WO2007099847A1 - 照明光源及びレーザ投射装置 - Google Patents

照明光源及びレーザ投射装置 Download PDF

Info

Publication number
WO2007099847A1
WO2007099847A1 PCT/JP2007/053268 JP2007053268W WO2007099847A1 WO 2007099847 A1 WO2007099847 A1 WO 2007099847A1 JP 2007053268 W JP2007053268 W JP 2007053268W WO 2007099847 A1 WO2007099847 A1 WO 2007099847A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
laser
wavelength
illumination light
semiconductor laser
Prior art date
Application number
PCT/JP2007/053268
Other languages
English (en)
French (fr)
Inventor
Kiminori Mizuuchi
Kazuhisa Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/281,058 priority Critical patent/US7835409B2/en
Priority to JP2008502734A priority patent/JP5231990B2/ja
Priority to CN200780007140XA priority patent/CN101395772B/zh
Publication of WO2007099847A1 publication Critical patent/WO2007099847A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0652Coherence lowering or collapse, e.g. multimode emission by additional input or modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1221Detuning between Bragg wavelength and gain maximum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2036Broad area lasers

Definitions

  • Illumination light source and laser projection apparatus are Illumination light source and laser projection apparatus
  • the present invention relates to an illumination light source with less speckle noise and a laser projection device using the illumination light source.
  • III-V group semiconductor materials such as gallium nitride (AlGa in N (where 0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l)), and AlGaAs-based semiconductor lasers
  • AlGa in N where 0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l
  • Red semiconductor lasers made of semiconductor materials or AlGalnP-based semiconductor materials are key devices for realizing ultra-high density recording using optical discs.
  • increasing the output of these visible light semiconductor lasers is an indispensable technology not only for enabling high-speed writing of optical discs but also for developing new technical fields such as application to laser displays.
  • Force speckle noise is a problem when a visible light semiconductor laser is used as a light source for illumination such as a projection device or a display device.
  • Speckle noise means that when light with high coherence, such as laser light, is used as an illumination light source, the light reflected from the illumination object is disturbed by the irregularities on the surface of the illumination object, and the wavefront of the reflected light is disturbed. This is a phenomenon where patterns are observed. Glittering speckle patterns are observed in the reflected light, which causes deterioration of the image of the projector and display device.
  • the first method is a method of reducing spatial coherence, which is represented by, for example, vibrating a screen irradiated with laser light, and in the optical path and optical system of the laser light. This is a method of reducing speckle noise by giving a typical change.
  • Patent Document 1 a method for directly reducing the coherence of semiconductor laser light has also been proposed.
  • Patent Document 1 it is a method for reducing the coherence of a light source.
  • the high frequency is superimposed on the drive of the semiconductor laser, thereby increasing the spectrum width of the oscillation wavelength and reducing the coherence.
  • the first method for spatially changing the laser beam while applying force requires a mechanical drive system inside the optical system, which increases the size and complexity of the optical system. There is. Furthermore, it is difficult to completely suppress speckle noise simply by giving spatial variation.
  • the above-mentioned second method for converting the spectrum of a semiconductor laser into a multimode is effective for reducing coherence. If the spectrum width is not expanded to 1 nm or more, sufficient coherence reduction is achieved. The effect is not obtained. There is a problem that speckle noise is not sufficiently reduced by simply superimposing a high frequency on the drive of a semiconductor laser.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-323675
  • An object of the present invention is to realize an illumination light source with less speckle noise and a laser projection apparatus using the illumination light source by expanding the width of the oscillation spectrum of the laser light source.
  • An illumination light source includes a laser light source having a laser medium having a predetermined gain region, and a reflector having a narrow-band reflection characteristic, and the reflection wavelength of the reflector is A part of the laser beam emitted from the laser light source is fed back to the laser light source by reflection by the reflector, and the oscillation wavelength of the laser light source is The reflected wavelength force is changed by moving the peak of the gain region of the laser medium by the reflected wavelength force due to the change in the oscillation characteristics of the laser light source.
  • part of the laser light emitted from the laser light source is returned to the laser light source by reflection by the reflector, thereby fixing the oscillation light of the laser light source to the wavelength of the reflector. Then, by changing the oscillation characteristics of the laser light source, the peak of the gain region of the laser light source is changed from the fixed reflection wavelength. For this reason, since the oscillation wavelength of the laser light source can be greatly varied, the oscillation spectrum width of the laser light source is widened and the coherence is lowered. Therefore, an illumination light source with less speckle noise can be realized.
  • FIG. 1A is a diagram showing a configuration of an illumination light source according to Embodiment 1 of the present invention
  • FIG. 1B is a diagram showing output characteristics of a semiconductor laser
  • FIG. 1C shows oscillation wavelength characteristics of a semiconductor laser.
  • FIG. 2A is a diagram showing a configuration of an illumination light source according to Embodiment 1 of the present invention
  • FIG. 2B is a diagram showing characteristics of an oscillation spectrum of a semiconductor laser
  • FIG. 2C is an oscillation wavelength of the semiconductor laser. It is a figure which shows a characteristic.
  • FIG. 3A is a diagram showing the configuration of the illumination light source according to Embodiment 1 of the present invention
  • FIG. 3B is a diagram showing other characteristics of the oscillation spectrum of the semiconductor laser
  • FIG. 3C is a diagram of the semiconductor laser. It is a figure which shows other oscillation wavelength characteristics.
  • FIG. 4A is a diagram showing an example of a pulse train of a drive current applied to a semiconductor laser
  • FIG. 4B is a diagram showing a temperature change of an active layer of the semiconductor laser when the drive current of the pulse train of FIG. 4A is applied
  • 4C is a diagram showing the oscillation wavelength characteristics of the semiconductor laser when the drive current of the pulse train of FIG. 4A is applied
  • FIGS. 4D to F are distributions of the oscillation spectrum of the semiconductor laser when the drive current of the pulse train of FIG. 4A is applied.
  • FIG. 4D to F are distributions of the oscillation spectrum of the semiconductor laser when the drive current of the pulse train of FIG. 4A is applied.
  • FIG. 5 is a diagram showing a configuration in which a volume grating is used as a reflector of the illumination light source according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a configuration using a narrowband filter as a reflector of the illumination light source according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration using a fiber in which a grating is formed as a reflector of an illumination light source according to Embodiment 1 of the present invention.
  • FIG. 8A is a diagram showing the configuration of the light source used for the characteristic evaluation of the oscillation wavelength of the illumination light source according to Embodiment 1 of the present invention
  • FIGS. 8B and 8C are the observation results of the oscillation spectrum of the semiconductor laser.
  • FIG. 8A is a diagram showing the configuration of the light source used for the characteristic evaluation of the oscillation wavelength of the illumination light source according to Embodiment 1 of the present invention
  • FIGS. 8B and 8C are the observation results of the oscillation spectrum of the semiconductor laser.
  • FIG. 9A is a diagram showing the configuration of a light source used for examining the wavelength difference between the gain peak wavelength of the semiconductor laser of the illumination light source and the oscillation wavelength of the reflector according to Embodiment 1 of the present invention
  • FIG. 9B. -D is a figure which shows the observation result of the oscillation spectrum of a semiconductor laser.
  • FIG. 10A is a diagram showing the configuration of a temperature-adjustable semiconductor laser
  • FIG. It is a figure which shows the other structure of the semiconductor laser which can be adjusted.
  • FIG. 11A is a cross-sectional view showing the structure of a DBR laser
  • FIG. 11B is a cross-sectional view showing the structure of a DFB laser.
  • FIG. 12 shows a configuration of an illumination light source according to Embodiment 2 of the present invention.
  • FIGS. 13A and 13B are diagrams for explaining a method of driving a semiconductor laser of an illumination light source according to Embodiment 3 of the present invention
  • FIG. 13A is a semiconductor laser wavelength-locked by optical feedback
  • FIG. 13B is a diagram showing an oscillation spectrum of a semiconductor laser to which the drive current having the current waveform of FIG. 13A is applied.
  • FIGS. 14A and 14B are diagrams for explaining another method for driving the semiconductor laser of the illumination light source according to Embodiment 3 of the present invention, and FIG. 14A is wavelength-locked by optical feedback.
  • FIG. 14B is a diagram showing an oscillation spectrum of the semiconductor laser to which the drive current having the current waveform of FIG. 14A is applied.
  • FIG. 15A and FIG. 15B are diagrams for explaining another driving method of the semiconductor laser of the illumination light source according to Embodiment 3 of the present invention.
  • FIG. 15A shows the wavelength by optical feedback.
  • FIG. 15B is a diagram showing an oscillation spectrum of the semiconductor laser to which the drive current having the current waveform of FIG. 15A is applied.
  • FIG. 16 is a diagram showing a configuration of a laser projection device according to a fifth embodiment of the present invention.
  • FIG. 17 is a diagram showing a configuration of a laser projection apparatus according to Embodiment 6 of the present invention.
  • FIG. 18 is a diagram showing a configuration of a liquid crystal knock light using the illumination light source according to Embodiments 1 to 3 of the present invention.
  • FIG. 1A is a diagram showing a configuration of an illumination light source according to Embodiment 1 of the present invention.
  • the illumination light source according to the present embodiment includes, as its basic configuration, a semiconductor laser 1 that is a light source, and a reflector 2 that reflects a part of emitted light 4 from the semiconductor laser 1. .
  • the emitted light 4 emitted from the semiconductor laser 1 is reflected at a specific wavelength by the reflector 2 having a narrow-band reflection characteristic, and the reflected light 5 enters the active layer of the semiconductor laser 1.
  • the oscillation wavelength of the semiconductor laser 1 is fixed to the reflection wavelength by optical feedback of the reflected light 5 fed back into the active layer.
  • the semiconductor laser 1 is pulse-driven by a driving power source 3.
  • the output at this time is shown in Fig. 1B.
  • the output of the semiconductor laser 1 is a pulse train output.
  • the illumination light source according to the present embodiment is characterized in that the wavelength of the semiconductor laser 1 varies greatly as shown in FIG. 1C within one pulse. That is, when the oscillation wavelength of the semiconductor laser 1 varies from the reflection wavelength of the reflector 2 to other wavelengths within one pulse, the spectrum change increases, and the oscillation spectrum of the semiconductor laser 1 widens. As a result, the coherence of the semiconductor laser 1 is reduced and light with less speckle noise can be generated.
  • the oscillation of the semiconductor laser 1 is determined by the relationship between the loss in the active layer and the gain.
  • the loss with respect to the reflected light 5 returned by the reflector 2 is reduced, and the oscillation wavelength is fixed at the specific reflection wavelength ⁇ from the reflector 2.
  • the gain region of the semiconductor laser 1 shifts to the long wavelength side as shown in FIG.
  • the gain at the reflection wavelength ⁇ decreases, and the oscillation wavelength of the semiconductor laser 1 changes greatly from the reflection wavelength to the gain peak. As shown in FIG.
  • the gain region of the semiconductor laser 1 in FIG. 2A and the reflection wavelength ⁇ ⁇ of the reflector 2 satisfy the relationship described below.
  • the value of the reflection wavelength of the reflector 2 is desirably set to the short wavelength side with respect to the gain wavelength peak (gain peak) of the semiconductor laser 1 at room temperature. Even in normal pulse oscillation, a temperature change occurs in the active layer, and the oscillation spectrum shifts from a short wavelength to a long wavelength within one pulse, and its value is less than 1 nm.
  • the width of the spectrum wavelength change can be made larger than the gain peak fluctuation width.
  • wavelength fluctuation is caused over a wavelength region of 1 nm or more, and speckle noise is reduced.
  • the oscillation wavelength deviates from ⁇ , the oscillation wavelength changes greatly, and the spectrum width can be expanded.
  • the reflectance of the reflector 2 is desirably about 1% to 10%. If it is less than 1%, it becomes difficult to fix the reflection wavelength ⁇ ⁇ by the optical feed knock, and if it is more than 10%, the phenomenon that the oscillation wavelength of the semiconductor laser 1 deviates and shifts to the gain peak is difficult to appear during pulse driving.
  • the narrow band characteristic of the reflector 2 that returns the reflected light 5 to the active layer of the semiconductor laser 1 is also important.
  • the wavelength width is preferably 5 nm or less, more preferably lnm or less.
  • the wavelength selectivity in the active layer is lowered, so that it becomes difficult to fix the oscillation wavelength by optical feedback.
  • the wavelength width must be 5 nm or less.
  • the selectivity at the reflected wavelength of the oscillation wavelength of the semiconductor laser 1 can be improved.
  • the wavelength of the semiconductor laser 1 can be oscillated in the short wavelength region of 2 nm or more from the gain peak, and the wavelength change due to the output modulation covered a wide wavelength range of 3 nm or more.
  • the wavelength at which the wavelength changes due to intensity modulation becomes large.
  • the pulse width at the time of pulse driving is also important.
  • the pulse width should be 1 ⁇ s or more.
  • the wavelength shift by the pulse drive uses the wavelength shift of the gain region due to the temperature change of the active layer of the semiconductor laser.
  • the response frequency of semiconductor laser temperature change is 1 MHz or less, and changes at higher frequencies do not follow the temperature change. Therefore, it is necessary to drive the pulse with a frequency of 1 MHz or less and a pulse width of 1 ⁇ s or more.
  • a reflector 2 having a plurality of reflection wavelengths in addition to the one having a narrow-band reflection wavelength shown in FIG. 1 can further increase the amount of wavelength change. Therefore, it is effective.
  • Fig. 3 (b) two reflection wavelengths ⁇ ⁇ 1 and ⁇ ⁇ 2 are set for the reflector 2 across a wavelength region wider than the moving width of the gain peak that is changed by pulse driving.
  • the semiconductor laser 1 is pulse driven, in the initial state within one pulse, as shown in FIG.
  • the gain peak approaches ⁇ ⁇ 2
  • the oscillation gain at ⁇ ⁇ 2 exceeds the oscillation gain at ⁇ ⁇ , Move to ⁇ 2 oscillation.
  • the wavelength change of the semiconductor laser 1 becomes larger than that in the case of one reflection wavelength, and the effect of reducing the speckle noise is enhanced.
  • the pulse width applied to the semiconductor laser 1 is a single rectangular shape, but the spectrum shape can be controlled by changing the pulse shape.
  • a method for controlling the spectrum distribution using the pulse waveform will be described with reference to FIGS. In order to suppress speckle noise, it is more effective to widen the spectrum width.
  • the force spectrum is more preferably distributed over a wide wavelength region.
  • 4A to 4F are diagrams for explaining a method of controlling spectral distribution using a pulse train.
  • a pulse 41 having a high peak at the head is oscillated as a pulse train, and then a plurality of pulses 42 having lower spire values are applied, and a pulse 43 having a lower spire value is applied at the end. ing.
  • the temperature change of the active layer when a pulse train is applied is shown in Fig. 4B, and the wavelength change of the semiconductor laser at that time is shown in Fig. 4C. Since the temperature of the active layer follows a force that is not delayed with respect to the optical output, when a pulse 41 having a high spire value is applied in the initial stage, a high optical output is obtained before the active layer temperature rises in region A.
  • the oscillation wavelength of the semiconductor laser is fixed by the optical feedback wavelength of the reflector. Thereafter, the temperature of the active layer rises with a slight delay from the light output.
  • the gain peak of the semiconductor laser shifts to a long wavelength due to this temperature rise, oscillation at the gain peak starts at a certain point in addition to the oscillation wavelength due to the reflector, and the oscillation wavelength of the semiconductor laser becomes unstable due to multi-oscillation.
  • Area B After that, the gain wavelength shifts to a longer wavelength side than the oscillation wavelength by the reflector, so that the oscillation wavelength of the semiconductor laser shifts to the oscillation wavelength at the gain peak and oscillates at a longer wavelength as the temperature rises.
  • Fig. 4D shows the entire spectrum distribution at this time.
  • Fig. 4E shows the spectrum distribution when the initial peak 41 with a high spire value in Fig. 4A is not used. In this case, the spectrum in the short wavelength region decreases.
  • Fig. 4F shows the spectral distribution when there is no optical feedback from the reflector.
  • the stripe width of the semiconductor laser is preferably a wide stripe structure of 5 ⁇ m or more.
  • the oscillation spectrum changes in a narrow band state, but by changing the transverse mode to multimode, the spectrum width changes in a wide state.
  • the average spectral shape is smooth.
  • the output can be increased and the oscillating transverse mode can be multimode.
  • the transverse mode multimode multiple transverse modes can be excited and the oscillation spectrum of the semiconductor laser can be expanded.
  • the wavelength is fixed by optical feedback and the spectrum is changed by the pulse drive of the laser, the spectrum width is increased by multi-mode of transverse mode. By spreading and increasing spectral dispersion, speckle noise can be greatly reduced.
  • lasers such as AlGaAs semiconductor materials and AlGalnP semiconductor materials
  • each stripe oscillates at a different wavelength, and the oscillation wavelength fluctuates when driven by a pulse, enabling oscillation over a wide wavelength range as a whole. It becomes. As a result, the coherence of laser light is greatly reduced, and speckle noise can be greatly reduced.
  • the waveguide window structure is effective in preventing output end face destruction and effective in increasing the output.
  • the configuration using the optical feedback as in the present invention is more effective. By returning light from the outside by optical feedback, the optical power density at the end face becomes larger and the deterioration of the end face becomes remarkable. In particular, when light with high output is generated by pulse driving, end face deterioration is more likely to occur. For this reason, it was possible to achieve high output by using an end window structure, and at the same time, a highly reliable light source was realized.
  • the reflector 2 is required to have a narrow band characteristic that reflects a specific wavelength.
  • the volume grating 51 as a reflector is a dielectric having a refractive index grating, and can reflect a specific wavelength by Bragg reflection.
  • the wavelength of the semiconductor laser 1 can be fixed by collimating the emitted light 4 from the semiconductor laser 1 with the lens 52 and reflecting the specific wavelength with the volume grating 51.
  • the configuration of the present invention can be realized. Since the volume grating 51 is easy to be small in size, a small illumination light source can be realized. In addition, since the grating can be manufactured by interference exposure, a configuration that reflects a plurality of reflection wavelengths can be easily realized.
  • the illumination light source shown in FIG. 6 has a configuration in which a narrow band filter 61 and a reflector 64 are combined.
  • the specific wavelength is fed back to the semiconductor laser 1 by partially reflecting the light transmitted through the narrow band filter 61 with the reflector 64.
  • a wavelength-locked configuration can be realized by this specific wavelength feedback. With this configuration, the configuration of the present invention can be realized.
  • the illumination light source shown in FIG. 7 employs a configuration using a fiber grating 72 formed in the fiber 71. This can be realized by locking the semiconductor laser 1 with a grating fiber in which a grating 72 is formed in the fiber 71 and driving it with pulses.
  • FIG. 8A shows the configuration of the illumination light source used for this evaluation.
  • the illumination light source used for this evaluation has, as its basic configuration, a semiconductor laser 1, a reflector 2 that reflects a part of the emitted light 4 from the semiconductor laser 1, and a semiconductor laser 1 and a reflector 2.
  • Lens 81 is provided.
  • an experiment was conducted on the oscillation wavelength of the semiconductor laser 1, and the oscillation spectrum of the semiconductor laser 1 was observed.
  • the light 4 emitted from the semiconductor laser 1 is collimated by the lens 81, partially reflected by the reflector 2, and the reflected light 5 is fed back to the active layer of the semiconductor laser 1.
  • the reflector 2 is composed of a volume grating and has a narrow band reflection characteristic by Bragg reflection.
  • the reflection wavelength of the reflector 2 is set to 808 nm, and the oscillation wavelength of the semiconductor laser 1 is fixed in the vicinity of the reflection wavelength of 808 nm by the feedback of the reflected light 5.
  • Semiconductor laser 1 is a wide stripe laser with a stripe width of 200 ⁇ m, and its transverse mode is multimode.
  • FIG. 8B shows the case where the peak output of the semiconductor laser 1 is less than 2 W, which clearly indicates that the oscillation wavelength of the semiconductor laser 1 is fixed to the reflection wavelength of 808 nm of the reflector 2.
  • the reason why the oscillation spectrum has a slight spread is that the semiconductor laser 1 is a wide stripe multimode laser.
  • FIG. 8C shows the case where the output of the semiconductor laser 1 is increased and the peak output exceeds 3W.
  • the oscillation wavelength of the semiconductor laser 1 should spread to a wavelength other than the reflection wavelength 808 nm of the reflector 2.
  • the oscillation spectrum spreads to the long wavelength side with a reflection wavelength of about 808 nm to 5 nm. This is because the wavelength of the gain peak of the semiconductor laser 1 exists on the longer wavelength side than the reflection wavelength 808 ⁇ m.
  • the output of the semiconductor laser 1 increased, the temperature of the active layer of the semiconductor laser 1 increased, and the gain peak shifted to the longer wavelength side.
  • the oscillation spectrum of the semiconductor laser 1 can be broadened by modulating the output of the semiconductor laser 1 whose oscillation wavelength is locked by the reflector 2.
  • the stripe width is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the stripe width is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the reflectance of the reflector 2 is preferably 1% or more and 10% or less.
  • the oscillation wavelength of the semiconductor laser 1 cannot be locked by the reflection wavelength of the reflector 2, and only the gain peak wavelength is oscillated, and the oscillation spectrum is broadened. I could't get it.
  • the output loss of the semiconductor laser 1 becomes large, and there is a problem that the efficiency of use of the output decreases.
  • the difference in wavelength between the gain peak wavelength of the semiconductor laser 1 and the oscillation wavelength of the reflector 2 is important. It becomes.
  • the optimum wavelength difference varies greatly depending on the structure of the semiconductor laser 1 and the reflectance of the reflector 2, but at least the wavelength difference is preferably 5 nm or more and 20 nm or less. This is because the oscillation spectrum does not shift when the wavelength difference is 5 nm or less. .
  • the wavelength is 20 nm or more, oscillation starts at the wavelength of the gain peak without being locked at the reflection wavelength. Therefore, even in this case, the oscillation spectrum does not move.
  • FIG. 9A shows the configuration of the illumination light source used in this study.
  • the illumination light source used for this evaluation has, as its basic configuration, a semiconductor laser 91, a reflector 93 that reflects a part of the light emitted from the semiconductor laser 91, and a semiconductor laser 91 and a reflector 93.
  • the lens 92, the holder 95 that holds the semiconductor laser 91, and the temperature controller 96 that is installed in the holder 95 and controls the temperature of the semiconductor laser 91 are provided.
  • an experiment was performed on the change of the oscillation wavelength with respect to the temperature change of the semiconductor laser 91, and the change of the oscillation spectrum of the semiconductor laser 91 was observed.
  • a laser having a stripe width of 100 ⁇ m is used as the semiconductor laser 91, and the oscillation wavelength is locked in the vicinity of the reflection wavelength 808 nm of the reflector 93. Then, the temperature of the semiconductor laser 91 was changed by the temperature controller 96, and the change in the oscillation spectrum accompanying the change in temperature was observed.
  • the observation results are shown in Figs. 9B shows the case where the temperature of the semiconductor laser 91 is set to 25 ° C
  • FIG. 9C shows the case where it is set to 30 ° C
  • FIG. 9D shows the case where it is set to 40 ° C. In the case of 25 ° C. in FIG.
  • the semiconductor laser 91 oscillates at the reflection wavelength of the reflector 93 because there is no difference between the reflection wavelength of the reflector 93 and the gain peak wavelength of the semiconductor laser 91.
  • the gain peak moves to the long wavelength side as the temperature of the semiconductor laser 91 rises. For this reason, a difference occurs between the wavelength of the gain peak of the semiconductor laser 91 and the reflection wavelength of the reflector 93, and oscillation near the gain peak starts.
  • the semiconductor laser 91 oscillates in the vicinity of both the gain peak wavelength and the reflected wavelength. As a result, the oscillation spectrum of the semiconductor laser 91 is greatly expanded, and the spectrum noise is greatly reduced.
  • the semiconductor laser 91 is adjusted by adjusting the temperature of the semiconductor laser 91. It was proved that the difference between the wavelength of the gain peak and the reflection wavelength of the reflector 93 was set to an optimum value, and that the spectrum could be expanded during modulation. Therefore, by adding the function of adjusting the temperature of the semiconductor laser 91, it is possible to adjust the spectrum spread by modulation to the maximum.
  • FIG. 10A shows a configuration example of the semiconductor laser 91 capable of adjusting the temperature.
  • a semiconductor laser 91 shown in FIG. 10A includes an active layer 103 formed on a substrate 101, and a thin film heater 102 disposed so as to sandwich the active layer 103 therebetween.
  • the thin film heater 102 is connected to the temperature controller 96 in FIG. 9A, and the thin film heater 102 is controlled by the temperature controller 96.
  • the optimum wavelength difference shown in FIG. 9D is obtained. Thereby, the wavelength difference between the wavelength of the gain peak of the semiconductor laser 91 and the reflected wavelength of the reflector 93 can be controlled, and the spectrum can be easily expanded.
  • FIG. 10B shows another configuration example of the semiconductor laser 91 capable of adjusting the temperature.
  • a semiconductor laser 91 shown in FIG. 10B includes an active layer 103 formed on a substrate 101, a thin film heater 102 disposed so as to sandwich the active layer 103, and a diffraction grating 104 formed as a reflector. .
  • the light source can be reduced in size by forming the reflector as the diffraction grating 104 inside the semiconductor laser 91.
  • a diffraction grating 104 is formed on a part of the active layer 103.
  • the oscillation wavelength of the semiconductor laser is fixed by the Bragg reflection of the diffraction grating 104.
  • the stripe width of the semiconductor laser 91 is 100 m, and the output is increased by making the transverse mode multi-mode, and the wavelength fixing by the diffraction grating 104 is weakened. This facilitates spectral variation due to modulation.
  • speckle noise can be reduced by changing the spectrum between the reflection wavelength of the diffraction grating 104 and the gain peak wavelength of the active layer 103.
  • temperature control by the thin film heater 102 is important in order to optimize the wavelength difference between the gain peak wavelength and the reflected wavelength of the diffraction grating 104. By controlling the temperature, it can be adjusted to the optimum state of the spectrum fluctuation.
  • the thin film heater 102 in order to reduce the power consumption, it is preferable to modulate the power to the thin film heater 102 in accordance with the output modulation.
  • the driving of the thin film heater 102 is performed in accordance with the modulation of the semiconductor laser 91 so that the temperature of the semiconductor laser 91 increases.
  • the power consumption of the thin film heater 102 can be reduced.
  • the thin film heater 102 formed on the semiconductor laser 91 can respond at high speed and can follow the modulation speed.
  • the thin film heater 102 not only the thin film heater 102 but also a method of modulating the refractive index of the semiconductor laser using the plasma effect, or an electrode is formed instead of the thin film heater 102, and a current is passed through the substrate 101 itself, whereby the semiconductor laser It is also possible to control the temperature of 91 itself.
  • a DFB laser, a DBR laser, or the like in which a periodic structure having a narrow-band reflection characteristic is formed inside the semiconductor laser can be used in the same manner.
  • the DFB laser and DBR laser increase the coupling coefficient between the reflected wavelength of the grating and the wavelength of the excitation light in the active layer so that the oscillation wavelength does not deviate from the selected wavelength of the grating.
  • the oscillation wavelength of the semiconductor laser is pulse driven and the lock wavelength power is also removed.
  • a multi-stripe structure with a DFB or DBR structure is effective for higher output. It is also effective for a structure in which a saturable absorber used for self-oscillation is provided near the active layer. Since the saturable absorber has a larger refractive index change due to laser oscillation than a normal medium, the change in the oscillation wavelength of the semiconductor laser becomes larger, and the spectrum width can be further expanded.
  • the DBR laser grating is formed in the inactive part of the waveguide to suppress wavelength fluctuations due to temperature changes.
  • it is formed directly inside the active layer or on the surface of the active layer.
  • the temperature of the active layer is increased by current injection. If the refractive index changes due to the rise, and the reflection wavelength shift of the DBR part is used, the reflection wavelength changes due to the temperature change caused by the pulse generation, and the spectrum width can be expanded. Become. As a result, speckle noise suppression is achieved.
  • FIG. 11A is a cross-sectional view showing the structure of a DBR laser
  • FIG. 11B is a cross-sectional view showing the structure of a D FB laser.
  • the DFB laser and the DBR laser can be integrated as a reflector by forming a diffraction grating (grating) inside the laser.
  • grating diffraction grating
  • the oscillation wavelength of the semiconductor laser is fixed to the reflection wavelength of the diffraction grating, and the spectrum is changed by modulation to reduce speckle noise.
  • the stripe width of the semiconductor laser is 100 m, and the transverse mode is made multi-mode to increase the output, and the wavelength fixed by the diffraction grating is weakened. This facilitates spectral variation due to modulation.
  • the stripe width is preferably 10 to 200 m.
  • a very small illumination light source can be realized by using a diffraction grating.
  • the configuration of the DBR laser will be described with reference to FIG. 11A.
  • laser oscillation is caused by the active layer 115, the intensity of the laser beam 111 is controlled by current injection from the output control electrode 112, and the laser beam 111 is output from the end face 117.
  • a specific wavelength is Bragg-reflected by the diffraction grating 114 provided on the end face 116 side of the active layer 115, and the oscillation wavelength of the semiconductor laser is fixed by this wavelength.
  • a wavelength adjusting electrode 113 is formed on the upper part of the diffraction grating 114, and the oscillation wavelength is controlled by changing the temperature of the diffraction grating 114 by current injection.
  • the gain wavelength is changed by the temperature rise of the active layer 115, and the difference between the reflection wavelength and the gain wavelength of the diffraction grating 114 is increased,
  • the oscillation spectrum can be varied between the reflection wavelength of the diffraction grating 114 and the gain peak wavelength.
  • the speckle noise can be reduced by changing the oscillation spectrum of the semiconductor laser.
  • the oscillation spectrum can be expanded. Control the optimum value of the gain peak wavelength and reflection wavelength by the current injected into the wavelength adjustment electrode 113 can do. Therefore, the wavelength adjustment electrode 113 can adjust the spectrum fluctuation range. In addition, it is preferable to adjust the current to the wavelength adjustment electrode 113 in accordance with the output modulation. By controlling the drive current of the wavelength adjusting electrode 113 in accordance with the modulation of the semiconductor laser so that the temperature of the semiconductor laser becomes higher when the spectrum moves to the gain peak of the semiconductor laser, the amount of fluctuation of the spectrum can be reduced. Can be expanded. For this reason, speckle noise can be further reduced. In addition, there is an advantage that the power consumption in the wavelength adjusting unit can be reduced and the power consumption can be reduced.
  • the oscillation of the semiconductor laser changes to the wavelength-locked state in which the resonator is constituted by the end face 117 and the diffraction grating 114, and the state in which the laser resonance occurs between the end faces 116 and 117. As a result, the oscillation spectrum can be changed. For this reason, a reflection film is formed on the end face 116.
  • the configuration of the DFB laser will be described with reference to FIG. 11B.
  • the diffraction grating 114 is formed on the entire active layer 115.
  • the oscillation spectrum can be varied and speckle noise can be reduced.
  • the temperature of the laser shown in FIGS. 10A and 10B it is possible to adjust the optimum state of fluctuation of the oscillation spectrum.
  • the modulation frequency of the semiconductor laser is preferably 0.1 kHz to 1 MHz.
  • speckle noise recognized by humans as an illumination light source, if the spectrum changes at 0.1 kHz or less, the spectral change can be observed with the naked eye, which reduces the speckle noise reduction effect. It is necessary to raise the frequency to 0.1 kHz or higher so that humans cannot recognize the spectrum fluctuation.
  • the modulation of the semiconductor laser in order for the spatter to move due to the temperature change in the active layer of the semiconductor laser, the spectrum fluctuation does not occur unless the temperature change in the active layer is large when switching the laser on and off. .
  • the modulation speed is 1 MHz or higher. Below is preferred.
  • the duty ratio (pulse width Z pulse repetition interval) of the pulses for driving the semiconductor laser is preferably 50% or less.
  • the peak output of the pulse with respect to the average power can be set to more than twice.
  • the change in the active layer temperature within one pulse can be increased, so that the wavelength shift amount can be increased and the speckle noise suppression effect is further increased. More preferably, setting it to 30% or less further reduces speckle noise.
  • Embodiment 2 of the present invention will be described.
  • the laser beam emitted from the semiconductor laser power is used as it is as an illumination light source for a projection device or a display device.
  • laser light emitted from a solid laser medium force by exciting a solid laser medium with laser light from a semiconductor laser is used as an illumination light source.
  • FIG. 12 shows a configuration of the illumination light source according to the present embodiment.
  • the illumination light source shown in FIG. 12 includes a semiconductor laser 1, a reflector 121, a solid-state laser 122, a nonlinear optical element 123, and mirrors 124 and 125.
  • the semiconductor laser 1 is a pump light source having a wavelength of 808 nm, and light emitted from the semiconductor laser 1 excites the solid-state laser 122 to cause laser oscillation.
  • the emitted light 4 emitted from the solid laser 122 oscillates in a resonator structure composed of mirrors 124 and 125.
  • the solid-state laser 122 Since the reflector 121 made of a volume grating installed in the resonator returns the selected wavelength to the solid-state laser 122, the solid-state laser 122 is fixed to the reflection wavelength of the reflector 121.
  • a nonlinear optical element 123 is installed in the resonator.
  • the nonlinear optical element 123 is Mg-doped LiNbO having a periodic domain-inverted structure. Output generated in the resonator
  • the incident light 4 is converted into the second harmonic by the non-linear optical element 123 to generate green light having a wavelength of 532 nm.
  • the semiconductor laser 1 is pulse-driven by the driving power source 3 that pumps the semiconductor laser 1.
  • the reflection wavelength of the reflector 121 is set to about 1063 nm, for example.
  • the Nd doping amount is increased to about 3at% for the solid laser 122, the laser oscillation gain is increased.
  • the wavelength range was widened, and high oscillation intensity was obtained even at 1063 nm.
  • intensity-modulating the semiconductor laser 1 the output of the solid-state laser 122 is modulated.
  • modulation was performed with a modulation frequency of 1 kHz and a pulse duty of 25% onZoff ratio, the output of the solid-state laser 122 was also modulated in the same way.
  • the wavelength changed from the initial oscillation wavelength of 1063 nm to about 1066.5 nm.
  • the output green SHG light can be expanded in spectrum from 531.5 to 532.3 nm, and speckle noise can be reduced.
  • the gain wavelength range of laser oscillation is further expanded, and as a result, the green SHG light can achieve a spectrum expansion up to the wavelength of 531.5-532.5 nm. It was.
  • the force in which the volume grating 121 which is a reflector having a narrow band characteristic, is installed inside the laser resonator composed of the mirrors 124 and 125, and the external force of the laser resonator also resonates as another configuration.
  • the laser oscillation wavelength can also be controlled by optical feedback to the device. When the wavelength is fed back from the outside, the loss inside the resonator can be reduced, which is advantageous for higher efficiency.
  • a configuration using the narrow-band filter shown in Fig. 6 or the fiber grating shown in Fig. 7 is possible.
  • a configuration in which a grating structure is formed in the solid-state laser 122 itself is also effective.
  • a periodic refractive index distribution can be formed inside the laser medium by partially distributing the doping amount of Nd or the like using a ceramic laser.
  • the DFB structure of the solid-state laser 122 is realized.
  • the refractive index variation of the solid-state laser is large, so that the reflection wavelength region of the dulling deviates from the gain wavelength region, and the spectrum expansion due to the wavelength variation can also be realized.
  • a configuration using a reflector having a plurality of reflection wavelengths as a reflector having a narrow band characteristic is also possible. Furthermore, by superimposing a higher frequency on the output modulation of the semiconductor laser, the oscillation of the solid-state laser becomes unstable, and the speckle noise can be further reduced by increasing the spectrum spread. [0061] It is also possible to use a fiber laser instead of the solid-state laser as the laser medium.
  • the drive current is modulated by superimposing a high frequency on the drive current applied to the semiconductor laser, and the oscillation spectrum of the semiconductor laser is greatly varied.
  • FIGS. 13A and 13B are diagrams for explaining a method of driving the semiconductor laser of the illumination light source according to the present embodiment.
  • Fig. 13A shows a current waveform in which a high frequency is superimposed on the drive current of a semiconductor laser wavelength-locked by optical feedback
  • Fig. 13B shows the oscillation spectrum of a semiconductor laser to which the drive current of the current waveform in Fig. 13A is applied.
  • FIG. 13A and 13B “on” indicates a period in which a high frequency is superimposed on the drive current, and “off” indicates a period in which the high frequency is superimposed on the drive current.
  • a spectrum in which the oscillation wavelength of the semiconductor laser is fixed to the wavelength of the return light from the outside (the “off” period in the figure) and the return from the outside The spectrum can be temporally changed between the state where the wavelength is not locked by the light (period “on” in the figure).
  • the high-frequency superimposition frequency for lowering the coherence of the semiconductor laser requires a high frequency of 10 MHz or more.
  • a frequency of 1 kHz or higher was required as the frequency for switching the application of high frequency.
  • the minimum value of the drive current is smaller than the threshold value of the semiconductor laser and the value of the value current Ith.
  • the semiconductor laser is preferably a wide stripe laser whose transverse mode is multimode oscillation.
  • Single-mode semiconductor lasers are wavelength-locked, and even if they are immediately superimposed at high frequencies, the wavelength lock is not easily removed, so it is necessary to superimpose high-frequency amplitudes, but wide stripes can easily be wavelength-locked. The power consumption of high frequency superposition can be reduced.
  • FIGS. 14A and 14B are diagrams for explaining another method for driving the semiconductor laser of the illumination light source according to the present embodiment.
  • 14A shows a current waveform in which a high frequency is superimposed on the drive current of a semiconductor laser wavelength-locked by optical feedback
  • FIG. 14B shows an oscillation spectrum of a semiconductor laser to which the drive current having the current waveform of FIG. 14A is applied.
  • FIG. 14A and B “Large” indicates a period in which a high-intensity high frequency is superimposed on the drive current, and “Small” indicates a period in which a low-intensity high frequency is superimposed on the drive current.
  • FIG. 14B by temporally modulating the amplitude intensity of the high frequency, the oscillation wavelength of the semiconductor laser can be oscillated in two spectra, as in FIGS. 13A and 13B.
  • FIGS. 15A and 15B are diagrams for explaining still another driving method of the semiconductor laser of the illumination light source according to the present embodiment.
  • 15A shows a current waveform in which a high frequency is superimposed on the drive current of a semiconductor laser wavelength-locked by optical feedback
  • FIG. 15B shows the oscillation spectrum of the semiconductor laser to which the drive current having the current waveform of FIG. 15A is applied.
  • FIG. 15A and 15B “A” indicates a period during which the minimum value of the drive current is lower than the threshold current Ith, and “B” indicates a period during which the minimum value of the drive current is higher than the threshold current Ith.
  • a high-frequency bias is modulated so that the minimum value of the amplitude is changed so as to change above and below the value current Ith when the semiconductor laser is used. If the minimum value of the drive current superimposed with high frequency falls below the threshold current of the semiconductor laser, the coherence of the semiconductor laser will be greatly reduced. Using this phenomenon, the minimum value of the drive current is above and below the threshold current.
  • modulating the amplitude or bias of the high frequency superposition so that it goes up and down, it becomes possible to change the oscillation spectrum of the semiconductor laser between two wavelengths. Further, in this configuration, since the high frequency is superimposed even when the wavelength is locked, the spread of the oscillation spectrum can be increased as shown in the “B” period of FIG. 15B. For this reason, the effect of reducing speckle noise can be strengthened.
  • the wavelength is fixed by optical feedback, there is a frequency at which high frequency tends to be applied depending on the distance between the reflector and the semiconductor laser. This is determined by the time that the light is reflected by the reflector and returns to the semiconductor laser. For this reason, the intensity of the wavelength lock can also be changed by changing the frequency of the high frequency with time. That is, at a frequency with strong wavelength lock, it is fixed at a wavelength that is fed back from an external reflector, and at a frequency at which wavelength lock is weakened, it is out of the wavelength fed back from outside and oscillates at the gain peak of the semiconductor laser.
  • the semiconductor laser can be made to have two wavelength spectra.
  • a semiconductor laser is shown as a laser medium.
  • the present invention can also be applied to a case where a solid laser or a fiber laser is used as a laser medium.
  • the target for superimposing the high frequency is a semiconductor laser for a pump that excites the laser medium.
  • the reflector that reflects a specific wavelength preferably uses a fiber grating in which a periodic refractive index distribution is formed in the fiber.
  • a laser display is realized by using the illumination light source according to the first to third aspects.
  • the laser display is a display device using RGB laser light, and the laser output requires a large output of several lOOmW power and several W or more.
  • the light does not require a diffraction-limited focusing characteristic. Therefore, the transverse mode of the semiconductor laser does not have to be a single mode. Therefore, a high-power semiconductor laser with a wide stripe structure is used.
  • the red laser uses an AlGaAs-based semiconductor material or AlGalnP-based semiconductor material, a red laser with an oscillation wavelength of 630 to 640 nm is used, and a blue laser uses a semiconductor laser based on a GaN substrate, and the oscillation wavelength is 440 ⁇ 450nm.
  • the power required for color display with RGB illumination to realize a color display we use a field-sequential system that switches between RGB for display.
  • the frequency is 60 Hz, and blue, red, and green switch the light emission time at 30% each.
  • the DLP is used as the spatial modulation element and the laser light is converted into an image.
  • An RGB light source was driven at a frequency of 120Hz and a duty of 30%, RGB was switched in order, and a color image was displayed by combining the pictures of each color.
  • Each semiconductor laser feeds back reflected light of a specific wavelength by a grating.
  • the oscillation wavelength By pulsing the semiconductor laser with a peak output of 500 mW, the oscillation wavelength shifted from the reflecting wavelength of the darling to other wavelengths, and the oscillation wavelength changed.
  • the spectrum was expanded, speckle noise was greatly reduced, and high-quality images were realized.
  • no special configuration is required, and the spectrum of the light source is expanded by RGB image switching modulation necessary for color display, and speckle noise can be reduced.
  • a W-class laser light source intended for application to a laser display will be described.
  • an output of several watts is required as a light source characteristic.
  • Stripe width is 50 ⁇ m
  • stripe interval is 300 ⁇ m
  • chip width is 12 mm
  • Lives are collected.
  • the output per stripe is about several lOOmW, and 4W can be output with one chip.
  • the oscillation wavelength is fixed by optical feedback to each stripe using a volume grating.
  • the oscillation wavelength changes and the spectrum width increases, which significantly reduces speckle noise.
  • the spectrum of the light source could be further expanded by designing the reflection wavelength of the grating to be different between the stripes.
  • the spectrum changes with time by pulse modulation, and the spectrum width can be expanded, so the spectrum noise is further reduced.
  • the present embodiment is a mode related to a laser projection apparatus which is a kind of the laser display according to the above fourth embodiment.
  • the laser projection device is composed of an RGB light source and a projection optical system, and can project a full-color image by projecting light from the laser light source onto a screen or the like by the projection optical system.
  • An effective method for reducing speckle noise is to reduce the coherence of laser light. To reduce the coherence of laser light, it is effective to expand the laser oscillation spectrum.
  • FIG. 16 is a diagram showing a configuration of the laser projection apparatus according to the present embodiment.
  • the laser projection apparatus according to the present embodiment uses the illumination light source according to the first to third embodiments, converts the laser light into an image by a liquid crystal panel that is a two-dimensional switch, and projects an image on the screen. It is a laser display.
  • the light emitted from the illumination light source 161 passes through the collimating optical system 162 and the integrator optical system 163, passes through the diffusion plate 164, is converted into an image by the liquid crystal panel 165 that is a two-dimensional switch, and is projected by the projection lens 167. 16 Projected to 6.
  • the diffuser plate 164 is moved by a swinging mechanism, and reduces speckle noise generated on the screen 166 in combination with the spectrum expansion of the illumination light source 161.
  • the speckle noise generated on the screen is reduced by reducing the coherence using the wavelength variation of the illumination light source 161.
  • the illumination light source 161 was able to obtain a stable output even with external temperature changes, and was able to realize a stable image with a small size and high output.
  • the high beam quality facilitates the design of the optical system, enabling miniaturization and simplification.
  • speckle noise can be further reduced by using a plurality of illumination light sources according to Embodiments 1 to 3 above.
  • a plurality of illumination light sources By using a plurality of illumination light sources and setting the wavelength of the reflector of each light source to a different wavelength, the oscillation spectrum of the illumination light source broadens greatly as a whole. As a result, speckle noise can be greatly reduced.
  • a reflection type liquid crystal switch In addition to the liquid crystal panel, a reflection type liquid crystal switch, a DMD mirror, or the like can be used as the two-dimensional switch.
  • the present embodiment is a mode related to another laser projection apparatus which is a kind of the laser display according to the above-described fourth embodiment.
  • FIG. 17 is a diagram showing a configuration of the laser projection apparatus according to the present embodiment.
  • the laser beam 174 emitted from the illumination light source 171 scans with mirrors 172 and 173, thereby drawing a two-dimensional image on the screen 175.
  • the illumination light source 171 needs a high-speed switch function.
  • the illumination light source 171 according to the present embodiment can achieve high output, is excellent in output stabilization, and can obtain a stable output by simple temperature control. Further, since the spectrum can be expanded simultaneously by the output modulation, there is an advantage that the output modulation for image formation and the output modulation for spectrum expansion can be combined. Since speckle noise can be reduced by output modulation for image formation, the configuration required only for speckle noise reduction is not necessary.
  • a small scanning device using MEMS can also be used as the beam scanning optical system. High beam quality is excellent in condensing characteristics and collimating characteristics, and small mirrors such as MEMS can be used. As a result, a scanning laser display was realized.
  • the laser display has been described as the optical device.
  • the present invention can also be applied to a liquid crystal knocklight. If an illumination light source is used as a light source for a liquid crystal backlight, speckle noise is suppressed and a high-quality image can be realized. Furthermore, since a wide color range can be expressed by laser light, a display with excellent color reproducibility can be realized.
  • FIG. 18 shows a configuration of a liquid crystal backlight using the illumination light source according to the first to third embodiments. Laser light 185 from the illumination light sources 181 to 183 is incident through the microlens 184 from the end face of the light guide plate 186 to form a planar backlight light source. By using multiple laser beams, the brightness is increased and multiple illumination light sources are used, and the wavelength of the reflector of each light source is set to a different wavelength, so that the spectrum is greatly expanded as a whole. As a result, speckle noise can be greatly reduced.
  • a laser light source is used as an illumination light source, such as laser illumination and illumination, it is promising as a light source with low speckle noise.
  • the illumination light source of the present invention greatly varies the oscillation wavelength of the laser medium in a laser medium wavelength-locked by optical feedback by utilizing the variation of the gain wavelength region that occurs during output modulation of the laser medium. .
  • the variation width of the oscillation spectrum of the laser medium is increased to realize a solitary light source with less speckle noise.
  • An illumination optical system using this light source and a projection optical system can realize a high-quality illumination optical system with little speckle noise.
  • an illumination light source includes a laser light source having a laser medium having a predetermined gain region, and a reflector having a narrow-band reflection characteristic, and the reflection wavelength of the reflector is the laser
  • the laser light is set in the gain region of the medium, and a part of the laser light emitted from the laser light source is fed back to the laser light source by reflection by the reflector, and the oscillation wavelength of the laser light source is the laser light source.
  • the reflected wavelength force is changed by moving the peak of the gain region of the laser medium by the reflected wavelength force due to the change in the oscillation characteristic of the laser medium.
  • the illumination light source a part of the laser light emitted from the laser light source is reflected by the reflector.
  • the oscillation light of the laser light source is fixed to the wavelength of the reflector.
  • the peak of the gain region of the laser light source is changed from the fixed reflection wavelength. For this reason, since the oscillation wavelength of the laser light source can be greatly varied, the oscillation spectrum width of the laser light source is widened and the coherence is lowered. Therefore, an illumination light source with less speckle noise can be realized.
  • the reflection wavelength of the reflector is preferably set on the short wavelength side with respect to the peak of the gain region of the laser medium.
  • the reflection wavelength by setting the reflection wavelength to the short wavelength side, when the peak of the gain region of the laser light source shifts to the long wavelength side, the fluctuation of the oscillation wavelength of the laser light source may be further increased. I'll do it.
  • the amount of change in the oscillation wavelength of the laser light source is preferably 1 nm or more.
  • the amount of change in the oscillation wavelength of the laser light source can be made larger than the change width of the peak in the gain region of the laser light source.
  • the reflection wavelength of the reflector includes a plurality of reflection wavelengths, and the oscillation wavelength of the laser light source is changed between the plurality of reflection wavelengths.
  • the change amount of the oscillation wavelength can be further increased.
  • the drive current applied to the laser light source is pulse-modulated to change the oscillation characteristics of the laser light source, and the duty ratio of the pulse of the pulse modulation is 50
  • the peak output of the drive current can be increased with respect to the average output, the change in the oscillation characteristics of the laser light source can be greatly increased.
  • the pulse width of the pulse modulation is preferably 1 ⁇ s or more! /.
  • the pulse of the pulse modulation is composed of a combination force of a plurality of short pulses.
  • the change in the oscillation characteristics of the laser light source can be made larger.
  • the reflector preferably has a dielectric force in which a refractive index grating is formed.
  • the dielectric on which the refractive index grating is formed can be reduced in size, so that the illumination light source can be reduced in size.
  • the reflector be a single fiber in which a grating is formed.
  • a reflector can be realized with a simple configuration.
  • the reflector preferably includes a narrow band filter and a reflecting member that reflects only a part of the light transmitted through the narrow band filter.
  • a reflector can be realized with a simple configuration.
  • the laser light source is preferably a semiconductor laser.
  • a high-luminance and high-power laser light source can be used.
  • the reflector is preferably formed inside the semiconductor laser.
  • the illumination light source can be downsized.
  • the semiconductor laser preferably has a III-V nitride semiconductor material force.
  • the semiconductor laser preferably has an AlGaAs-based semiconductor material force.
  • the semiconductor laser preferably has AlGalnP-based semiconductor material strength.
  • the laser light source is a solid-state laser.
  • the solid-state laser includes a solid-state laser medium, a resonator including the solid-state laser medium, and a non-linear shape installed in the resonator. It is also preferable that the optical element and force also become.
  • the laser light source is preferably a fiber laser.
  • laser light can be obtained with high efficiency.
  • the drive current includes at least one of the frequency, amplitude, and bias of the drive current.
  • the coherence of the laser light emitted from the laser light source can be reduced. Therefore, the oscillation wavelength of the laser light source fixed to the reflection wavelength can be changed more easily.
  • the frequency of the high-frequency signal is 10 MHz or more
  • the frequency of the modulation signal that modulates at least one of the frequency, amplitude, and bias of the high-frequency signal is 1 kHz or more.
  • the minimum value of the drive current preferably varies up and down around the threshold current value of the laser light source.
  • the oscillation wavelength of the laser light source is fixed to the reflection wavelength, the oscillation wavelength can be broadened.
  • the semiconductor laser further includes a heating unit for heating the semiconductor laser, and heating by the heat generated by the heating unit force is controlled so as to follow a change in oscillation characteristics of the semiconductor laser. It is preferable.
  • the change in the oscillation characteristics of the semiconductor laser can be performed in an optimum state.
  • the reflector is formed of a diffraction grating, the reflection wavelength is set by Bragg reflection by the diffraction grating, and the semiconductor laser is further supplied with the drive current, so that the output of the semiconductor laser can be controlled.
  • An output control electrode, and a wavelength control electrode which is supplied with a wavelength control current and can control the oscillation wavelength of the semiconductor laser by controlling the temperature of the diffraction grating by injecting the wavelength control current.
  • the wavelength control current is pulse modulated so as to follow the pulse modulation of the drive current.
  • the amount of change in the oscillation wavelength of the semiconductor laser can be increased by pulse-modulating the wavelength control current so as to follow the pulse modulation of the drive current.
  • the reflectance of the reflector is preferably 1 to 10%.
  • the narrow bandwidth of the reflector is preferably 5 nm or less.
  • a laser projection apparatus further includes at least one of the above illumination light sources, and further includes an optical system that projects the laser light emitted from the illumination light source.
  • the transverse mode of the laser light emitted from the laser light source is preferably a multimode.
  • the wavelength interval of the longitudinal mode of the laser light emitted from the laser light source is preferably 1 nm or more.
  • the amount of change in the oscillation wavelength of the laser light source can be made larger than the change width of the peak in the gain region of the laser light source.
  • the reflection wavelengths of the reflectors are different from each other.
  • the illumination light source power further includes a light guide plate on which the emitted laser light is incident.
  • the entire screen can be irradiated with laser light uniformly.
  • the illumination light source according to the present invention is effective for reducing speckle noise of a semiconductor laser by making a large change in the oscillation wavelength of the semiconductor laser by utilizing gain shift by optical feedback and pulse driving.
  • speckle noise is an essential technique, and the small and simple configuration of the present invention is very effective as an illumination light source.

Abstract

 所定の利得領域を持つレーザ媒質を有するレーザ光源と、狭帯域の反射特性を有する反射体と、を備える照明光源である。レーザ光源から出射されるレーザ光の一部を反射体による反射によって帰還させることにより、レーザ光源の発振波長を反射波長に固定し、レーザ光源の発振特性の変化によりレーザ媒質の利得領域のピークを反射波長から移動させることにより、レーザ光源の発振波長を反射波長から変化させる。それにより、レーザ光源の発振スペクトルを広げ、スペックルノイズの低減を図る。

Description

明 細 書
照明光源及びレーザ投射装置
技術分野
[0001] 本発明は、スペックルノイズの少ない照明光源及び、その照明光源を用いたレーザ 投射装置に関する。
背景技術
[0002] 窒化ガリウムをはじめとする III— V族窒化物系半導体材料 (Al Ga in N (ただ し、 0≤x≤l、 0≤y≤lである))からなる半導体レーザ、及び AlGaAs系半導体材料 または AlGalnP系半導体材料による赤色半導体レーザは、光ディスクによる超高密 度記録を実現するためのキーデバイスである。同様に、これらの可視光半導体レー ザの高出力化は、光ディスクの高速書き込みを可能にするのみならず、レーザデイス プレイへの応用など、新たな技術分野の開拓に必須の技術である。
[0003] 可視光半導体レーザを投射装置や表示装置などの照明用の光源として利用する 場合に問題となるの力 スペックルノイズである。スペックルノイズとは、レーザ光のよ うなコヒーレンスの高い光を照明光源として利用する場合、照明物から反射する光が 、照明物の表面の凹凸によって、反射光の波面が乱され、ランダムな干渉パターンが 観測される現象である。反射光にギラギラとしたスペックルパターンが観測され、投射 装置や表示装置の画像の劣化の原因となる。
[0004] このようなスペックルノイズを低減する方法として、光源のコヒーレンスを低下させる 方法がいくつ力提案されている。第 1の方法は、空間的なコヒーレンスを低減する方 法であり、レーザ光が照射されるスクリーンを振動させるなどに代表される方法で、レ 一ザ光の光路や光学系にお 、て空間的な変化を与えることでスペックルノイズを低 減する方法である。
[0005] 一方、半導体レーザ光のコヒーレンスを直接低減する方法も提案されている。特許 文献 1に示されているように、光源のコヒーレンスを低減する方法である。この第 2の 方法では、半導体レーザの駆動に高周波が重畳されることにより、発振波長のスぺク トル幅が増大し、コヒーレンスが低減する。 [0006] し力しながら、レーザ光を空間的に変化させる、上記の第 1の方法は、光学系内部 に機械的な駆動系を必要とし、光学系が大型化、複雑ィ匕するという問題がある。さら に、空間的な変動を与えるだけでは、スペックルノイズを完全に抑圧することが難しい
[0007] 一方、半導体レーザのスペクトルをマルチモード化する、上記の第 2の方法は、コヒ 一レンスを低減するには有効である力 スペクトル幅を lnm以上に拡大しなければ、 十分なコヒーレンス低減効果が得られない。半導体レーザの駆動に高周波を重畳す るだけでは、スペクトル幅の拡大が十分でなぐスペックルノイズの低減効果が不十 分であると!/、う課題があった。
特許文献 1:特開 2002— 323675号公報
発明の開示
[0008] 本発明の目的は、レーザ光源の発振スペクトルの幅を拡大することで、スペックルノ ィズの少ない照明光源及びこの照明光源を用いたレーザ投射装置を実現することで ある。
[0009] 本発明の一局面に従う照明光源は、所定の利得領域を持つレーザ媒質を有するレ 一ザ光源と、狭帯域の反射特性を有する反射体と、を備え、前記反射体の反射波長 は、前記レーザ媒質の利得領域内で設定されており、前記レーザ光源から出射され るレーザ光の一部は前記反射体による反射によって前記レーザ光源に帰還され、前 記レーザ光源の発振波長は、前記レーザ光源の発振特性の変化により前記レーザ 媒質の利得領域のピークを前記反射波長力 移動させることにより、前記反射波長 力 変化される。
[0010] 上記の照明光源では、レーザ光源から出射されるレーザ光の一部を反射体による 反射によってレーザ光源に帰還させることによりレーザ光源の発振光を反射体の波 長に固定する。そして、レーザ光源の発振特性を変化させることでレーザ光源の利得 領域のピークを固定された反射波長から変動させる。このため、レーザ光源の発振波 長が大きく変動させることができるので、レーザ光源の発振スペクトル幅が広がりコヒ 一レンスが低下する。従って、スペックルノイズの少ない照明光源を実現することがで きる。 図面の簡単な説明
[図 1]図 1Aは、本発明の実施の形態 1に係る照明光源の構成を示す図、図 1Bは、半 導体レーザの出力特性を示す図、図 1Cは、半導体レーザの発振波長特性を示す図 である。
[図 2]図 2Aは、本発明の実施の形態 1に係る照明光源の構成を示す図、図 2Bは、半 導体レーザの発振スペクトルの特性を示す図、図 2Cは、半導体レーザの発振波長 特性を示す図である。
[図 3]図 3Aは、本発明の実施の形態 1に係る照明光源の構成を示す図、図 3Bは、半 導体レーザの発振スペクトルの他の特性を示す図、図 3Cは、半導体レーザの他の 発振波長特性を示す図である。
[図 4]図 4Aは、半導体レーザに印加される駆動電流のパルス列の一例を示す図、図 4Bは、図 4Aのパルス列の駆動電流の印加時の半導体レーザの活性層の温度変化 を示す図、図 4Cは、図 4Aのパルス列の駆動電流の印加時の半導体レーザの発振 波長特性を示す図、図 4D〜Fは、図 4Aのパルス列の駆動電流の印加時の半導体 レーザの発振スペクトルの分布を示す図である。
[図 5]本発明の実施の形態 1に係る照明光源の反射体として体積グレーティングを用 いた構成を示す図である。
[図 6]本発明の実施の形態 1に係る照明光源の反射体として狭帯域フィルターを用い た構成を示す図である。
[図 7]本発明の実施の形態 1に係る照明光源の反射体としてグレーティングが形成さ れたファイバーを用いた構成を示す図である。
[図 8]図 8Aは、本発明の実施の形態 1に係る照明光源の発振波長の特性評価に使 用した光源の構成を示す図、図 8B及び Cは、半導体レーザの発振スペクトルの観察 結果を示す図である。
[図 9]図 9Aは、本発明の実施の形態 1に係る照明光源の半導体レーザの利得ピーク 波長と反射体の発振波長との波長差の検討に使用した光源の構成を示す図、図 9B 〜Dは、半導体レーザの発振スペクトルの観察結果を示す図である。
[図 10]図 10Aは、温度調整可能な半導体レーザの構成を示す図、図 10Bは、温度 調整可能な半導体レーザの他の構成を示す図である。
[図 11]図 11Aは、 DBRレーザの構造を示す断面図、図 11Bは、 DFBレーザの構造 を示す断面図である。
[図 12]本発明の実施の形態 2に係る照明光源の構成を示す図である。
[図 13]図 13A及び Bは、本発明の実施の形態 3に係る照明光源の半導体レーザの 駆動方法を説明するための図であり、図 13Aは、光フィードバックにより波長ロックさ れた半導体レーザの駆動電流に高周波を重畳した電流波形を示す図、図 13Bは、 図 13Aの電流波形の駆動電流が印加された半導体レーザの発振スペクトルを示す 図である。
[図 14]図 14A及び Bは、本発明の実施の形態 3に係る照明光源の半導体レーザの 他の駆動方法を説明するための図であり、図 14Aは、光フィードバックにより波長ロッ クされた半導体レーザの駆動電流に高周波を重畳した電流波形を示す図、図 14B は、図 14Aの電流波形の駆動電流が印加された半導体レーザの発振スペクトルを示 す図である。
[図 15]図 15A及び Bは、本発明の実施の形態 3に係る照明光源の半導体レーザのさ らに他の駆動方法を説明するための図であり、図 15Aは、光フィードバックにより波 長ロックされた半導体レーザの駆動電流に高周波を重畳した電流波形を示す図、図 15Bは、図 15Aの電流波形の駆動電流が印加された半導体レーザの発振スぺタト ルを示す図である。
[図 16]本発明の実施の形態 5に係るレーザ投射装置の構成を示す図である。
[図 17]本発明の実施の形態 6に係るレーザ投射装置の構成を示す図である。
[図 18]本発明の実施の形態 1〜3に係る照明光源を用いた液晶ノ ックライトの構成を 示す図である。
発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の 図面の記載において、同じ要素または類似する要素には同じまたは類似の符号を付 しており、説明を省略する場合がある。
[0013] (実施の形態 1) 図 1Aは、本発明の実施の形態 1に係る照明光源の構成を示す図である。図 1Aに おいて、本実施の形態に係る照明光源は、その基本構成として、光源である半導体 レーザ 1と、半導体レーザ 1からの出射光 4の一部を反射する反射体 2と、を備える。 半導体レーザ 1から出射された出射光 4は、狭帯域な反射特性を有する反射体 2で 特定波長が反射され、反射光 5が半導体レーザ 1の活性層内に入射する。半導体レ 一ザ 1の発振波長は、活性層内に帰還した反射光 5の光フィードバックにより、反射 波長に固定されている。この半導体レーザ 1を駆動電源 3によってパルス駆動する。 このときの出力を図 1Bに示す。図 1Bに示すように、半導体レーザ 1の出力は、パル ス列の出力となっている。本実施の形態に係る照明光源は、 1パルス内で半導体レ 一ザ 1の波長が、図 1Cに示すように大きく変動することを特徴とする。すなわち、 1パ ルス内で半導体レーザ 1の発振波長が反射体 2の反射波長からそれ以外の波長に 変動することでスペクトル変化が大きくなり、半導体レーザ 1の発振スペクトルが広が る。その結果、半導体レーザ 1のコヒーレンスが低下し、スペックルノイズの少ない光 を発生できる。
[0014] この原理について、図 2A〜Cを用いて説明する。
[0015] 半導体レーザ 1の発振は、活性層内のロスとゲインとの関係で決定される。パルス 発生の初期段階では、活性層温度が低いため、反射体 2によって帰還した反射光 5 に対してロスが少なくなり、発振波長が反射体 2からの特定反射波長 λ Βに固定され ている。ところが、 1パルス内で半導体レーザ 1の活性層の温度が上昇すると、図 2Β に示すように、半導体レーザ 1の利得 (ゲイン)領域が長波長側にシフトする。その結 果、反射波長 λ Βにおける利得が低下し、半導体レーザ 1の発振波長が反射波長え Βからゲインのピークに移動することで、半導体レーザ 1の発振波長が大きく変化する 。図 2Cに示すように、半導体レーザ 1の発振波長が 1パルス内で、反射体 2の反射波 長 λ Βからそれ以外の波長にシフトすることで、半導体レーザ 1の発振波長が大きく 変化し、発振スペクトルが広がることでコヒーレンスが低下する。これによつてスペック ルノイズ低減効果が増大する。
[0016] 次に、照明光源における半導体レーザのスペクトル変化をより大きくしてスペックル ノイズの抑圧効果を強化する構成にっ 、て述べる。 [0017] 第 1は、図 2Aの半導体レーザ 1の利得領域と反射体 2の反射波長 λ Βとが次に述 ベる関係を満たすようにすることである。図 2Βに示すように、反射体 2の反射波長え Βの値は、室温での半導体レーザ 1の利得波長のピーク(ゲインピーク)に対して、短 波長側に設定するのが望ましい。通常のパルス発振においても、活性層内には温度 変化が生じ、発振スペクトルは 1パルス内で短波長から長波長にシフトし、その値は 1 nm以下である。これに対して、反射波長 λ Βをゲインピークより短波長側に設定する ことで、スペクトルの波長変化の幅をゲインピークの変動幅より大きくできる。これによ つて、波長変動を lnm以上の波長域にわたり波長変動を生じさせ、スペックルノイズ の低減がはかれる。発振波長 λ Βから外れた場合の発振波長が大きく変化すること になり、スペクトル幅を拡大できる。
[0018] 第 2に、反射体 2の反射率は 1%〜10%程度が望ましい。 1%以下では光フィード ノ ックによる反射波長 λ Βへの固定が難しくなり、 10%以上になるとパルス駆動時に 半導体レーザ 1の発振波長が外れてゲインピークにシフトする現象が現れにくくなる
[0019] 第 3に、半導体レーザ 1の活性層に反射光 5を戻す反射体 2の狭帯域特性も重要で ある。反射体 2の狭帯域特性としては、波長幅で 5nm以下が好ましぐさらに好ましく は lnm以下である。反射波長幅が広がると、活性層内での波長選択性が低下するた め、光フィードバックによる発振波長の固定が難しくなる。このため、波長幅は 5nm以 下にする必要がある。さらに lnm以下にすることで、半導体レーザ 1の発振波長の反 射波長での選択性を高めることができる。半導体レーザ 1の波長をゲインのピークか ら 2nm以上の短波長領域で発振が可能となり、出力変調による波長変化が 3nm以 上の広い波長範囲に及んだ。半導体レーザ 1の発振波長をゲインのピーク力 大きく ずらすことで、強度変調により波長が変化する波長が大きくなる。
[0020] 第 4に、半導体レーザ 1のパルス駆動のパルスに 1MHz以上の高周波を重畳する ことが望ましい。高周波を重畳することでスペクトルが広がり、コヒーレンスが低下する ことで光フィードバックの効果が弱くなる。これによつて、パルス駆動による波長シフト 力 り簡単に発生する。また、この構造は GaNレーザに特に有効である。 GaN基板 をベースとする半導体レーザは、緩和振動が大きく高周波重畳を行うと、スパイクノィ ズが発生する。これは、半導体レーザへ注入する電流を高周波で変調すると、緩和 振動により出力光波形がスパイク状に変化し、変調度の何倍も高いパルス出力が発 生する現象である。このため、高周波重畳によるコヒーレンスの劣化がより大きくなり、 スペックルノイズ低減効果が強化される。なお、半導体レーザのパルス駆動のパルス に高周波を重畳する構成については、後述する実施の形態 3で詳しく説明する。
[0021] 第 5に、パルス駆動するときのパルス幅も重要である。パルス幅は 1 μ s以上が望ま しい。パルス駆動による波長シフトは、半導体レーザの活性層の温度変化による利得 領域の波長シフトを利用している。半導体レーザの温度変化の応答周波数は 1MHz 以下であり、これ以上高い周波数での変化は温度変化が追随しない。従って、周波 数では 1MHz以下、パルス幅では 1 μ s以上のパルス駆動が必要である。
[0022] 第 6に、反射体 2として、図 1に示した狭帯域の反射波長を 1つ有するもの以外に、 複数の反射波長を有するものを採用することが、さらに波長変化量を拡大できるため 有効である。図 3Αにおいて、パルス駆動により変化するゲインピークの移動幅より広 い波長領域を挟んで、反射体 2に対して、 2つの反射波長 λ Β1、 λ Β2を設定する。 半導体レーザ 1をパルス駆動すると、 1パルス内の初期状態では、図 3Βに示すように 、ゲインピークに近い λ ΒΙで発振する。 1パルス内で活性層温度が上昇してゲインピ ークが長波長側にシフトすると、ゲインピークが λ Β2に近づき、やがて λ Β2での発 振ゲインが λ ΒΙでの発振ゲインを上まわり、 λ Β2の発振に移動する。これによつて、 反射波長が 1つの場合に比べて、半導体レーザ 1の波長変化がより大きくなり、スぺ ックルノイズ低減効果が強化される。
[0023] なお、上記の構成例では、半導体レーザ 1に印加されるパルス幅を単一の矩形状 にしたが、パルス形状を変えることでスペクトル形状をコントロールできる。図 4A〜F を用いて、パルス波形によるスペクトル分布の制御方法について説明する。スペック ルノイズを抑圧するには、スペクトル幅を広げるのが有効である力 スペクトルは広い 波長領域に分布するのがより好ましい。図 4A〜Fは、パルス列を用いてスペクトル分 布を制御する方法を説明する図である。
[0024] 図 4Aでは、パルス列として、先頭にピークの高いパルス 41を発振し、その後、尖塔 値のより低い複数のパルス 42を印加し、最後はより尖塔値の低いパルス 43を印加し ている。パルス列を印加したときの活性層の温度変化を図 4Bに、そのときの半導体 レーザの波長変化を図 4Cに示している。活性層の温度は、光出力に対して遅延しな 力 追随するので、初期に尖塔値の高いパルス 41を印加すると、領域 Aで活性層温 度が上昇する前に高い光出力が得られる。領域 Aでは反射体による光フィードバック 波長により半導体レーザの発振波長が固定されている。その後、光出力とは少し遅 れて活性層の温度が上昇する。この温度上昇により半導体レーザのゲインピークが 長波長にずれてくると、ある時点で反射体による発振波長以外に、ゲインピークでの 発振も開始し、半導体レーザの発振波長がマルチ発振の不安定な状態になる (領域 B)。その後、ゲイン波長が反射体による発振波長より大きく長波長側にシフトすること で、半導体レーザの発振波長はゲインピークでの発振波長に移行し、温度上昇ととも に長波長で発振するようになる (領域 C)。
[0025] このように、パルス列によって活性層の温度変化を制御すると、発振波長スペクトル を広い波長領域に分布させることが可能となり、スペクトル分布のばらつきを、より大 きく取れる。このときのスペクトル分布の全体を図 4Dに示す。また、図 4Eに、図 4Aの 尖塔値の高い初期ピーク 41を用いない場合のスペクトル分布を示す。この場合、短 波長域でのスペクトルが減少する。一方、図 4Fに、反射体による光フィードバックが ない場合のスペクトル分布を示す。図 4D〜Fから明らかなように、尖塔値の高いパル ス列を用いることで、スペクトル分布のばらつきが大きくなり、スペックルノイズの抑圧 効果がより強化された。複数のパルス列を用いることで、活性層の温度変化を制御し 、スペクトル分布をより広げることが可能となる。
[0026] また、半導体レーザのストライプ幅は 5 μ m以上のワイドストライプ構造が好まし 、。
横モードシングルのストライプ構造にお 、ては、発振スペクトルが狭帯域な状態で変 動するのに対して、横モードをマルチモード化することで、スペクトル幅が広がった状 態で変化するので、平均的なスペクトル形状がなめらかになる。ワイドストライプ構造 にすることで、高出力化が図れるとともに、発振する横モードをマルチモードィ匕できる 。横モードをマルチモードィ匕することで、複数の横モードを励起し、半導体レーザの 発振スペクトルを拡大できる。光フィードバックにより波長を固定し、これをレーザのパ ルス駆動によりスペクトル変化させるときに、横モードのマルチ化によりスペクトル幅が 広がり、スペクトルの分散が大きくなることで、スペックルノイズを大幅に低減できる。
[0027] また、その他のレーザ、例えば、 AlGaAs系半導体材料や AlGalnP系半導体材料 であっても、光フィードバックと出力変調を同時に加えることでスペクトルの広い発振 が可能となり、スペックルノイズの少ない出力発生が可能となる。
[0028] さらに、マルチストライプレーザを利用することで出力の増大及びスペクトルの大幅 な増大が得られる。マルチストライプに、反射波長の異なる反射体を設置することで、 それぞれのストライプが異なる波長で発振するとともに、パルス駆動することで発振波 長の変動が起こるため、全体で広い波長範囲で発振が可能となる。この結果、レー ザ光のコヒーレンスが大幅に低減し、スペックルノイズを大幅に低減することが可能と なった。
[0029] さらに、半導体レーザの出力端近傍を窓構造にすることで、出力の安定化、高出力 化が可能となる。導波路窓構造は、出力端面破壊を防止し、高出力化に有効である 力 本発明のような光フィードバックを用いる構成にはより有効である。光フィードバッ クにより外部から光を帰還させることで、端面部での光パワー密度はより大きくなり、 端面劣化の発生が顕著になる。特に、パルス駆動することで出力の高い光が発生す る場合、より端面劣化が生じやすい。このため、端面窓構造にすることで高出力化が 達成でき、同時に信頼性の高い光源が実現できた。
[0030] 次に、図 1Aの反射体 2の構成について説明する。反射体 2としては、いくつもの構 成が存在する。反射体 2としては特定の波長を反射する狭帯域特性が要求される。 図 5に示す照明光源では、反射体 51として体積グレーティングを用 ヽた構成を採用 する。反射体としての体積グレーティング 51は、誘電体に屈折率グレーティングを形 成したもので、ブラッグ反射により特定波長を反射できる。半導体レーザ 1からの出射 光 4をレンズ 52でコリメートし、体積グレーティング 51で特定波長を反射することで、 半導体レーザ 1の波長を固定できる。これによつて、本発明の構成が実現できる。体 積グレーティング 51は小型構成が容易なため、小型の照明光源を実現できる。また グレーティングを干渉露光で作製できるため、複数の反射波長を反射する構成も容 易に実現できると 、う特徴を有する。
[0031] 図 6に示す照明光源では、狭帯域フィルター 61と反射体 64を組み合せた構成を採 る。狭帯域フィルター 61を透過した光を反射体 64で一部反射することで特定波長が 半導体レーザ 1に帰還する。この特定波長帰還により波長ロックする構成が実現でき る。この構成で、本発明の構成が実現できる。
[0032] 図 7に示す照明光源では、ファイバー 71内に形成されたファイバーグレーティング 72を利用した構成を採る。ファイバー 71内にグレーティング 72を形成したグレーティ ングファイバーにより、半導体レーザ 1をロックし、これをパルス駆動することで実現で きる。
[0033] 次に、本実施の形態に係る照明光源の発振波長の特性評価を行った結果につい て説明する。図 8Aに、この評価に使用した照明光源の構成を示す。この評価に使用 した照明光源は、その基本構成として、半導体レーザ 1と、半導体レーザ 1からの出 射光 4の一部を反射する反射体 2と、半導体レーザ 1と反射体 2との間に配置された レンズ 81と、を備えるものである。図 8Aの照明光源を用いて、半導体レーザ 1の発振 波長につ!、て実験を行 、、半導体レーザ 1の発振スペクトルを観測した。
[0034] 図 8Aの照明光源では、半導体レーザ 1から出射された光 4をレンズ 81でコリメート し、反射体 2で一部を反射させ、反射光 5を半導体レーザ 1の活性層に帰還させる。 反射体 2は体積グレーティングで構成され、ブラッグ反射による狭帯域の反射特性を 有している。反射体 2の反射波長は 808nmに設定されており、反射光 5の帰還により 半導体レーザ 1の発振波長は、反射波長である 808nmの近傍に固定されている。半 導体レーザ 1は、ストライプ幅 200 μ mのワイドストライプレーザであり、その横モード はマルチモードである。
[0035] このような構成の照明光源において、半導体レーザ 1を 200Hz程度で変調しながら 出力を増大させ、スペクトルアナライザ一により発振スペクトルを観察した。図 8B及び Cにその結果を示す。図 8Bは、半導体レーザ 1のピーク出力が 2W未満の場合を示 しており、半導体レーザ 1の発振波長は反射体 2の反射波長 808nmに固定されてい ることがわ力る。発振スペクトルが若干の広がりを持つのは、半導体レーザ 1がワイド ストライプのマルチモードレーザであるためである。一方、図 8Cは、半導体レーザ 1の 出力を増大させて、ピーク出力が 3Wを超えた場合を示している。この場合、半導体 レーザ 1の発振波長が反射体 2の反射波長 808nm以外の波長に広がっていること がわかる。具体的には、反射波長 808nmから 5nm程度、長波長側に発振スペクトル が広がっている。このことは、半導体レーザ 1の利得ピークの波長が反射波長 808η mより長波長側に存在することによるものである。半導体レーザ 1の出力が増大する に伴い、半導体レーザ 1の活性層の温度が上昇し、利得ピークが長波長側にシフトし たのである。
[0036] このようにして、反射体 2で発振波長をロックした半導体レーザ 1の出力を変調する ことにより、半導体レーザ 1の発振スペクトルを広げることができることが確認された。
[0037] 上述したように、半導体レーザ 1としてはワイドストライプのマルチモードレーザを用 いることが好ましい。また、そのストライプ幅としては 10 μ m以上、 200 μ m以下であ ることが好ましい。ストライプ幅を 10 m以上に広げることにより、出力を増大させ、横 モードのマルチ化が可能となる。横モードをマルチ化することにより、反射体 2の反射 波長での発振波長のロックが弱くなる。このため、発振波長のロックが外れやすくなり 、出力変調により容易にスペクトルを変動させることができる。一方、ストライプ幅が 20 0 μ m以上になると、今度は逆に、横モードのマルチモード数が多すぎて、ロックが必 要以上に弱くなつてしまう。このため、反射体 2の反射波長に発振波長をロックするこ と自体が困難になってしまう。以上より、半導体レーザ 1のストライプ幅は 10 m以上 、 200 m以下であることが好ましい。
[0038] また、反射体 2の反射率としては、上述したように、 1%以上、 10%以下であることが 好ましい。今回の評価では、反射率が 1%以下になると、反射体 2の反射波長によつ て半導体レーザ 1の発振波長をロックできず、利得ピークの波長のみの発振となり、 発振スペクトルが広がる効果を得ることができな力つた。一方、 10%以上にすると、半 導体レーザ 1の出力損失が大きくなり、出力の利用効率が下がるという問題が生じた
[0039] 上述したように発振波長がロックされた半導体レーザ 1の発振スペクトルを変調によ り拡大させる場合、半導体レーザ 1の利得ピークの波長と反射体 2の発振波長との波 長差が重要となる。通常、半導体レーザ 1の構造や反射体 2の反射率により、最適な 波長差は大きく変化するが、少なくとも波長差は 5nm以上、 20nm以下であることが 好ましい。波長差が 5nm以下の場合、発振スペクトルの移動が発生しないからである 。一方、 20nm以上の場合、反射波長でロックされること無ぐ利得ピークの波長で発 振を開始してしまうからである。このため、この場合であっても、発振スペクトルの移動 は発生しないことになる。
[0040] このように、半導体レーザ 1の利得ピークの波長と反射体 2の発振波長との波長差 を変調によりスペクトル移動が生じる最適な値に調整する必要がある。以下では、こ の波長差の調整を目的とする半導体レーザ 1の温度調整ついて検討を行った結果 について説明する。
[0041] 図 9Aに、この検討に使用した照明光源の構成を示す。この評価に使用した照明光 源は、その基本構成として、半導体レーザ 91と、半導体レーザ 91からの出射光の一 部を反射する反射体 93と、半導体レーザ 91と反射体 93との間に配置されたレンズ 9 2と、半導体レーザ 91を保持するホルダー 95と、ホルダー 95に設置され、半導体レ 一ザ 91の温度を制御する温度コントローラ 96と、を備えるものである。図 9Aの照明 光源を用いて、半導体レーザ 91の温度変化に対する発振波長の変化について実験 を行 、、半導体レーザ 91の発振スペクトルの変化を観測した。
[0042] ここでは、半導体レーザ 91としてはストライプ幅 100 μ mのレーザを利用し、反射体 93の反射波長 808nmの近傍で発振波長をロックしている。そして、温度コントローラ 96により半導体レーザ 91の温度を変化させ、その温度変化に伴う発振スペクトルの 変化を観測した。その観測結果を図 9B〜Dに示す。図 9Bは半導体レーザ 91の温 度を 25°Cに設定した場合、図 9Cは 30°Cに設定した場合、図 9Dは 40°Cに設定した 場合である。図 9Bの 25°Cの場合では、反射体 93の反射波長と半導体レーザ 91の 利得ピークの波長との間に差がないので、半導体レーザ 91は反射体 93の反射波長 で発振している。図 9Cの 30°Cの場合、半導体レーザ 91の温度上昇に伴い、利得ピ ークが長波長側に移動する。このため、半導体レーザ 91の利得ピークの波長と反射 体 93の反射波長と間に差が生じ、利得ピーク近傍での発振が始まる。図 9Dの 40°C の場合、半導体レーザ 91は、利得ピークの波長と反射波長の両方の近傍で発振し ている。この結果、半導体レーザ 91の発振スペクトルは大きく広がることとなり、スぺッ クルノイズが大幅に低下した。
[0043] 以上の結果から、半導体レーザ 91の温度を調節することにより、半導体レーザ 91 の利得ピークの波長と反射体 93の反射波長との差を最適な値とし、それにより、変調 時にスペクトル拡大が可能になることを実証することができた。従って、半導体レーザ 91の温度を調整する機能を付加することで、変調によるスペクトル拡がりを最大に調 整することが可能となる。
[0044] 図 10Aに、温度調整可能な半導体レーザ 91の構成例を示す。図 10Aに示す半導 体レーザ 91は、基板 101上に形成された活性層 103と、活性層 103を挟むように配 置された薄膜ヒータ 102と、を備えている。薄膜ヒータ 102は、図 9Aの温度コントロー ラ 96と接続され、温度コントローラ 96により薄膜ヒータ 102が制御される。薄膜ヒータ 102により半導体レーザ 91の温度を最適化することにより、図 9Dに示した最適な波 長差とする。それにより、半導体レーザ 91の利得ピークの波長と反射体 93の反射波 長との波長差を制御し、スペクトル拡大を容易に実現することができる。
[0045] また、図 10Bに、温度調整可能な半導体レーザ 91の他の構成例を示す。図 10Bに 示す半導体レーザ 91は、基板 101上に形成された活性層 103と、活性層 103を挟 むように配置された薄膜ヒータ 102と、反射体として形成された回折格子 104と、を備 えている。この構成では、反射体を回折格子 104として半導体レーザ 91内部に形成 することにより、光源を小型化することができる。図 10Bに示すように、活性層 103の 一部に回折格子 104が形成されて 、る。回折格子 104のブラッグ反射により半導体 レーザの発振波長が固定される。半導体レーザ 91のストライプ幅は 100 mであり、 横モードをマルチモード化することで高出力化を図り、かつ回折格子 104による波長 の固定を弱くしている。これによつて、変調によるスペクトル変動が容易になる。この 半導体レーザ 91の出力を変調することで、回折格子 104の反射波長と活性層 103 の利得ピーク波長との間でスペクトルを変動させて、スペックルノイズを低減できる。 変調によりスペクトルを変動させる場合に、利得ピーク波長と回折格子 104の反射波 長との波長差を最適化するために、薄膜ヒータ 102による温度制御が重要である。温 度を制御することでスペクトルの変動の最適状態に調整できる。さらに、消費電力を 下げるためには、出力変調に合わせて、薄膜ヒータ 102への電力も変調するのが好 ましい。スペクトルが半導体レーザ 91の利得ピークに移動する時に、半導体レーザ 9 1の温度が高くなるように、半導体レーザ 91の変調に合わせて、薄膜ヒータ 102の駆 動電流を制御することで、薄膜ヒータ 102の消費電力を低減できる。半導体レーザ 9 1に形成した薄膜ヒータ 102は高速応答が可能であり、変調速度に追従できる。また 、薄膜ヒータ 102のみならず、プラズマ効果を利用して半導体レーザの屈折率を変調 する方法や、薄膜ヒータ 102の代わりに電極を形成して、基板 101自体に電流を流 すことで半導体レーザ 91自体の温度制御することも可能である。
[0046] さらに、反射体を半導体レーザ内部に形成する構成として、半導体レーザ内部に 狭帯域な反射特性を有する周期構造を形成した DFBレーザや、 DBRレーザ等も同 様に利用できる。通常、 DFBレーザ及び DBRレーザは、発振波長がグレーティング の選択波長から外れな 、ように、グレーティングによる反射波長と活性層内の励起光 の波長との結合係数を高めている。しかしながら、本実施の形態では、結合係数を通 常の半分以下に低減する必要がある。本発明の構成においては、半導体レーザの 発振波長がパルス駆動でロック波長力も外れる必要がある。このため、パルス駆動に よりグレーティングの固定波長力 外れる程度の結合を実現する必要がある。すなわ ち、半導体レーザの最大出力の 50%近傍ではグレーティングのブラッグ波長で発振 し、最大出力近傍の CW発振においては、グレーティングのブラッグ波長以外の波長 で発振する DFBレーザ及び DBRレーザであることが好まし!/、。このような DFBレー ザ及び DBRレーザを用いると、非常に小型の照明光源の構成が実現できる。半導体 レーザをパルス駆動することで、グレーティングの反射波長とそれ以外の波長で発振 することで、広い波長領域でのレーザ発振が可能となり、スペックルノイズの少ない光 源が実現できる。また DFBまたは DBR構造を有するマルチストライプの構造は高出 力化により有効である。また、自励発振に使われる過飽和吸収体を活性層近傍に設 けた構造にも有効である。過飽和吸収体はレーザ発振による屈折率変化が通常の 媒体に比べて大きいので、半導体レーザの発振波長の変化が大きくなり、スペクトル 幅をより拡大できる。
[0047] 特に、 DBRレーザを用いる場合、グレーティング構造を活性層内に形成することが 好ましい。 DBRレーザのグレーティングは、温度変化による波長変動を抑圧するため 、導波路を不活性処理した部分に形成する。これに対して、本実施の形態では、活 性層の内部または活性層の表面に直接形成する。活性層が電流注入により温度が 上昇することにより屈折率が変化し、これによつて、 DBR部の反射波長がシフトする のを利用すれば、パルス発生による温度変化により反射波長が変化し、スペクトル幅 を拡大することが可能となる。この結果、スペックルノイズの抑圧が達成される。
[0048] 次に、図 11A及び Bを用いて、上述した DFBレーザ及び DBRレーザの構成につ いて具体的に説明する。図 11Aは、 DBRレーザの構造を示す断面図、図 11Bは、 D FBレーザの構造を示す断面図である。上述したように、 DFBレーザ及び DBRレー ザは、レーザ内部に回折格子 (グレーティング)形成することにより、この回折格子を 反射体として集積ィ匕することができる。回折格子を集積ィ匕することで、半導体レーザ の発振波長を回折格子の反射波長に固定し、変調によりスペクトルを変動させてス ペックルノイズを低減する。半導体レーザのストライプ幅は 100 mであり、横モードを マルチモード化することで高出力化を図り、かつ、回折格子による波長の固定を弱く している。これによつて、変調によるスペクトル変動が容易になる。ストライプ幅として は 10〜200 mが好ましい。回折格子魏積ィ匕することで非常に小型の照明光源が 実現できる。
[0049] 最初に、 DBRレーザの構成について図 11Aを用いて説明する。図 11Aに示す DB Rレーザでは、活性層 115によりレーザ発振し、出力制御電極 112からの電流注入 により、レーザ光 111の強度を制御し、端面 117から出力する。活性層 115の端面 1 16側に設けた回折格子 114で特定波長をブラッグ反射し、この波長により半導体レ 一ザの発振波長が固定される。回折格子 114の上部には波長調整電極 113が形成 されており、電流注入により回折格子 114の温度を変えることで、発振波長を制御し ている。出力制御電極 112への注入電流を変調することで出力変調するとともに、活 性層 115の温度上昇によって利得波長を変動させ、回折格子 114の反射波長と利 得波長の差を大きくすることで、発振スペクトルを回折格子 114の反射波長と利得ピ ーク波長の間で変動させることができる。これによつて、半導体レーザの発振スぺタト ルを変動させスペックルノイズを低減できる。
[0050] 出力変調によりレーザの発振スペクトルを回折格子 114の反射波長と活性層 115 の利得ピーク波長との間で変動させることで、発振スペクトルの拡大が可能となる。利 得ピーク波長と反射波長の最適値を波長調整電極 113に注入する電流により制御 することができる。従って、波長調整電極 113により、スペクトルの変動範囲を調整す ることが可能となる。さらに、出力変調に合わせて、波長調整電極 113への電流も変 調するのが好ま 、。スペクトルが半導体レーザの利得ピークに移動する時に半導 体レーザの温度が高くなるように、半導体レーザの変調に合わせて、波長調整電極 1 13の駆動電流を制御することにより、スペクトルの変動量を拡大できる。このため、ス ペックルノイズをさらに低減できる。また、波長調整部での電力消費を低減して低消 費電力化できるという利点を有する。
[0051] 通常の DBRレーザの場合、回折格子 114と端面 117で共振器を構成するように、 回折格子 114側の端面 116からの反射を抑圧している。具体的には、端面 116に反 射防止膜を形成し、また、活性層 115のストライプを端面 116の近傍で曲げて、端面 反射を低減するなどの方法がとられている。これに対して、本実施の形態では、半導 体レーザの発振が端面 117と回折格子 114で共振器を構成する波長ロックの状態と 、端面 116及び 117の間でレーザ共振する状態に変化することで、発振スペクトルを 変動させることができる。このため、端面 116には反射膜が形成されている。
[0052] 次に、 DFBレーザの構成について図 11Bを用いて説明する。図 11Bに示す DFB レーザでは、活性層 115全体に回折格子 114が形成されている。出力制御電極 112 に注入する電流を変調することで、発振スペクトルを変動させ、スペックルノイズを低 減できる。また、図 10A及び図 10Bに示したレーザの温度を調整する機構を設けるこ とで、発振スペクトルの変動の最適状態の調整が可能となる。
[0053] なお、半導体レーザの変調周波数は、 0. lkHz〜lMHzが好ましい。照明光源と して人間が認識するスペックルノイズとして 0. 1kHz以下でスペクトルが変化すると、 スペクトル変化を肉眼で観測できるため、スペックルノイズ低減効果が弱まる。スぺク トル変動を人間が認識できないように周波数を 0. 1kHz以上に上げる必要がある。 一方、半導体レーザの変調において、半導体レーザの活性層内の温度変化によりス ベクトルが移動するには、レーザのオン'オフ切り替えにおいて活性層内の温度変化 の差が大きくないとスペクトル変動が発生しない。周波数が 1MHz以上になると半導 体の熱の拡散速度の影響により活性層内の温度変化が出力変調に追従しなくなる ため、変調によるスペクトルの移動が発生しなくなる。このため、変調速度は 1MHz以 下が好ましい。
[0054] また、半導体レーザを駆動するパルスのデューティ比(パルス幅 Zパルス繰り返し 間隔)は 50%以下が好ましい。デューティ比を 50%以下にすることで、平均パワーに 対するパルスのピーク出力を 2倍以上に設定できる。デューティ比を小さくして、ピー ク出力を大きくすることで、 1パルス内での活性層温度の変化を大きくとれるため、波 長シフト量が増大でき、スペックルノイズの抑圧効果がより大きくなる。さらに望ましく は 30%以下に設定することで、よりスペックルノイズが低減される。
[0055] (実施の形態 2)
次に、本発明の実施の形態 2について説明する。上記の実施の形態 1では、半導 体レーザ力 出射されるレーザ光を投射装置や表示装置の照明光源としてそのまま 利用するものであった。これに対し、本実施の形態では、半導体レーザからのレーザ 光で固体レーザ媒質を励起することにより固体レーザ媒質力 出射されるレーザ光を 照明光源として利用するものである。
[0056] 図 12に、本実施の形態に係る照明光源の構成を示す。図 12に示す照明光源は、 半導体レーザ 1と、反射体 121と、固体レーザ 122と、非線形光学素子 123と、ミラー 124及び 125と、を備えている。半導体レーザ 1は波長 808nmのポンプ光源であり、 半導体レーザ 1から出た光は、固体レーザ 122を励起して、レーザ発振を起こす。固 体レーザ 122から出た出射光 4は、ミラー 124及び 125で構成される共振器構造内 でレーザ発振を行う。共振器内に設置された体積グレーティングからなる反射体 121 は選択波長を固体レーザ 122に帰還するので、固体レーザ 122は反射体 121の反 射波長に固定される。レーザ結晶には Nd:YVOを用い、発振するレーザ光は 106
4
4nmである。共振器内に非線形光学素子 123を設置する。非線形光学素子 123は 周期状の分極反転構造を有する Mgドープ LiNbOである。共振器内で発生した出
3
射光 4は、非線形光学素子 123で第 2高調波に変換され、波長 532nmの緑色光を 発生する。この構成において、半導体レーザ 1をポンプする駆動電源 3によって半導 体レーザ 1をパルス駆動する。
[0057] この構成において、反射体 121の反射波長を例えば 1063nm程度に設定する。固 体レーザ 122として、 Ndのドープ量を 3at%程度に増加させると、レーザ発振の利得 波長領域が広がり、 1063nmでも高い発振強度が得られた。半導体レーザ 1を強度 変調することで、固体レーザ 122が出力変調される。変調周波数を lkHz、パルスの デューティを onZoff比で 25%にして変調したところ、固体レーザ 122の出力も同様 に出力変調された。固体レーザ 122がパルス励起により温度変化することで、初期の 発振波長 1063nm力ら 1064. 5nm程度まで波長が変化した。これは、固体レーザ 1 22の温度変化により発振波長が反射体 121の反射波長から、それ以外の波長に変 化したことによる波長変動である。この動作によって、出力される緑色の SHG光は波 長 531. 5〜532. 3nmまでのスペクトル拡大が可能となり、スペックルノイズが低減 できた。さらに、固体レーザ 122のドープ量の最適化を進めることで、レーザ発振の 利得波長領域がさらに広がり、その結果、緑色の SHG光は波長 531. 5-532. 5n mまでのスペクトル拡大を達成できた。
[0058] なお、図 12では、狭帯域特性を有する反射体である体積グレーティング 121をミラ 一 124及び 125からなるレーザ共振器内部に設置した力 その他の構成として、レー ザ共振器の外部力も共振器に光フィードバックすることでも、レーザの発振波長を制 御することが可能である。外部から波長を帰還すると、共振器内部の損失を低減でき るため、高効率化に有利である。共振器の外部から狭帯域の反射波長を帰還する方 法では、図 6で示した狭帯域フィルターや、図 7で示したファイバーグレーティングを 用いる構成も可能である。
[0059] また、固体レーザ 122自体にグレーティング構造を形成する構成も有効である。セ ラミックレーザを用い Ndなどのドープ量を部分的に分布させることでレーザ媒質内部 に周期的な屈折率分布が形成できる。これによつて固体レーザ 122の DFB構造が 実現する。これをパルス光で励起すると固体レーザの屈折率変動が大きいため、ダレ 一ティングの反射波長領域が利得波長領域から外れ、同様に波長変動によるスぺク トル拡大が実現できる。
[0060] また狭帯域特性を有する反射体として、複数の反射波長を有する反射体を用いる 構成も可能である。さらに、半導体レーザの出力変調にさらに高周波を重畳すること で、固体レーザの発振を不安定にし、スペクトルの広がりを大きくすることでスペック ルノイズがさらに低減する効果も得られる。 [0061] また、レーザ媒質として固体レーザの代わりにファイバーレーザを用いることも可能 である。
[0062] (実施の形態 3)
次に、本発明の実施の形態 3について説明する。本実施の形態は、半導体レーザ に印加される駆動電流に高周波を重畳することにより駆動電流を変調し、半導体レ 一ザの発振スペクトルを大きく変動させるものである。
[0063] 図 13A及び Bは、本実施の形態に係る照明光源の半導体レーザの駆動方法を説 明するための図である。図 13Aは、光フィードバックにより波長ロックされた半導体レ 一ザの駆動電流に高周波を重畳した電流波形を示す図、図 13Bは、図 13Aの電流 波形の駆動電流が印加された半導体レーザの発振スペクトルを示す図である。なお 、図 13A及び Bにおいて、「on」は駆動電流に高周波が重畳されている期間、「off」 は駆動電流に高周波が重畳されて 、な 、期間を示して 、る。
[0064] 半導体レーザの駆動電流に高周波を重畳することで半導体レーザの出力光のコヒ 一レンスが低下する。光フィードバックを利用した半導体レーザは外部からの特定の 波長の光をレーザの活性層内に帰還することで、出力波長を固定できる。これに対し て、半導体レーザの駆動電流に高周波を重畳すると、光のコヒーレンスが低下するた め、外部から帰還する戻り光との相関が低下し、光のロックがはずれる。駆動電流に 高周波を重畳する期間としない期間とを設けることにより、半導体レーザの発振波長 を外部からの戻り光の波長に固定されたスペクトル(図中「off」の期間)と、外部から の戻り光による波長ロックからはずれた状態(図中「on」の期間)との間で、時間的に スペクトルを変化させることができる。これによつて、レーザ光の発振波長が時間的に 変化し、人間が観測した場合のスペックルノイズを大幅に低減することができる。半導 体レーザのコヒーレンスを下げるための高周波重畳の周波数は 10MHz以上の高周 波が必要である。また、スペクトル変化によりスペックルノイズが低下すると人間が認 識するには、高周波の印加を切り替える周波数として 1kHz以上が必要であった。
[0065] なお、高周波重畳の場合、駆動電流の最小値は、半導体レーザのしき 、値電流 It hの値より小さ 、方が望ま 、。駆動電流をしき!、値電流 Ith以下の値から変調するこ とで、半導体レーザのコヒーレンスは大幅に低下し、半導体レーザの波長ロックが、よ り外れやすくなる。
[0066] また、半導体レーザは横モードがマルチモード発振であるワイドストライプのレーザ が好ましい。シングルモードの半導体レーザは、波長ロックがかかりやすぐ高周波重 畳しても波長ロックが外れにくいため、非常に強い振幅の高周波重畳が必要となるが 、ワイドストライプは容易に波長ロックが外れるため、高周波重畳の消費電力を低減 できる。
[0067] さらに、高周波重畳を加えると、図 13Bの「on」期間に示すように、単一のスペクトル 自体も広げることができる。これにより、コヒーレンスをさらに低減し、スペックルノイズ をより低減することが可能となる。
[0068] 図 14A及び Bは、本実施の形態に係る照明光源の半導体レーザの他の駆動方法 を説明するための図である。図 14Aは、光フィードバックにより波長ロックされた半導 体レーザの駆動電流に高周波を重畳した電流波形を示す図、図 14Bは、図 14Aの 電流波形の駆動電流が印加された半導体レーザの発振スペクトルを示す図である。 図 14A及び Bにおいて、「大」は駆動電流に高強度の高周波が重畳されている期間 、「小」は駆動電流に低強度の高周波が重畳されている期間を示すものとする。図 14 Bに示すように、高周波の振幅強度を時間的に変調することにより、図 13A及び Bの 場合と同様、半導体レーザの発振波長を 2つのスペクトルで発振することが可能とな る。
[0069] 図 15A及び Bは、本実施の形態に係る照明光源の半導体レーザのさらに他の駆動 方法を説明するための図である。図 15Aは、光フィードバックにより波長ロックされた 半導体レーザの駆動電流に高周波を重畳した電流波形を示す図、図 15Bは、図 15 Aの電流波形の駆動電流が印加された半導体レーザの発振スペクトルを示す図であ る。図 15A及び Bにおいて、「A」は駆動電流の最小値がしきい値電流 Ithを下回る期 間、「B」は駆動電流の最小値がしきい値電流 Ithを上回る期間を示すものとする。こ の駆動方法では、高周波のバイアスを変調して振幅の最小値が、半導体レーザのし き 、値電流 Ithの上下で変化するように駆動する。高周波重畳された駆動電流の最 小値が半導体レーザのしきい値電流を以下になると、半導体レーザのコヒーレンスが 大幅に低下する。この現象を利用して、しきい値電流の上下で駆動電流の最小値が 上下するように、高周波重畳の振幅またはバイアスを変調することで、半導体レーザ の発振スペクトルを 2波長間で変化させることが可能となる。さらに、この構成におい ては、波長ロックされた状態でも高周波重畳された状態になるので、図 15Bの「B」期 間に示すように、発振スペクトルの広がりを大きくできる。このため、スペックルノイズの 低減効果をより強くすることができる。
[0070] また、高周波の周波数を変調することも有効である。光フィードバックにより波長を 固定する場合、反射体と半導体レーザの距離に依存して、高周波がかかりやすい周 波数が存在する。これは、光が反射体力 反射して半導体レーザに帰還する時間に より決定される。このため、高周波の周波数を時間的に変化させることによつても、波 長ロックの強度を変えることができる。即ち、波長ロックの強い周波数では、外部の反 射体から帰還する波長に固定され、波長ロックの弱まる周波数では、外部から帰還 する波長から外れて、半導体レーザのゲインピークで発振することになり、半導体レ 一ザが 2つの波長スペクトルでさせることが可能となる。
[0071] なお、本実施の形態では、レーザ媒質として半導体レーザにつ!、て示したが、レー ザ媒質として固体レーザ、ファイバーレーザを用いた場合にも適用可能である。固体 レーザ、ファイバーレーザの場合、高周波を重畳する対象は、レーザ媒質を励起する ポンプ用の半導体レーザとなる。また、ファイバーレーザの場合、特定波長を反射す る反射体としてはファイバー内に周期的な屈折率分布を形成したファイバーグレーテ イングを用いる構成が好ましい。ポンプ用の半導体レーザを高周波駆動し、高周波の 周波数、振幅を変調することで、固体レーザまたはファイバーレーザの発振スぺタト ルを時間的に変化させることが可能となる。これによつて、レーザ光のスペクトルを大 幅に低減することができた。
[0072] なお、反射体として、レーザ媒質に外部から特定波長を反射する反射体を設けた 構成について記載したが、レーザ媒質の内部、例えば、半導体レーザの内部にダレ 一ティング構造を形成した DFBレーザ、 DBRレーザにぉ 、ても同様の構成が可能 である。
[0073] (実施の形態 4)
次に、本発明の実施の形態 4について説明する。本実施の形態は、上記の実施の 形態 1〜 3に係る照明光源を用 Vヽてレーザディスプレイを実現するものである。
[0074] レーザディスプレイは、 RGBレーザ光を用いたディスプレイ装置であり、レーザ出力 としては数 lOOmW力も数 W以上の大出力が必要とされる。レーザディスプレイの場 合、光に回折限界の集光特性は要求されない。従って、半導体レーザの横モードは 単一モードである必要がない。そこで、ワイドストライプ構造の高出力半導体レーザを 用いる。赤色レーザには AlGaAs系半導体材料または AlGalnP系半導体材料を用 い、発振波長は 630〜640nmの赤色レーザを用い、青色レーザには GaN基板をべ ースとする半導体レーザを用い、発振波長は 440〜450nmである。カラーディスプレ ィを実現するには、 RGB照明によるカラー表示が必要である力 ここでは、 RGBを切 り替えて表示するフィールドシーケンシャル方式を用いる。周波数は 60Hzで青、赤、 緑は発光時間をそれぞれ 30%で切り替える。空間変調素子としては DLPを用い、レ 一ザ光を画像変換する。 RGB光源を周波数 120Hz、デューティ 30%で駆動して、 R GBを順番に切り替え、それぞれの色の絵を合成することでカラー画像を表示させた
[0075] 半導体レーザはそれぞれグレーティングによって特定波長の反射光を帰還して!/、 る。半導体レーザを 500mWのピーク出力でパルス駆動することで、発振波長がダレ 一ティングの反射波長から、それ以外の波長にシフトし、発振波長が変化した。 RGB の切り替え駆動によりスペクトルが拡大し、スペックルノイズを大幅に低減でき、高画 質の画像が実現できた。本実施の形態では、特別な構成を必要とせず、カラー表示 に必要な RGBの画像切り替え変調により光源のスペクトルを拡大し、スペックルノィ ズの低減が可能になった。
[0076] ここでは、レーザディスプレイへの応用を目的とした Wクラスのレーザ光源につ!、て 述べる。 100インチクラスの大画面をレーザの照明により実現するには、光源特性と して数 Wの出力が必要となる。フルカラー出力を得るためには、赤、青、緑の波長領 域のレーザをそれぞれ数 Wクラスのものをそろえる必要がある。し力しながら、単一ス トライプ構造の半導体レーザにおいて、 Wクラスの出力を得るのは難しい。そこで、マ ルチストライプ構造の半導体レーザを利用して数 W出力を得る構成を提案する。スト ライプ幅は 50 μ m、ストライプ間隔は 300 μ m、チップ幅 12mmで、 10本程度のスト ライプが集積ィ匕されている。 1ストライプあたりの出力は数 lOOmW程度で、 1チップで 4Wの出力が可能である。体積グレーティングにより各ストライプに光フィードバックす ることで発振波長を固定している。このレーザアレイを RGBで切り替えて出力変調す ることで、発振波長が変化し、スペクトル幅が拡大することでスペックルノイズが大幅 に低減された。さらに、グレーティングの反射波長をストライプ間で異なる波長に設計 することで光源のスペクトルをより拡大することができた。さらにパルス変調することで スペクトルが時間的に変化し、かつスペクトル幅を拡大することができるので、スぺッ クルノイズがより低減された。
[0077] また、高出力化が容易なワイドストライプ構造により、高出力化、歩留まり向上、信頼 性向上を実現できた。
[0078] (実施の形態 5)
次に、本発明の実施の形態 5について説明する。本実施の形態は、上記の実施の 形態 4に係るレーザディスプレイの一種であるレーザ投射装置に係る形態である。レ 一ザ投射装置は、 RGB光源と、投射光学系とからなり、レーザ光源からの光を投射 光学系によりスクリーン等へ投射することでフルカラーの映像を投射できる。その方式 としては、外部のスクリーンや壁などの投射体に映像して反射光を見るタイプと、背面 投射型としてスクリーンの背面力 光を照射して反射光を見るタイプに分かれる。 ヽ ずれの場合も、スクリーン等で散乱された光によって色を認識できる。しかしながら、 コヒーレンスの高いレーザを利用する場合、スクリーンで散乱された光が干渉してス ペックルノイズを発生すると ヽぅ問題が発生する。スペックルノイズを低減する有効な 方法はレーザ光のコヒーレンスを低減すること方法である。レーザ光のコヒーレンス低 減には、レーザの発振スペクトルを拡大するのが有効である。
[0079] 図 16は、本実施の形態に係るレーザ投射装置の構成を示す図である。本実施の 形態に係るレーザ投射装置は、上記実施の形態 1〜3に係る照明光源を用い、レー ザ光を 2次元スィッチである液晶パネルにより画像変換して、スクリーン上に映像を投 影するレーザディスプレイである。照明光源 161から出射された光は、コリメート光学 系 162及びインテグレータ光学系 163を通って、拡散板 164を通過した後、 2次元ス イッチである液晶パネル 165により画像変換され、投影レンズ 167によりスクリーン 16 6に投影される。拡散板 164は、揺動機構により位置変動しており、照明光源 161の スペクトル拡大と合わせてスクリーン 166上で発生するスペックルノイズを低減する。
[0080] 本実施の形態に係るレーザ投射装置では、照明光源 161の波長変動を利用して、 コヒーレンスを下げることで、スクリーン上で発生するスペックルノイズを低減して 、る 。照明光源 161は、外部の温度変化に対しても安定した出力が得られ、小型、高出 力で安定な映像が実現できた。また、高いビーム品質のため、光学系の設計を容易 にし、小型化、簡素化が可能となった。
[0081] さら、上記実施の形態 1〜3に係る照明光源を複数用いることにより、スペックルノィ ズをより低減することが可能である。照明光源を複数用いて、それぞれの光源の反射 体の波長を異なる波長に設定することで、照明光源の発振スペクトルが全体で大きく 広がる。これによつて、スペックルノイズを大幅に低減できる。
[0082] なお、 2次元スィッチとしては、液晶パネル以外にも、反射型液晶スィッチ、 DMDミ ラー等の利用も可能である。
[0083] (実施の形態 6)
次に、本発明の実施の形態 6について説明する。本実施の形態は、上記の実施の 形態 4に係るレーザディスプレイの一種である他のレーザ投射装置に係る形態である
[0084] 図 17は、本実施の形態に係るレーザ投射装置の構成を示す図である。照明光源 1 71から出射されたレーザ光 174は、ミラー 172及び 173で走査することにより、スクリ ーン 175上に 2次元的な画像を描く。この場合に、照明光源 171に高速なスィッチ機 能が必要である。本実施の形態に係る照明光源 171は、高出力化が可能であり、出 力安定化に優れ、簡易な温度制御によって安定した出力を得ることができる。また、 出力変調することでスペクトルの拡大が同時にできるため、画像形成のための出力 変調とスペクトル拡大のための出力変調を兼任できると 、う利点を有する。画像形成 のための出力変調によりスペックルノイズを低減できるため、スペックルノイズ低減の みに必要な構成が不要となる。また、ビーム走査光学系としては MEMSを利用した 小型走査装置も利用できる。高いビーム品質は集光特性、コリメート特性に優れ、 M EMS等の小型ミラーも利用可能となる。これによつて、走査型のレーザディスプレイ が実現できた。
[0085] なお、上記実施の形態 4〜6では、光学装置としてはレーザディスプレイについて 説明したが、その他、液晶のノ ックライトへの応用も可能となる。液晶のバックライト用 の光源として照明光源を用いれば、スペックルノイズが抑圧され、高品質な画像が実 現できる。さらにレーザ光により広い色範囲が表現できるため、色再現性に優れたデ イスプレイが実現できる。図 18に、上記の実施の形態 1〜3に係る照明光源を用いた 液晶バックライトの構成を示す。導光板 186の端面から照明光源 181〜183からのレ 一ザ光 185をマイクロレンズ 184を通して入射し、面状のバックライト光源を形成して いる。レーザ光を複数使用することで、輝度を上げるとともに、照明光源を複数用い、 それぞれの光源の反射体の波長を異なる波長に設定することで、スペクトルは全体 で大きく広がる。これによつて、スペックルノイズを大幅に低減できる。
[0086] また、その他、レーザ照明、イルミネーションなど、レーザ光源を照明光源として利 用する場合には、スペックルノイズの低い光源として有望である。
[0087] 本発明の照明光源は、光フィードバックによって波長ロックされたレーザ媒質にお いて、レーザ媒質の出力変調時に発生する利得波長領域の変動を利用して、レーザ 媒質の発振波長を大きく変動させる。これによつてレーザ媒質の発振スペクトルの変 動幅を増大させスペックルノイズの少なヽ光源を実現する。この光源を用いた照明光 学システムおよび投射光学システムによりスペックルノイズの少ない高画質な照明光 学系を実現できる。
[0088] 上記の各実施の形態力も本発明について要約すると、以下のようになる。すなわち 、本発明に係る照明光源は、所定の利得領域を持つレーザ媒質を有するレーザ光 源と、狭帯域の反射特性を有する反射体と、を備え、前記反射体の反射波長は、前 記レーザ媒質の利得領域内で設定されており、前記レーザ光源から出射されるレー ザ光の一部は前記反射体による反射によって前記レーザ光源に帰還され、前記レー ザ光源の発振波長は、前記レーザ光源の発振特性の変化により前記レーザ媒質の 利得領域のピークを前記反射波長力 移動させることにより、前記反射波長力 変化 される。
[0089] 上記の照明光源では、レーザ光源から出射されるレーザ光の一部を反射体による 反射によってレーザ光源に帰還させることによりレーザ光源の発振光を反射体の波 長に固定する。そして、レーザ光源の発振特性を変化させることでレーザ光源の利得 領域のピークを固定された反射波長から変動させる。このため、レーザ光源の発振波 長が大きく変動させることができるので、レーザ光源の発振スペクトル幅が広がりコヒ 一レンスが低下する。従って、スペックルノイズの少ない照明光源を実現することがで きる。
[0090] 前記反射体の反射波長は、前記レーザ媒質の利得領域のピークに対して短波長 側に設定されることが好ましい。
[0091] この場合、反射波長を短波長側に設定しておくことにより、レーザ光源の利得領域 のピークは長波長側にシフトする場合、レーザ光源の発振波長の変動をより大きくす ることがでさる。
[0092] 前記レーザ光源の発振波長の変化量は、 lnm以上であることが好ましい。
[0093] この場合、レーザ光源の発振波長の変化量をレーザ光源の利得領域のピークの変 動幅よりも大きくすることができる。
[0094] 前記反射体の反射波長は、複数の反射波長を含み、前記レーザ光源の発振波長 は、前記複数の反射波長間で変化されることが好ましい。
[0095] この場合、レーザ光源の発振波長を複数の反射波長間で変化させることができるの で、発振波長の変化量をより大きくすることができる。
[0096] 前記レーザ光源に印加される駆動電流をパルス変調することにより、前記レーザ光 源の発振特性を変化させると共に、前記パルス変調のパルスのデューティ比は、 50
%以下であることが好まし!/、。
[0097] この場合、駆動電流のピーク出力を平均出力に対して大きくすることができるので、 レーザ光源の発振特性の変化を大きくとることができる。
[0098] 前記パルス変調のパルス幅は、 1 μ s以上であることが好まし!/、。
[0099] この場合、駆動電流のパルス変調に追従するようにレーザ光源の発振特性を変化 させることがでさる。
[0100] 前記パルス変調のパルスは、複数の短パルスの組み合わせ力 構成されることが 好ましい。 [0101] この場合、レーザ光源の発振特性の変化をより大きくとることができる。
[0102] 前記反射体は、屈折率グレーティングが形成された誘電体力 なることが好ましい。
[0103] この場合、屈折率グレーティングが形成された誘電体は小型化が可能であるので、 照明光源の小型化を図ることができる。
[0104] 前記反射体は、グレーティングが形成されたファイバ一力もなることが好ましい。
[0105] この場合、簡単な構成で反射体を実現できる。
[0106] 前記反射体は、狭帯域フィルターと、前記狭帯域フィルターを透過する光の一部の みを反射する反射部材と、からなることが好ましい。
[0107] この場合、簡単な構成で反射体を実現できる。
[0108] 前記レーザ光源は、半導体レーザであることが好ましい。
[0109] この場合、高輝度、高出力のレーザ光源を利用することができる。
[0110] 前記反射体は、前記半導体レーザの内部に形成されていることが好ましい。
[0111] この場合、照明光源の小型化を図ることができる。
[0112] 前記半導体レーザは、 III— V族窒化物系半導体材料力もなることが好ましい。
[0113] この場合、高輝度、高出力のレーザ光源を得ることができる。
[0114] 前記半導体レーザは、 AlGaAs系半導体材料力もなることが好ましい。
[0115] この場合、高輝度、高出力のレーザ光源を得ることができる。
[0116] 前記半導体レーザは、 AlGalnP系半導体材料力もなることが好ましい。
[0117] この場合、高輝度、高出力のレーザ光源を得ることができる。
[0118] 前記レーザ光源は、固体レーザであることが好ましぐ前記固体レーザは、固体レ 一ザ媒質と、前記固体レーザ媒質を含む共振器と、前記共振器内に設置された非線 形光学素子と、力もなることが好ましい。
[0119] この場合、大パワー出力のレーザ光を得ることができる。
[0120] 前記レーザ光源は、ファイバーレーザであることが好ましい。
[0121] この場合、高効率でレーザ光を得ることができる。
[0122] 前記駆動電流には、前記駆動電流の周波数、振幅及びバイアスのうちの少なくとも
1つを変調する高周波信号が重畳されて 、ることが好ま 、。
[0123] この場合、レーザ光源から出射されるレーザ光のコヒーレンスを低下させることがで きるので、反射波長に固定されたレーザ光源の発振波長の変動をより容易に行うこと が可能となる。
[0124] 前記高周波信号の周波数は、 10MHz以上であり、前記高周波信号の周波数、振 幅及びバイアスのうちの少なくとも 1つを変調する変調信号の周波数は、 1kHz以上 であることが好ましい。
[0125] レーザ光源から出射されるレーザ光のコヒーレンスを低下させつつ、スペックルノィ ズの低減の効果を観察者に感知させることができる。
[0126] 前記駆動電流の最小値は、前記レーザ光源のしきい値電流値を中心として上下変 動することが好ましい。
[0127] この場合、レーザ光源の発振波長が反射波長に固定されている状態においても、 発振波長に広がりを持たせることができる。
[0128] 前記半導体レーザはさらに、前記半導体レーザを加熱する加熱部を備え、前記半 導体レーザの発振特性の変化に追従するように、前記加熱部力 発生される熱によ る加熱が制御されることが好まし 、。
[0129] この場合、半導体レーザの発振特性の変化を最適な状態で行うことができる。
[0130] 前記反射体は、回折格子からなり、前記回折格子によるブラッグ反射により前記反 射波長が設定され、前記半導体レーザはさらに、前記駆動電流が供給され、前記半 導体レーザの出力を制御可能な出力制御電極と、波長制御用電流が供給され、前 記波長制御用電流の注入による前記回折格子の温度制御により、前記半導体レー ザの発振波長を制御可能な波長制御電極と、を備え、前記駆動電流のパルス変調 に追従するように前記波長制御用電流をパルス変調することが好ま 、。
[0131] この場合、駆動電流のパルス変調に追従するように波長制御用電流をパルス変調 することにより、半導体レーザの発振波長の変化量を拡大することができる。
[0132] 前記反射体の反射率は、 1〜10%であることが好ましい。
[0133] この場合、レーザ光源の発振波長を反射波長に固定しつつ、固定された反射波長 力 の変化を容易に行うことができる。
[0134] 前記反射体の狭帯域幅は、 5nm以下であることが好ましい。
[0135] この場合、レーザ光源の発振波長を反射波長に容易に固定することができる。 [0136] 本発明に係るレーザ投射装置は、上記のいずれかの照明光源を少なくとも 1っ備 え、前記照明光源から出射されるレーザ光を投射する光学系、をさらに備える。
[0137] 上記のレーザ投射装置では、スペックルノイズを効果的に抑制した良好な映像を投 射可能なレーザ投射装置を実現できる。
[0138] 前記レーザ光源から出射されるレーザ光の横モードは、マルチモードであることが 好ましい。
[0139] この場合、レーザ光源から出射されるレーザ光の高出力化を図ることができる。
[0140] 前記レーザ光源から出射されるレーザ光の縦モードの波長間隔は、 lnm以上であ ることが好ましい。
[0141] この場合、レーザ光源の発振波長の変化量をレーザ光源の利得領域のピークの変 動幅よりも大きくすることができる。
[0142] 前記反射体の反射波長が互いに異なって 、ることが好ま U、。
[0143] この場合、照明光源全体としての発振スペクトルを大きく広げることができるので、ス ペックルノイズを低減することができる。
[0144] 前記照明光源力 出射されるレーザ光が入射される導光板を、さらに備えることが 好ましい。
[0145] この場合、画面全体に均一にレーザ光を照射することができる。
産業上の利用可能性
[0146] 本発明に係る照明光源は、光フィードバックとパルス駆動によるゲインシフトを利用 して、半導体レーザの発振波長を大きく変化させることで、半導体レーザのスペック ルノイズを低減するのに有効である。半導体レーザを照明光源として利用する場合、 スペックルノイズの低減は必須の技術であり、本発明の小型で簡単な構成は、照明 光源として非常に有効である。

Claims

請求の範囲
[1] 所定の利得領域を持つレーザ媒質を有するレーザ光源と、
狭帯域の反射特性を有する反射体と、を備え、
前記反射体の反射波長は、前記レーザ媒質の利得領域内で設定されており、 前記レーザ光源から出射されるレーザ光の一部は前記反射体による反射によって 前記レーザ光源に帰還され、
前記レーザ光源の発振波長は、前記レーザ光源の発振特性の変化により前記レー ザ媒質の利得領域のピークを前記反射波長力 移動させることにより、前記反射波 長から変化されることを特徴とする照明光源。
[2] 前記反射体の反射波長は、前記レーザ媒質の利得領域のピークに対して短波長 側に設定されることを特徴とする請求項 1に記載の照明光源。
[3] 前記レーザ光源の発振波長の変化量は、 lnm以上であることを特徴とする請求項
1に記載の照明光源。
[4] 前記反射体の反射波長は、複数の反射波長を含み、
前記レーザ光源の発振波長は、前記複数の反射波長間で変化されることを特徴と する請求項 1に記載の照明光源。
[5] 前記レーザ光源に印加される駆動電流をパルス変調することにより、前記レーザ光 源の発振特性を変化させると共に、前記パルス変調のパルスのデューティ比は、 50
%以下であることを特徴とする請求項 1〜4のいずれか 1項に記載の照明光源。
[6] 前記ノ ルス変調のパルス幅は、 1 μ s以上であることを特徴とする請求項 5に記載の 照明光源。
[7] 前記パルス変調のパルスは、複数の短パルスの組み合わせ力 構成されることを 特徴とする請求項 5に記載の照明光源。
[8] 前記反射体は、屈折率グレーティングが形成された誘電体からなることを特徴とす る請求項 1〜7のいずれ力 1項に記載の照明光源。
[9] 前記反射体は、グレーティングが形成されたファイバ一力もなることを特徴とする請 求項 1〜7のいずれか 1項に記載の照明光源。
[10] 前記反射体は、狭帯域フィルターと、前記狭帯域フィルターを透過する光の一部の みを反射する反射部材と、からなることを特徴とする請求項 1〜7のいずれか 1項に記 載の照明光源。
[11] 前記レーザ光源は、半導体レーザであることを特徴とする請求項 5〜7のいずれか
1項に記載の照明光源。
[12] 前記反射体は、前記半導体レーザの内部に形成されていることを特徴とする請求 項 11に記載の照明光源。
[13] 前記半導体レーザは、 III— V族窒化物系半導体材料力 なることを特徴とする請 求項 11または 12に記載の照明光源。
[14] 前記半導体レーザは、 AlGaAs系半導体材料力もなることを特徴とする請求項 11 または 12に記載の照明光源。
[15] 前記半導体レーザは、 AlGalnP系半導体材料力もなることを特徴とする請求項 11 または 12に記載の照明光源。
[16] 前記レーザ光源は、固体レーザであることを特徴とする請求項 5〜7のいずれか 1 項に記載の照明光源。
[17] 前記固体レーザは、固体レーザ媒質と、前記固体レーザ媒質を含む共振器と、前 記共振器内に設置された非線形光学素子と、力もなることを特徴とする請求項 16に 記載の照明光源。
[18] 前記レーザ光源は、ファイバーレーザであることを特徴とする請求項 5〜7のいずれ 力 1項に記載の照明光源。
[19] 前記駆動電流には、前記駆動電流の周波数、振幅及びバイアスのうちの少なくとも
1つを変調する高周波信号が重畳されていることを特徴とする請求項 5〜7のいずれ 力 1項に記載の照明光源。
[20] 前記高周波信号の周波数は、 10MHz以上であり、前記高周波信号の周波数、振 幅及びバイアスのうちの少なくとも 1つを変調する変調信号の周波数は、 1kHz以上 であることを特徴とする請求項 19に記載の照明光源。
[21] 前記駆動電流の最小値は、前記レーザ光源のしきい値電流値を中心として上下変 動することを特徴とする請求項 19に記載の照明光源。
[22] 前記半導体レーザはさらに、前記半導体レーザを加熱する加熱部を備え、前記半 導体レーザの発振特性の変化に追従するように、前記加熱部力 発生される熱によ る加熱が制御されることを特徴とする請求項 12〜15のいずれか 1項に記載の照明光 源。
[23] 前記反射体は、回折格子からなり、前記回折格子によるブラッグ反射により前記反 射波長が設定され、
前記半導体レーザはさらに、前記駆動電流が供給され、前記半導体レーザの出力 を制御可能な出力制御電極と、波長制御用電流が供給され、前記波長制御用電流 の注入による前記回折格子の温度制御により、前記半導体レーザの発振波長を制 御可能な波長制御電極と、を備え、
前記駆動電流のパルス変調に追従するように前記波長制御用電流をパルス変調 することを特徴とする請求項 12〜15のいずれか 1項に記載の照明光源。
[24] 前記反射体の反射率は、 1〜10%であることを特徴とする請求項 1〜10のいずれ 力 1項に記載の照明光源。
[25] 前記反射体の狭帯域幅は、 5nm以下であることを特徴とする請求項 1〜 10のいず れか 1項に記載の照明光源。
[26] 請求項 1〜25のいずれか 1項に記載の照明光源を少なくとも 1つ備え、前記照明光 源から出射されるレーザ光を投射する光学系、をさらに備えることを特徴とするレーザ 投射装置。
[27] 前記レーザ光源から出射されるレーザ光の横モードは、マルチモードであることを 特徴とする請求項 26に記載のレーザ投射装置。
[28] 前記レーザ光源から出射されるレーザ光の縦モードの波長間隔は、 lnm以上であ ることを特徴とする請求項 26に記載のレーザ投射装置。
[29] 前記反射体の反射波長は、互いに異なっていることを特徴とする請求項 26〜28の いずれか 1項に記載のレーザ投射装置。
[30] 前記照明光源力 出射されるレーザ光が入射される導光板を、さらに備えることを 特徴とする請求項 29に記載のレーザ投射装置。
PCT/JP2007/053268 2006-03-03 2007-02-22 照明光源及びレーザ投射装置 WO2007099847A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/281,058 US7835409B2 (en) 2006-03-03 2007-02-22 Illumination light source device and laser projection device
JP2008502734A JP5231990B2 (ja) 2006-03-03 2007-02-22 照明光源及びレーザ投射装置
CN200780007140XA CN101395772B (zh) 2006-03-03 2007-02-22 照明光源及激光投影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-057400 2006-03-03
JP2006057400 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099847A1 true WO2007099847A1 (ja) 2007-09-07

Family

ID=38458958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053268 WO2007099847A1 (ja) 2006-03-03 2007-02-22 照明光源及びレーザ投射装置

Country Status (4)

Country Link
US (1) US7835409B2 (ja)
JP (1) JP5231990B2 (ja)
CN (1) CN101395772B (ja)
WO (1) WO2007099847A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188134A (ja) * 2008-02-05 2009-08-20 Seiko Epson Corp レーザ光源装置、照明装置、画像表示装置及びモニタ装置
JP2010171260A (ja) * 2009-01-23 2010-08-05 Sumitomo Electric Ind Ltd パルス変調方法及び光ファイバレーザ
WO2010122899A1 (ja) * 2009-04-22 2010-10-28 株式会社Qdレーザ レーザシステム
JP2011142147A (ja) * 2010-01-05 2011-07-21 Nec Corp 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置
WO2012011251A1 (ja) * 2010-07-23 2012-01-26 船井電機株式会社 画像表示装置
JP2012504338A (ja) * 2008-09-30 2012-02-16 マイクロビジョン,インク. スペックルアーチファクトを減少させるように構成されている光学的フィードバックを備えたレーザーディスプレイシステム
WO2012046330A1 (ja) * 2010-10-07 2012-04-12 Necディスプレイソリューションズ株式会社 投写型表示装置
WO2012063430A1 (ja) * 2010-11-08 2012-05-18 船井電機株式会社 画像表示装置
JP2012204702A (ja) * 2011-03-28 2012-10-22 Shimadzu Corp 波長変換型固体レーザ装置
WO2013061748A1 (ja) * 2011-10-25 2013-05-02 ソニー株式会社 レーザ駆動回路、レーザ駆動方法、及び、レーザ光を用いる装置
JP2013092603A (ja) * 2011-10-25 2013-05-16 Sony Corp レーザ駆動回路、レーザ駆動方法、及び、レーザ光を用いる装置
JPWO2011148895A1 (ja) * 2010-05-24 2013-07-25 ギガフォトン株式会社 固体レーザ装置およびレーザシステム
JP2013191876A (ja) * 2013-05-27 2013-09-26 Megaopto Co Ltd 光ファイバレーザ
JP2013211307A (ja) * 2012-03-30 2013-10-10 Sony Corp レーザ駆動回路、レーザ駆動方法、プロジェクタ装置、及び、レーザ光を用いる装置
KR101461158B1 (ko) * 2010-07-16 2014-11-13 한국전자통신연구원 파장 가변 외부 공진 레이저 모듈
US9069184B2 (en) 2010-03-19 2015-06-30 Funai Electric Co., Ltd. Display device, and portable apparatus having projector function
WO2015129490A1 (ja) * 2014-02-28 2015-09-03 国立大学法人京都大学 レーザ装置
JP2016100536A (ja) * 2014-11-25 2016-05-30 三菱電機株式会社 半導体レーザの駆動方法及びディスプレイシステム
JP2018121041A (ja) * 2016-02-10 2018-08-02 昭和オプトロニクス株式会社 外部共振器型半導体レーザ装置
JP2019144230A (ja) * 2017-12-29 2019-08-29 アクシス アーベー レーザ測距及び照明

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038909A1 (ja) * 2008-10-03 2010-04-08 ソニー株式会社 光ピックアップ、光情報記録方法及び光ディスク装置
JP5181989B2 (ja) * 2008-10-03 2013-04-10 ソニー株式会社 短パルス光源装置、レーザ駆動方法、光ピックアップ及び光ディスク装置
US8045260B2 (en) * 2008-10-22 2011-10-25 Corning Incorporated Optimized signal control in frequency-doubled laser sources
US20120044279A1 (en) * 2009-04-27 2012-02-23 Hiroshi Uchino Image Projection Apparatus and Laser Beam Projection Apparatus
US8259385B2 (en) * 2009-10-22 2012-09-04 Corning Incorporated Methods for controlling wavelength-converted light sources to reduce speckle
US8360612B2 (en) * 2010-05-15 2013-01-29 Richard Redpath Laser lighting apparatus and method
US8320418B2 (en) 2010-05-18 2012-11-27 Corning Incorporated Multiple wavelength optical systems
EP2407826A1 (en) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Projection system comprising a solid state light source and a luminescent material.
EP2407825A1 (en) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Projection system comprising a solid state light source and a luminescent material.
US9054488B2 (en) * 2010-12-06 2015-06-09 Maxim Integrated Products, Inc. Speckle reduction for laser projection displays
US9008142B2 (en) * 2011-07-22 2015-04-14 Insight Photonic Solutions, Inc. System and method for optimization of coherence length of tunable laser sources
DE102012201492A1 (de) * 2012-02-02 2013-08-08 Robert Bosch Gmbh Ansteuervorrichtung für eine Laserdiode, Laserprojektionssystem und Verfahren zur Speckle-Reduktion bei einer Laserdiode
JP6263261B2 (ja) * 2013-07-22 2018-01-17 インテル・コーポレーション スペックル効果を減少させるための方法
CN104536246A (zh) * 2014-11-11 2015-04-22 深圳市亿思达科技集团有限公司 基于布拉格光栅的光源系统和投影机
CN106999026B (zh) * 2014-11-26 2019-04-05 奥林巴斯株式会社 照明装置及具备照明装置的内窥镜
CN106410602B (zh) * 2015-07-28 2019-07-05 海信集团有限公司 一种半导体激光器驱动方法及驱动电路
WO2017134911A1 (ja) * 2016-02-03 2017-08-10 古河電気工業株式会社 レーザ装置
US10378702B2 (en) 2016-04-21 2019-08-13 Streamlight, Inc. Portable light with plane of a laser light
WO2017203718A1 (ja) * 2016-05-27 2017-11-30 株式会社島津製作所 ホログラフィ観察方法及び装置
US11755152B2 (en) * 2017-03-23 2023-09-12 Sony Corporation Projector with detection function for stabilizing intensity distribution of an irradiation beam
EP3404780A1 (de) * 2017-05-15 2018-11-21 Universität Konstanz Laserdiode mit einem vorbestimmten chirp
US10837609B2 (en) 2017-06-30 2020-11-17 Streamlight, Inc. Portable light providing plural beams of laser light
EP3649493B1 (en) * 2017-07-06 2024-02-21 Magic Leap, Inc. Speckle-reduction in virtual and augmented reality systems and methods
JP2019047248A (ja) * 2017-08-31 2019-03-22 ソニーセミコンダクタソリューションズ株式会社 映像投射制御装置、映像投射制御方法、プログラム、および映像投射装置
CN112514182A (zh) * 2018-08-07 2021-03-16 古河电气工业株式会社 光功率传输装置
CN109302237A (zh) * 2018-11-20 2019-02-01 中国电子科技集团公司第四十研究所 一种基于白噪声的激光器调制电路及方法
US10958038B2 (en) 2019-05-20 2021-03-23 Microsoft Technology Licensing, Llc Edge-emitting laser with high-frequency modulated reflector section
WO2021244533A1 (zh) * 2020-06-02 2021-12-09 青岛海信激光显示股份有限公司 激光投影设备及激光器驱动控制方法
US11353726B2 (en) * 2020-09-22 2022-06-07 Osram Opto Semiconductors Gmbh Optoelectronic module, method for operating an optoelectronic module and head-mounted display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262684A (ja) * 1988-04-13 1989-10-19 Fujitsu Ltd パルス光発生装置及びパルス光発生方法
JP2000049419A (ja) * 1998-07-30 2000-02-18 Oki Electric Ind Co Ltd レーザ装置
JP2001102681A (ja) * 1999-09-29 2001-04-13 Toshiba Corp レーザ光源装置
JP2001189520A (ja) * 1999-12-28 2001-07-10 Sony Corp 光源装置およびそれを用いた投射型表示装置
JP2002323675A (ja) * 2001-02-20 2002-11-08 Eastman Kodak Co Rf注入を用いたスペックル抑制レーザ投影システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE35962E (en) * 1989-12-26 1998-11-17 United Technologies Corporation Single longitudinal mode pumped optical waveguide laser arrangement
US6058128A (en) * 1996-03-25 2000-05-02 Sdl, Inc. Apparatus for providing a stabilized laser source
US6215809B1 (en) * 1996-03-25 2001-04-10 Sdl, Inc. Stabilization of laser sources with closely-coupled optical reflectors using an internal dither circuit
SE510442C2 (sv) * 1996-09-05 1999-05-25 Fredrik Laurell Mikrochipslaser
US5870417A (en) * 1996-12-20 1999-02-09 Sdl, Inc. Thermal compensators for waveguide DBR laser sources
JP2000353856A (ja) * 1999-06-11 2000-12-19 Nec Corp 半導体レーザモジュ−ル
JP2002043698A (ja) * 1999-12-22 2002-02-08 Yokogawa Electric Corp Shgレーザ光源及びshgレーザ光源の変調方法
EP1130710A3 (en) * 2000-01-20 2003-09-17 Cyoptics (Israel) Ltd. High repetition rate optical pulse generator
US7317739B2 (en) * 2002-03-15 2008-01-08 Princeton University Mode-locked laser using a mode-locking wavelength selective reflector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262684A (ja) * 1988-04-13 1989-10-19 Fujitsu Ltd パルス光発生装置及びパルス光発生方法
JP2000049419A (ja) * 1998-07-30 2000-02-18 Oki Electric Ind Co Ltd レーザ装置
JP2001102681A (ja) * 1999-09-29 2001-04-13 Toshiba Corp レーザ光源装置
JP2001189520A (ja) * 1999-12-28 2001-07-10 Sony Corp 光源装置およびそれを用いた投射型表示装置
JP2002323675A (ja) * 2001-02-20 2002-11-08 Eastman Kodak Co Rf注入を用いたスペックル抑制レーザ投影システム

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188134A (ja) * 2008-02-05 2009-08-20 Seiko Epson Corp レーザ光源装置、照明装置、画像表示装置及びモニタ装置
JP2012504338A (ja) * 2008-09-30 2012-02-16 マイクロビジョン,インク. スペックルアーチファクトを減少させるように構成されている光学的フィードバックを備えたレーザーディスプレイシステム
JP2010171260A (ja) * 2009-01-23 2010-08-05 Sumitomo Electric Ind Ltd パルス変調方法及び光ファイバレーザ
US8565277B2 (en) 2009-01-23 2013-10-22 Sumitomo Electric Industries, Ltd. Pulse modulation method and optical fiber laser
WO2010122899A1 (ja) * 2009-04-22 2010-10-28 株式会社Qdレーザ レーザシステム
JP2011142147A (ja) * 2010-01-05 2011-07-21 Nec Corp 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置
US9069184B2 (en) 2010-03-19 2015-06-30 Funai Electric Co., Ltd. Display device, and portable apparatus having projector function
JPWO2011148895A1 (ja) * 2010-05-24 2013-07-25 ギガフォトン株式会社 固体レーザ装置およびレーザシステム
JP5914329B2 (ja) * 2010-05-24 2016-05-11 ギガフォトン株式会社 固体レーザ装置およびレーザシステム
KR101461158B1 (ko) * 2010-07-16 2014-11-13 한국전자통신연구원 파장 가변 외부 공진 레이저 모듈
JP2012027268A (ja) * 2010-07-23 2012-02-09 Funai Electric Co Ltd 画像表示装置
WO2012011251A1 (ja) * 2010-07-23 2012-01-26 船井電機株式会社 画像表示装置
WO2012046330A1 (ja) * 2010-10-07 2012-04-12 Necディスプレイソリューションズ株式会社 投写型表示装置
JP5590628B2 (ja) * 2010-10-07 2014-09-17 Necディスプレイソリューションズ株式会社 投写型表示装置
JPWO2012046330A1 (ja) * 2010-10-07 2014-02-24 Necディスプレイソリューションズ株式会社 投写型表示装置
US9298013B2 (en) 2010-11-08 2016-03-29 Funai Electric Co., Ltd. Image display device
US9865188B2 (en) 2010-11-08 2018-01-09 Funai Electric Co., Ltd. Image display device
CN105759443A (zh) * 2010-11-08 2016-07-13 船井电机株式会社 图像显示装置
WO2012063430A1 (ja) * 2010-11-08 2012-05-18 船井電機株式会社 画像表示装置
JP2012204702A (ja) * 2011-03-28 2012-10-22 Shimadzu Corp 波長変換型固体レーザ装置
WO2013061748A1 (ja) * 2011-10-25 2013-05-02 ソニー株式会社 レーザ駆動回路、レーザ駆動方法、及び、レーザ光を用いる装置
JP2013092603A (ja) * 2011-10-25 2013-05-16 Sony Corp レーザ駆動回路、レーザ駆動方法、及び、レーザ光を用いる装置
US9516258B2 (en) 2011-10-25 2016-12-06 Sony Corporation Laser driving circuit, laser driving method, and device using laser light
US9813682B2 (en) 2011-10-25 2017-11-07 Sony Corporation Laser driving circuit, laser driving method, and device using laser light
JP2013211307A (ja) * 2012-03-30 2013-10-10 Sony Corp レーザ駆動回路、レーザ駆動方法、プロジェクタ装置、及び、レーザ光を用いる装置
JP2013191876A (ja) * 2013-05-27 2013-09-26 Megaopto Co Ltd 光ファイバレーザ
WO2015129490A1 (ja) * 2014-02-28 2015-09-03 国立大学法人京都大学 レーザ装置
US10186837B2 (en) 2014-02-28 2019-01-22 Kyoto University Laser device
JP2016100536A (ja) * 2014-11-25 2016-05-30 三菱電機株式会社 半導体レーザの駆動方法及びディスプレイシステム
JP2018121041A (ja) * 2016-02-10 2018-08-02 昭和オプトロニクス株式会社 外部共振器型半導体レーザ装置
JP2019144230A (ja) * 2017-12-29 2019-08-29 アクシス アーベー レーザ測距及び照明

Also Published As

Publication number Publication date
JPWO2007099847A1 (ja) 2009-07-16
JP5231990B2 (ja) 2013-07-10
CN101395772A (zh) 2009-03-25
CN101395772B (zh) 2011-01-26
US20090067459A1 (en) 2009-03-12
US7835409B2 (en) 2010-11-16

Similar Documents

Publication Publication Date Title
JP5231990B2 (ja) 照明光源及びレーザ投射装置
US7394841B1 (en) Light emitting device for visual applications
US8270440B2 (en) Laser light source and optical device
US7660500B2 (en) Light emitting array
US7542491B2 (en) Wavelength converter and two-dimensional image display device
US7296897B2 (en) Projection display apparatus, system, and method
JP4271704B2 (ja) コヒーレント光源および光学装置
JP5096379B2 (ja) 固体レーザー装置、表示装置及び波長変換素子
US7889422B2 (en) Two-dimensional image display device
US7354157B2 (en) Image display device and light source device
JP4680065B2 (ja) 面発光レーザおよびレーザ投射装置
WO2006006701A1 (ja) コヒーレント光源およびこれを用いた光学装置
JP2008508559A (ja) 投射型ディスプレイ装置、システムおよび方法
US7586960B2 (en) Forced wavelength chirping in semiconductor lasers
JP4747841B2 (ja) 波長変換レーザ装置および画像表示装置
US6775307B2 (en) Light wavelength conversion module
JP2004253800A (ja) レーザーパルス形成用レーザー装置
WO2009130894A1 (ja) パルスファイバレーザ光源、波長変換レーザ光源、2次元画像表示装置、液晶表示装置、レーザ加工装置及びファイバ付レーザ光源
JP2011134736A (ja) パルスファイバレーザ装置、及び、画像表示装置、加工装置
US20100272135A1 (en) Self-Seeded Wavelength Conversion
JP2015115509A (ja) レーザ光源装置及びスクリーン投影装置
WO2008015951A1 (fr) Dispositif d'affichage
JP2004157217A (ja) 波長変換レーザ光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12281058

Country of ref document: US

Ref document number: 200780007140.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714766

Country of ref document: EP

Kind code of ref document: A1