WO2007099907A1 - インプリント用モールド及びインプリント方法 - Google Patents

インプリント用モールド及びインプリント方法 Download PDF

Info

Publication number
WO2007099907A1
WO2007099907A1 PCT/JP2007/053516 JP2007053516W WO2007099907A1 WO 2007099907 A1 WO2007099907 A1 WO 2007099907A1 JP 2007053516 W JP2007053516 W JP 2007053516W WO 2007099907 A1 WO2007099907 A1 WO 2007099907A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pattern
substrate
forming surface
pattern forming
Prior art date
Application number
PCT/JP2007/053516
Other languages
English (en)
French (fr)
Inventor
Kazunobu Hashimoto
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008502772A priority Critical patent/JPWO2007099907A1/ja
Publication of WO2007099907A1 publication Critical patent/WO2007099907A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • B29C33/405Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds

Definitions

  • the present invention relates to an imprint mold and an imprint method.
  • Imprint technology enables formation of fine patterns at low cost, so magnetic disks, semiconductors, devices (lasers, optical waveguides, etc.), MEMS (Micro Electro Mechanical Systems), NEMS (Nano Electro Mechanical Systems) ) And other microfabricated parts and next-generation disks are expected.
  • a resin material is applied on a substrate to be transferred, a mold having an uneven pattern formed on the resin layer is pressed, and the resin layer is cured by UV treatment or heating / cooling treatment. Then, the mold is peeled from the resin layer to form a pattern on the resin layer.
  • One soft lithography method of imprint technology uses an elastic material such as PDMS (polydimethylsiloxane) as a soft mold instead of a hard mold such as quartz or silicon.
  • Patent Document 2 In order to form a highly accurate pattern, in Patent Document 2, a plastic medium on which convex portions are formed is fixed on another curved elastic surface and mechanical external force is applied. In this way, the medium is curved and deformed following the deformation of the elastic body, and the contact timing between the transfer substrate and the medium is controlled. It is necessary to produce a medium having a convex portion while pressing it, and to fix it to the surface of the curved elastic body, which requires a complicated process. [0007] Further, Patent Document 3 discloses that a substrate that warps the shape of the mold at the time of bonding is peeled off by using a curved mold in order to perform the process of peeling the transfer substrate force mold with high accuracy and ease.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-48728
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-17409
  • Patent Document 3 JP 2004-288845 A (paragraphs 0031 to 0033)
  • the problem to be solved by the present invention includes the above-described problem as an example.
  • An object of the present invention is to provide an imprint mold and an imprint method that prevent air bubbles from entering the transfer surface.
  • the imprint mold of the present invention imprints a pattern formed on the surface of an elastic mold by pressing it against a transfer layer formed on the substrate.
  • the mold is provided with a region having a different specific gravity in the mold so that the pattern forming surface comes into contact with the portion in the predetermined order of force in the surface when pressed against the transfer layer.
  • the forming surface is elastically deformed.
  • the imprint is a method in which a mold having a pattern formed on an elastic surface is pressed against a transfer layer formed on a substrate and transferred.
  • the method is characterized in that a region having different specific gravity is provided inside the mold to elastically deform the pattern forming surface, and the pattern forming surface is pressed so as to sequentially contact a predetermined part force in the surface. To do.
  • FIG. 1 is a schematic diagram of a soft mold according to Embodiment 1 of the present invention, wherein (a) is a cross-sectional view and (b) is a front view.
  • FIGS. 2 (a) to 2 (c) are explanatory views of an imprint process using the soft mold shown in FIG.
  • FIGS. 3 (a) to 3 (e) are explanatory views of a method for producing the soft mold shown in FIG.
  • FIG. 4 is a view for explaining deformation of the soft mold shown in FIG. 1.
  • FIG. 5 is a view for explaining the swell width of the soft mold substrate and the transfer substrate shown in FIG. 1.
  • FIG. 6 is a schematic view of a soft mold according to Embodiment 2 of the present invention, where (a) is a cross-sectional view and (b) is a front view.
  • FIG. 7 is a schematic view of a soft mold according to Embodiment 3 of the present invention, where (a) is a cross-sectional view and (b) is a front view.
  • FIG. 8 is a diagram showing an example of a pattern for a magnetic disk.
  • FIGS. 9 (a) to 9 (e) are diagrams for explaining a process of manufacturing a magnetic disk.
  • FIGS. 10 (f) to 10 (1) are diagrams for explaining a process of manufacturing a magnetic disk.
  • FIG. 11 is a flowchart of a process for manufacturing a magnetic disk.
  • FIG. 1 is a schematic diagram of a mold according to the present embodiment, where (a) is a cross-sectional view and (b) is a front view.
  • a mold 1 shown in FIG. 1 is a soft mold having elasticity, which is made of, for example, PDMS (polydimethylsiloxane) and the like, and an uneven pattern la is formed on the elastic surface.
  • the mold 1 has a back surface held by a substrate (mold holding portion) 2 made of quartz, Si (silicon), or the like.
  • a weight member 3 having a specific gravity larger than that of the mold body (elastic body) is included in the mold 1. That is, by including the weight member 3, regions having different specific gravity are formed inside the mold.
  • the weight member 3 has a rectangular shape and is arranged at the center of one surface of the square mold.
  • the pattern forming surface of the mold 1 is a flat surface, and is adjusted so that the surface accuracy of the pattern is accurately reproduced in this flat state.
  • the bonding surface becomes flat, and in this state, the pattern is adjusted to have the expected line width array.
  • the mold 1 configured as described above as shown in FIG. 1, when the pattern forming surface is directed downward in the vertical direction, the elastic mold 1 is subjected to the action of gravity, but the weight member 3 is placed in the center. The center part is raised vertically downward The raised partial force is elastically deformed into a convex curved shape that curves gently toward the outside in the radial direction.
  • the specific gravity of the weight member 3 surrounds it and forms a mold 1 that is larger than the specific gravity of the elastic body. It is conceivable that the weight member 3 sinks into the male member of the mold 1. In this state, when the mold 1 is pressed against the transfer layer on the substrate, the raised central portion comes into contact first, and then comes into contact in order so as to spread in the outer peripheral direction. Finally, the convex curved surface reproduces a flat shape along the surface shape of the transferred layer.
  • the weight member 3 is included in the central portion of the mold 1 in order to make contact with the central force of the pattern forming surface. If desired, the weight member 3 is included in the position corresponding to the corresponding part. That is, the weight member 3 is first brought into contact with the transfer layer! /, And is contained in a position corresponding to a predetermined part.
  • the weight member 3 is encapsulated and pressed against the transfer layer in a state where the pattern forming surface of the mold 1 is elastically deformed into a convex curved surface. In order to start contact with a small area partial force at the very top, air bubbles are prevented from being caught in the contact surface.
  • FIG. 2 is an explanatory diagram of an imprint process using the soft mold described above.
  • the pattern shape of the soft mold is omitted.
  • a resin material is applied on the substrate 4 as a transfer substrate to form a resin layer as the transfer layer 5.
  • a silicon wafer, a quartz substrate, an aluminum substrate, a substrate in which a semiconductor layer, a magnetic layer, a shared electric conductor layer, or the like is stacked on these substrates can be used.
  • a thermoplastic resin such as PMMA (polymethyl methacrylate) or a UV curable resin such as PAK-01 (product name, manufactured by Toyo Gosei Co., Ltd.) Etc.
  • PAK-01 product name, manufactured by Toyo Gosei Co., Ltd.
  • the topmost portion of the curved surface first comes into contact with the transferred layer 5, and then the circumferential surface The contacts are made sequentially in the lateral direction (Fig. 2 (b)). This prevents bubbles from entering the transfer surface and presses the mold 1 (FIG. 2 (c)). Thereafter, although not shown, when the transfer layer 5 is a thermoplastic resin, the resin is heated and cooled to cure the resin. Alternatively, when the transferred layer 5 is a UV curable resin, the resin is cured by UV treatment. After the resin is cured in this way, the mold 1 is peeled from the transfer substrate 4. At this time, since the weight member 3 is included in the central portion, the weight member 3 is peeled in order from the peripheral portion to the central portion, and can be easily and smoothly peeled off.
  • FIG. Fig. 3 is an explanatory diagram of a soft mold fabrication method using PDMS as the mold material.
  • the master mold 6 in which the turn is formed which also has a silicon original plate force, is washed and subjected to a release process, and a mold 7 surrounding the pattern is provided on the outer periphery of the master mold 6 (FIG. 3 (a)).
  • PDMS1 mixed with a curing agent is poured into the mold 7 of the master mold 6 (FIG. 3 (b)).
  • Install weight member 3 in PDMS1 (Fig. 3 (c)). In this state, place the substrate 2 on the PDMS1 and leave it at room temperature to cure the PDMS1 (Fig. 3 (d)).
  • the mold 1 formed by PDMS is peeled from the master mold 4 (FIG. 3 (e)).
  • the weight member 3 is installed so as to be positioned at the central portion of the pattern forming surface, and is installed at the central portion in the thickness direction of the PDMS 1. At this position, the PDMS is cured at room temperature. Hold the weight member 3. Thereafter, as shown in FIG. 1, when the pattern forming surface of the mold 1 is directed downward in the vertical direction, the central portion in which the weight member 3 is encased rises and becomes a convex curved surface that curves outward in the radial direction. Elastically deforms.
  • the shape of the master mold can be faithfully reproduced in a state where the pattern forming surface of the mold is flat, that is, in a state where the mold is bonded to the transfer substrate. . Therefore, even if the pattern forming surface of the mold is pressed in a curved state, the pattern to be transferred can be accurately reproduced in a state where it is pressed flat against the transfer layer.
  • a mold production method in which PDMS is poured into a mold and cured at room temperature is taken as an example of a soft mold production method.
  • an elastomer precursor is used to thermally cure, photocure, room temperature cure, etc. It can also be produced using a curing means. Also mall As a means for forming a pattern on the surface of the mold, the pattern can be covered with a processing means such as cutting after the mold is cured.
  • the soft mold needs an appropriate elasticity to the extent that the pattern shape formed on the surface is sufficiently retained, and is usually used in a flat plate shape, and therefore does not include a weight member. If the specific gravity is uniform, it may be considered that the soft mold itself does not stretch or deform in the thickness direction due to the elasticity alone. For this reason, the difference in expansion between the region containing the weight member (X in Fig. 4) and the region not containing the weight member (Y in Fig. 4) is approximately the basic equation (1) of the elastic modulus. Represented (see Figure 4).
  • A Weight member cross-sectional area
  • the waviness width hw of the surface of the substrate 4 and the back of the soft mold If the difference in expansion of the elastic body due to the weight member is larger than the sum of the waviness width he on the surface of the substrate 2 on which the soft mold is fixed (hw + hc) (see Fig. 5), It is expected to prevent contamination.
  • the waviness widths hw and he are waviness widths in an area directly related to transfer, that is, in an area area where the mold and the transferred substrate are in contact with each other.
  • the conditions for imprinting on a Si wafer using a PDMS soft mold formed on a quartz substrate are as follows.
  • the load per square centimeter (PZA) can be derived from the following equation from Equation (2).
  • An iron plate thicker than 640 m with a thickness of lcm 2 should be included.
  • a gold foil piece of lcm 2 and thicker than 260 ⁇ m may be enclosed in a soft mold.
  • the pattern forming surface of the mold has a convex curved surface with a raised central portion, and when the mold is bonded to the transfer layer, the pattern forming surface is in the radial direction from the central portion. Since it gradually contacts toward the outside, it is possible to prevent air bubbles from entering the transfer surface. In addition, since the pattern formation surface is flat when the mold is transferred and is formed with the same surface accuracy as the master mold, the pattern accuracy of the mold during transfer can be maintained well. Further, since the curved surface shape of the soft mold surface is generated by including the weight member, a mechanism for applying an external force can be eliminated.
  • the mold of the present invention is not limited to the above-described embodiment, and the pattern forming surface is elastically deformed by providing regions having different specific gravities in the elastic mold. I just need it.
  • the mold is provided with regions having different specific gravities in the elastic body, so that the pattern forming surface is elastically deformed, so that the contact area can be reduced at the start of contact between the mold and the transferred layer. Air bubbles can be prevented from being mixed. Further, when the mold is pressed against the transferred layer, the mold is elastically deformed and deformed along the surface shape of the transferred layer, so that the surface accuracy of the pattern can be adjusted accurately.
  • the surface accuracy of the mold pattern formation surface is adjusted by the shape when the mold pattern formation surface is bonded to the transfer layer, so that the mold pattern formation surface is deformed by the specific gravity difference.
  • the mold pattern is accurately reproduced when the mold and the transfer layer are bonded together, the correct pattern can be transferred to the transfer layer.
  • the pattern forming surface of the mold is deformed into a curved shape such as a convex curved surface or an inclined surface with a raised one end side by providing regions with different specific gravities, so that the mold is transferred at the start of contact. It comes into contact with the layer to be transferred while gradually increasing the contact area, and then the mold is covered with the mold while excluding bubbles from the top of the curved shape of the pattern formation surface to the periphery.
  • a transfer layer can be bonded together.
  • the deformed shape of the pattern forming surface due to the provision of regions having different specific gravities is a convex shape having a certain contact angle with respect to the substrate surface to be transferred.
  • the bulge is larger than the sum of the amount of undulation on the back surface of the mold and the amount of undulation on the surface of the transferred substrate, thereby eliminating the influence of the undulation of the mold and the transferred substrate.
  • the elastic material constituting such a mold is not limited to the above-described structure, and so-called elastomers can be used.
  • a silicone resin that is cured by a curing agent also favors the ease of mold fabrication.
  • An example of such a resin is PDMS.
  • the outer peripheral shape of the mold of the present invention is not limited to the square shape described above, and a mold having a shape suitable for the target product can be employed.
  • a rectangular mold can be used for manufacturing semiconductors, devices, MEMS, NEMS, etc.
  • a circular mold can be used for manufacturing magnetic disks, optical disks, and the like.
  • the weight member of the present invention is not limited to the above-described configuration, and any member can be used as long as regions having different specific gravity can be formed in the mold.
  • the specific gravity of the region is large with respect to the elastic body constituting the mold, when the pattern formation surface is directed downward in the vertical direction, this region raises the mold formation surface, and when the region is directed upward, The region pushes the mold forming surface and deforms the pattern forming surface.
  • the specific gravity of the area is small relative to the elastic body constituting the mold, the load force applied to that area is smaller than the load applied to the area where only the mold is applied!
  • this region When directed downward in the direction, this region forms a concave shape that is recessed from the mold forming surface, and when directed upward, this region is raised, deforming the pattern forming surface. Since the mold has elasticity, the pattern forming surface is gently deformed from the portion deformed by this region to form a curved shape.
  • the arrangement of the weight member is not limited to the center portion of the mold surface, and an appropriate position can be adopted according to the shape of the transfer layer or substrate and the transfer process. Further, not only the circular Z-square mold but also a more complex mold can be controlled by changing the position of the weight member to change the contact position between the transferred layer and the mold.
  • the shape of the weight member is not particularly limited, and examples thereof include a spherical shape, a circular shape, an elliptical shape, and a thin plate shape in addition to the rectangular shape described above.
  • Such a weight member may be any member that has a material force with a specific gravity larger than that of the mold body (elastic body).
  • the weight member is preferably a material that does not adversely affect the mold material such as corrosion, decomposition, or alteration, and that is not affected by corrosion, oxidation, dissolution, or the like. Examples include, but are not limited to, quartz, iron, and gold.
  • UV transparent material such as quartz is used for the weight member.
  • a UV transmissive PDMS mold and a quartz substrate so as not to deteriorate the UV transmissive property of the entire mold, the reliability is improved compared to the UV curable nanoimprint method.
  • a specific gravity in the mold such as quartz is dispersed in a specific region and powder is dispersed to form such a region. be able to. According to such a region, the curved shape on the pattern forming surface of the mold can be adjusted more precisely.
  • the soft mold shown in FIG. 6 is an example in which the arrangement and shape of the weight members are changed in the first embodiment described above, and a band-shaped weight member on the outer side of the pattern la on the edge side of one side of the square soft mold. 3 is included.
  • the weight member 3 is provided so that the soft mold 1 moves downward relative to the soft mold 1 itself.
  • one end side of the soft mold 1 protrudes downward, and the one end side force is gradually inclined toward the other end side.
  • the soft mold 1 is brought into contact with the transfer layer from above in the vertical direction, so that the soft mold 1 gradually comes into contact with the transfer layer from one end side. be able to.
  • the soft mold 1 is raised and the soft mold 1 is peeled off.
  • the soft mold shown in FIG. 7 is configured such that the substrate to be transferred is pressed from above with the pattern forming surface held vertically upward, and the pattern la is formed on the outer peripheral side of the square soft mold 1.
  • a weight member 3 is included on the outer periphery of the entire body. As a result, the outer peripheral edge of the mold is distorted downward, and the central portion of the soft mold 1 is relatively raised, resulting in a convex curved shape that is gently curved outward in the radial direction. [0059] In this state, when the substrate to be transferred and the soft mold are relatively brought close to each other, the soft mold comes in contact with the center top force transfer layer and then gradually contacts radially outward. It is possible to prevent air bubbles from entering the transfer surface.
  • the imprint mold of the present invention is an imprint mold that transfers a pattern formed on the surface of an elastic mold by pressing it onto a transfer layer formed on a substrate.
  • the pattern forming surface is elastically provided by providing regions with different specific gravities in the mold so that the pattern forming surface sequentially contacts predetermined site forces in the surface. Due to the deformation, the mold comes into contact with the member to be transferred with a small area force at the time of transfer, so that it is possible to prevent bubbles from entering the transfer surface.
  • the imprint method of the present invention is an imprint method in which a mold having a pattern formed on an elastic surface is pressed against a transfer layer formed on a substrate and transferred. An area having a different specific gravity is provided inside the mold to elastically deform the pattern forming surface, and the pattern forming surface is pressed so as to come into contact with a predetermined region force in the surface. Since a small area force is brought into contact with the transfer member, it is possible to prevent bubbles from entering the transfer surface.
  • FIG. 8 is a diagram showing an example of a pattern shape formed in a mold for manufacturing a magnetic disk.
  • the pattern forming surface of the mold 1 has unevenness corresponding to the patterned data track portion 11 and the servo pattern portion 12.
  • the pattern corresponding to the pattern data track portion 11 is a fine pattern of about 25 nm formed on the entire surface at regular intervals.
  • it is effective to form ultrafine patterns corresponding to a very high surface recording density of a magnetic disk with an increasing capacity of a density of 00 Gbpsi (GbitZinch 2 ) or more, particularly about 1 to: LOTbpsi.
  • a high-density pattern recording medium having a recording density of about 1 Tb psi can be produced.
  • Such a fine pattern is desirably formed by electron beam drawing capable of forming a high-definition pattern.
  • FIG. 11 is a flowchart thereof.
  • a base substrate 108 for a recording medium such as a special case tempered glass, a Si wafer, an aluminum plate, or other material cover, is prepared ( Preparation of base substrate 1 08). Then, the recording film layer 107 is formed on the base substrate 108 by sputtering or the like (formation of the recording film layer 107).
  • a perpendicular magnetic recording medium a laminated structure such as a soft magnetic underlayer, an intermediate layer, and a ferromagnetic recording layer is formed.
  • a hard mask layer 106 such as Ta or Ti is formed on the recording film layer 107 by sputtering or the like (formation of the node mask layer 106). Furthermore, UV curable resin is applied as a transfer material onto the hard mask layer 106 by spin coating or the like (formation of the transferred layer 105).
  • step S102 as shown in FIG. 9B, the soft mold 1 is attached to the mold holder 102 (attachment of the mold to the mold holder). Then, it is attached to the imprint apparatus so that the pattern forming surface of the mold 1 and the transferred layer 105 of the substrate held by the substrate holding part 100 face each other (attachment to the imprint apparatus). At this time, the horizontal position adjustment of the mold holder 102 and the substrate holder 100 is performed (position adjustment).
  • step S103 the substrate is brought close to the mold 1 by force, and the pattern forming surface of the mold 1 is pressed against the transferred layer 105 (FIG. 9 (c)).
  • the UV curable resin transfer target layer 105
  • the pattern is formed by separating the substrate from the mold 1. Transferred to the transferred layer 105 (FIG. 9 (d)).
  • step S104 O gas or the like is used for the substrate taken out from the imprint apparatus.
  • step S105 as shown in FIG. 10 (f), a hard mask layer 1 is formed using CHF gas or the like.
  • Etching 06 is performed to form a pattern in the hard mask layer 106. Thereafter, as shown in FIG. 10G, the remaining etching mask (transferred layer 105) is removed by performing a wet process, ashing, or the like (pattern formation on the node mask layer 106).
  • step S 106 as shown in FIG. 10 (h), the pattern is formed on the recording film layer 107 by dry etching using Ar gas or the like using the hard mask layer 106 on which the pattern is formed as an etching mask. It is formed (pattern formation on the recording film layer 107). Thereafter, as shown in FIG. 10 (i), the remaining hard mask layer 106 is removed by performing a wet process or dry etching.
  • step S107 as shown in FIG. 10 (j), the nonmagnetic material 109 (nonmagnetic material such as SiO in the case of a magnetic recording medium) is formed in the concave portion on the surface of the recording film layer 107 by sputtering or coating.
  • the nonmagnetic material 109 nonmagnetic material such as SiO in the case of a magnetic recording medium
  • step S108 as shown in FIG. 10 (k), the surface is polished and flattened by etching or chemical polishing (flattening). As a result, a structure in which the recording material is separated by the non-recording material is formed.
  • step S 109 as shown in FIG. 10 (1), surface protection layer 111 such as carbon is formed by CVD, sputtering, and further, lubricating layer 110 is formed by dating method or the like ( surface treatment).
  • a magnetic disk having a fine pattern structure is manufactured.
  • the magnetic disk medium drive system spindle motor, rotation drive control circuit, etc.
  • magnetic information read / write mechanism are used.
  • a magnetic recording device is completed by incorporating it into a hard disk drive having a magnetic head, suspension, error correction circuit, etc.
  • the soft mold of the present invention can prevent bubbles from being mixed and bonded to the substrate even when a fine pattern of about 25 nm as shown in FIG. 8 is transferred. Therefore, the pattern that is planned in the state is reproduced, so that the nonturn can be transferred with high accuracy.
  • the pattern formation surface gradually comes into contact with the mold, and when the mold is released, the pattern formation surface gradually moves away.

Description

明 細 書
インプリント用モールド及びインプリント方法
技術分野
[0001] 本発明は、インプリント用モールド及びインプリント方法に関する。
背景技術
[0002] インプリント技術は、微細なパターンを低コストで形成可能であるため、磁気ディスク 、半導体、デバイス (レーザー、光導波路など)、 MEMS (Micro Electro Mechanical S ystems)、 NEMS (Nano Electro Mechanical Systems)などの微細加工部品、次世代 ディスクなどへの応用が期待されて 、る。
[0003] インプリント技術は、被転写基板上に榭脂材料を塗布し、この榭脂層上に凹凸バタ ーンが形成されたモールドを押し付け、 UV処理や加熱冷却処理によって榭脂層を 硬化させ、榭脂層からモールドを剥離することで、榭脂層上にパターンを形成する。 インプリント技術の一つのソフトリソグラフィ法では、石英、シリコンなどの硬いモールド のかわりに PDMS (ポリヂメチルシロキサン)などの弾性体をソフトモールドとして使用 する。
[0004] このようなインプリント技術では、パターンが形成された面が平坦であるため、基板 上の榭脂層にモールドを押し付ける際の接触面積が大きくなり、基板とモールド間に 気泡が混入してしまうことがあり、この影響を排除することがインプリントを正常に行う ためには重要となる。
[0005] 従来のプレス成形装置では、成形型の周囲を真空引きして減圧し脱泡環境にする ことで転写不良を解決しているが(特許文献 1参照)、真空装置の設備が必要である という問題がある。
[0006] また、高精度のパターンを形成するために、特許文献 2では、凸部を形成した可塑 性の媒体を別の曲面状の弾性体表面上に固定し、機械的な外力を加えることで弾性 体の変形に追従させて媒体を湾曲変形させ、被転写基板と媒体の接触タイミングを 制御している。し力しながら、凸部を形成した媒体を作製し、それをさらに曲面状弾性 体表面に固定する必要があり、煩雑な工程が必要とされる。 [0007] さらに特許文献 3には、被転写基板力 モールドを剥離する工程を高精度かつ容 易に行うために、湾曲したモールドを用いることで、貼り合わせ時にモールドの形状 に反った基板が剥離時に元に戻ろうとして容易に剥がれることが開示されている。し 力しながら、このような構成では、モールドを湾曲させるために、単体では平坦である モールドを湾曲した基板に貼り付ける必要があり、さらに、転写される凹凸パターンは 平坦なモールドのものではなく湾曲したモールドのものになり、微細かつ高精度な転 写が難しいという問題がある。
特許文献 1:特開 2003— 48728号公報
特許文献 2:特開 2004 - 17409号公報
特許文献 3 :特開 2004— 288845号公報(段落 0031から 0033)
発明の開示
発明が解決しょうとする課題
[0008] 本発明が解決しょうとする課題には、上述した問題が一例として挙げられる。
[0009] 本発明の目的としては、転写面への気泡の混入を防ぐインプリント用モールド及び インプリント方法を提供することである。
課題を解決するための手段
[0010] 本発明のインプリント用モールドは、請求項 1に記載のとおり、弾性を有するモール ドの表面に形成されたパターンを、基板上に形成された被転写層に押し付けて転写 するインプリント用モールドであって、前記被転写層に押し付ける際に、パターン形 成面がその面内の所定の部位力 順に接触していくように、前記モールドの内部に 比重の異なる領域を設けて前記パターン形成面を弾性変形させたことを特徴とする。
[0011] 本発明のインプリント方法は、請求項 5に記載のとおり、弾性を有する表面にパター ンが形成されたモールドを、基板上に形成された被転写層に押し付けて転写するィ ンプリント方法であって、前記モールドの内部に比重の異なる領域を設けてパターン 形成面を弾性変形させて、パターン形成面がその面内の所定の部位力も順に接触し ていくように押し付けることを特徴とする。
図面の簡単な説明 [0012] [図 1]図 1は、本発明の実施の形態 1のソフトモールドの模式図であり(a)は断面図、( b)は正面図である。
[図 2]図 2 (a)〜(c)は、図 1に示すソフトモールドを用いたインプリント工程の説明図 である。
[図 3]図 3 (a)〜 (e)は、図 1に示すソフトモールドの作製方法の説明図である。
[図 4]図 4は、図 1に示すソフトモールドの変形を説明するための図である。
[図 5]図 5は、図 1に示すソフトモールドの基板と被転写基板のうねり幅を説明するた めの図である。
[図 6]図 6は、本発明の実施の形態 2のソフトモールドの模式図であり(a)は断面図、( b)は正面図である。
[図 7]図 7は、本発明の実施の形態 3のソフトモールドの模式図であり(a)は断面図、( b)は正面図である。
[図 8]図 8は、磁気ディスク用のパターンの一例を示す図である。
[図 9]図 9 (a)〜 (e)は、磁気ディスクを製造する工程を説明するための図である。
[図 10]図 10 (f)〜 (1)は、磁気ディスクを製造する工程を説明するための図である。
[図 11]図 11は、磁気ディスクを製造する工程のフローチャートである。
符号の説明
[0013] 1 モールド
2 基板
3 重り部材
4 被転写基板
5 榭脂層
6 マスターモーノレド
7 型枠
11 サーボパターン部
12 パターンドデータトラック部
100 基板保持体
102 モールド保持体 105 被転写層 (榭脂層)
106 ハードマスク層
107 記録膜層
108 記録媒体用ベース基板
109 非磁性材料
110 潤滑層
111 保護層
発明を実施するための最良の形態
[0014] 以下、本発明に係る実施の形態について図面を参照して説明する。なお、以下の 説明における例示が本発明を限定することはない。
[0015] (第 1実施形態)
以下、本発明の第 1実施形態について図 1から図 5を用いて説明する。
[0016] 図 1は、本実施形態によるモールドの模式図であり、 (a)は断面図、(b)は正面図で ある。
[0017] 図 1に示すモールド 1は、弾性を有するソフトモールドであり、例えば PDMS (ポリジ メチルシロキサン)などで構成され、その弾性を有する表面に凹凸パターン laが形成 されている。モールド 1は、石英や Si (シリコン)などで構成される基板 (モールド保持 部) 2によって背面を保持されている。モールド 1の内部には、モールド本体 (弾性体) よりも比重が大きい重り部材 3が内包されている。すなわち、重り部材 3を内包すること によって、モールド内部に比重が異なる領域を形成する。重り部材 3は矩形形状をし ており、方形のモールド 1面の中央部に配置される。
[0018] 詳しくは後述するように、モールド 1のパターン形成面は平坦面であり、この平坦な 状態でパターンの面精度が正確に再現されるように調整されている。すなわち、弾性 を有するモールド 1を平坦な基板表面に押し付けると、その貼り合わせ面は平坦にな るので、このときの状態においてパターンが予定とする線幅 '配列となるように調整さ れている。このように構成されたモールド 1において、図 1に示すように、パターン形成 面を垂直方向下側に向けた状態にすると、弾性を有するモールド 1は重力の作用を 受けるが、重り部材 3を中央部に内包したことによって、中央部が垂直方向下方に隆 起し、この隆起した部分力 半径方向外側に向けてゆるやかに湾曲する凸状曲面形 状に弾性変形する。垂直方向下方に隆起する要因としては、重り部材 3の比重が、そ れを取り囲んで 、るモールド 1を形成して 、る弾性体の比重より大き 、ことにより、例 えば重力の作用を受けて重り部材 3がモールド 1の男性部材に沈み込むことが考えら れる。この状態で、モールド 1を基板上の被転写層に押し付けると、まず隆起した中 央部が接触し、その後外周方向に広がるように順に接触していく。最終的に、凸状曲 面は、被転写層の表面形状に沿った平坦な形状を再現する。ここで、本実施形態で は、パターン形成面の中央部力 接触するようにするため、モールド 1の中央部に重 り部材 3を内包させているが、パターン形成面の別の部位力 接触させたい場合には 、該当する部位に対応する位置に重り部材 3を内包させるようにする。すなわち、重り 部材 3は、被転写層に対して最初に接触させた!/、所定の部位に対応する位置に内 包されている。
[0019] このように、重り部材 3を内包させてモールド 1のパターン形成面を凸状曲面に弾性 変形させた状態で被転写層に押し付けることにより、平坦な被転写層に対し、全面で はなく最頂部の小さな面積部分力 接触を開始するため、接触面に気泡が挟まれる ことを防止する。
[0020] 図 2は上述したソフトモールドを用いたインプリント工程の説明図である。なお、図 2 ではソフトモールドのパターン形状は省略している。
[0021] 被転写基板である基板 4上に榭脂材料を塗布して、被転写層 5である榭脂層を形 成する。基板 4としては、シリコンウエノ、、石英基板、アルミ基板、又はこれらの基板に 半導体層、磁性層、又は共有電体層などを積層した基板などを用いることができる。 また、被転写層 5を形成する榭脂としては、 PMMA (ポリメタクリル酸メチル)などの熱 可塑性榭脂、又は PAK— 01 (製品名、東洋合成工業株式会社製)などの UV硬化 性榭脂などを用いることができる。そして、モールド 1のパターン形成面を垂直方向下 側に向けた状態で、モールド 1と基板 4を相対的に近づけていく。このとき、モールド 1 は、内包される重り部材 3によって中央部から半径方向外側に湾曲した凸状曲面とな つている(図 2 (a) )。
[0022] 従って、モールド 1は、湾曲面の最頂部が最初に被転写層 5に接触し、その後、周 辺方向に向力つて順次接触していく(図 2 (b) )。これによつて、転写面に気泡が混入 することを防止してモールド 1を押し付けることができる(図 2 (c) )。その後、不図示で あるが、被転写層 5が熱可塑性榭脂の場合は、加熱冷却処理をして榭脂を硬化させ る。又は、被転写層 5が UV硬化性榭脂の場合は、 UV処理によって榭脂を硬化させ る。このようにして榭脂を硬化させた後、モールド 1を被転写基板 4から剥離する。この とき、中央部に重り部材 3が内包されているので、周縁部から中央部に向力つて順に 剥離されていくこととなり、容易かつ滑らかに剥離することができる。
[0023] 次に、ソフトモールドの作製方法について図 3を用いて説明する。図 3はモールド材 料として PDMSを用いたソフトモールドの作製方法の説明図である。
[0024] ノ《ターンが形成された例えばシリコン原版力もなるマスターモールド 6を洗浄し離型 処理をし、マスターモールド 6の外周にパターンを囲む型枠 7を設ける(図 3 (a) )。こ のマスターモールド 6の型枠 7内に硬化剤を混合した PDMS1を流し込む(図 3 (b) ) 。 PDMS1中に重り部材 3を設置する(図 3 (c) )。この状態で PDMS1上に基板 2を 置き、室温で放置し PDMS1を硬化する(図 3 (d) )。その後、マスターモールド 4から PDMSで形成されたモールド 1を剥離する(図 3 (e) )。
[0025] 図 3 (b)において、重り部材 3は、パターン形成面の中央部に位置するように設置さ れ、 PDMS1の厚み方向の中央部に設置され、この位置で PDMSを常温硬化して 重り部材 3を保持する。その後、図 1に示すようにモールド 1のパターン形成面を垂直 方向下側に向けると、重り部材 3が内包された中央部が隆起し、半径方向の外側に 向かって湾曲する凸状湾曲面に弾性変形する。
[0026] このようにソフトモールドを形成することで、モールドのパターン形成面が平坦にな つた状態、すなわち被転写基板と貼り合わせられた状態で、マスターモールドの形状 を忠実に再現するようになる。そのため、モールドのパターン形成面が湾曲した状態 で押し付けても、被転写層に押し付けられて平坦になった状態では、転写しょうとす るパターンを正確に再現することができる。
[0027] ここではソフトモールドの作製方法として型枠に PDMSを流し込んで常温硬化させ るモールド作製方法を一例として挙げたが、エラストマ一前駆体を用い、それらを熱 硬化、光硬化、常温硬化等の硬化手段を用いて作製することもできる。また、モール ド表面へのパターン形成の手段として、モールドの硬化後にパターンを切削等の加 工手段でカ卩ェすることも可能である。
[0028] 次に、ソフトモールドのパターン形成面の重り部材による弾性変形について詳述す る。
[0029] ソフトモールドには、その表面に形成されるパターン形状が十分に保持される程度 の適度の弾性が必要であり、かつ、通常は平板形状で使用されるため、重り部材を 含まず全体の比重が均質である場合にはソフトモールド自体の弾性のみで厚み方向 に極端に伸張 ·変形することはないと考えてよい。このため、重り部材を内包する領域 (図 4の X)と、重り部材を内包しない領域(図 4の Y)とで、その伸張の差えは近似的 に弾性係数の基本式(1)で表される(図 4参照)。
[0030] λ =P X L/(E XA) (1)
P :重り部材による荷重
L:ソフトモールドの厚み
E:ソフトモールドの弾性係数
A:重り部材の断面積
[0031] ソフトモールドと被転写基板 (厳密には被転写層)が接触する際にモールド一基板 間に気泡が混入する過程を考慮すると、基板 4表面のうねり幅 hwとソフトモールドの 背面、すなわちソフトモールドが固定されている基板 2表面のうねり幅 heとの和(hw +hc)よりも(図 5参照)、重り部材による弾性体の伸張の差えが大きければ、接触過 程で空気の混入を防止することが期待される。ここで、うねり幅 hwと heは転写に直接 関わる領域、すなわちモールドと被転写基板とが接触する面積領域内のうねり幅で ある。
[0032] これを式で表すと、ソフトモールドが有効に機能するためには、(1)式より次式(2) の関係式が成り立つことが条件になる。
[0033] P X L/(E XA) >hw+hc (2)
[0034] 例えば、石英基板上に形成した PDMSソフトモールドを用いて、 Siウェハへのイン プリントを行う場合の条件は次のようになる。
[0035] Siウェハのうねり幅: 5 [; z m] 石英基板のうねり幅: 5 [ m]
ソフトモールドの形状:幅 10 [cm]、厚さ 5 [mm]
PDMSの弾性係数: 2. 5 [MPa]
[0036] この場合、(2)式より、 1平方センチメートルあたりの荷重 (PZA)を次式により導き 出すことができる。
[0037] P/A> (hw+hc) X E/L
P[Kgf]/A[cm2]>(0.0005+0.0005)[cm] X 0.255[Kgf/cm2]/0.5[cm]
=0.0005[Kgf/cm2]=0.5[gf/cm2]
[0038] 上述した条件において、一例として、重り部材として 1辺 lcm平方の鉄(比重 7.85[g/ cm3])を採用した場合では、
0.5/7.85[cm] = 0.064[cm]=640[ m]より、
lcm2で、厚さ 640 mより厚い鉄板を内包すればよい。
[0039] また、重り部材として 1辺 lcm平方の金(比重 19.3[g/cm3])を採用した場合では、
Figure imgf000010_0001
πι]より、
lcm2で、厚さ 260 μ mより厚い金箔片をソフトモールドに内包すればよい。
[0040] 同様に、重り部材として 1辺 lcm平方の石英 (比重 2.5[g/cm3])を採用した場合では
0.5/2.5[cm]=0.20[cm]=2[mm]より、
lcm2で、厚さ 2mmより厚い石英を内包すればよい。
[0041] このように、本実施形態によれば、モールドのパターン形成面が中央部が隆起した 凸状曲面となり、モールドを被転写層に貼り合わせるときに、パターン形成面が中央 部から半径方向外側に向けて徐々に接触していくため、転写面への気泡の混入を 防ぐことができる。また、モールドの転写時にはパターン形成面が平坦になってマス ターモールドと同じ面精度で形成されるため、転写時のモールドのパターン精度を良 好に維持することができる。また、ソフトモールド表面の曲面形状は、重り部材を内包 することによって生じるため、外力を加える機構を不要とすることができる。
[0042] 本発明のモールドは、上述した実施の形態に限定されず、弾性を有するモールド 内に比重が異なる領域を設けることによってパターン形成面が弾性変形するもので あればよい。
[0043] モールドは、弾性体内に比重の異なる領域を設けたことによってパターン形成面が 弾性変形することで、モールドと被転写層の接触開始時に接触面積を小さくすること ができ、転写面への気泡の混入を防ぐことができる。また、モールドを被転写層に押 し付けると、モールドが弾性変形して被転写層の表面形状に沿って変形するため、 パターンの面精度を正確に調整することができる。
[0044] また、モールドのパターン形成面の面精度は、モールドのパターン形成面が被転 写層に貼り合わされたときの形状で調整されることで、比重差によってモールドのパ ターン形成面が変形しても、モールドと被転写層を貼り合わせた状態ではモールドの パターンは正確に再現されるため、被転写層に正確なパターンを転写することができ る。
[0045] 従来のモールドのように、パターン形成面が平坦である場合は、接触開始面積が 大きぐ転写面に気泡が混入しやすいという問題がある。そのため、モールドのパタ ーン形成面が、比重の異なる領域を設けたことによって、凸状曲面又は一方端側が 隆起した傾斜面など湾曲した形状に変形することで、接触開始時にモールドが被転 写層と小さな面積で接触し、その後徐々に接触面積を拡大しながら被転写層と貼り 合わされるようになり、パターン形成面の湾曲形状の最頂部から周囲にむけて気泡を 排除しながらモールドと被転写層を貼り合わせることができる。
[0046] なお、比重の異なる領域を設けたことによるパターン形成面の変形形状は、被転写 基板面に対しある程度の接触角を有する凸状形状となることが好ましぐさらに、バタ ーン形成面と直交する方向において、モールドの背面のうねり量と被転写基板表面 のうねり量の総和よりも大きく隆起することで、モールドと被転写基板のうねりによる影 響を排除することができる。
[0047] このようなモールドを構成する弾性材料としては、上述した構成に限定されず、いわ ゆるエラストマ一を用いることができ、例えば、シリコン榭脂、ウレタン榭脂、天然ゴム、 SBR (ブタジエン—スチレン共重合体)、 NBR (ブタジエン—アクリロニトリル共重合 体)、 CR (ポリクロ口プレン)、 BR (ポリブタジエン)、 IR (ポリイソプレン)、又はフッ素榭 脂などが挙げられ、中でもシリコン榭脂及びウレタン榭脂が好ましぐ特にシリコン榭 脂が好ましい。さらに、硬化剤によって硬化するシリコン榭脂がモールド作製の容易 性の点力も好ましぐこのような榭脂としては例えば PDMSが挙げられる。
[0048] 本発明のモールドの外周形状は、上述した方形に限定されず、対象とする生成品 に適した形状のモールドを採用することができる。例えば半導体、デバイス、 MEMS 、 NEMSなどの作製には方形のモールドを、また例えば磁気ディスク、光ディスクな どの作製には円形のモールドを採用することができる。
[0049] 本発明の重り部材は、上述した構成に限定されず、モールド内に異なる比重の領 域を形成できるものであればよい。モールドを構成する弾性体に対し、当該領域の比 重が大きい場合には、パターン形成面が垂直方向下側に向けられるとこの領域がモ 一ルド形成面を隆起させ、上側に向けられるとこの領域がモールド形成面を押し込め 、パターン形成面を変形させる。反対に、モールドを構成する弾性体に対し当該領 域の比重が小さい場合には、その領域に力かる荷重力 モールドのみ力 なる領域 にかかる荷重よりも小さ!/、ため、パターン形成面が垂直方向下側に向けられるとこの 領域がモールド形成面よりも窪んだ凹状形状をなし、上側に向けられるとこの領域が 隆起することになり、パターン形成面を変形させる。モールドは弾性を有するため、パ ターン形成面がこの領域によって変形した部分からゆるやかに変形して湾曲形状を 形成する。
[0050] 重り部材の配置は、モールド面の中央部に限定されず、被転写層或いは基板の形 状、転写プロセスに応じて適切な位置を採用することができる。また、円形 Z方形の モールドに限らず、より複雑な形状のモールドについても、被転写層とモールドの接 触位置を重り部材の配置位置を変更することで制御することができる。
[0051] 重り部材の形状は特に限定しないが、上述した矩形形状の他、球形状、円形状、 だ円形状、薄板形状等が挙げられる。
[0052] このような重り部材としては、モールド本体 (弾性体)の比重に比べて大きい比重の 材料力もなるものであればよい。また、重り部材としては、モールド材料に腐食、分解 、変質などの悪影響を及ぼさず、また、モールド材料カゝら腐食、酸化、溶解などの悪 影響を受けない材料であることが好ましい。例えば、石英、鉄、金などが挙げられるが これらに限定されない。なお、重り部材に石英などの UV透過性の材料を用いれば、 同様に UV透過性の PDMSモールドと石英基板とを組み合わせて、モールド全体の UV透過性を悪化させな 、構成とすることで、 UV硬化式ナノインプリント法にぉ 、て 信頼性が向上する。
[0053] また、重り部材の他、モールド内の比重が大きい領域として、例えばモールド内の 特定の領域に石英などの比重の重 、粉体を分散させることで、そのような領域を形 成することができる。このような領域によれば、モールドのパターン形成面上の湾曲形 状をより精密に調整することができる。
[0054] (第 2実施形態)
以下、本発明の第 2実施形態について、図 6を用いて説明する。なお、上述した第 1実施形態と同様の構成については、同一符号を付して説明を省略する。
[0055] 図 6に示すソフトモールドは、上述の第 1実施形態において重り部材の配置及び形 状を変更した一例であり、方形のソフトモールドの一辺の縁側でパターン laの外側に 帯状の重り部材 3が内包されている。
[0056] インプリント時において、ソフトモールド 1のパターン形成面を垂直方向下側に向け た状態では、重り部材 3を設けたことによってソフトモールド 1自体に対して相対的に 下側に移動することで、ソフトモールド 1の一方端側が下方に隆起し、その一方端側 力 他方端側にかけてゆるやかな傾斜形状となる。この状態で、ソフトモールド 1を垂 直方向上方から被転写層へ接触させることで、ソフトモールド 1が被転写層に一方端 側から徐々に接触するため、気泡の混入を防いでインプリントを行うことができる。そ の後、ソフトモールド 1を上昇させてソフトモールド 1を剥離する。
[0057] (第 3実施形態)
以下、本発明の第 3実施形態について、図 7を用いて説明する。なお、上述した実 施の形態 1と同様の構成については、同一符号を付して説明を省略する。
[0058] 図 7に示すソフトモールドは、パターン形成面を垂直方向上側に向けて保持された 状態で、上方から被転写基板が押し付けられる構成であり、方形のソフトモールド 1の 外周縁側でパターン laの外側に全周にわたり重り部材 3が内包されている。これによ つて、モールドの外周縁が下方側に歪み、相対的にソフトモールド 1の中央部が隆起 しその半径方向外側に向けてゆるやかに湾曲した凸状曲面形状となる。 [0059] この状態で、被転写基板とソフトモールドを相対的に近付けると、ソフトモールドが 中央の最頂部力 被転写層に接触し、その後半径方向外側に向けて徐々に接触し ていくため、転写面への気泡の混入を防ぐことができる。
[0060] このような構成によれば、プロセス中にソフトモールド側を固定しておくことができる ため、ソフトモールド側から UV処理や加熱冷却処理を簡単な構成で行うことができる
[0061] 以上説明したように、本発明のインプリント用モールドは、弾性を有するモールドの 表面に形成されたパターンを、基板上に形成された被転写層に押し付けて転写する インプリント用モールドであって、前記被転写層に押し付ける際に、パターン形成面 がその面内の所定の部位力も順に接触していくように、前記モールドの内部に比重 の異なる領域を設けて前記パターン形成面を弾性変形させたことにより、転写時にモ 一ルドが被転写部材に小さな面積力 接触するため、転写面に気泡が混入すること を防止することができる。
[0062] また、本発明のインプリント方法は、弾性を有する表面にパターンが形成されたモ 一ルドを、基板上に形成された被転写層に押し付けて転写するインプリント方法であ つて、前記モールドの内部に比重の異なる領域を設けてパターン形成面を弾性変形 させて、パターン形成面がその面内の所定の部位力 順に接触していくように押し付 けることで、転写時にモールドが被転写部材に小さな面積力 接触するため、転写面 に気泡が混入することを防止することができる。
[0063] 最後に、図 1に示したモールド 1を用いて、磁気ディスクを製造する手法について、 図 8〜図 11を参照しながら説明する。
[0064] まず、図 8は、磁気ディスク製造用のモールドに形成されたパターン形状の一例を 示す図である。図 8に示すように、モールド 1のパターン形成面には、パターンドデー タトラック部 11、サーボパターン部 12に対応する凹凸が形成されている。特に、パタ ーンドデータトラック部 11に対応するパターンは、一定の間隔で全面に形成される約 25nm程度の微細なパターンである。近年、益々高容量化する磁気ディスクは、密度 力 00Gbpsi(GbitZinch2)以上、特に 1〜: LOTbpsi程度の非常に高い面記録密 度に相当する超微細パターンを形成するのが効果的である。そのため、約 25nmの ビット間隔のパターンを形成したモールドを用いることにより、記録密度がおよそ 1Tb psiの高密度パターン記録媒体を作製することが可能となる。このような微細なパター ンは、高精細パターンが形成可能な電子線描画により形成するのが望ましい。
[0065] 続いて、図 8に一例を示したパターンを有するモールド 1を用いて、磁気ディスクを 製造する工程について説明する。図 9及び図 10は、各工程を模式的に示した図であ り、図 11は、そのフローチャートである。
[0066] まずステップ S101では、図 9 (a)に示すように、特殊カ卩エイ匕学強化ガラス、 Siウェハ 、アルミ板、他の材料カゝらなる記録媒体用ベース基板 108を準備する(ベース基板 1 08の準備)。そして、ベース基板 108の上に、スパッタリング等で記録膜層 107を成 膜する(記録膜層 107の形成)。垂直磁気記録媒体の場合には、軟磁性下地層、中 間層、強磁性記録層、等の積層構造体となる。続いて、記録膜層 107の上にスパッタ リング等で Taや Ti等のハードマスク層 106を形成する(ノヽードマスク層 106の形成)。 さら〖こ、ハードマスク層 106の上に、転写材料として UV硬化性榭脂をスピンコート法 等で塗布する (被転写層 105の形成)。
[0067] ステップ S102では、図 9 (b)〖こ示すように、ソフトモールド 1をモールド保持部 102 に取り付ける(モールドのモールド保持体への取り付け)。そして、モールド 1のパター ン形成面と、基板保持部 100に保持された基板の被転写層 105とが互いに向き合う ように、インプリント装置に取り付ける (インプリント装置への取り付け)。このとき、モー ルド保持体 102と基板保持体 100の水平方向の位置調整を行う (位置調整)。
[0068] ステップ S103では、モールド 1に向力つて基板を近付けていき、モールド 1のパタ ーン形成面を、被転写層 105に押し付ける(図 9 (c) )。そしてモールド 1の裏面側か ら UV光 (波長 300〜400nm)を照射することによって UV硬化性榭脂 (被転写層 10 5)を硬化させた後、基板をモールド 1から離すことによって、パターンが被転写層 10 5に転写される(図 9 (d) )。
[0069] ステップ S104では、インプリント装置から取り出された基板に対して、 Oガス等を用
2
V、たソフトアツシング等を行って被転写層 105の残膜を除去する (残膜除去)。これに より、残った被転写層 105のパターン力 ハードマスク層 106をエッチングするための エッチングマスクとなる(図 9 (e) )。 [0070] ステップ S105では、図 10 (f)に示すように、 CHFガス等を用いてハードマスク層 1
3
06のエッチングを行い、ハードマスク層 106にパターンを形成する。その後、図 10 (g )に示すように、ウエットプロセスやアツシング等を行って残存するエッチングマスク (被 転写層 105)を除去する(ノヽードマスク層 106にパターン形成)。
[0071] ステップ S 106では、図 10 (h)に示すように、パターンが形成されたハードマスク層 106をエッチングマスクとして、 Arガス等を用いたドライエッチングを行って記録膜層 107にパターンを形成する(記録膜層 107にパターン形成)。その後、図 10 (i)に示 すように、ウエットプロセスやドライエッチングを行って残存するハードマスク層 106を 除去する。
[0072] ステップ S107では、図 10 (j)に示すように、スパッタリングや塗布により、記録膜層 107の表面の凹部に非磁性材料 109 (磁気記録媒体の場合は SiO等の非磁性材
2
料)を埋め込む (非磁性材料 109の埋込)。
[0073] ステップ S108では、図 10 (k)に示すように、エッチングやケミカルポリシュ等により 表面を研磨して平坦化する(平坦化)。これによつて、記録材料が非記録性材料によ つて分離された構造が形成されることになる。
[0074] ステップ S 109では、図 10 (1)に示すよう〖こ、 CVDやスパッタリングを行ってカーボ ン等の表面保護層 111を形成し、さらに、デイツビング法等により潤滑層 110を形成 する(表面処理)。
[0075] このようにして微細パターン構造を持つ磁気ディスクが製造され、最後に、これを磁 気ディスク媒体の駆動系 (スピンドルモータ、回転駆動制御回路など)と磁気情報のリ ード'ライト機構 (磁気ヘッド、サスペンション、エラー訂正回路など)を有するハードデ イスクドライブに組み込んで、磁気記録装置が完成する。
[0076] 本発明のソフトモールドは、図 8に一例を示すような約 25nmの微細なパターンを転 写する場合であっても、気泡の混入を防止することができると共に、基板に張り合わ せた状態で予定とするパターンが再現されるようにして 、るので、ノターンを高精度 に転写することができる。カロえて、モールドを押し付ける際にパターン形成面が徐々 に接触し、さらに離脱させる際にも徐々に離れていくので、ノターンの転倒'脱離など の発生を防止することが可能である。 以上、本発明の具体的な実施形態に関して説明したが、本発明の範囲を逸脱しな い限り様々な変形が可能であることは、当該技術分野における通常の知識を有する 者にとって自明なことである。従って、本発明の技術的範囲は、上述した実施形態に 限定されるものではなぐ特許請求の範囲及びこれと均等なものに基づいて定められ るべさである。

Claims

請求の範囲
[1] 弾性を有するモールドの表面に形成されたパターンを、基板上に形成された被転 写層に押し付けて転写するインプリント用モールドであって、
前記被転写層に押し付ける際に、パターン形成面がその面内の所定の部位力 順 に接触して 、くように、前記モールドの内部に比重の異なる領域を設けて前記パター ン形成面を弾性変形させたことを特徴とするインプリント用モールド。
[2] 前記モールドのパターン形成面の面精度は、前記モールドのパターン形成面が前 記被転写基板に貼り合わされる形状で調整されることを特徴とする請求項 1に記載さ れたインプリント用モールド。
[3] 前記モールドのノターン形成面が平坦であり、前記領域を設けたことによってその ノターン形成面が湾曲することを特徴とする請求項 1又は 2に記載されたインプリント 用モールド。
[4] 前記領域による前記モールドの単位面積あたりの荷重 (PZA)が次式で表される 範囲内であることを特徴とする請求項 1から 3のいずれか 1項に記載されたインプリン ト用モールド:
P/A> (hw+hc) X E/L
P :領域による荷重
A:領域の断面積
hw:被転写基板表面のうねり幅
he :モールド背面のうねり幅
E:モールドの弾性係数
L:モーノレ 、の厚さ。
[5] 弾性を有する表面にパターンが形成されたモールドを、基板上に形成された被転 写層に押し付けて転写するインプリント方法であって、
前記モールドの内部に比重の異なる領域を設けてパターン形成面を弾性変形させ て、前記パターン形成面がその面内の所定の部位力 順に接触していくように押し 付けることを特徴とするインプリント方法。
PCT/JP2007/053516 2006-03-03 2007-02-26 インプリント用モールド及びインプリント方法 WO2007099907A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502772A JPWO2007099907A1 (ja) 2006-03-03 2007-02-26 インプリント用モールド及びインプリント方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-057843 2006-03-03
JP2006057843 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099907A1 true WO2007099907A1 (ja) 2007-09-07

Family

ID=38459014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053516 WO2007099907A1 (ja) 2006-03-03 2007-02-26 インプリント用モールド及びインプリント方法

Country Status (3)

Country Link
JP (1) JPWO2007099907A1 (ja)
CN (1) CN101394989A (ja)
WO (1) WO2007099907A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096193A (ja) * 2007-09-28 2009-05-07 Toray Ind Inc 微細形状転写シートの製造方法及び製造装置
JP2009119695A (ja) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp ナノプリント用樹脂スタンパ
WO2009093661A1 (ja) * 2008-01-25 2009-07-30 Kyowa Hakko Chemical Co., Ltd. 金属膜のパターン形成方法
GB2468120A (en) * 2009-02-20 2010-09-01 Api Group Plc Machine Head For Production Of A Surface Relief
JP2011060843A (ja) * 2009-09-07 2011-03-24 Shimadzu Corp 光硬化樹脂の特性試験装置、その試験装置で使用する保持具、特性試験方法
JP2012094818A (ja) * 2010-10-01 2012-05-17 Canon Inc インプリント装置、及びそれを用いた物品の製造方法
WO2013060618A1 (de) * 2011-10-25 2013-05-02 Universität Kassel Nano-formgebungsstruktur
WO2013118546A1 (en) 2012-02-07 2013-08-15 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
JP2014049473A (ja) * 2012-08-29 2014-03-17 Dainippon Printing Co Ltd インプリント方法およびそれを実施するためのインプリント装置
CN103767053A (zh) * 2012-08-30 2014-05-07 奥查徳·希尔公墓公司 压印系统
JP2014146695A (ja) * 2013-01-29 2014-08-14 Daicel Corp シート状モールド及びその製造方法並びにその用途
JP2015111683A (ja) * 2014-12-22 2015-06-18 大日本印刷株式会社 インプリント用モールド複合体およびその製造方法
JP2017501568A (ja) * 2013-11-29 2017-01-12 エーファウ・グループ・エー・タルナー・ゲーエムベーハー スタンパ構造を備えたスタンパ並びにその製造方法
JP2017168833A (ja) * 2016-03-15 2017-09-21 キヤノン株式会社 インプリント装置、および物品の製造方法
JP2020115579A (ja) * 2020-04-08 2020-07-30 エーファウ・グループ・エー・タルナー・ゲーエムベーハー スタンパ構造を備えたスタンパ並びにその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858623B2 (ja) * 2011-02-10 2016-02-10 信越化学工業株式会社 金型用基板
JP5306404B2 (ja) * 2011-03-25 2013-10-02 株式会社東芝 パターン形成方法
JP5355614B2 (ja) * 2011-04-19 2013-11-27 パナソニック株式会社 シート状デバイスの製造装置、シート状デバイスの製造方法
JP5824379B2 (ja) 2012-02-07 2015-11-25 キヤノン株式会社 インプリント装置、インプリント方法、及び物品の製造方法
TWI578848B (zh) * 2012-06-18 2017-04-11 Embossing device and embossing method
CN104441379A (zh) * 2014-12-10 2015-03-25 义乌市敦美电子商务有限公司 一种用于立体画的模具机构
JP6491928B2 (ja) * 2015-03-31 2019-03-27 株式会社協同インターナショナル レプリカモールドおよびその製造方法
TWI672212B (zh) * 2016-08-25 2019-09-21 國立成功大學 奈米壓印組合體及其壓印方法
CN109927431B (zh) * 2017-12-15 2020-05-01 Tcl集团股份有限公司 量子点转印方法
TWI728489B (zh) * 2019-10-04 2021-05-21 永嘉光電股份有限公司 利用可溶解性模仁的壓印方法及相關壓印系統
CN111048458B (zh) * 2019-12-26 2022-06-07 浙江大学 章鱼仿生的可编程吸盘式转印印章及转印方法
CN113620571B (zh) * 2020-05-09 2023-03-14 Oppo广东移动通信有限公司 热成型模具、壳体及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113456A (ja) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp ディスク基板製造装置
JP2002337227A (ja) * 2001-05-22 2002-11-27 Matsushita Electric Ind Co Ltd 薄肉光ディスク熱転写用金型
JP2004017409A (ja) * 2002-06-14 2004-01-22 Toppan Printing Co Ltd 凸版及びパターン形成方法
JP2004299153A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd スタンパ及び転写装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113456A (ja) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp ディスク基板製造装置
JP2002337227A (ja) * 2001-05-22 2002-11-27 Matsushita Electric Ind Co Ltd 薄肉光ディスク熱転写用金型
JP2004017409A (ja) * 2002-06-14 2004-01-22 Toppan Printing Co Ltd 凸版及びパターン形成方法
JP2004299153A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd スタンパ及び転写装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096193A (ja) * 2007-09-28 2009-05-07 Toray Ind Inc 微細形状転写シートの製造方法及び製造装置
JP2013173364A (ja) * 2007-09-28 2013-09-05 Toray Ind Inc 微細形状転写シートの製造装置
JP2009119695A (ja) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp ナノプリント用樹脂スタンパ
WO2009093661A1 (ja) * 2008-01-25 2009-07-30 Kyowa Hakko Chemical Co., Ltd. 金属膜のパターン形成方法
US8163222B2 (en) 2009-02-20 2012-04-24 Api Group Plc Machine head for production of a surface relief
GB2468120B (en) * 2009-02-20 2013-02-20 Api Group Plc Machine head for production of a surface relief
GB2468120A (en) * 2009-02-20 2010-09-01 Api Group Plc Machine Head For Production Of A Surface Relief
JP2011060843A (ja) * 2009-09-07 2011-03-24 Shimadzu Corp 光硬化樹脂の特性試験装置、その試験装置で使用する保持具、特性試験方法
JP2012094818A (ja) * 2010-10-01 2012-05-17 Canon Inc インプリント装置、及びそれを用いた物品の製造方法
WO2013060618A1 (de) * 2011-10-25 2013-05-02 Universität Kassel Nano-formgebungsstruktur
EP2791964A4 (en) * 2012-02-07 2015-06-24 Canon Kk PRINTING DEVICE AND METHOD FOR PRODUCING AN ARTICLE
WO2013118546A1 (en) 2012-02-07 2013-08-15 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
US10018909B2 (en) 2012-02-07 2018-07-10 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
JP2014049473A (ja) * 2012-08-29 2014-03-17 Dainippon Printing Co Ltd インプリント方法およびそれを実施するためのインプリント装置
CN103767053A (zh) * 2012-08-30 2014-05-07 奥查徳·希尔公墓公司 压印系统
JP2014146695A (ja) * 2013-01-29 2014-08-14 Daicel Corp シート状モールド及びその製造方法並びにその用途
US10118322B2 (en) 2013-01-29 2018-11-06 Daicel Corporation Sheet-shaped mold, production method therefor, and application therefor
JP2017501568A (ja) * 2013-11-29 2017-01-12 エーファウ・グループ・エー・タルナー・ゲーエムベーハー スタンパ構造を備えたスタンパ並びにその製造方法
JP2015111683A (ja) * 2014-12-22 2015-06-18 大日本印刷株式会社 インプリント用モールド複合体およびその製造方法
JP2017168833A (ja) * 2016-03-15 2017-09-21 キヤノン株式会社 インプリント装置、および物品の製造方法
JP2020115579A (ja) * 2020-04-08 2020-07-30 エーファウ・グループ・エー・タルナー・ゲーエムベーハー スタンパ構造を備えたスタンパ並びにその製造方法

Also Published As

Publication number Publication date
CN101394989A (zh) 2009-03-25
JPWO2007099907A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2007099907A1 (ja) インプリント用モールド及びインプリント方法
JP4642897B2 (ja) インプリント方法及びインプリント装置
JP4712370B2 (ja) インプリント・リソグラフィのための複合スタンパ
JP4939134B2 (ja) インプリント装置およびインプリント方法
US7343857B2 (en) Imprint apparatus and method for imprinting
JP4835277B2 (ja) パターン形成体の製造方法およびインプリント転写装置
US8245754B2 (en) Peeling apparatus, peeling method, and method of manufacturing information recording medium
JP4886400B2 (ja) インプリント装置およびインプリント方法
JP4482047B2 (ja) インプリント方法
JP2010036514A (ja) ナノインプリント用スタンパ及び該スタンパを使用する微細構造転写装置
JP5427389B2 (ja) 樹脂スタンパの製造方法及び製造装置とインプリント方法
JP2007190735A (ja) スタンパー、凹凸パターン形成方法および情報記録媒体製造方法
JP2010049745A (ja) ナノインプリント用モールドおよびこれを用いて作製された磁気記録媒体
WO2007111215A1 (ja) パターン転写用モールド
TW200936351A (en) Method and apparatus for manufacturing resin stamper, imprint method, magnetic recording medium, and magnetic recording/reproducing apparatus
JP2009070483A (ja) インプリント用モールド構造体、及び該インプリント用モールド構造体を用いたインプリント方法、並びに、磁気記録媒体
JP2009006619A (ja) ナノインプリント用モールドおよび記録媒体
WO2009142295A1 (ja) 樹脂製モールド作製用積層体、及び、積層体、樹脂製モールド及び磁気記録媒体の製造方法
WO2011077882A1 (ja) 両面インプリント装置
JP2005339669A (ja) インプリント方法、情報記録媒体製造方法およびインプリント装置
JPWO2007116469A1 (ja) パターン転写方法およびパターン転写装置
JP2010167643A (ja) 微細構造転写装置
JP2009043317A (ja) 磁気記録媒体の製造装置及び磁気記録媒体の製造方法
JP2010102820A (ja) モールド構造体、並びにそれを用いたインプリント方法及び磁気転写方法
JP2011005773A (ja) インプリント用スタンパおよびインプリント装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008502772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780007362.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737369

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)