JP2010171260A - パルス変調方法及び光ファイバレーザ - Google Patents

パルス変調方法及び光ファイバレーザ Download PDF

Info

Publication number
JP2010171260A
JP2010171260A JP2009013283A JP2009013283A JP2010171260A JP 2010171260 A JP2010171260 A JP 2010171260A JP 2009013283 A JP2009013283 A JP 2009013283A JP 2009013283 A JP2009013283 A JP 2009013283A JP 2010171260 A JP2010171260 A JP 2010171260A
Authority
JP
Japan
Prior art keywords
pulse
optical
optical fiber
modulation
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009013283A
Other languages
English (en)
Inventor
Shinobu Tamaoki
忍 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009013283A priority Critical patent/JP2010171260A/ja
Priority to US12/692,226 priority patent/US8565277B2/en
Publication of JP2010171260A publication Critical patent/JP2010171260A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/03Suppression of nonlinear conversion, e.g. specific design to suppress for example stimulated brillouin scattering [SBS], mainly in optical fibres in combination with multimode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

【課題】 種光として所定周期の光パルスを増幅する際、光パルスのパルス幅拡大に伴って増大する非線形好学現象を効果的に抑制するための構造を備えたパルス変調方法等を提供する。
【解決手段】 変調器(51)は、種光源(41)であるレーザ光源に対し、又は、レーザ光源から出力された光に対してパルス変調を行う。変調器(51)から出力される変調電圧(E)の変調パターンは、光パルスの周期に相当する変調周期内に、光パルス生成パターン(P)として、光パルスのパルス幅よりも短い信号幅をそれぞれが有する複数のパルス成分(P1,P2,P3)を含むよう、調整されている。
【選択図】 図8

Description

本発明は、高パワー出力光を得るための種光として所定周期の光パルスを繰り返し発生させるパルス変調方式、及び、それが適用された光ファイバレーザに関するものである。
現在、レーザ光を用いた加工技術が注目されており、加工用や医療用等の分野において高出力レーザ光源の需要が高まっている。各種レーザ光源の中でも特に注目されているレーザ光源として、光ファイバレーザが挙げられる。この光ファイバレーザは、Yb(イットリビウム)、Er(エルビウム)、Tm(ツリウム)等の希土類元素がコアに添加された増幅用光ファイバを光増幅媒体として採用している。この増幅用光ファイバ内に励起光が供給されると、増幅用光ファイバ内を伝搬する種光が増幅される。これにより、増幅用光ファイバからは、高パワーの増幅光を出力するか、あるいは、共振器構造を利用してレーザ発振させることによりレーザ光が出力される。光ファイバレーザの利点として、レーザ光が光ファイバ内で閉じ込められていることからその扱いが容易である点や、熱放射性が良いことから大規模な冷却設備を必要とすることがない点などが挙げられる。
上述のように光ファイバレーザには、希土類元素添加ファイバが適用されており、このような希土類元素添加ファイバの中でもYbが変換効率も高く、高パワー出力用の増幅用光ファイバとして広く利用されている。Ybも他の希土類元素と同じく、励起光を用いて励起される。一方、増幅用光ファイバ内で吸収しきれなかった励起光は増幅用光ファイバの他端から出射される。
光ファイバレーザの構成として、例えば、両端にファイバブラッググレーティング(FBG:Fiber Bragg Grating)や、反射ミラーなどを利用した共振器構造が採用されている場合、共振器内に光スイッチや音響光学変調器(AOM:AcousticOptical Modulator)を配置することでパルス変調を行っている。また、特許文献1に記載されたようなMOPA(Master OscillatorPower Amplifier)型の光ファイバレーザは、被増幅光を出力する種光源を直接変調あるいは外部変調することでパルス変調を行い、得られた光パルスを増幅することで高パワー出力光を得ている。いずれの構成においても、種光をパルス化することにより得られる出力は、連続波動作(CW動作)時の出力に比べ非常に高く、誘導ラマン散乱(SRS:StimulatedRaman Scattering)や誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)などの非線形現象を発現させてしまう。
特開2007−042981号公報
発明者らは、光パルスを種光とする従来の光ファイバレーザについて検討した結果、以下のような課題を発見した。
すなわち、種光を出力するLD(Laser Diode)などの種光源を直接変調することで、出力光をパルス化するレーザ方式において、パルスエネルギーの増加を意図して種光源に印加する変調電圧の信号幅(光パルス生成用の駆動信号パルスの幅であって、LDの駆動時間を規定する変調電圧の時間幅)を大きくした場合、種光のパワーを増幅していく過程で、SBSが発生してしまい、光ファイバレーザを構成する光部品及び励起光源(LD)を破壊させてしまう可能性が高くなる。
つまり、種光源となるLDからの出力光スペクトルの半値幅に注目すると、十分な光パルスエネルギーを得るために種光をパルス化する変調電圧の信号幅を大きくしていくと、スペクトル半値幅が狭くなってしまう。SBSはスペクトル幅が狭い程その利得も大きくなるため、種光源に印加される変調電圧のパルス信号幅が長い状態ではSBS利得が大きく、また、発生しやすくなるという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、種光として所定周期の光パルスを増幅する際、光パルスのパルス幅拡大に伴って増大するSBS等の非線形好学現象を効果的に抑制するための構造を備えたパルス変調方法及び光ファイバレーザを提供することを目的としている。
本発明に係るパルス変調方法は、種光源から出力される又は出力された光を、変調器により繰り返し周期が所定周期の光パルスに変調する。本発明に係る光ファイバレーザは、当該パルス変調方法を実現するレーザ光源である。
具体的に、変調器に入力される変調電圧のパターンである変調パターンは、所定周期内の光パルスに対応する複数のパルス成分から構成され、かつ、複数のパルス成分の個々のパルス幅が所定周期内の光パルス全体のパルス幅より小さくなるよう設定されている。
本発明に係るパルス変調方法において、複数のパルス成分は、個々のパルス幅が所定周期内の光パルス全体のパルス幅の1/2より小さく設定されるのが好ましい。複数のパルス成分は、個々のパルス幅が、隣接するパルス成分間の間隔よりも長くてもよい。また、複数のパルス成分は、隣接する前記パルス成分のパルス間の間隔が、隣接する前記パルス成分の立ち上がり時間及び立ち下がり時間のいずれか以下であるのが好ましい。さらに、複数のパルス成分の個々のパルスピーク値は、それぞれ異なっていてもよい。
本発明に係るパルス変調方法において、種光源の駆動電流を変調し、前記複数のパルス成分の各ピーク値を調整してもよい。この場合、電圧変調と電流変調は別個に行われるが、それぞれの変調タイミングは一致している。
本発明に係る光ファイバレーザは、種光源と、変調器と、光ファイバ増幅器を備える。変調器は、種光源から出力される又は出力された被増幅光を、繰り返し周期が所定周期の光パルスに変調するためのものであり、前記種光源に電気的に接続され、あるいは、前種光源から出力された光の光路上に設けられている。光ファイバ増幅器は、光パルスに変調された被増幅光を増幅して出力する。
特に、本発明に係る光ファイバレーザにおいて、変調器に入力される変調電圧のパターンである変調パターンは、所定周期内の光パルスに対応する複数のパルス成分から構成され、かつ、複数のパルス成分の個々のパルス幅が所定周期内の光パルス全体のパルス幅より小さくなるよう設定されている。
なお、本発明に係る各実施例は、以下の詳細な説明及び添付図面によりさらに十分に理解可能となる。これら実施例は単に例示のために示されるものであって、本発明を限定するものと考えるべきではない。
また、本発明のさらなる応用範囲は、以下の詳細な説明から明らかになる。しかしながら、詳細な説明及び特定の事例は本発明の好適な実施例を示すものではあるが、例示のためにのみ示されているものであって、本発明の範囲における様々な変形および改良はこの詳細な説明から当業者には自明であることは明らかである。
本発明に係るパルス変調方法によれば、光ファイバレーザにおける種光パルス生成に際して、種光源の直接変調又は外部変調を指示するための駆動用電気信号の変調パターンが調節される。すなわち、一つの光パルスを生成する電気信号パターンを複数のパルス成分で構成し、これら複数のパルス成分の信号間隔、信号幅、強度等を調整することにより、生成される光パルスのパルス幅の拡大と非線形光学現象の効果的な抑制が同時に実現される。
以下、本発明に係るパルス変調方法及び光ファイバレーザの各実施形態を、図1〜図18を参照しながら詳細に説明する。なお、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
(光ファイバレーザの第1実施形態)
図1は、この発明に係る光ファイバレーザの第1実施形態であって、具体的にはMOPA方式の光ファイバレーザの構成を示す図である。この図1において、第1実施形態に係る光ファイバレーザ100は、増幅用光ファイバ10、光結合器20、励起光源31、光ファイバ32、種光源41、光ファイバ42、変調器51、変調電圧発生器55、電気信号線52、光アイソレータ61、伝送用光ファイバ11、及び光出射端70を備える。なお、第1実施形態に係る光ファイバレーザ100において、変調電圧発生器55は、パルス変調用の変調パターンを作り出すファンクションジェネレータなどであり、変調電圧も当該変調電圧発生器55から発せされる。変調器51は、種光源41自体のパルス駆動を変調する機能を有し、基板内部の電子部品で構成されている。変調電圧発生器55から出力された変調電圧が変調器51に入力され、種光源41において種光パルスLが繰り返し生成される。
第1実施形態に係る光ファイバレーザ100では、光ファイバ32を通過した励起光源31からの励起光と、光ファイバ42及び光アイソレータ61を通過した種光源41からの種光パルス(被増幅光)が、光結合器20により合波される。光結合器20からの合波光は、増幅用光ファイバ10の一端に入射される。合波された励起光及び種光が伝搬する増幅用光ファイバ10内では、増幅用光ファイバ10に添加された希土類元素(Yb、Er、Tm、Ho、Nd、Pr、Tbなど)が励起光により励起されることにより、種光パルスが増幅される。そして、増幅用光ファイバ10において増幅された種光パルスは、該増幅用光ファイバ10の他端Aで融着接続された伝送用光ファイバ11を通過した後、光出射端70から外部へ出力される。
例えば、増幅用光ファイバ10は、図2に示されたような断面構造及び屈折率プロファイルを有する。すなわち、増幅用光ファイバ10は、図2の領域(a)に示されたように、所定軸に沿って伸びた、所定の屈折率を有するコア10aと、コア10aの外周に設けられた、コア10aよりも低い屈折率を有する第1クラッド10bと、第1クラッド10bの外周に設けられた、第1クラッド10bよりも低い屈折率を有する第2クラッド10cを備える。図2において、領域(b)は、増幅用光ファイバ10の経方向L1(増幅用光ファイバ10の光軸に直交する方向)に沿った屈折率プロファイル150であり、領域151は、コア10aの径方向L1に沿った屈折率、領域152は、第1クラッド10bの径方向L1に沿った屈折率、領域153は、第2クラッド153の径方向L1に沿った屈折率をそれぞれ示す。コア10a、第1クラッド10b、第2クラッド10cによりダブルクラッド構造が構成されている。コア10aは、種光パルスをシングルモード伝搬させ、第1クラッド10bは励起光をマルチモード伝搬させる。コア10aには、希土類元素としてYbが添加されており、種光パルスはコア10a内で増幅される。
また、増幅用光ファイバ10における励起光吸収は、増幅用光ファイバ10の特性により決定され、主に、モードフィールド径(MFD)、第1クラッド10bの外径、及び、コア10aにおける希土類元素添加濃度の調整により変化する。例えば、添加濃度が約10000ppm、MFDが約7μm、第1クラッド10bの外径が130μm、長さ5mのYb添加光ファイバでは、励起波長915nm帯で約2.4dBの励起光が吸収される。なお、図3において、グラフG310は吸収断面積を示し、グラフG320は、放出断面積を示す。このYb添加光ファイバ(増幅用光ファイバ10に相当)の場合、915nm波長帯において約2.4dBの励起光が吸収される。なお、励起光の波長帯は975nm帯であってもよく、また、添加される希土類元素の種類によって励起波長帯は変化する。
励起光源31は、例えばLDを含む。励起光源31から出力される励起光の波長は915nm帯、940nm帯、又は975nm帯である。種光源41は、例えばLDを含む。変調器51は、電気信号線52を介して種光源41に変調電圧Eを印加することで、種光源41を直接変調する(パルス変調)。この第1実施形態において、種光源41から出力される種光パルスの波長は、1030〜1130nmの波長範囲内にあり、例えば1060nmである。
励起光源31と光結合器20との間に設けられた光ファイバ32及び伝送用光ファイバ11のそれぞれは、図4に示されたような断面構造及び屈折率プロファイルを有する。すなわち、図4の領域(a)に示されたように、光ファイバ32、11は、所定軸沿って伸びた、所定の屈折率を有するコア32aと、コア32aの外周に設けられた、コア32aよりも低い屈折率を有するクラッド32bを備える。また、図4の領域(b)は、光ファイバ32の経方向L2(光ファイバ32の光軸に直交する方向)に沿った屈折率プロファイル320であり、領域321は、コア32aの径方向L2に沿った屈折率、領域322は、クラッド32bの径方向L2に沿った屈折率をそれぞれ示す。なお、コア32aは、励起光源31から出力された励起光をマルチモード伝搬する。
図5は、光結合器20の構成を示す図である。この図5に示された光結合器20は、一方の側に複数(図5に示された例では7個)の光入出力ポートP〜Pを有し、他方の側に共通ポートPを有する。光結合器20は、光入出力ポートP〜Pに入力された光を合波し、共通ポートPから出力する。また、光結合器20は、共通ポートPに入力された光を分岐し、分岐光それぞれを光入出力ポートP〜Pから出力する。
光結合器20の共通ポートP側の光ファイバは、増幅用光ファイバ10と同様のダブルクラッド構造を有し、増幅用光ファイバ10に接続される。光入出力ポートPは、光ファイバ42を介して種光源41に光学的に接続される。光入出力ポートPは、光ファイバ32を介して励起光源31に光学的に接続される。なお、他の光入出力ポートP〜Pも、他の光ファイバを介して他の励起光源に光学的に接続されてもよい。
続いて、本発明に係るパルス変調方法の各実施形態について説明する。なお、以下の説明では、各実施形態と対比されるべき比較例について説明した後に、比較例と対比しつつ各実施形態について説明する。
(パルス変調方法の比較例)
比較例に係るパルス変調方法は、図1に示された光ファイバレーザ100において、種光源41を直接変調することにより、パルス変調を行う。
図6は、この比較例に係るパルス変調方法において、変調器51から種光源41に印加される変調電圧Eの変調パターンを示す。変調パターンは、変調器51に入力される変調電圧で、ファンクションジェネレータもしくは電圧発生器から入力され、光パルス生成用に用いられる。変調パターンにおける変調周期は、生成されるべき光パルスの一つの周期に相当しており、信号ON期間T1と信号OFF期間T2により構成されている。信号ON期間T1は、実質的に信号幅Wを有するパルス成分Pが種光源41に印加されている期間である。具体的に、この比較例に係るパルス変調方法において、種光源41に印加される駆動電圧は、繰り返し周波数:50kHz、パルス成分Pのパルス信号幅:30nsで変調されている。なお、信号幅30nsの変調電圧を種光源41に印加することは可能であるが、この信号幅は光源及びパルス変調用に実装している電子回路の応答(立下り/立下り係数)に依存するため、変調パターンにおいて、信号ON期間T1(パルス成分P)と信号OFF期間T2の時間幅が異なることもある。
この比較例では、信号幅30nsの変調電圧を種光源41に印加するだけでは、特に光ファイバレーザ100を構成する光部品の破壊に到る問題は発生しないが、変調された種光パルスを増幅していく過程で、増幅用光ファイバ10内においてSBSが発現することが分かっている。SBSの発現状態が維持されたまま増幅動作が続けられると、図1に示された光ファイバレーザ100を構成する光部品、励起光源(LD)などにダメージを与えてしまう。上述のようなSBS回避方法としては、例えば、増幅用光ファイバ10のコア径を大きくする方法や、増幅用光ファイバ10を短くする方法など、増幅用ファイバ10自体の非線形閾値を下げる方法が考えられていた。
ここで、SBSの閾値、利得に依存するパラメータの1つとして、入射光(ファイバ励起成分)のスペクトル幅が知られており、以下の式(1)にその関係を示す。なお、図1の構成では、増幅用光ファイバ10のコアを伝搬するレーザ光がファイバ励起成分となるので、SBSの閾値、利得は、このレーザ光のスペクトル幅に依存する。
Figure 2010171260
上記式(1)から分かるように、ΔνP>>ΔνBのとき、ブリルアン利得はΔνP/ΔνB倍だけ小さくなる。また、種光源41であるLDの種光(レーザ光)はΔνP>>ΔνBの関係であり、この種光のスペクトル幅(ファイバ励起成分のスペクトル幅)にブリルアン利得が依存する。すなわち、スペクトル幅が広い程、ブリルアン利得は小さくなる。
例えば、この比較例のように変調器51から信号幅30nsの変調電圧が種光源41に印加された場合、出力される種光パルスの半値幅の実測値は約0.6nmである。一方、パルス変調しないCW動作時のスペクトル半値幅は約1.1nmである。このようにパルス変調された種光のスペクトル半値幅は、CW動作時のスペクトル半値幅の約半分になってしまう。また、SBSの利得値自体も大きくなることが上記式(1)から分かる。
図7は、種光として比較例に係るパルス変調方法によりパルス変調(信号幅30nsで変調)された光パルス(グラフG720)、種光として適用された連続光(グラフG710)それぞれ規格化スペクトルである。この図7からも分かるように、種光パルスのパルス幅が広い程スペクトル半値幅は狭くなる。必然的に、この比較例に係るパルス変調方法において、単純に種光パルスのパルス幅を拡大したのでは、SBSの増大により当該光ファイバレーザ100の各部の破損は避けられない。
(パルス変調方法の第1実施形態)
次に、この発明に係るパルス変調方法の第1実施形態について説明する。なお、以下の説明では、図1に示された光ファイバレーザ100に当該パルス変調方法が適用された場合の動作を説明する。したがって、当該パルス変調方法は、変調器51が種光源41を直接変調することにより実現される。
図8は、本発明に係るパルス変調方法の第1実施形態を説明するための図である。すなわち、図8に示された変調パターンに従って、変調器51から種光源41に印加される変調電圧Eが調整される。変調電圧Eの変調パターンにおける変調周期は、生成されるべき光パルスの一つの周期に相当しており、信号ON期間T1と信号OFF期間T2により構成されている。第1実施形態に係るパルス変調方法では、信号ON期間T1において光パルス生成パターンPは、生成されるべき一つの光パルスのパルス幅よりも短い信号幅Wをそれぞれ有する複数のパルス成分P〜Pにより構成されており、これら複数のパルス成分P〜Pの信号間隔Dだけ離れた状態で配置されている。なお、この第1実施形態では、信号幅Wを10nsとし、パルス成分の信号間隔Dを10nsとした条件下で、3つのパルス成分P〜Pにより光パルス生成パターンPが構成されている。このとき、パルス成分P〜Pそれぞれの変調電圧値(ピーク電圧値)は一致しており、また、種光源41に印加されるパルス成分P〜Pそれぞれの駆動電流値も一致している。なお、パルス成分P〜Pそれぞれの信号間隔Dは5ns、2ns、又は1ns以下に設定することも可能である。
図9は、種光として当該第1実施形態に係るパルス変調方法によりパルス変調された光パルス、種光として比較例に係るパルス変調方法によりパルス変調された光パルスそれぞれの規格化スペクトルである。なお、図9において、グラフG920は、光パルス生成パターンPの信号幅Wを30nsに設定(比較例)してパルス変調したときに得られる種光パルスである。また、グラフG910は、それぞれ信号幅Wが10nsの3つのパルス成分P〜Pで構成された光生成パターンPに従ってパルス変調したときに得られる種光パルスである。
信号間隔Dを10ns、信号幅Wを10nsとして3つのパルス成分P〜Pで構成された光パルス生成パターンPの場合、得られる種光パルスの半値幅は1.03nmとなる一方、信号間隔Dを5nsとし信号幅Wを10nsとして3つのパルス成分P〜Pで構成された光パルス生成パターンPの場合、得られる種光パルスのスペクトル半値幅は0.8nmとなる。図9に示されたスペクトル幅の比較結果から、いずれも単純に光パルス生成パターンPの信号幅Wを30nsとしてパルス変調された場合(比較例)と比べ、半値幅が大きくなっていることが分かる。
信号間隔Dをあけて3つのパルス成分を並べることで構成された光パルス生成パターンと、長い信号幅Wの光パルス生成パターンPの差について言及すると、Yb添加ファイバ自体の応答として、1周期内での入力パワーが同じであれば、同じパルスエネルギーが得られる。そのため、信号幅Wが30nsである光パルス生成パターンと、信号幅Wが10nsである3つのパルス成分で構成された光パルス生成パターンとでは、信号幅Wが10nsである1つのパルス成分のピーク値は約1/3になる。なお、この原理はパルス成分間の信号間隔Dの大小には依存しない。
図10は、変調パターンにおける1つのパルス成分について、信号幅Wと種光パルスの規格化された半値幅の関係を説明するための図である。なお、この図10には、参考データとして、信号幅Wが10nsにそれぞれ設定された3つのパルス成分によりパルス変調された種光パルスの半値幅(第1実施形態)がプロットされている。
この図10から分かるように、1つのパルス成分の信号幅Wを広げていく程、パルス変調により得られた種光パルスの半値幅は狭くなる。さらに、信号幅Wが10nsをそれぞれ有する3つのパルス成分で光パルス生成パターンPを構成した場合に得られる種光パルスの半値幅(図9から約1.03nm)の方が、信号幅Wが30nsである1つのパルス成分で光パルス生成パターンPを構成した場合(比較例)に得られる種光パルスの半値幅よりも明らかに広くなっていることが分かる。この結果から、狭い信号幅Wのパルス成分を複数並べた光パルス生成パターンPの変調電圧Eを変調器51から種光源41に印加していくことで、増幅用光ファイバ10内で発現するSBS低減効果が期待できる。パルス幅の短い光パルスではSBSの影響が出にくいことは知られていたが、発明者の知る限り、パルス変調用の変調パターンを調整することにより、光パルスのパルス幅を短くすることなく、SBSの影響を低減することは行われていなかった。
(パルス変調方法の第2実施形態)
本発明に係るパルス変調方法では、変調電圧Eの変調パターンにおけるパルス成分P〜Pの信号間隔Dを各信号幅Wよりも短くすることで、パルス成分同士の重なりの効果を利用することができる。これは、光・電気変換素子に関して、1つのパルス成分を与えたときの種光パルスの立ち上がり・立下り時間(以下、Tr/Tfとする)にも依存するので、変調電圧を印加したときの種光パルスのTr/Tfが高速であればある程、重ねることが困難になる。ここで言うTr、Tfは、ピーク電圧値に対しそれぞれ、強度が10%、90%に達するまでの時間をいう。図11に、信号幅Wが10nsの1つのパルス成分を種光源41に与えたときの応答結果を示す。なお、図11において、グラフG1110は、変調電圧Eの変調パターンを示し、グラフG1120は、変調パターンが与えられたときの種光パルスの波形を示す。図11に示されたように、種光源41であるLDの応答は比較的遅く、立ち上がり時間で約4.6ns、立下り時間で約9.4nsである。したがって、種光パルスを生成する種光源41に与える変調電圧Eの変調パターンは信号幅Wが10nsであっても各パルス成分間に信号間隔Dを狭めれば、変調パターンと光パルス応答はずれる場合がある。本発明に係るパルス変調方法の第2実施形態は、上述のような考察に基づいて完成したものであり、以下に、第2実施形態に係るパルス変調方法を、図12及び図13を参照しながら詳細に説明する。
まず、図12は、本発明に係るパルス変調方法の第2実施形態を説明するための図である。また、図13は、第2実施形態に係るパルス変調方法によりパルス変調された光パルスの受光レベルを示すグラフである。
この第2実施形態に係るパルス変調方法では、図12に示された変調パターンに従って、変調器51から種光源41に印加される偏重電圧Eが調整される。変調パターンにおける変調周期は、生成されるべき光パルスの一つの周期に相当しており、信号ON期間T1と信号OFF期間T2により構成されている。第2実施形態に係るパルス変調方法では、信号ON期間T1において光パルス生成パターンPは、生成されるべき一つの光パルスのパルス幅よりも短い信号幅Wをそれぞれ有する複数のパルス成分P、Pにより構成されており、これら2つのパルス成分P、Pの信号間隔Dは、各信号幅Wよりも短くなるよう設定されている。このように、当該第2実施形態に係るパルス変調方法では、種光源41であるLDの応答遅れを利用できるよう、パルス成分P、P間の信号間隔Dを狭めていくことで、生成される種光パルスを重ねていくことができる。
なお、この第2実施形態では、種光パルスの重なりを考慮して、変調パターンにおける2つのパルス成分P、Pそれぞれの信号幅Wが20ns、信号間隔Dが2nsに設定されている。この結果、光ファイバレーザ100から最終的に出力される光パルスの半値全幅は約35nsとなる。すなわち、この第2実施形態に係るパルス変調方法によれば、比較例においてSBS発生で達しえなかった30ns以上の半値全幅を有する光パルスの生成が実現可能になる。なお、このとき増幅用光ファイバ10内での増幅利得は大きいため、第1のパルス成分Pの変調電圧ピーク値は、第2のパルス成分Pの変調電圧ピーク値の0.6倍に設定されている。これにより、光増幅における過渡応答を緩やかにすることが可能になる。
(パルス変調方法の第3実施形態)
図14は、本発明に係るパルス変調方法の第3実施形態を説明するための図である。この第3実施形態に係るパルス変調方法では、増幅用光ファイバ10内での増幅利得が大きい場合に、当該光ファイバレーザ100から出力される光パルスの受光レベルに差が生じてしまう。そこで、この第3実施形態に係るパルス変調方法では、種光パルス生成用に種光源41に与える変調電圧Eを各パルス成分間で変えている。
すなわち、この第3実施形態に係るパルス変調方法では、図14に示された変調パターンに従って、変調器51から種光源41に印加される変調電圧Eが調整される。変調電圧Eの変調パターンにおける変調周期は、生成されるべき光パルスの一つの周期に相当しており、信号ON期間T1と信号OFF期間T2により構成されている。第3実施形態に係るパルス変調方法では、信号ON期間T1において光パルス生成パターンPは、生成されるべき一つの光パルスのパルス幅よりも短い信号幅Wをそれぞれ有する複数のパルス成分P〜Pにより構成されており、これら3つのパルス成分P〜Pの信号間隔Dは、各信号幅Wよりも短くなるよう設定されている。なお、信号幅W1〜W3は異なっていても一致していてもよい。また、信号間隔D1、D2も異なっていても一致していてもよい。
この構成によっても、増幅用光ファイバ10内におけるSBSの発現を効果的に抑制しつつ種光パルスのパルス幅拡大が可能になる。
(パルス変調方法の第4実施形態)
図15は、本発明に係るパルス変調方法の第4実施形態を説明するための図である。この第4実施形態に係るパルス変調方法では、変調電圧Eの変調タイミングに一致するよう、種光源41に供給される駆動電流値の変調が行われる。
すなわち、この第4実施形態に係るパルス変調方法では、図15に示された駆動電流の変調パターンに従って、変調器51から種光源41に供給される駆動電流が変調される。変調パターンにおける変調周期は、生成されるべき光パルスの一つの周期に相当しており、信号ON期間T1と信号OFF期間T2により構成されている。第3実施形態に係るパルス変調方法では、信号ON期間T1において光パルス生成パターンPは、生成されるべき一つの光パルスのパルス幅よりも短い信号幅Wをそれぞれ有する複数のパルス成分P〜Pにより構成されており、これら3つのパルス成分P〜Pの信号間隔Dは、各信号幅Wよりも短くなるよう設定されている。なお、この第4実施形態において、各パルス成分P〜Pの変調電圧ピーク値は光増幅時の過渡応答の影響を低減するため、異なっているが、信号幅W及び信号間隔Dはそれぞれ一致していても異なっていてもよい。
この構成によっても、増幅用光ファイバ10内におけるSBSの発現を効果的に抑制しつつ種光パルスのパルス幅拡大が可能になる。
以上、本発明に係るパルス変調方法の各実施形態として、図1に示された第1実施形態に係る光ファイバレーザ100における直接変調方式について説明したが、本発明に係るパルス変調方法の各実施形態は、種々の構成を有する光ファイバレーザへの適用化可能であるのは言うまでもない。以下、本発明に係るパルス変調方式が適用可能な種々の光ファイバレーザの代表的な構成について、説明する。
(光ファイバレーザの第2実施形態)
図16は、本発明に係る光ファイバレーザの第2実施形態の構成を示す図である。図16において、第2実施形態に係る光ファイバレーザ200は、増幅用光ファイバ10、光結合器20、励起光源31、光ファイバ32、種光源41、光ファイバ42、変調電圧発生器55、電気信号線52、光アイソレータ61、伝送用光ファイバ11、及び光出射端70を備える点において、第1実施形態に係る光ファイバレーザ100と同様の構成を有する。しかしながら、第1実施形態に係る光ファイバレーザ100では、変調器51が種光源41を変調する直接変調方式の構成を備えていたが、第2実施形態に係る光ファイバレーザ200は、外部変調方式の構成を備える。具体的に第2実施形態に係る光ファイバレーザ200は、種光源41と光アイソレーザ61との間に音響光学変調器(AOM)50を備える。AOM50は、それ自体が変調器であるため、変調電圧発生器55からAOM50に対して変調パターンが入力されると、AOM50は、この変調パターンに従って、種光源41から出力された光のパルス化を行う。なお、この第2実施形態において、AOM50及び変調電圧発生器55によりパルス変調器500が構成されている。
なお、この第2実施形態に係る光ファイバレーザ200において、変調器51は、上述の第1〜第4実施形態に係るパルス変調方法のいずれも実施可能である。
(光ファイバレーザの第3実施形態)
図17は、本発明に係る光ファイバレーザの第3実施形態の構成を示す図である。この第3実施形態に係る光ファイバレーザ300は、変調器51により種光源41を直接変調する構成に関して、第1実施形態と同様であるが、励起方法が異なる。すなわち、第3実施形態に係る光ファイバレーザ400と第1実施形態に係る光ファイバレーザ100との構造上の差異は、第1実施形態に係る光ファイバレーザ100が前方励起を行う構成であるのに対し、第3実施形態に係る光ファイバレーザ300が後方向励起を行う構成を有する点である。
具体的に、図17に示された第3実施形態に係る光ファイバレーザ300は、増幅用光ファイバ10、光分岐器21、励起光源33、光ファイバ34、種光源41、光ファイバ42、変調器51、変調電圧発生器55、電気信号線52、光アイソレータ61、伝送用光ファイバ11、及び光出射端70を備える。
この第3実施形態に係る光ファイバレーザ300において、増幅用光ファイバ10の光入射端は、B点において光アイソレータ61の光出射端と融着接続されている。一方、増幅用光ファイバ10の光出射端側には光分岐器1が配置されている。光分岐器21の構成は図5に示された光結合器20の構成と同じであるが、光入出力ポートPが増幅用光ファイバ10の光出射端に接続される。一方、光入出力ポートP〜Pのうちいずれかのポートは、光ファイバ34を介して励起光源33に光学的に接続されており、また、別のポートは、A点において伝送用光ファイバ11の光入射端と融着接続されている。
以上の構成により、この第3実施形態に係る光ファイバレーザ300では、後方励起が行われる。また、この第3実施形態に係る光ファイバレーザ300において、変調器51は、上述の第1〜第4実施形態に係るパルス変調方法のいずれも実施可能である。
(光ファイバレーザの第4実施形態)
さらに、図18は、本発明に係る光ファイバレーザの第4実施形態の構成を示す図である。第4実施形態に係る光ファイバレーザ400も、変調器51により種光源41を直接変調する構成に関して、第1実施形態と同様であるが、励起方法が異なる。すなわち、第4実施形態に係る光ファイバレーザ400と第1実施形態に係る光ファイバレーザ100との構造上の差異は、第1実施形態に係る光ファイバレーザ100が前方励起を行う構成であるのに対し、第4実施形態に係る光ファイバレーザ400が双方向励起を行う構成を有する点である。
具体的に、図18に示された4実施形態に係る光ファイバレーザ400は、
増幅用光ファイバ10、光結合器20、光分岐器21、励起光源31、33、光ファイバ32、34、種光源41、光ファイバ42、変調器51、変調電圧発生器55、電気信号線52、光アイソレータ61、伝送用光ファイバ11、及び光出射端70を備える。
この第4実施形態に係る光ファイバレーザ300において、増幅用光ファイバ10の光入射端側には光結合器20が配置される一方、増幅用光ファイバ10の光出射端側には光分岐器21が配置されている。光結合器20の光入出力ポートPは、B点において増幅用光ファイバ10の光入射端に融着接続されている。光結合器20の光入出力ポートP〜Pのうちいずれかのポートは、光アイソレータ61の光出射端と光学的に接続される一方、別のポートは、光ファイバ32を介して励起光源31と光学的に接続される。また、光分岐器21の光入出力ポートPは、C点において増幅用光ファイバ10の光出射端に融着接続されている。光分岐器21の光入出力ポートP〜Pのうちいずれかのポートは、A点において伝送用光ファイバ11の光入射端と融着接続される一方、別のポートは、光ファイバ34を介して励起光源33と光学的に接続される。
以上の構成により、この第4実施形態に係る光ファイバレーザ400では、双方向励起が行われる。また、この第4実施形態に係る光ファイバレーザ400において、変調器51は、上述の第1〜第4実施形態に係るパルス変調方法のいずれも実施可能である。
以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのような変形は、本発明の思想および範囲から逸脱するものとは認めることはできず、すべての当業者にとって自明である改良は、以下の請求の範囲に含まれるものである。
本発明に係るパルス変調方法が適用可能な光ファイバレーザ(本発明に係る光ファイバレーザの第1実施形態)の構成を示す図である。 増幅用光ファイバの断面構造を示す図及びその屈折率プロファイルである。 増幅用光ファイバの吸収断面積及び放出断面積それぞれの波長依存性を示すグラフである。 伝送用光ファイバの断面構造を示す図及びその屈折率プロファイルである。 光結合器の構成を説明するための図である。 比較例に係るパルス変調方法を説明するための図である。 種光として比較例に係るパルス変調方法によりパルス変調された光パルス、種光として適用されたCW光それぞれの規格化スペクトルである。 本発明に係るパルス変調方法の第1実施形態を説明するための図である。 種光として第1実施形態に係るパルス変調方法によりパルス変調された光パルス、種光として比較例に係るパルス変調方法によりパルス変調された光パルスそれぞれの規格化スペクトルである。 変調パターンにおける1つのパルス成分について、その信号幅と種光パルスの規格化された半値全幅の関係を説明するための図である。 パルス変調された光パルスの波形と変調パターンの関係を示すグラフである。 本発明に係るパルス変調方法の第2実施形態を説明するための図である。 第2実施形態に係るパルス変調方法によりパルス変調された光パルスの受光レベルを示すグラフである。 本発明に係るパルス変調方法の第3実施形態を説明するための図である。 本発明に係るパルス変調方法の第4実施形態を説明するための図である。 本発明に係る光ファイバレーザの第2実施形態の構成を示す図である。 本発明に係る光ファイバレーザの第3実施形態の構成を示す図である。 本発明に係る光ファイバレーザの第4実施形態の構成を示す図である。
100、200、300、400…光ファイバレーザ、41…種光源(LD)、10…増幅用光ファイバ、11…伝送用光ファイバ、31、33…励起光源、50…AOM、51…変調器、55…変調電圧発生器、500…パルス変調装置、E…変調電圧。

Claims (7)

  1. 種光源から出力される又は出力された光を、変調器により繰り返し周期が所定周期の光パルスに変調するパルス変調方法であって、
    前記変調器に入力される変調電圧のパターンである変調パターンは、前記所定周期内の光パルスに対応する複数のパルス成分から構成され、かつ、前記複数のパルス成分の個々のパルス幅が前記所定周期内の光パルス全体のパルス幅より小さい
    パルス変調方法。
  2. 前記複数のパルス成分は、個々のパルス幅が前記所定周期内の光パルス全体のパルス幅の1/2より小さい請求項1記載のパルス変調方法。
  3. 前記複数のパルス成分は、個々のパルス幅が、隣接するパルス成分間の間隔よりも長い請求項1記載のパルス変調方法。
  4. 前記複数のパルス成分は、隣接する前記パルス成分のパルス間の間隔が、隣接する前記パルス成分の立ち上がり時間及び立ち下がり時間のいずれか以下である請求項1記載のパルス変調方法。
  5. 前記複数のパルス成分の個々のパルスピーク値が、それぞれ異なる請求項1記載のパルス変調方法。
  6. 前記種光源の駆動電流を変調し、前記複数のパルス成分の各ピーク値を調整する請求項1記載のパルス変調方法。
  7. 種光源と、
    前記種光源から出力される又は出力された被増幅光を、繰り返し周期が所定周期の光パルスに変調するためのものであり、前記種光源に電気的に接続され、あるいは、前記種光源から出力された光の光路上に設けられた変調器と、
    光パルスに変調された前記被増幅光を増幅して出力する光ファイバ増幅器とを有する光ファイバレーザであり、
    前記変調器に入力される変調電圧のパターンである変調パターンは、前記所定周期内の光パルスに対応する複数のパルス成分から構成され、かつ、前記複数のパルス成分の個々のパルス幅が前記所定周期内の光パルス全体のパルス幅より小さい
    光ファイバレーザ。
JP2009013283A 2009-01-23 2009-01-23 パルス変調方法及び光ファイバレーザ Pending JP2010171260A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009013283A JP2010171260A (ja) 2009-01-23 2009-01-23 パルス変調方法及び光ファイバレーザ
US12/692,226 US8565277B2 (en) 2009-01-23 2010-01-22 Pulse modulation method and optical fiber laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013283A JP2010171260A (ja) 2009-01-23 2009-01-23 パルス変調方法及び光ファイバレーザ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013111246A Division JP5484619B2 (ja) 2013-05-27 2013-05-27 光ファイバレーザ

Publications (1)

Publication Number Publication Date
JP2010171260A true JP2010171260A (ja) 2010-08-05

Family

ID=42354129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013283A Pending JP2010171260A (ja) 2009-01-23 2009-01-23 パルス変調方法及び光ファイバレーザ

Country Status (2)

Country Link
US (1) US8565277B2 (ja)
JP (1) JP2010171260A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165481A1 (ja) * 2011-06-03 2012-12-06 住友電気工業株式会社 パルス光発生方法
WO2013100423A1 (ko) * 2011-12-30 2013-07-04 광주과학기술원 레이저 출력 장치 및 방법
JP7437858B2 (ja) 2020-01-30 2024-02-26 日星電気株式会社 誘導ブリルアン散乱抑制方法、及び光源装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445771A (en) * 2007-01-19 2008-07-23 Gsi Group Ltd A diode pumped CW laser
JP5724173B2 (ja) * 2009-11-16 2015-05-27 オムロン株式会社 レーザ加工装置およびレーザ加工方法
US9535273B2 (en) * 2011-07-21 2017-01-03 Photon Dynamics, Inc. Apparatus for viewing through optical thin film color filters and their overlaps

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214041A (ja) * 1996-01-30 1997-08-15 Trw Inc 弛緩発振の変調によりレーザパルスのプロフィールを制御する装置及び方法
WO2007099847A1 (ja) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. 照明光源及びレーザ投射装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774710A (en) * 1988-01-07 1988-09-27 Eastman Kodak Company Apparatus and method for controlling a laser diode to generate a linear illuminative output
US6151338A (en) * 1997-02-19 2000-11-21 Sdl, Inc. High power laser optical amplifier system
JP4699131B2 (ja) 2005-08-05 2011-06-08 株式会社フジクラ 光ファイバレーザ、光ファイバ増幅器、mopa方式光ファイバレーザ
JP2007190566A (ja) * 2006-01-17 2007-08-02 Miyachi Technos Corp ファイバレーザ加工装置
US8008870B2 (en) * 2007-02-15 2011-08-30 Nec Display Solutions, Ltd. Constant-current drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214041A (ja) * 1996-01-30 1997-08-15 Trw Inc 弛緩発振の変調によりレーザパルスのプロフィールを制御する装置及び方法
WO2007099847A1 (ja) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. 照明光源及びレーザ投射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165481A1 (ja) * 2011-06-03 2012-12-06 住友電気工業株式会社 パルス光発生方法
WO2013100423A1 (ko) * 2011-12-30 2013-07-04 광주과학기술원 레이저 출력 장치 및 방법
JP7437858B2 (ja) 2020-01-30 2024-02-26 日星電気株式会社 誘導ブリルアン散乱抑制方法、及び光源装置

Also Published As

Publication number Publication date
US8565277B2 (en) 2013-10-22
US20100189139A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
CN101427430B (zh) 用于可调谐脉冲激光源的方法和系统
JP5185929B2 (ja) ファイバレーザ
JP5260146B2 (ja) 光源装置
US7796654B2 (en) Seed source for high power optical fiber amplifier
JP5198292B2 (ja) 反射光耐性の優れたファイバレーザ
JP5822850B2 (ja) レーザ装置
JP6058669B2 (ja) 約974〜1030nmの波長範囲において高輝度ローノイズ出力を備えたハイパワーファイバーポンプ光源
KR20120023651A (ko) 고?전력 직렬 라만 섬유 레이저들에서 백워드 레이징을 억제하는 시스템들 및 기법들
KR102008377B1 (ko) 단일 모드 네오디뮴 광섬유 소스를 구비한 고전력 단일 모드 이테르븀 광섬유 레이저 시스템
JP2017045075A (ja) カスケード・ラマン・レージング・システム
US7787506B1 (en) Gain-switched fiber laser system
JP4708109B2 (ja) ファイバレーザ装置
JP2010171260A (ja) パルス変調方法及び光ファイバレーザ
US11316315B2 (en) Filter element, laser device, fiber laser device, filter method, and method for manufacturing laser device
US8369004B2 (en) MOPA light source
JP5484619B2 (ja) 光ファイバレーザ
US9515452B2 (en) Coherent dynamically controllable narrow band light source
JP2003031879A (ja) 光学装置及び該光学装置に用いられる光ファイバ、並びにパルス発生装置、光増幅装置及びファイバレーザ装置
WO2012165495A1 (ja) レーザ装置
CN211238802U (zh) 末级放大器及光纤激光输出装置
JP2013098457A (ja) レーザ装置
JP4897960B2 (ja) パルスレーザ装置
JP5595740B2 (ja) レーザ装置
JP2018037578A (ja) ファイバレーザ装置
KR20130078627A (ko) 레이저 출력 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806