情報の 共有に関する設定 (共有 BSの設定)をしておく(ステップ S205)。ステップ S205で設 定された複数の基地局 BS同士が、移動局 MSからフィードバックされた情報 (キヤリ アセンス結果)を共有することになる。この後、このステップ S205で設定された複数 の基地局 BSがそれぞれ使用するサブキャリア (周波数)の収集が終了した力判断す る (ステップ S206)。使用しているサブキャリアは基地局 BSごとに異なるため、各基 地局 BSから使用しているサブキャリア (周波数)の情報の収集が終わるまでは、全て の基地局 BSからの収集を行う(ステップ S206: Noのループ)。
[0028] 各基地局力も使用しているサブキャリア (周波数)の情報の収集が終わると (ステツ プ S206 :Yes)、次に、この基地局(自基地局) BSが他基地局 BSと共有しているキヤ リアセンス結果の情報に基づき、使用していないサブキャリア(空きサブキャリア)を検 出する(ステップ S 207)。そして、下り送信データ量、(移動局 MSの) User数、 QoS 、伝搬環境等の情報入力を受け、これらの一つあるいは組み合わせに基づき、自基 地局 BS配下の全ての移動局 MSそれぞれに対するサブキャリア (周波数)を決定す る(ステップ S208)。そして、ステップ S208の決定に基づいて下りサブキャリアの設 定を行う(ステップ S209)。ステップ S209における処理は、 OFDMにおける周波数 の設定であり、例えば、ステップ S208による User数に応じて自基地局 BSが使用す る下りサブキャリアの周波数帯域が変更され、 User数が多ければ下りサブキャリアの 周波数帯域が広がる。つまり、図 8に示したある一つのセルが使用する周波数範囲を 拡大でき、リユース'ファクター = 1に近づけることができるようになる。また、データの 送信に多くのサブキャリアを使用すればそれだけ多くのデータを送信できるようにな る。
[0029] この後、全ての移動局 MSに対する下りサブキャリア (周波数)の割り当てが終了し たか判断し (ステップ S210)、終了していなければ (ステップ S210: No)、ステップ S2 09に戻り、残っている移動局 MSに対する下りサブキャリアの割り当てを行う。全ての 移動局 MSに対する下りサブキャリア (周波数)の割り当てが終了すると (ステップ S21 0 : Yes)、以上の下りサブキャリア割り当てに関する処理の終了(システム終了)か判 断し (ステップ S 211)、処理の継続時には(ステップ S211 :No)、ステップ S201以降 の処理を再実行する力 終了であれば (ステップ S211 : Yes)、以上の処理を終了さ せる。
[0030] (上りサブキャリアの割り当て処理の具体例について)
上り(UL)は、基地局 BSにてキャリアセンスした結果の情報を、指定された基地局 BS間で共有し、その中から空きサブキャリアを求め、上りバンド幅リクエスト、 User数 、 QoS、伝搬環境等の一つあるいは組み合わせに基づき各移動局 MSに対するサ ブキャリアを設定し、設定情報を下りに重畳して各移動局 MSに通知する。移動局 M Sはその情報に従って、上りサブキャリアで送信する。
[0031] 図 2— 2は、上りサブキャリアの割り当ての処理内容を示すフローチャートである。上 り(UL)では、基地局 BSに予め、上りキャリアセンススレツショールド値を設定しておく (ステップ S221)。そして、基地局 BSにて上りキャリアセンスを行う(ステップ S222)。
[0032] この基地局 BSでは、予め自基地局とセルが隣接する複数の基地局 BS間で情報の 共有に関する設定 (共有 BSの設定)をしておく(ステップ S223)。ステップ S223で設 定された複数の基地局 BS同士が、キャリアセンス結果を共有することになる。この後 、このステップ S223で設定された複数の基地局 BSがそれぞれ使用するサブキャリア (周波数)の収集が終了した力判断する (ステップ S224)。使用して 、るサブキャリア は基地局ごとに異なるため、各基地局 BSから使用しているサブキャリア (周波数)の 情報の収集が終わるまでは、全ての基地局 BSからの収集を行う(ステップ S224 :No のループ)。
[0033] 各基地局力も使用しているサブキャリア (周波数)の情報の収集が終わると (ステツ プ S224 :Yes)、次に、この基地局(自基地局) BSが他基地局 BSと共有しているキヤ リアセンス結果の情報に基づき、使用していないサブキャリア(空きサブキャリア)を検 出する(ステップ S225)。そして、上りバンド幅リクエスト、(移動局 MSの) User数、 Q oS、伝搬環境等の情報入力を受け、一つあるいは組み合わせに基づき、自基地局 BS配下の全ての移動局 MSそれぞれに対するサブキャリア (周波数)を決定する (ス テツプ S226)。
[0034] そして、ステップ S226の決定に基づいて基地局 BS配下の移動局 MSへそれぞれ サブキャリアの割り当て通知を行う(ステップ S227)。割り当て通知を受けた移動局 M Sにて、それぞれ割り当てられたサブキャリアを設定する (ステップ S228)。例えば、 ステップ S226による User数に応じて上りサブキャリアの周波数帯域が変更され、 Us er数が多ければ上りサブキャリアの周波数帯域が広がる。つまり、図 8に示したある一 つのセルが使用する周波数範囲を拡大でき、リユース ·ファクター = 1に近づけること ができるようになる。また、データの送信に多くのサブキャリアを使用すればそれだけ 多くのデータを送信できるようになる。なお、移動局 MSは、ステップ S228により割り 当てられたサブキャリア (周波数)を用いた送信を行うことになる。
[0035] そして、全ての移動局 MSに対する上りサブキャリア (周波数)の割り当てが終了し たか判断し (ステップ S229)、終了していなければ (ステップ S229: No)、ステップ S2 27に戻り、残っている移動局 MSに対する上りサブキャリアの割り当てを行う。全ての 移動局 MSに対する上りサブキャリア (周波数)の割り当てが終了すると (ステップ S22 9: Yes)、以上の上りサブキャリア割り当てに関する処理の終了(システム終了)か判 断し (ステップ S230)、処理の継続時には(ステップ S230 :No)、ステップ S221以降 の処理を再実行する力 終了であれば (ステップ S230 : Yes)、以上の処理を終了さ せる。
[0036] (基地局の構成)
図 3— 1は、この発明の基地局装置の構成を示すブロック図である。基地局 BS (10 00)は、入力されるユーザデータ (USERDATA)を送信部 1100を介して下り信号と して送信し、上りの受信信号は受信部 1200を介してユーザデータ (USERDATA) として出力する。図 3—1には、自基地局 # 1と他基地局 # mを記載した。
[0037] 送信部 1100は、入力されるユーザデータの誤り訂正を行う FEC1001と、送信デ ータに情報を挿入する情報挿入部 (情報 insert部) 1002と、送信データを変調する 変調部 1003と、変調後の送信データを逆フーリエ変換する IFFT1004と、送信デー タをフィルタリングするフィルタ部(FIL) 1005と、送信データを DZA変換する DAC1 006と、デジタル化された送信データを RF帯域の送信信号に変換する RF送信部 (R FTX) 1007とを備える。 RF送信部 1007の出力は、時分割同時送受 (TDD: Time Division Duplex)用の Switchl009を介してアンテナ 1008から移動局 MSに対 する下り信号として送信される。
[0038] アンテナ 1008が受信した移動局 MSからの上り信号は、 Switchl009を介して受 信部 1200に入力される。受信部 1200は、 RF帯域の上り信号を受信信号に変換す る RF受信部(RFRX) 1010と、デジタル化された送信データを AZD変換する ADC 1011と、フィルタ部(FIL) 1012と、受信データをフーリエ変換する FFT1013と、受 信データを復調する復調部 1014と、受信データを復号し、ユーザデータ (USERD ATA)として出力する DEFEC1016とを備える。
[0039] 以上の構成は、情報 insert部 1002を除いて基本的な基地局 BSの構成である。こ の発明では、上記構成にカ卩えて、上りについては、上りキャリアセンス部 1017と、上り サブキャリア設定部 1018と、上りサブキャリア情報共有部 1020とを備える。下りにつ いては、下りサブキャリア設定部 1015と、下りサブキャリア情報共有部 1019とを備え る。下りサブキャリア情報共有部 1019および上りサブキャリア情報共有部 1020は、メ モリ等の記憶手段を用いて構成することができる。また、上りサブキャリア設定部 101 8および下りサブキャリア設定部 1015は、 CPU等の制御手段によって構成でき、図 2— 1および図 2— 2に示したサブキャリアの割り当てに関する処理を実行する。
[0040] 上りキャリアセンス部 1017は、予め入力される上りのスレツショールド値の設定に基 づいて、復調部 1014の復調後の受信データに対し上りキャリアセンスを行い、キヤリ アセンスの結果を上りサブキャリア情報共有部 1020に格納する。
[0041] 上りサブキャリア情報共有部 1020には、上りキャリアセンス部 1017によりスレツショ 一ルド値以下である上りのサブキャリアの情報と、上述した共有 BS設定の情報と、他 基地局から通知された上りのキャリアセンス結果の情報とが格納される。図示のように 、上りサブキャリア情報共有部 1020に格納された情報は、各基地局 # l〜# mとの 間で共有される情報となる。
[0042] 上りサブキャリア設定部 1018には、上述した上りバンド幅リクエスト、(移動局 MSの ) User数、 QoS、伝搬環境等の情報と、上りサブキャリア情報共有部 1020が共有( 格納)して 、る情報(上りのキャリアセンス結果と共有 BSの情報)が入力され、これら の情報に基づいて、上りサブキャリアを設定する。設定した上りサブキャリアの設定の 情報 (上り設定通知)は、情報 insert部 1002を介して送信データ(下り信号)に挿入 され、移動局 MSに送信される。
[0043] 情報 insert部 1002には、さらに、下りスレツショールド値の設定が入力され、送信 データに挿入して、移動局 MSに送信される。
[0044] 下りサブキャリア情報共有部 1019には、移動局 MS力もフィードバックされた下りの キャリアセンスの結果が格納される。具体的には、下りのキャリアセンスの結果 (空き サブキャリアの情報)は、受信部 1200の復調部 1014により上り信号力も抽出される 。この復調部 1014は、移動局 MSからフィードバックされた下りのキャリアセンスの結 果の情報を下りサブキャリア情報共有部 1019に出力するものであり、下りのキャリア センスの結果を取得する取得手段の機能を有する。
[0045] この下りサブキャリア情報共有部 1019は、さらに、他基地局から通知された下りの キャリアセンス結果と、上述した共有 BS設定の情報が格納される。図示のように、下り サブキャリア情報共有部 1019に格納された情報は、各基地局 # l〜# mとの間で共 有される情報となる。
[0046] 下りサブキャリア設定部 1015には、上述した下り送信データ量、(移動局 MSの) U ser数、 QoS、伝搬環境等の情報と、下りサブキャリア情報共有部 1019が共有 (格納 )して 、る情報(下りのキャリアセンス結果と共有 BSの情報)が入力され、これらの情 報に基づいて、下りサブキャリアを設定する。設定した下りサブキャリアの設定の情報 は、変調部 1003を介して送信データに挿入され、移動局 MSに送信される。
[0047] 図 3— 2は、この発明の移動局装置の構成を示すブロック図である。この図 3— 2に は、自移動局 # 1と他移動局 # nを記載した。
[0048] 基地局(BS) 1000力らの下り信号は、アンテナ 2106から Switch2105を介して受 信部(RX) 2104に入力され、ユーザデータ(USERDATA)として出力する。下りス レツショールド値抽出部 2107は、基地局 BSからの下り信号に含まれる下りスレツショ 一ルド値を抽出して、下りキャリアセンス部 2103に出力する。下りキャリアセンス部 21 03は、サブキャリアのキャリアセンスを行い、このキャリアセンス時の電界強度を下りス レツショールド値と比較し、比較結果をキャリアセンス結果としてフィードバック部 210 2に出力する。
[0049] フィードバック部 2102は、下りキャリアセンス部 2103によるキャリアセンスの結果、 スレツショールド値以下のサブキャリアを空きサブキャリアとして検出し、この空きサブ キャリアの情報を送信部 (TX) 2101を介して基地局(BS) 1000に通知する。送信部 (TX) 2101は、基地局(BS) 1000への上り信号にサブキャリアの情報を挿入して通 知する通知手段の機能を有する。
[0050] この移動局(MS) 2100に入力されるユーザデータ(USERDATA)は、送信部(T X) 2101から Switch2105を介してアンテナ 2106から上り信号として基地局(BS) 1 000に送信される。
[0051] (上りサブキャリア設定例 1)
次に、以上説明した構成により、サブキャリア割り当ての各設定例を説明する。図 4 1は、上りサブキャリア設定例 1のキャリアセンス状態を示す図である。図 4—1では 、キャリアセンス範囲を第 1隣接セルまでの構成としている。
[0052] 自基地局を基地局 BS1とする。この基地局 BS1のセル 201に隣接する隣接第一セ ル 202に属する、ある一つの基地局を基地局 BS2とする。基地局 BS1がスレツショー ルド値 = lOOdBmでキャリアセンスすると、移動局 MS1の周波数 f 1のサブキャリア を検出する。また、基地局 BS2がスレツショールド値 =— lOOdBmでキャリアセンス すると、移動局 MS2の周波数 f2のサブキャリアを検出する。
[0053] 図 4 2は、上りサブキャリア設定例 1のサブキャリア割り当て状態を示す図である。
図 4—1に示したキャリアセンスにより、自基地局 BS1は、他基地局 BS2のキャリアセ ンス結果も情報共有する。これにより、自基地局 BS1は、周波数 fl, f2のサブキヤリ ァが使用されており、この周波数 fl, f 2のサブキャリアは使用できないと判断する。そ して、自基地局 BS1は、周波数 fl, f2と異なる周波数 f3のサブキャリアを新規の移動 局 MS3へ割り当てる。移動局 MS3は、周波数 f 3のサブキャリアを使用して自基地局 BS1との間の通信を行う。その結果、基地局 BS1での周波数干渉を低減でき、上り 受信の通信品質を向上できるようになる。
[0054] (上りサブキャリア設定例 2)
図 5—1は、上りサブキャリア設定例 2のキャリアセンス状態を示す図である。図 5— 1では、キャリアセンス範囲を第 2隣接セルまでの構成としている。自基地局を基地局 BS1とする。この基地局 BS 1のセル 201に隣接する隣接第 1セル 202に属するある 一つの基地局を基地局 BS2とし、隣接第 2セル 203に属するある一つの基地局を基 地局 BS3とする。 [0055] 基地局 BS1がスレツショールド値 = lOOdBmでキャリアセンスすると、移動局 MS 1の周波数 flのサブキャリアを検出する。また、基地局 BS2がスレツショールド値 = lOOdBmでキャリアセンスすると、移動局 MS2の周波数 f2のサブキャリアを検出する 。さらに、基地局 BS3がスレツショールド値 = 100dBmでキャリアセンスすると、移 動局 MS4の周波数 f3のサブキャリアを検出する。
[0056] 図 5— 2は、上りサブキャリア設定例 2のサブキャリア割り当て状態を示す図である。
図 5—1に示したキャリアセンスにより、自基地局 BS1は、他基地局 BS2, BS3のキヤ リアセンス結果も情報共有する。これにより、自基地局 BS1は、周波数 fl, f2, f3の サブキャリアが使用されており、この周波数 fl, f2, f3のサブキャリアは使用できない と判断する。そして、自基地局 BS1は、周波数 fl, f2, f 3と異なる周波数 f4のサブキ ャリアを新規の移動局 MS3へ割り当てる。その結果、基地局 BS1での周波数干渉を 低減でき、上り受信の通信品質を向上できるようになる。
[0057] (下りサブキャリア設定例 1)
図 6—1は、下りサブキャリア設定例 1のキャリアセンス状態を示す図である。図 6— 1では、キャリアセンス範囲を第 1隣接セルまでの構成としている。 自基地局を基地局 BS1とする。この基地局 BS 1のセル 201に隣接する隣接第 1セル 202に属するある 一つの基地局を基地局 BS2とする。そして、基地局 BS1内の移動局 MS1がスレツシ ヨールド値 = lOOdBmでキャリアセンスすると、基地局 BS1の周波数 f 1のサブキヤ リアを検出し、キャリアセンス結果をこの基地局 BS1へフィードバックする。また、基地 局 BS2内の移動局 MS2がスレツショールド値 = - lOOdBmでキャリアセンスすると、 基地局 BS2の周波数 f2のサブキャリアを検出し、キャリアセンス結果を基地局 BS2へ フィードバックする。
[0058] 図 6— 2は、下りサブキャリア設定例 1のサブキャリア割り当て状態を示す図である。
図 6—1に示したキャリアセンスにより、自基地局 BS1は、他基地局 BS2内の移動局 MSのキャリアセンス結果も情報共有する。これにより、自基地局 BS1は、周波数 fl, f2のサブキャリアが使用されており、この周波数 fl, f2のサブキャリアは使用できない と判断する。そして、自基地局 BS1は、周波数 fl, f 2と異なる周波数 f 3のサブキヤリ ァを新規の移動局 MS3へ割り当てる。その結果、各移動局 MSでの周波数干渉を 低減でき、下り受信の通信品質を向上できる。
[0059] (下りサブキャリア設定例 2)
図 7—1は、下りサブキャリア設定例 2のキャリアセンス状態を示す図である。図 7— 1では、キャリアセンス範囲を第 2隣接セルまでの構成としている。自基地局を基地局 BS1とし、この基地局 BS1のセル 201に隣接する隣接第一セル 202に属するある一 つの基地局を基地局 BS2とし、隣接第 2セル 203に属するある一つの基地局を基地 局 BS3とする。
[0060] そして、基地局 BS1内の移動局 MS1がスレツショールド値 = lOOdBmでキャリア センスすると、基地局 BS1の周波数 flのサブキャリアを検出し、キャリアセンス結果を この基地局 BS1へフィードバックする。また、基地局 BS2内の移動局 MS2でスレツシ ヨールド値 = lOOdBmでキャリアセンスすると、基地局 BS2の周波数 f 2のサブキヤ リアを検出し、キャリアセンス結果をこの基地局 BS2へフィードバックする。基地局 BS 3内の移動局 MS4でスレツショールド値 = lOOdBmでキャリアセンスすると、基地 局 BS3の周波数 f3のサブキャリアを検出し、キャリアセンス結果をこの基地局 BS3へ フィードバックする。
[0061] 図 7— 2は、下りサブキャリア設定例 2のサブキャリア割り当て状態を示す図である。
図 7—1に示したキャリアセンスにより、自基地局 BS1は、基地局 BS2内と基地局 BS 3内の移動局 MSのキャリアセンス結果も情報共有する。これにより、自基地局 BS1 は、周波数 fl, f2, f 3のサブキャリアが使用されており、この周波数 fl, f2, f3のサブ キャリアは使用できないと判断する。そして、自基地局 BS1は、周波数 fl, f2, f3と異 なる周波数 f4のサブキャリアを新規の移動局 MS3へ割り当てる。その結果、各移動 局 MSでの周波数干渉を低減でき、下り受信の通信品質を向上できるようになる。
[0062] 上述した実施の形態において説明したサブキャリアの設定例では、便宜上、横方 向のセルを用いて説明したが、各セルは縦横方向に配置されており、このような配置 においても上述したサブキャリアの割り当てを行うことにより、周波数干渉を防止して 通信品質を向上できるものである。
[0063] また、キャリアセンスのスレツショールド値は、固定ではなく任意に変更可能である。
特に、上記構成によれば、移動局 MS側に設定されるキャリアセンスのスレツショール ド値は、基地局 BSから設定することができるため、複数台の移動局 MSに対して容易 にスレツショールド値を設定できるようになる。このスレツショールド値は、上述したよう に、キャリアセンスする範囲(隣接セルの範囲)、セル内における通信状態、移動局 M Sの台数等、に応じて変更することができる。
[0064] さらに、空きサブキャリアの検出により、所定の周波数帯域において各セルに割り当 てるサブキャリアの周波数範囲を変更できるため、セル内のユーザ数やデータ量等 に応じて、上記周波数を干渉を防止した上でリユース 'ファクターを 1に近づけること ができるようになる。
[0065] なお、本実施の形態で説明したサブキャリア割り当て方法は、予め用意されたプロ グラムをパーソナル 'コンピュータやワークステーション等のコンピュータで実行するこ とにより実現することができる。このプログラムは、ハードディスク、フレキシブルデイス ク、 CD-ROM, MO、 DVD等のコンピュータで読み取り可能な記録媒体に記録さ れ、コンピュータによって記録媒体力も読み出されることによって実行される。またこ のプログラムは、インターネット等のネットワークを介して配布することが可能な伝送媒 体であってもよい。
産業上の利用可能性
[0066] 以上のように、本発明に力かる基地局装置、移動局装置およびサブキャリア割り当 て方法は、 OFDMA通信におけるサブキャリアの割り当てに有用であり、特に、隣接 するセルに対する移動が頻繁な移動局装置と基地局装置との通信品質を安定に行 う通信システムの各装置に適して 、る。

Claims

請求の範囲
[1] 直交周波数分割多重アクセス (OFDMA)における下り通信のサブキャリア割り当 てを行う基地局装置であって、
移動局装置との下り通信開始前に、当該移動局装置が行ったキャリアセンスの結 果、通知される空きサブキャリアの情報を取得する取得手段と、
前記取得手段により取得された前記空きサブキャリアの情報を隣接する基地局装 置に通知し、当該隣接する基地局装置同士で共有する情報共有手段と、
前記移動局装置との下り通信を開始する際に、前記情報共有手段に共有されてい る空きサブキャリアを当該下り通信用として設定するサブキャリア設定手段と、 を備えたことを特徴とする基地局装置。
[2] 前記情報共有手段は、前記空きサブキャリアの情報を隣接する一つあるいは複数 のセルの基地局装置との間で共有することを特徴とする請求項 1に記載の基地局装 置。
[3] 前記サブキャリア設定手段は、前記下り通信に使用する前記空きサブキャリアを、 送信データ量、前記移動局装置のユーザ数、 QoS、伝搬環境のうち一つあるいは組 み合わせに基づ 、て設定することを特徴とする請求項 1に記載の基地局装置。
[4] 前記取得手段は、前記移動局装置との上り通信の信号から前記空きサブキャリア の情報を抽出することを特徴とする請求項 1に記載の基地局装置。
[5] 前記移動局装置が前記キャリアセンスにより空きサブキャリアを検出する際に用い る所定のスレツショールド値を設定する設定手段と、
前記設定手段により設定された前記スレツショールド値の情報を前記移動局装置 に設定するために、前記スレツショールド値の情報を前記下り通信の信号に挿入させ る情報挿入手段と、
を備えたことを特徴とする請求項 1〜4のいずれか一つに記載の基地局装置。
[6] 直交周波数分割多重アクセス (OFDMA)における上り通信のサブキャリア割り当 てを行う基地局装置であって、
移動局装置との上り通信開始前に、キャリアセンスを行い、空きサブキャリアを検出 する検出手段と、 前記検出手段により検出された前記空きサブキャリアの情報を隣接する基地局装 置に通知し、当該隣接する基地局装置同士で共有する情報共有手段と、
前記移動局装置との上り通信を開始する際に、前記情報共有手段に共有されてい る空きサブキャリアを当該上り通信用として設定するサブキャリア設定手段と、 を備えたことを特徴とする基地局装置。
[7] 前記情報共有手段は、前記空きサブキャリアの情報を隣接する一つあるいは複数 のセルの基地局装置との間で共有することを特徴とする請求項 6に記載の基地局装 置。
[8] 前記検出手段は、前記キャリアセンスを隣接する一つあるいは複数のセル範囲に 対して行うことを特徴とする請求項 6に記載の基地局装置。
[9] 前記サブキャリア設定手段は、前記上り通信に使用する前記空きサブキャリアを、 上りバンド幅リクエスト、前記移動局装置のユーザ数、 QoS、伝搬環境のうち一つあ るいは組み合わせに基づいて設定することを特徴とする請求項 6に記載の基地局装 置。
[10] 直交周波数分割多重アクセス (OFDMA)における上り通信のサブキャリア割り当 てを行う基地局装置との間で通信を行う移動局装置であって、
前記基地局装置との下り通信開始前に、キャリアセンスを行い、空きサブキャリアを 検出する検出手段と、
前記検出手段により検出されたサブキャリアの情報を前記基地局装置への上り通 信の信号に挿入して通知する通知手段と、
を備えたことを特徴とする移動局装置。
[11] 前記基地局装置力 の下り通信の信号に挿入されているスレツショールド値の情報 を抽出する抽出手段を備え、
前記検出手段は、前記キャリアセンスを行う際に、前記抽出手段により抽出された 前記スレツショールド値の情報を用いて前記空きサブキャリアを検出することを特徴と する請求項 10に記載の移動局装置。
[12] 直交周波数分割多重アクセス (OFDMA)におけるサブキャリア割り当て方法であ つて、 基地局装置と移動局装置との間の通信開始前に、当該基地局装置あるいは移動 局装置のうち信号の受信側の局装置がキャリアセンスを行い、空きサブキャリアを検 出する検出工程と、
前記検出工程により検出された前記空きサブキャリアの情報を前記基地局装置を 含み隣接する基地局装置同士で共有する情報共有工程と、
基地局装置と移動局装置との間で通信を開始する際に、前記情報共有工程により 共有された空きサブキャリアを当該通信に割り当てる割り当て工程と、
を含むことを特徴とするサブキャリア割り当て方法。
前記割り当て工程は、前記空きサブキャリアを、送信データ量、前記移動局装置の ユーザ数、 QoS、伝搬環境のうち一つあるいは組み合わせに基づいて割り当てること を特徴とする請求項 12に記載のサブキャリア割り当て方法。
PCT/JP2006/305450 2006-03-17 2006-03-17 基地局装置、移動局装置およびサブキャリア割り当て方法 WO2007108077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/305450 WO2007108077A1 (ja) 2006-03-17 2006-03-17 基地局装置、移動局装置およびサブキャリア割り当て方法
JP2008506094A JP4627801B2 (ja) 2006-03-17 2006-03-17 基地局装置、移動局装置およびサブキャリア割り当て方法
US12/232,170 US8249001B2 (en) 2006-03-17 2008-09-11 Base station apparatus, mobile station apparatus, and method of assigning subcarriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305450 WO2007108077A1 (ja) 2006-03-17 2006-03-17 基地局装置、移動局装置およびサブキャリア割り当て方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/232,170 Continuation US8249001B2 (en) 2006-03-17 2008-09-11 Base station apparatus, mobile station apparatus, and method of assigning subcarriers

Publications (1)

Publication Number Publication Date
WO2007108077A1 true WO2007108077A1 (ja) 2007-09-27

Family

ID=38522117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305450 WO2007108077A1 (ja) 2006-03-17 2006-03-17 基地局装置、移動局装置およびサブキャリア割り当て方法

Country Status (3)

Country Link
US (1) US8249001B2 (ja)
JP (1) JP4627801B2 (ja)
WO (1) WO2007108077A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035716A1 (fr) * 2006-09-20 2008-03-27 Kyocera Corporation Système de communication, sa station de base et procédé de communication
WO2008035720A1 (fr) * 2006-09-20 2008-03-27 Kyocera Corporation Système de communication, sa station de base, et procédé de communication
JP2009194898A (ja) * 2008-02-18 2009-08-27 Samsung Electronics Co Ltd ライセンス帯域と共有帯域の通信サービスを支援するモバイルシステム及び基地局システム
WO2010027186A2 (en) * 2008-09-05 2010-03-11 Lg Electronics Inc. Method and apparatus for communication using multiple carriers
CN101926140A (zh) * 2008-01-25 2010-12-22 微软公司 带载波侦听的正交频分多址访问
JP2011502380A (ja) * 2007-10-16 2011-01-20 聯發科技股▲ふん▼有限公司 干渉計測結果を提供する方法、干渉計測結果を提供する移動局、無線リソース割り当てを設定する方法、ofdmaセルラシステム、及び移動局をスケジューリングする方法
JP2011029988A (ja) * 2009-07-27 2011-02-10 Fujitsu Ltd 無線通信システムにおける無線通信方法、基地局装置、端末装置、及び無線通信システム
CN102244631A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种中心子载波的配置方法和设备
US8259601B2 (en) 2007-10-16 2012-09-04 Mediatek Inc. Interference measurement mechanism for frequency reuse in cellular OFDMA systems
JP2014060785A (ja) * 2013-11-26 2014-04-03 Kyocera Corp 無線基地局及び無線基地局の周波数帯域選択方法
US8842752B2 (en) 2007-03-30 2014-09-23 Microsoft Corporation FEC in cognitive multi-user OFDMA
US8923340B2 (en) 2006-05-12 2014-12-30 Microsoft Corporation Signaling to application lack of requested bandwidth
US9065687B2 (en) 2006-12-12 2015-06-23 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US9119177B2 (en) 2009-12-24 2015-08-25 Kyocera Corporation Radio base station and method for selecting frequency band of radio base station
US9363120B2 (en) 2007-05-08 2016-06-07 Microsoft Technology Licensing, Llc OFDM transmission and reception for non-OFDM signals
JP2017503404A (ja) * 2013-12-13 2017-01-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可スペクトルを用いたlte(登録商標)/lteアドバンストシステムにおけるcsiフィードバック
WO2020153166A1 (ja) * 2019-01-23 2020-07-30 日本電信電話株式会社 無線通信装置および無線通信制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320396B2 (en) * 2006-07-21 2012-11-27 Adaptix, Inc. Subcarrier group based power control for OFDMA systems
US8139527B2 (en) * 2007-12-19 2012-03-20 Wi-Lan, Inc. Wireless system with reduced effect of IQ imbalance
US8520561B2 (en) * 2009-06-09 2013-08-27 Atc Technologies, Llc Systems, methods and network components that provide different satellite spot beam return carrier groupings and reuse patterns
JP6120112B2 (ja) 2013-01-18 2017-04-26 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. フィードバック情報処理方法、基地局およびユーザ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113049A (ja) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd 無線通信システム
JP2002335557A (ja) * 2001-05-08 2002-11-22 Sony Corp 通信装置、基地局、通信制御装置、およびこれらを用いた通信システム
JP2004523934A (ja) * 2000-10-10 2004-08-05 ブロードストーム テレコミュニケイションズ インコーポレイテッド 直交周波数分割多重アクセス(ofdma)セルラー・ネットワークの媒体アクセス制御
JP2005080286A (ja) * 2003-09-02 2005-03-24 Korea Electronics Telecommun Ofdma・fdd基盤の移動通信システムにおける順方向チャンネルの構成方法及び順方向チャンネルの割当て方法
JP2005142935A (ja) * 2003-11-07 2005-06-02 Toshiba Corp 無線通信システム、無線制御方法および制御装置
JP2006033480A (ja) * 2004-07-16 2006-02-02 Toshiba Corp 無線通信装置、無線基地局、及び無線通信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036407B2 (ja) * 1995-09-12 2000-04-24 トヨタ自動車株式会社 移動体無線通信システム
AU2002235217A1 (en) 2000-12-15 2002-06-24 Broadstorm Telecommunications, Inc. Multi-carrier communications with adaptive cluster configuration and switching
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US9661519B2 (en) * 2003-02-24 2017-05-23 Qualcomm Incorporated Efficient reporting of information in a wireless communication system
KR100539925B1 (ko) * 2003-08-22 2005-12-28 삼성전자주식회사 직교주파수분할다중 시스템에서 부반송파 할당 장치 및 방법
BRPI0508668A (pt) * 2004-03-12 2007-08-14 Matsushita Electric Ind Co Ltd método de notificação de qualidade de recepção, aparelho de terminal de comunicação sem fio, e aparelho de estação de base
JP2006034480A (ja) * 2004-07-26 2006-02-09 Tritec:Kk 展示用パネル
JP4526977B2 (ja) * 2005-03-02 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113049A (ja) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd 無線通信システム
JP2004523934A (ja) * 2000-10-10 2004-08-05 ブロードストーム テレコミュニケイションズ インコーポレイテッド 直交周波数分割多重アクセス(ofdma)セルラー・ネットワークの媒体アクセス制御
JP2002335557A (ja) * 2001-05-08 2002-11-22 Sony Corp 通信装置、基地局、通信制御装置、およびこれらを用いた通信システム
JP2005080286A (ja) * 2003-09-02 2005-03-24 Korea Electronics Telecommun Ofdma・fdd基盤の移動通信システムにおける順方向チャンネルの構成方法及び順方向チャンネルの割当て方法
JP2005142935A (ja) * 2003-11-07 2005-06-02 Toshiba Corp 無線通信システム、無線制御方法および制御装置
JP2006033480A (ja) * 2004-07-16 2006-02-02 Toshiba Corp 無線通信装置、無線基地局、及び無線通信システム

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9386055B2 (en) 2006-05-12 2016-07-05 Microsoft Technology Licensing, Llc Signaling to application lack of requested bandwidth
US10182367B2 (en) 2006-05-12 2019-01-15 Microsoft Technology Licensing Llc Signaling to application lack of requested bandwidth
US8923340B2 (en) 2006-05-12 2014-12-30 Microsoft Corporation Signaling to application lack of requested bandwidth
WO2008035720A1 (fr) * 2006-09-20 2008-03-27 Kyocera Corporation Système de communication, sa station de base, et procédé de communication
WO2008035716A1 (fr) * 2006-09-20 2008-03-27 Kyocera Corporation Système de communication, sa station de base et procédé de communication
US10581655B2 (en) 2006-12-12 2020-03-03 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US9065687B2 (en) 2006-12-12 2015-06-23 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US9866418B2 (en) 2006-12-12 2018-01-09 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US9774415B2 (en) 2006-12-12 2017-09-26 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US9641273B2 (en) 2006-12-12 2017-05-02 Microsoft Technology Licensing, Llc Cognitive multi-user OFDMA
US8842752B2 (en) 2007-03-30 2014-09-23 Microsoft Corporation FEC in cognitive multi-user OFDMA
US10177953B2 (en) 2007-05-08 2019-01-08 Microsoft Technology Licensing, Llc OFDM transmission and reception for non-OFDM signals
US9363120B2 (en) 2007-05-08 2016-06-07 Microsoft Technology Licensing, Llc OFDM transmission and reception for non-OFDM signals
US9755879B2 (en) 2007-05-08 2017-09-05 Microsoft Technology Licensing, Llc OFDM transmission and reception for non-OFDM signals
US8351949B2 (en) 2007-10-16 2013-01-08 Mediatek Inc. Configuring radio resource allocation and scheduling mobile station mechanism for frequency reuse in cellular OFDMA systems
US8259601B2 (en) 2007-10-16 2012-09-04 Mediatek Inc. Interference measurement mechanism for frequency reuse in cellular OFDMA systems
JP2011502380A (ja) * 2007-10-16 2011-01-20 聯發科技股▲ふん▼有限公司 干渉計測結果を提供する方法、干渉計測結果を提供する移動局、無線リソース割り当てを設定する方法、ofdmaセルラシステム、及び移動局をスケジューリングする方法
JP2011510597A (ja) * 2008-01-25 2011-03-31 マイクロソフト コーポレーション 搬送波検知を用いた直交周波数分割多重アクセス
US9742529B2 (en) 2008-01-25 2017-08-22 Microsoft Technology Licensing, Llc Orthogonal frequency division multiple access with carrier sense
CN101926140A (zh) * 2008-01-25 2010-12-22 微软公司 带载波侦听的正交频分多址访问
US9363795B2 (en) 2008-01-25 2016-06-07 Microsoft Technology Licensing, Llc Orthogonal Frequency Division Multiple Access with carrier sense
US9357399B2 (en) 2008-02-18 2016-05-31 Samsung Electronics Co., Ltd. Mobile system and base station system for effectively using licensed spectrum and shared spectrum
JP2009194898A (ja) * 2008-02-18 2009-08-27 Samsung Electronics Co Ltd ライセンス帯域と共有帯域の通信サービスを支援するモバイルシステム及び基地局システム
US8644869B2 (en) 2008-09-05 2014-02-04 Lg Electronics Inc. Method and apparatus for communication using multiple carriers
WO2010027186A2 (en) * 2008-09-05 2010-03-11 Lg Electronics Inc. Method and apparatus for communication using multiple carriers
WO2010027186A3 (en) * 2008-09-05 2010-06-17 Lg Electronics Inc. Method and apparatus for communication using multiple carriers
JP2011029988A (ja) * 2009-07-27 2011-02-10 Fujitsu Ltd 無線通信システムにおける無線通信方法、基地局装置、端末装置、及び無線通信システム
US9119177B2 (en) 2009-12-24 2015-08-25 Kyocera Corporation Radio base station and method for selecting frequency band of radio base station
CN102244631A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种中心子载波的配置方法和设备
US9084250B2 (en) 2010-05-11 2015-07-14 Huawei Technologies Co., Ltd. Method and device for configuring central subcarrier
WO2011140983A1 (zh) * 2010-05-11 2011-11-17 华为技术有限公司 一种中心子载波的配置方法和设备
JP2014060785A (ja) * 2013-11-26 2014-04-03 Kyocera Corp 無線基地局及び無線基地局の周波数帯域選択方法
US10341890B2 (en) 2013-12-13 2019-07-02 Qualcomm Incorporated CSI feedback in LTE/LTE-advanced systems with unlicensed spectrum
JP2017503404A (ja) * 2013-12-13 2017-01-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可スペクトルを用いたlte(登録商標)/lteアドバンストシステムにおけるcsiフィードバック
WO2020153166A1 (ja) * 2019-01-23 2020-07-30 日本電信電話株式会社 無線通信装置および無線通信制御方法

Also Published As

Publication number Publication date
US8249001B2 (en) 2012-08-21
US20090016291A1 (en) 2009-01-15
JP4627801B2 (ja) 2011-02-09
JPWO2007108077A1 (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
WO2007108077A1 (ja) 基地局装置、移動局装置およびサブキャリア割り当て方法
US8583153B2 (en) Radio communication system, radio communication method and base station
CA2705504C (en) Preamble design for a wireless signal
KR100901935B1 (ko) 단말기 간의 애드 혹 통신 방법 및 통신 시스템
JP5156334B2 (ja) 無線通信装置及び無線通信方法
JP4579266B2 (ja) 移動通信システム、基地局装置およびその制御方法
KR102129861B1 (ko) 네트워크 노드, 무선 디바이스, 방법들 및 컴퓨터 프로그램들
CN102098136A (zh) 使用正交频分多址方案的通信系统中传送/接收信道质量信息的方法与装置
JP2014506085A (ja) 通信システムにおける従来のofdmホストキャリアへの仮想キャリアの挿入
CN105144818B (zh) 通信控制设备、通信控制方法、无线电通信系统和终端设备
US8699427B2 (en) OFDMA communication system and communication method
US8493930B2 (en) Communication system, base station and mobile station used in the communication system, and base station switching method
KR102167884B1 (ko) 무선랜 시스템에서의 자원 할당 방법 및 장치, 통신 방법 및 통신 단말
CN101932108B (zh) 一种增加系统srs带宽的方法、装置
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
CN104284341A (zh) Lted2d通信中的频率管理系统及方法
JP4926647B2 (ja) 通信システム、該通信システムに用いる基地局及び端末並びに基地局切替方法
KR101365561B1 (ko) 효율적인 동기 채널 전송 방법 및 이를 위한 전송 전력할당 방법
JP4790861B2 (ja) 移動通信システム、基地局装置およびその制御方法
CN111937455A (zh) 空闲信道侦听方法、装置及设备
EP2068472B1 (en) Communication system, its base station, and communication method
KR101203869B1 (ko) 다양한 대역폭 능력의 단말기 지원을 위한 다중 반송파전송 방식
JP2010166585A (ja) 移動通信システム、基地局装置およびその制御方法
JP4648498B2 (ja) 移動通信システム、基地局装置およびその制御方法
JP4842396B2 (ja) 端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729439

Country of ref document: EP

Kind code of ref document: A1