WO2007099690A1 - 有機トランジスタ及びその製造方法 - Google Patents

有機トランジスタ及びその製造方法 Download PDF

Info

Publication number
WO2007099690A1
WO2007099690A1 PCT/JP2006/326094 JP2006326094W WO2007099690A1 WO 2007099690 A1 WO2007099690 A1 WO 2007099690A1 JP 2006326094 W JP2006326094 W JP 2006326094W WO 2007099690 A1 WO2007099690 A1 WO 2007099690A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
insulating layer
layer
inorganic
organic transistor
Prior art date
Application number
PCT/JP2006/326094
Other languages
English (en)
French (fr)
Inventor
Satoru Ohta
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008502654A priority Critical patent/JPWO2007099690A1/ja
Priority to US12/224,492 priority patent/US7851788B2/en
Publication of WO2007099690A1 publication Critical patent/WO2007099690A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3125Layers comprising organo-silicon compounds layers comprising silazane compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to an organic transistor and a manufacturing method thereof.
  • Organic transistors that can be used are flexible and can be formed by coating, and are expected to be applied to display drive elements and IC tags.
  • An organic transistor with a MOS-FET (metal oxide semiconductor field-effect transistor) structure includes a gate electrode, a gate insulating layer, a source electrode, a drain electrode, and an organic semiconductor layer on a substrate, and a gate between the source electrode and the drain electrode. A voltage is applied through the gate insulating layer from the electrode cover to control the current flowing through the organic semiconductor layer.
  • MOS-FET metal oxide semiconductor field-effect transistor
  • organic TFT thin film transistor
  • the flexibility of organic semiconductor itself and the application to flexible displays by applying a resin substrate Is expected.
  • the organic TFT semiconductor layer pentacene, which is the most studied, is mostly deposited by evaporation, and its mobility is lcm 2 Z Vs or higher, which is equivalent to or better than amorphous silicon. Further application as an organic semiconductor element is expected.
  • JP-A-2002-110999 also provides a high dielectric constant polymer material containing cyano pullulan and a cyano group in order to form a high dielectric gate insulating layer with a polymer.
  • a gate insulating film in which fine particles of a metal oxide with a high dielectric constant are dispersed in an amorphous insulator has been proposed.
  • polymer materials with high dielectric constants generally have low volume resistance and are highly polarized, so carriers are localized and transistor performance is reduced. It tends to decrease and the surface property tends to be poor.
  • JP 2005-72569 A and JP 2005-26698 A employ a gate insulating layer having a multilayer structure, and an insulating layer having a high dielectric constant is formed on the first layer on the gate electrode side.
  • a flat polymer material with a low dielectric constant for the second layer By using a flat polymer material with a low dielectric constant for the second layer, a high-performance organic transistor can be proposed.
  • the gate insulating layer is made of a polymer material
  • an alkali developer or an acid etching solution is used during the etching or lift-off process when forming the source electrode and the drain electrode
  • Ionic components contained in the solution may penetrate into the gate insulating layer.
  • an organic semiconductor layer is formed by coating, an ion component in a solvent that dissolves the organic semiconductor, or in the case of using a coated organic semiconductor material, an ion component in the organic semiconductor or a low molecular weight coating type is used.
  • Organic semiconductors may permeate into the gate insulating layer made of a polymer material.
  • edge layer There is a method of forming the edge layer by sputtering or the like.
  • the gate insulating layer is made of only an inorganic material, there is a problem in that bending strength is affected, for example, when a flexible substrate is bent, a crack is formed.
  • the problems to be solved by the present invention include the above-described problems as an example.
  • an object of the present invention is to provide an organic transistor that can be applied to a flexible substrate and can reduce leakage current from a gate electrode.
  • the invention described in claim 1 includes a pair of source and drain electrodes, an organic semiconductor layer provided between the source electrode and the drain electrode, and a gate insulating layer interposed between the organic semiconductor layer and the gate electrode.
  • An organic transistor comprising a gate electrode provided on a substrate, The gate insulating layer is an organic transistor having a laminated structure including at least an organic insulating layer and an inorganic noria layer.
  • the invention described in claim 10 includes a pair of source and drain electrodes, an organic semiconductor layer provided between the source electrode and the drain electrode, and a gate insulating layer interposed between the organic semiconductor layer and the gate electrode.
  • a method of manufacturing an organic transistor comprising a gate electrode provided on a substrate, wherein the step of forming the gate insulating layer forms a stacked structure including at least an organic insulating layer and an inorganic barrier layer. This is a method of manufacturing an organic transistor.
  • FIG. 1 is a schematic cross-sectional view of an example of an organic transistor according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of another example of the organic transistor according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another example of the organic transistor according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a top contact type example of an organic transistor according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method for manufacturing the organic transistor of Example 1 of the present invention.
  • FIG. 6 is a flowchart showing a method for manufacturing an organic transistor of Example 2 of the present invention.
  • FIG. 7 is a flowchart showing a method for manufacturing an organic transistor of Example 3 of the present invention.
  • the organic transistor of the present invention includes a substrate, a pair of source and drain electrodes, an organic semiconductor layer provided between the source electrode and the drain electrode, and a gate electrode provided on the organic semiconductor layer via a date insulating layer. Is provided. When a voltage is applied between the source electrode and the drain electrode, a voltage is applied to the organic semiconductor layer through the gate insulating layer from the gate electrode, so that the organic semiconductor layer flows from the source electrode to the drain electrode. An electric current is formed.
  • the present invention is characterized in that the gate insulating layer has a laminated structure including at least a laminated structure of an organic insulating layer and an inorganic noria layer. According to such a configuration, the gate electrode is removed from the gate electrode. Since there is an inorganic barrier layer in the current path, leakage current is prevented from spreading.
  • an organic insulating layer containing an organic material as a flexible material that can be applied and formed on the gate insulating layer is desired.
  • the gate insulating layer is composed only of the organic insulating layer, the source electrode The ionic component at the time of forming the drain electrode and the ionic component of the solvent at the time of forming the organic semiconductor layer and the organic semiconductor itself may invade the organic insulating layer, which causes leakage from the gate electrode. In some cases, the current spreads, leading to an increase in the current value when the transistor is off.
  • the gate insulating layer includes a laminated structure of an organic insulating layer and an inorganic noria layer as in the present invention
  • the insulating property and flexibility of the gate insulating layer are maintained by the organic insulating layer.
  • the leakage current of the gate electrode can be reduced because the inorganic noria layer in the gate insulating layer serves as a barrier to prevent the leakage current.
  • the inorganic barrier layer has a higher barrier performance against leakage current than an organic material, and it is difficult for an ionic component or a component of an organic semiconductor material to enter! ⁇ Barrier performance can be maintained well, and leakage current diffusion can be effectively prevented. Further, the inorganic noria layer can be formed by coating as will be described later, and the process can be simplified.
  • a gate electrode 2 is formed on a substrate 1
  • a gate insulating layer 3 is formed on the gate electrode 2
  • a pair of sources is formed on the gate insulating layer 3.
  • An electrode 4 and a drain electrode 5 are formed apart from each other, and an organic semiconductor layer 6 is formed thereon so as to be in contact with the gate insulating layer 3 in a region between the source electrode 4 and the drain electrode 5.
  • a gate insulating layer 3 shown in FIG. 1 is formed by laminating an organic insulating layer 3a and an inorganic barrier layer 3b in this order from the gate electrode 2 side.
  • the insulating property can be maintained by the organic insulating layer 3a, and the diffusion of the leakage current from the gate electrode 2 can be prevented by the inorganic noria layer 3b.
  • the inorganic insulating layer 3b is relatively thin as a whole, the bending strength is increased due to the flexibility of the organic insulating layer.
  • the process can be simplified and the cost can be reduced.
  • FIG. A first organic insulating layer 3a, an inorganic barrier layer 3b, and a second organic insulating layer 3c are laminated in that order from the side.
  • the inorganic noble layer 3b is provided between the two organic insulating layers 3a and 3c, diffusion of the leak current from the gate electrode 2 can be prevented.
  • the two organic insulating layers 3a and 3c the same organic material may be used, or different organic materials may be used.
  • a relatively high dielectric constant organic material is used for the first organic insulating layer 3a on the gate electrode side, and a liquid crystal light distribution function is provided on the second organic insulating layer 3c on the organic semiconductor layer side. By using, each function can be performed.
  • an inorganic noria layer 3b and an organic insulating layer 3a are sequentially laminated from the gate electrode 2 side.
  • the inorganic noria layer 3b is provided on the gate electrode 2 side, diffusion of leak current from the gate electrode 2 can be prevented.
  • the inorganic barrier layer 3b with a high dielectric constant material and forming the organic insulating layer 3a with a low dielectric constant material, a high performance transistor structure can be realized.
  • a gate electrode 2 In the example of the top contact type organic transistor, as shown in FIG. 4, a gate electrode 2, an organic insulating layer 3 a, an inorganic noria layer 3 b, and an organic semiconductor layer 6 are formed on a substrate 1 in order. A source electrode 4 and a drain electrode 5 are formed on the semiconductor layer 6 apart from each other. Even in such a configuration, a leak current having a gate electrode force can be prevented by the inorganic noria layer.
  • the number of stacked layers, stacking order, and type of the organic insulating layer and the inorganic barrier layer are not limited to the above-described form, and the gate insulating layer of the present invention can be changed as appropriate.
  • the inorganic noria layer of the gate insulating layer contains an inorganic material as a main component and exhibits noria performance against leakage current.
  • the inorganic barrier layer is preferably formed by a coating process or a vacuum process.
  • the inorganic noria layer is formed by applying an inorganic polymer material on a base layer such as a gate electrode, an organic insulator layer, or an organic semiconductor layer, and subjecting the inorganic polymer material to heat treatment, UV treatment, or UV treatment. It can be formed by being converted into an inorganic material by a combination of ozone treatment.
  • inorganic polymer materials include polymetalloxane containing M—O—Si (M is a metal) bond, polysilazane containing Si—N bond, and the like.
  • An example of a polymetalloxane is a polysiloxane containing Si—O—Si bond where M is Si, or a polytitanometal port containing Ti.
  • the dielectric constant of the inorganic noria layer is from 2.0 to 48, which is the general dielectric constant of TiO.
  • These inorganic polymer materials can be converted into inorganic materials by UV treatment or a combination of UV treatment and ozone layer.
  • the heat treatment temperature of the inorganic polymer material is preferably 400 ° C or lower, and more preferably 200 ° C or lower. When this temperature is exceeded, organic materials such as an organic insulating layer and an organic conductor layer are already formed before the inorganic nanolayer is formed, or when a resin substrate is used as the substrate, these organic materials are used. The material may be altered by heat.
  • examples of the coating method of the inorganic polymer material include spin coating and dip coating. If necessary, apply an inorganic polymer material dissolved in a solvent such as 1-butanol.
  • the inorganic barrier layer formed in this manner exhibits barrier performance against leakage current, it is possible to prevent diffusion of leakage current from the gate electrode and provide a high-performance organic transistor. it can.
  • the inorganic noria layer can be formed by coating, so it can form a uniform film at low cost. It can be formed by UV treatment or a combination of UV treatment and ozone treatment instead of heat treatment at low temperature. It is possible to prevent thermal damage to the underlying organic material.
  • the inorganic noria layer can be formed by a vacuum process such as a vacuum deposition method, a vacuum sputtering method, or a CVD method. According to such a vacuum process, it is possible to form an inorganic film containing a metal oxide such as an oxide cage or a metal nitride such as a nitride nitride. According to the vacuum process, a homogeneous and dense inorganic film can be formed.
  • the average surface roughness of the inorganic noria layer is preferably not less than 0.1 nm and not more than 50 nm, and preferably not more than 1.5 nm. If the roughness is less than this range, it is difficult to produce it uniformly. If exceeded, the material of the layer in contact with the inorganic noria layer may be affected, and the transistor performance may be degraded.
  • the thickness of the inorganic noria layer is preferably 5 nm or more and 700 nm or less, and preferably 500 nm or less. If the thickness is smaller than this range, a uniform layer is formed considering that the thickness at the molecular level is about 5 nm. When the thickness exceeds this range, the ratio of the inorganic noria layer to the organic insulating layer increases, considering the allowable thickness of the gate insulating layer is about 1 ⁇ m. Cannot make use of it.
  • the organic insulating layer of the gate insulating layer includes an insulating organic material, and is preferably a flexible material that can be applied and molded.
  • the source electrode, the drain electrode, and the organic semiconductor layer are formed after the formation of the organic insulating layer as in the example shown in FIG. 1, the ionic component when forming the source electrode and the drain electrode, and the organic semiconductor layer
  • the organic insulating layer it is desirable to use, as the organic insulating layer, an organic material having resistance to the solvent and the organic semiconductor itself when forming the film. Furthermore, it is desirable to have resistance to heat treatment in the process.
  • a material obtained by curing a mixture of PVP (polybutylphenol) and a melamine derivative can be given.
  • PVP polybutylphenol
  • a melamine derivative a material obtained by curing a mixture of PVP (polybutylphenol) and a melamine derivative.
  • These polymer materials do not necessarily have to be cured if they have solvent resistance and heat resistance.
  • Other examples include polyimide, polysilsesquioxane, and bisbenzocyclobutene.
  • Examples of the method for forming the organic insulating layer include a coating method.
  • a polymer material such as a mixture of PVP and a melamine derivative is dissolved in a solvent and applied to a base layer, dried appropriately, and then cured appropriately.
  • the thickness of the organic insulating layer is 50 ⁇ ! If the preferred layer thickness of ⁇ 1 ⁇ m is too thin, gate leakage may occur during operation. If the layer thickness is thick, the field effect is reduced and a high voltage is required during operation.
  • the dielectric constant of the organic insulating layer thus formed is 2.0 to 18.
  • the gate insulating layer 3a is formed by applying a suitable organic material and drying and curing as appropriate. Then, an inorganic polymer material is applied on the organic insulating layer 3a, and the decomposition temperature is lower than that of the lower organic insulating layer 3a. The inorganic polymer material is converted into an inorganic material by the heat treatment of to form an inorganic barrier layer 3b.
  • the organic insulating layer 3a can be protected to form the inorganic noria layer 3b.
  • the organic insulating layer 3a is formed by the inorganic barrier layer 3b when forming the source electrode 4, the drain electrode 5, and the organic semiconductor layer 6 formed thereon. Can be protected.
  • the first organic insulating layer 3a and the inorganic noria layer 3b are formed according to the above-described method, and the second organic layer is further formed on the inorganic noria layer 3b.
  • the insulating layer 3c is formed by the same method as the first layer. In such a method, since the inorganic noria layer 3b can be processed at a temperature lower than the decomposition temperature of the organic insulating layer 3a, the inorganic noria layer 3b can be formed while protecting the first organic insulating layer 3a.
  • the composition is diffused between the organic insulating layers when the second organic insulating layer 3c is formed by interposing the inorganic noria layer 3b therebetween. Can be prevented.
  • an inorganic polymer material is applied onto the gate electrode 2, and the inorganic polymer material is applied by heat treatment.
  • An inorganic material is converted into an inorganic material to form an inorganic noria layer 3b, and then an organic material having an insulating property is applied onto the inorganic noria layer 3b, followed by drying and curing as appropriate, thereby forming the organic insulating layer 3a.
  • the processing temperature of the inorganic barrier layer 3b can be set high.
  • the treatment is performed at a temperature lower than the decomposition temperature of the resin forming the resin substrate.
  • the substrate is not particularly limited. If the processing temperature of the inorganic barrier layer can be 400 ° C or lower in addition to a glass substrate, PES (polyethersulfone), PC (polycarbonate) can be used. ), A glass-plastic bonded substrate, or a substrate coated with an alkali barrier film or gas noria film.
  • PES polyethersulfone
  • PC polycarbonate
  • organic semiconductor layer in addition to pentacene as long as it is an organic material exhibiting semiconductor characteristics, for example, low molecular weight materials include phthalocyanine derivatives, naphthalocyanine derivatives, azo compound derivatives.
  • Perylene derivatives indigo derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxaasia Nitrogen-containing cyclic compound derivatives such as sol, pyrazoline and triazole, hydrazine derivatives, triphenylamine derivatives, Examples thereof include quinone compound derivatives such as ether methane derivatives, stilbenes, anthraquinone diphenoquinone, porphyrin derivatives, polycyclic aromatic compound derivatives such as anthracene, pyrene, phenanthrene, and coronene.
  • quinone compound derivatives such as ether methane derivatives, stilbenes, anthraquinone diphenoquinone, porphyrin derivatives, polycyclic aromatic compound derivative
  • polymer material examples include aromatic conjugated polymers such as polyparaphenylene, aliphatic conjugated polymers such as polyacetylene, heterocyclic conjugated polymers such as polypinol polythiophene, polyarines and polyphenylenes.
  • aromatic conjugated polymers such as polyparaphenylene
  • aliphatic conjugated polymers such as polyacetylene
  • heterocyclic conjugated polymers such as polypinol polythiophene
  • polyarines and polyphenylenes -Constitutional units of heteroatom-conjugated polymers such as lensulphide
  • conjugated polymers such as poly (phenylenylene), poly (animylene vinylene) and poly (cellene vinylene) are alternating.
  • carbon-based conjugated polymers such as composite-type conjugated polymers having a structure bonded to.
  • oligosilanes such as polysilanes, disila-lenarylene polymers, (disilalene) etylene polymers, disilalenene carbon-based conjugated polymers such as (disilalene) ethylene polymers.
  • polymers in which carbon-based conjugated structures are alternately linked polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used.
  • Polymers with aromatic ligands of polymer chains such as phthalocyanate polysiloxane coordinated, perylene tetra Organic compounds such as polymers obtained by heat-treating perylenes such as carboxylic acids by heat treatment, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylonitrile, and beech bskite Inter-forced composite materials.
  • the material of the source electrode and the drain electrode or the gate electrode is not particularly limited as long as it has sufficient conductivity.
  • ITO Indium
  • organic conductive materials containing conjugated polymer compounds such as metal oxides such as Tin Oxide) and IZO (Indium Zinc Oxide), polyarines, polythiophenes, and polypyrroles.
  • a substrate a pair of source and drain electrodes, an organic semiconductor layer provided between the source electrode and the drain electrode, and a gate on the organic semiconductor layer
  • the gate insulating layer has a stacked structure including at least an organic insulating layer and an inorganic noria layer, so that leakage current from the gate electrode can be reduced.
  • An organic transistor including a substrate, a pair of source and drain electrodes, an organic semiconductor layer provided between the source electrode and the drain electrode, and a gate electrode provided on the organic semiconductor layer with a gate insulating layer interposed therebetween.
  • the gate insulating layer by forming a laminated structure including at least the organic insulating layer and the inorganic noria layer, the leakage current as high as the gate electrode can be reduced.
  • FIG. 5 shows a flowchart of the organic transistor manufacturing method of this example.
  • a Cr film was formed on the glass substrate 1 as the gate electrode 2 and patterned by etching.
  • a source electrode 4 and a drain electrode 5 made of Au patterned by photolithography by vacuum deposition are formed, and pentacene is true on this.
  • An organic transistor was fabricated by forming an organic semiconductor layer 6 by air evaporation.
  • the organic transistor shown in FIG. 2 is manufactured.
  • a flowchart of the method of manufacturing the organic transistor of this example is shown in FIG.
  • the characteristic configuration of the present embodiment will be described, and the description of the configuration common to the above-described first embodiment will be omitted.
  • the first organic insulating layer 3a and the inorganic noria layer 3b were sequentially formed on the gate electrode 2 in the same manner as in Example 1 described above.
  • a second organic insulating layer 3c was formed on the layer 3b in the same manner as the first layer.
  • the thicknesses of the first organic insulating layer 3a, the inorganic barrier layer 3b, and the second organic insulating layer 3c were 150 nm, ⁇ m, and 120 nm, respectively.
  • the organic semiconductor layer 6 was formed on the source electrode 4 and the drain electrode 5 by applying a 1 wt% solution of poly-3-hexylthiophene with spin coating at 1 OOOrpm.
  • the organic transistor shown in FIG. 3 is manufactured.
  • a flowchart of the method for producing the organic transistor of this example is shown in FIG.
  • the characteristic configuration of the present embodiment will be described, and description of portions common to the above-described first and second embodiments will be omitted.
  • the inorganic noria layer 3b is formed on the gate electrode 2 by the same method as in Example 1 described above, and the above-described Example 1 is formed on the inorganic noria layer 3b.
  • the organic insulating layer 3a was formed by the same method.
  • the thicknesses of the inorganic barrier layer 3b and the organic insulating layer 3a were lOOnm and 270nm, respectively.
  • the organic semiconductor layer 6 was formed on the source electrode 4 and the drain electrode 5 by the same method as in Example 2.
  • Example 1 Although Comparative Example 1 is not illustrated, in Example 1 described above, the gate insulator layer does not include the inorganic noria layer, and only the organic insulating layer can be used. The other configurations are the same as in Example 1. I will omit it. The thickness of the organic insulating layer was 370 nm.
  • the gate insulator layer is inorganic. Since only the organic insulating layer does not include the noria layer, the other components are also the same as those in the second embodiment.
  • the thickness of the organic insulating layer was 370 nm.
  • Table 1 shows the results of evaluating the gate leakage current after the processes of the above-described examples and comparative examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】ゲート電極からのリーク電流を低減することができる有機トランジスタを提供する。 【解決手段】基板1、一対のソース電極4とドレイン電極5、ソース電極4とドレイン電極5間に設けられる有機半導体層6、及び有機半導体層6にゲート絶縁層3を介して設けられるゲート電極2を備える有機トランジスタであって、ゲート絶縁層3は有機絶縁層3a及び無機バリア層3bを少なくとも含む積層構造であることを特徴とする有機トランジスタ。

Description

明 細 書
有機トランジスタ及びその製造方法
技術分野
[0001] 本発明は、有機トランジスタ及びその製造方法に関する。
背景技術
[0002] 有機トランジスタは、フレキシブルで塗布形成可能な有機材料を用いることが可能 でありディスプレイの駆動素子や ICタグへの応用が期待される。 MOS -FET (metal oxide semiconductor field- effect transistor)構造の有機トランジスタは、基板上にゲ ート電極、ゲート絶縁層、ソース電極、ドレイン電極及び有機半導体層を備え、ソース 電極とドレイン電極間にゲート電極カゝらゲート絶縁層を介して電圧を印加し、有機半 導体層に流れる電流を制御する。
[0003] また、近年、有機 TFT (thin film transistor)の研究が盛んに行われており、その応 用の一例として、有機半導体自体の柔軟性及び榭脂基板の適用によってフレキシブ ルディスプレイへの応用が期待されている。有機 TFTの半導体層としては、主に蒸 着による成膜が多ぐその中でも最も研究されているペンタセンは、移動度が lcm2Z Vs以上とアモルファスシリコンと同等かそれ以上の性能を示しており、有機半導体素 子としてのさらなる応用が期待されている。
[0004] また、有機 TFTのメリットを最大限に活かそうと、低コストプロセスを念頭に、印刷技 術など塗布による有機 TFTの形成が試みられており、高分子半導体であるポリアル キルチオフェンやペンタセン前駆体などの低分子を塗布により成膜するなどの試み がなされている。また、半導体層だけではなぐゲート絶縁層の材料としても塗布で成 膜可能な高分子といった溶剤に溶けるような材料が検討されている。
[0005] 特開 2002— 110999号公報には、高分子で高誘電率のゲート絶縁層を形成する ために、シァノエチルプルランと 、つたシァノ基含有の高誘電率の高分子材料力もな るアモルファス絶縁物に、誘電率の高い金属酸ィ匕物の微粒子を分散させたゲート絶 縁膜が提案されている。しかし、高誘電率の高分子材料は、一般的に体積抵抗が低 い、また大きく分極しているためにキャリアが局在化してしまい、トランジスタの性能が 低下し、また表面性が悪い傾向がある。
[0006] これに対し、特開 2005— 72569号公報及び特開 2005— 26698号公報では、積 層構造のゲート絶縁層を採用して、ゲート電極側の第 1層に高誘電率の絶縁層を用 い、第 2層に低誘電率かつ平坦な高分子材料を用いることによって、高性能の有機ト ランジスタを提案して ヽる。
発明の開示
発明が解決しょうとする課題
[0007] しかし、ゲート絶縁層が高分子材料カゝらなる場合、ソース電極及びドレイン電極の 形成時のエッチング又はリフトオフ工程にぉ 、て、アルカリ現像液や酸のエッチング 液などを使用する際、液に含まれるイオン成分がゲート絶縁層中に侵入することがあ る。また、有機半導体層を塗布で成膜するときに、有機半導体を溶解する溶媒中のィ オン成分や、塗布型有機半導体材料を使用する場合では有機半導体中のイオン成 分、低分子の塗布型有機半導体ではそれ自体が高分子材料からなるゲート絶縁層 中へ浸透することがある。
[0008] このようにゲート絶縁層中にイオン成分又は有機半導体材料が侵入すると、トラン ジスタの完成品においてゲート電極力 のリーク電流が生じる原因になり、オフ時の 電流が大きくなつて onZoff比の低下につながる。
[0009] ゲート電極力ものリーク電流に対する対策として、 SiOのような無機材料のゲート絶
2
縁層をスパッタ等で形成する方法があるが、ゲート絶縁層が無機材料のみカゝらなると 、フレキシブル基板とした場合に曲げたとき〖こクラックが入るなど曲げ強度に影響する という問題がある。
[0010] 本発明が解決しょうとする課題には、上述した問題が一例として挙げられる。
[0011] そこで、本発明の目的としては、フレキシブル基板へ適用可能であり、ゲート電極か らのリーク電流を低減することができる有機トランジスタを提供することである。
課題を解決するための手段
[0012] 請求項 1に記載された発明は、一対のソース電極及びドレイン電極と、前記ソース 電極と前記ドレイン電極間に設けられる有機半導体層と、前記有機半導体層にゲー ト絶縁層を介して設けられるゲート電極とを基板上に備える有機トランジスタであって 、前記ゲート絶縁層は有機絶縁層及び無機ノリア層を少なくとも含む積層構造であ ることを特徴とする有機トランジスタである。
[0013] 請求項 10に記載された発明は、一対のソース電極及びドレイン電極と、前記ソース 電極と前記ドレイン電極間に設けられる有機半導体層と、前記有機半導体層にゲー ト絶縁層を介して設けられるゲート電極とを基板上に備える有機トランジスタを製造す る方法であって、前記ゲート絶縁層を形成する工程では、有機絶縁層及び無機バリ ァ層を少なくとも含む積層構造を形成することを特徴とする有機トランジスタの製造方 法である。
図面の簡単な説明
[0014] [図 1]本発明の実施の形態の有機トランジスタの一例の断面模式図である。
[図 2]本発明の実施の形態の有機トランジスタの他の例の断面模式図である。
[図 3]本発明の実施の形態の有機トランジスタの他の例の断面模式図である。
[図 4]本発明の実施の形態の有機トランジスタのトップコンタクト型の例の断面模式図 である。
[図 5]本発明の実施例 1の有機トランジスタの製造方法を示すフローチャートである。
[図 6]本発明の実施例 2の有機トランジスタの製造方法を示すフローチャートである。
[図 7]本発明の実施例 3の有機トランジスタの製造方法を示すフローチャートである。 発明を実施するための最良の形態
[0015] 以下、本発明に係る実施例について図面を参照して説明する。なお、以下の説明 における例示が本発明を限定することはない。
[0016] 本発明の有機トランジスタは、基板、一対のソース電極とドレイン電極、このソース 電極とドレイン電極間に設けられる有機半導体層、及びこの有機半導体層にデート 絶縁層を介して設けられるゲート電極を備える。ソース電極とドレイン電極間に電圧 を印加した状態で、ゲート電極カゝらゲート絶縁層を介して有機半導体層に電圧が印 加されることで、有機半導体層にソース電極からドレイン電極へと流れる電流が形成 される。
[0017] 本発明は、ゲート絶縁層が有機絶縁層及び無機ノリア層の積層構造を少なくとも 含む積層構造であることを特徴とする。このような構成によれば、ゲート電極からのリ ーク電流の通路に無機バリア層があるため、リーク電流の拡散が防止される。
[0018] すなわち、有機トランジスタにお ヽてゲート絶縁層には塗布形成可能でフレキシブ ルな材料として有機材料を含む有機絶縁層が望まれるが、ゲート絶縁層が有機絶縁 層のみからなると、ソース電極及びドレイン電極の形成時のイオン成分、また、有機 半導体層の形成時の溶剤のイオン成分及び有機半導体自体が、有機絶縁層に侵 入する可能性があり、これが原因となってゲート電極からリーク電流が拡散する場合 があり、トランジスタのオフ時の電流値を高くすることにつながる。これに対し、本発明 のようにゲート絶縁層が有機絶縁層及び無機ノリア層の積層構造を含むと、有機絶 縁層によってゲート絶縁層の絶縁性及び柔軟性を維持した構成で、ゲート電極から のリーク電流の拡散をゲート絶縁層中の無機ノリア層が障壁になって防止するため、 ゲート電極力ものリーク電流の低減を可能とする。
[0019] 無機バリア層は、有機材料に比べるとリーク電流に対して高いバリア性能を有する とともに、イオン成分や有機半導体材料の成分が侵入しにく!ヽため高!ヽバリア性能を 良好に維持することができ、リーク電流の拡散を効果的に防止することができる。また 、無機ノリア層は、後述するように塗布形成可能であり、工程を簡略ィ匕することもでき る。
[0020] 有機トランジスタの一例としては、図 1に示すように、基板 1上にゲート電極 2が形成 され、ゲート電極 2上にゲート絶縁層 3が形成され、ゲート絶縁層 3上に一対のソース 電極 4及びドレイン電極 5が互いに離れて形成され、その上にソース電極 4及びドレイ ン電極 5間の領域でゲート絶縁層 3に接するように有機半導体層 6が形成される。
[0021] 図 1に示すゲート絶縁層 3は、ゲート電極 2側から順に有機絶縁層 3a及び無機バリ ァ層 3bが積層されたものである。このような構成では、有機絶縁層 3aによって絶縁性 を維持するとともに、無機ノリア層 3bによってゲート電極 2からのリーク電流の拡散を 防止することができる。また、ゲート絶縁層 3全体としては、無機ノ リア層 3bは比較的 薄いため有機絶縁層の柔軟性によって曲げ強度が高くなる。また、有機絶縁層 3a及 び無機ノリア層 3bをともに塗布プロセスを用いて形成することで、工程を簡略ィ匕し低 コス卜ィ匕することがでさる。
[0022] また、本発明のゲート絶縁層の他の形態としては、図 2に示すように、ゲート電極 2 側から順に 1層目の有機絶縁層 3a、無機バリア層 3b及び 2層目の有機絶縁層 3cが 積層されたものである。このように、 2層の有機絶縁層 3a、 3cの間に無機ノ リア層 3b を設けた構成においても、ゲート電極 2からのリーク電流の拡散を防止することができ る。 2層の有機絶縁層 3a、 3cとしては、ともに同じ有機材料を用いてもよいし、それぞ れ異なる有機材料を用いてもよい。例えば、ゲート電極側の 1層目の有機絶縁層 3a に比較的高誘電率の有機材料を用い、有機半導体層側の 2層目の有機絶縁層 3c に液晶の配光などの機能を有する材料を用いることで、それぞれの機能を発揮させ ることがでさる。
[0023] また、本発明のゲート絶縁層の他の形態としては、図 3に示すように、ゲート電極 2 側から順に無機ノリア層 3b及び有機絶縁層 3aが積層されたものである。このように、 ゲート電極 2側に無機ノリア層 3bを設けても、ゲート電極 2からのリーク電流の拡散を 防止することができる。また、無機バリア層 3bを高誘電率の材料で形成し、有機絶縁 層 3aを低誘電率の材料で形成することで、高性能のトランジスタ構造を可能とする。
[0024] また、トップコンタクト型の有機トランジスタの例では、図 4に示すように、基板 1上に 順にゲート電極 2、有機絶縁層 3a、無機ノリア層 3b、有機半導体層 6を形成し、有機 半導体層 6上にソース電極 4とドレイン電極 5を互いに離して形成する。このような構 成でもゲート電極力ものリーク電流を無機ノリア層で防ぐことができる。
[0025] なお、本発明のゲート絶縁層は上述した形態に限定されることはなぐ有機絶縁層 及び無機バリア層の積層数、積層順、及び種類は適宜変更可能である。
[0026] ゲート絶縁層の無機ノリア層としては、主成分として無機材料を含有し、リーク電流 に対してノリア性能を発揮するものである。無機バリア層は塗布プロセス又は真空プ ロセスによって形成されることが好まし 、。
[0027] 無機ノリア層は、ゲート電極、有機絶縁体層又は有機半導体層など下地となる層 上に無機高分子材料を塗布し、この無機高分子材料を加熱処理、 UV処理、又は U V処理とオゾン処理の組合せによって無機材料に変換して形成することができる。こ のような無機高分子材料としては、 M— O— Si (Mは金属)結合を含むポリメタロキサ ン又は Si— N結合を含むポリシラザン等が挙げられる。ポリメタロキサンの一例として は Mが Siである Si— O— Si結合を含むポリシロキサン、又は Tiを含むポリチタノメタ口 キサンが挙げられ、これらを用いて加熱処理を行うことで酸化ケィ素及び z又は酸化 チタンを主成分として含有する無機材料を得ることができる。このような塗布プロセス によれば、無機ノリア層の誘電率は 2. 0から TiOの一般的な誘電率である 48までと
2
なる。なお、これらの無機高分子材料を UV処理、又は UV処理とオゾン層の組合せ によって無機材料に変換することもできる。
[0028] また、無機高分子材料の加熱処理の処理温度は、好ましくは 400°C以下、より好適 には 200°C以下である。この温度を超えると、無機ノ リア層の形成前に既に有機絶 縁層や有機導電体層などの有機材料が形成されて ヽる場合や、基板に榭脂基板を 用いる場合に、これらの有機材料が熱によって変質してしまうことがある。
[0029] また、無機高分子材料の塗布方法としてはスピンコートやディップコートなどが挙げ られる。必要であれば、無機高分子材料を 1ーブタノールなどの溶媒に溶解させて塗 布する。
[0030] このように形成される無機バリア層は、リーク電流に対してバリア性能を発揮するた め、ゲート電極からのリーク電流の拡散を防止し、高性能の有機トランジスタを提供す ることができる。また、無機ノリア層は塗布で形成可能であるため低コストで均質な膜 を形成することができ、低温での加熱処理、又は加熱処理に変わって UV処理や UV 処理とオゾン処理の組合せによって形成可能であるため、下層の有機材料への熱的 なダメージを防止する。
[0031] また、無機ノリア層は、真空蒸着法、真空スパッタ法又は CVD法などの真空プロセ スによって形成することができる。このような真空プロセスによれば、酸ィ匕ケィ素などの 金属酸ィ匕物又は窒化ケィ素などの金属窒化物などを含有する無機膜を形成すること ができる。真空プロセスによれば均質で緻密な無機膜を形成することができる。
[0032] 無機ノリア層の表面平均粗さは、 0. lnm以上 50nm以下、好適には 1. 5nm以下 が好ましぐこの範囲に満たない粗さは均質に作製することが難しぐこの範囲を超え ると無機ノリア層に接する層の材料に影響を及ぼし、トランジスタ性能が低下すること がある。
[0033] 無機ノリア層の厚さは、 5nm以上 700nm以下、好適には 500nm以下が好ましぐ この範囲より薄いと分子レベルの厚みが 5nm程度であることを考慮すると均質な層を 形成することが難しくなり、この範囲を超えるとゲート絶縁層に許容される厚みが 1 μ m程度であることを考慮すると有機絶縁層に対する無機ノリア層の割合が多くなり有 機絶縁層の特性を活かすことができなくなる。
[0034] ゲート絶縁層の有機絶縁層としては、絶縁性を有する有機材料を含み、好ましくは 塗布成形可能でフレキシブルな材料である。また、図 1に示す例のように有機絶縁層 の形成後にソース電極、ドレイン電極及び有機半導体層を形成する場合には、ソー ス電極及びドレイン電極を形成する際のイオン成分や、有機半導体層を形成する際 の溶剤及び有機半導体自体などに対する耐性を有する有機材料を有機絶縁層とし て用いることが望ましい。さらに、工程での熱処理などに耐性を有するものが望ましい
[0035] このような有機絶縁層の一例として、 PVP (ポリビュルフエノール)とメラミン誘導体の 混合物を硬化したものが挙げられる。なお、これらの高分子材料は耐溶剤性及び耐 熱性があれば必ずしも硬化させる必要はない。その他、ポリイミド、ポリシルセスキォ キサン、ビスベンゾシクロブテン等が挙げられる。
[0036] 有機絶縁層の形成方法としては塗布法が挙げられる。例えば、 PVPとメラミン誘導 体の混合物などの高分子材料を溶剤に溶力して下地となる層に塗布し、適宜乾燥を 行った後に適宜硬化する。
[0037] 有機絶縁層の厚さは、 50ηπ!〜 1 μ mが好ましぐ層厚が薄すぎると動作中にゲート リークする可能性があり、層厚が厚いと電界効果が小さくなり動作中に高電圧が必要 となる。
[0038] このように形成される有機絶縁層の誘電率は 2. 0〜18となる。
[0039] 次に、具体的なゲート絶縁層の形成方法としては、図 1に示す有機トランジスタを形 成するためには、基板 1上にゲート電極 2を形成した後に、ゲート電極 2上に絶縁性 を有する有機材料を塗布し、適宜乾燥及び硬化を行って、有機絶縁層 3aを形成し、 次いで有機絶縁層 3a上に無機高分子材料を塗布し下層の有機絶縁層 3aの分解温 度未満の加熱処理によって無機高分子材料を無機材料に変換し無機バリア層 3bを 形成する。このような方法では、無機ノリア層 3bを有機絶縁層 3aの分解温度未満で 処理可能であるため有機絶縁層 3aを保護して無機ノリア層 3bを形成することができ る。また、ゲート絶縁層 3の上層は無機ノリア層 3bになるため、この上に形成するソー ス電極 4やドレイン電極 5、有機半導体層 6の形成時に、無機バリア層 3bによって有 機絶縁層 3aを保護することができる。
[0040] 図 2に示す有機トランジスタを形成するためには、前述の方法に従って 1層目の有 機絶縁層 3a及び無機ノリア層 3bを形成し、さらに無機ノリア層 3b上に 2層目の有機 絶縁層 3cを 1層目と同様の方法で形成する。このような方法では、無機ノリア層 3bを 有機絶縁層 3aの分解温度未満で処理可能であるため 1層目の有機絶縁層 3aを保 護して無機ノリア層 3bを形成することができる。また、 2種以上の有機絶縁層を積層 する場合に、その間に無機ノリア層 3bを介在させることで、 2層目の有機絶縁層 3cを 形成するときに、有機絶縁層間で組成が拡散することを防止できる。
[0041] 図 3に示す有機トランジスタを形成するためには、基板 1上にゲート電極 2を形成し た後に、ゲート電極 2上に無機高分子材料を塗布し加熱処理によって無機高分子材 料を無機材料に変換し無機ノリア層 3bを形成し、次いで無機ノリア層 3b上に絶縁 性を有する有機材料を塗布し、適宜乾燥及び硬化を行って、有機絶縁層 3aを形成 する。このような方法では、無機ノ リア層 3bの下層がゲート電極 2であるため無機バリ ァ層 3bの処理温度を高めに設定することができる。なお、榭脂基板を用いる場合で は、榭脂基板を形成する榭脂の分解温度未満で処理する。
[0042] なお、基板としては、特に限定されず、ガラス基板などの他、無機バリア層の処理温 度を 400°C以下とすることができれば、 PES (ポリエーテルサルフォン)、 PC (ポリカー ボネート)などのプラスチック基板や、ガラスとプラスチックの貼り合わせ基板としてもよ ぐまた、表面にアルカリバリア膜やガスノリア膜がコートされた基板でもよい。
[0043] また、有機半導体層としては、半導体特性を示す有機材料であればよぐペンタセ ンの他、例えば、低分子系材料としては、フタロシアニン系誘導体、ナフタロシアニン 系誘導体、ァゾ化合物系誘導体、ペリレン系誘導体、インジゴ系誘導体、キナクリドン 系誘導体、アントラキノン類などの多環キノン系誘導体、シァニン系誘導体、フラーレ ン類誘導体、あるいはインドール、カルバゾール、ォキサゾール、インォキサゾール、 チアゾール、イミダゾール、ピラゾール、ォキサアジアゾール、ピラゾリン、トリァゾール などの含窒素環式化合物誘導体、ヒドラジン誘導体、トリフエニルァミン誘導体、トリフ ェ-ルメタン誘導体、スチルベン類、アントラキノンジフエノキノン等のキノン化合物誘 導体、ポルフィリン誘導体、アントラセン、ピレン、フエナントレン、コロネンなどの多環 芳香族化合物誘導体などが挙げられる。高分子材料としては、ポリパラフエ-レン等 の芳香族系共役性高分子、ポリアセチレン等の脂肪族系共役性高分子、ポリピノー ルゃポリチォフェン等の複素環式共役性高分子、ポリア-リン類やポリフエ-レンサ ルファイド等の含へテロ原子共役性高分子、ポリ(フエ-レンビ-レン)やポリ(ァニー レンビ-レン)やポリ(チェ-レンビ-レン)等の共役性高分子の構成単位が交互に結 合した構造を有する複合型共役系高分子等の炭素系共役高分子が挙げられる。ま た、ポリシラン類ゃジシラ-レンァリレンポリマー類、(ジシラ-レン)エテュレンポリマ 一類、(ジシラ-レン)ェチ-レンポリマー類のようなジシラ-レン炭素系共役性ポリマ 一構造などのオリゴシラン類と炭素系共役性構造が交互に連鎖した高分子類などが 挙げられる。他にもリン系、窒素系等の無機元素からなる高分子鎖でも良ぐさらにフ タロシアナートポリシロキサンのような高分子鎖の芳香族系配位子が配位した高分子 類、ペリレンテトラカルボン酸のようなペリレン類を熱処理して縮環させた高分子類、 ポリアクリロニトリルなどのシァノ基を有するポリエチレン誘導体を熱処理して得られる ラダー型高分子類、さらにべ口ブスカイト類に有機化合物がインター力レートした複合 材料が挙げられる。
[0044] また、ソース電極及びドレイン電極、又はゲート電極としては、その材料は特に限定 されることはなぐ十分な導電性があればよい。例えば、 Cr, Pt, Au, W, Ru, Ir, Al , Sc, Ti, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu等の金属単体や積層体、又はこれらの化合物が挙げられる。また 、 ITO (Indium
Tin Oxide)や IZO (Indium Zinc Oxide)のような金属酸化物類、ポリア-リン類、ポリチ ォフェン類、ポリピロール類等の共役性高分子化合物を含む有機導電材料が挙げら れる。
[0045] 以上説明したように、本発明によれば、基板、一対のソース電極とドレイン電極、ソ ース電極とドレイン電極間に設けられる有機半導体層、及び有機半導体層にゲート 絶縁層を介して設けられるゲート電極を備える有機トランジスタにおいて、ゲート絶縁 層は有機絶縁層及び無機ノリア層を少なくとも含む積層構造であることより、ゲート 電極からのリーク電流を低減することができる。
[0046] また、基板、一対のソース電極とドレイン電極、ソース電極とドレイン電極間に設けら れる有機半導体層、及び有機半導体層にゲート絶縁層を介して設けられるゲート電 極を備える有機トランジスタを製造する方法において、ゲート絶縁層を形成する工程 では、有機絶縁層及び無機ノリア層を少なくとも含む積層構造を形成することより、 ゲート電極力ものリーク電流を低減することができる。
実施例
[0047] 以下、本発明の実施例を説明する。なお、本発明が実施例によって限定されること はない。
[0048] (実施例 1)
本実施例では、図 1に示す有機トランジスタを作製する。本実施例の有機トランジス タの製造方法のフローチャートを図 5に示す。
[0049] ガラス基板 1上にゲート電極 2として Crを成膜し、エッチングによりパターユングした
[0050] このゲート電極 2上に、 PEGMEA (プロピレングリコールモノメチルエーテルァセテ ート)中に 8wt%のポリビュルフエノール(Mw= 20000)と 4wt%のメチル化ポリメラ ミン'ホルムアルデヒド共重合体(Mn= 511)を混合した溶液をスピンコート 2000rp mにより塗布し、 100°C2分で乾燥、 200°C5分で加熱して硬化し、有機絶縁層 3aを 形成した。有機絶縁層 3aの厚さは SEM観察によって測定した結果 (以下同じ)、 27 Onmであった。
[0051] 次いで、この有機絶縁層 3a上に、 1—ブタノールに溶力したポリチタノメタロキサン の 10Wt%溶液をスピンコート lOOOrpmにより塗布し、 100°C2分で乾燥、 200°C5 分で加熱して無機膜に変換し、無機バリア層 3bを形成した。無機バリア層 3bの厚さ は lOOnmであった。
[0052] 次いで、この無機バリア層 3b上に、真空蒸着でフォトリソグラフィ一によりパターニン グした Auからなるソース電極 4及びドレイン電極 5を形成し、この上にペンタセンを真 空蒸着法により成膜し有機半導体層 6を形成し、有機トランジスタを作製した。
[0053] (実施例 2)
本実施例では、図 2に示す有機トランジスタを作製する。本実施例の有機トランジス タの製造方法のフローチャートを図 6に示す。以下の説明では本実施例に特徴的な 構成について説明し上述した実施例 1と共通する構成については説明を省略する。
[0054] 本実施例では、ゲート絶縁層 3として、上述の実施例 1と同様にゲート電極 2上に順 に 1層目の有機絶縁層 3a及び無機ノリア層 3bを形成し、さらにこの無機ノリア層 3b 上に 1層目と同様の方法で 2層目の有機絶縁層 3cを形成した。 1層目の有機絶縁層 3a、無機バリア層 3b及び 2層目の有機絶縁層 3cの厚さはそれぞれ 150nm、 ΙΟΟη m及び 120nmであつた。
[0055] また、有機半導体層 6は、ソース電極 4及びドレイン電極 5上に、ポリ 3—へキシルチ ォフェンのクロ口ホルム 1 wt%溶液をスピンコート 1 OOOrpmで塗布して形成した。
[0056] (実施例 3)
本実施例では、図 3に示す有機トランジスタを作製する。本実施例の有機トランジス タの製造方法のフローチャートを図 7に示す。以下の説明では本実施例に特徴的な 構成について説明し上述した実施例 1及び 2と共通する部分については説明を省略 する。
[0057] 本実施例では、ゲート絶縁層 3として、ゲート電極 2上に上述した実施例 1と同様の 方法で無機ノリア層 3bを形成し、この無機ノリア層 3b上に上述した実施例 1と同様 の方法で有機絶縁層 3aを形成した。無機バリア層 3b及び有機絶縁層 3aの厚さはそ れぞれ lOOnm及び 270nmであった。また、有機半導体層 6は、ソース電極 4及びド レイン電極 5上に、実施例 2と同様の方法で形成した。
[0058] (比較例 1)
比較例 1は、不図示であるが、上述した実施例 1において、ゲート絶縁体層が無機 ノリア層を含まずに有機絶縁層のみ力もなるものであり、その他の構成は実施例 1と 同様であるため省略する。有機絶縁層の厚さは 370nmであった。
[0059] (比較例 2)
比較例 2は、不図示であるが、上述した実施例 2において、ゲート絶縁体層が無機 ノリア層を含まずに有機絶縁層のみ力もなるものであり、その他の構成は実施例 2と 同様であるため省略する。有機絶縁層の厚さは 370nmであった。
[0060] 上述の実施例及び比較例のプロセス後のゲートリーク電流を評価した結果を表 1に 示す。
[表 1]
Figure imgf000014_0001
[0061] 表 1に示すように、実施例 1〜3の無機高分子材料を無機化した膜を無機ノリア層 として含むゲート絶縁層では、プロセス後のゲートリーク電流が減少していることがわ かる。
[0062] 以上、本発明の具体的な実施形態に関して説明した力 本発明の範囲を逸脱しな い限り様々な変形が可能であることは、当該技術分野における通常の知識を有する 者にとって自明なことである。従って、本発明の技術的範囲は、上述した実施形態に 限定されるものではなぐ特許請求の範囲及びこれと均等なものに基づいて定められ るべさである。

Claims

請求の範囲
[1] 基板、一対のソース電極とドレイン電極、前記ソース電極と前記ドレイン電極間に設 けられる有機半導体層、及び前記有機半導体層にゲート絶縁層を介して設けられる ゲート電極を備える有機トランジスタであって、
前記ゲート絶縁層は有機絶縁層及び無機ノリア層を少なくとも含む積層構造であ ることを特徴とする有機トランジスタ。
[2] 前記ゲート絶縁層は前記ゲート電極側から順に前記有機絶縁層及び前記無機バリ ァ層が積層されることを特徴とする請求項 1に記載された有機トランジスタ。
[3] 前記ゲート絶縁層は前記ゲート電極側から順に 1層目の前記有機絶縁層、前記無 機バリア層、及び 2層目の前記有機絶縁層が積層されることを特徴とする請求項 1〖こ 記載された有機トランジスタ。
[4] 前記ゲート絶縁層は前記ゲート電極側から順に前記無機バリア層及び前記有機絶 縁層が積層されることを特徴とする請求項 1に記載された有機トランジスタ。
[5] 前記無機バリア層は無機高分子材料を加熱処理、 UV処理、又は UV処理とオゾン 処理の組合せによって変換した無機材料を含むことを特徴とする請求項 1から 4のい ずれか 1項に記載された有機トランジスタ。
[6] 前記無機高分子材料はポリメタロキサン又はポリシラザンであることを特徴とする請 求項 5に記載された有機トランジスタ。
[7] 前記無機バリア層は金属酸ィ匕物及び Z又は金属窒化物を含むことを特徴とする請 求項 1から 4のいずれか 1項に記載された有機トランジスタ。
[8] 前記無機バリア層は、表面平均粗さが 0. l〜50nmであることを特徴とする請求項
1から 7のいずれか 1項に記載された有機トランジスタ。
[9] 前記無機バリア層は、厚さが 5〜700nmであることを特徴とする請求項 1から 8のい ずれか 1項に記載された有機トランジスタ。
[10] 基板、一対のソース電極とドレイン電極、前記ソース電極と前記ドレイン電極間に設 けられる有機半導体層、及び前記有機半導体層にゲート絶縁層を介して設けられる ゲート電極を備える有機トランジスタを製造する方法であって、
前記ゲート絶縁層を形成する工程では、有機絶縁層及び無機ノリア層を少なくとも 含む積層構造を形成することを特徴とする有機トランジスタの製造方法。
[11] 前記ゲート絶縁層は前記有機絶縁層及び前記無機バリア層を順に積層して形成さ れることを特徴とする請求項 10に記載された有機トランジスタの製造方法。
[12] 前記ゲート絶縁層は 1層目の前記有機絶縁層、前記無機バリア層及び 2層目の前 記有機絶縁層を順に積層して形成されることを特徴とする請求項 10に記載された有 機トランジスタの製造方法。
[13] 前記ゲート絶縁層は前記無機バリア層及び前記有機絶縁層を順に積層して形成さ れることを特徴とする請求項 10に記載された有機トランジスタの製造方法。
[14] 前記無機バリア層は、下地となる層上に無機高分子材料を塗布し、前記無機高分 子材料を加熱処理、 UV処理、又は UV処理とオゾン処理の組合せによって無機材 料に変換して形成されることを特徴とする請求項 10から 13のいずれか 1項に記載さ れた有機トランジスタの製造方法。
[15] 前記無機高分子材料がポリメタロキサン又はポリシラザンであることを特徴とする請 求項 14に記載された有機トランジスタの製造方法。
[16] 前記加熱処理を 400°C以下で行うことを特徴とする請求項 14又は 15に記載された 有機トランジスタの製造方法。
[17] 金属酸化物及び Z又は金属窒化物を含む前記無機バリア層を下地となる層上に 真空プロセスを用いて形成することを特徴とする請求項 10から 13のいずれか 1項に 記載された有機トランジスタの製造方法。
[18] 前記無機バリア層の表面平均粗さを 0. l〜50nmで形成することを特徴とする請求 項 10から 17のいずれ力 1項に記載された有機トランジスタの製造方法。
[19] 前記無機バリア層の厚さを 5〜700nmで形成することを特徴とする請求項 10から 1
8のいずれか 1項に記載された有機トランジスタの製造方法。
PCT/JP2006/326094 2006-02-28 2006-12-27 有機トランジスタ及びその製造方法 WO2007099690A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502654A JPWO2007099690A1 (ja) 2006-02-28 2006-12-27 有機トランジスタ及びその製造方法
US12/224,492 US7851788B2 (en) 2006-02-28 2006-12-27 Organic transistor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006051664 2006-02-28
JP2006-051664 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099690A1 true WO2007099690A1 (ja) 2007-09-07

Family

ID=38458814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326094 WO2007099690A1 (ja) 2006-02-28 2006-12-27 有機トランジスタ及びその製造方法

Country Status (4)

Country Link
US (1) US7851788B2 (ja)
JP (1) JPWO2007099690A1 (ja)
TW (1) TWI412168B (ja)
WO (1) WO2007099690A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266865A (ja) * 2008-04-22 2009-11-12 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ及びその製造方法
US20100261017A1 (en) * 2009-04-13 2010-10-14 Fujifilm Corporation Method of producing gas barrier laminate and gas barrier laminate obtained
JP2010278173A (ja) * 2009-05-28 2010-12-09 Sony Corp 薄膜トランジスタ、薄膜トランジスタの製造方法、表示装置、および電子機器
US20110115034A1 (en) * 2009-11-19 2011-05-19 Industrial Technology Research Institute Transistor
GB2461670B (en) * 2007-04-25 2012-05-16 Merck Patent Gmbh Process for preparing an electronic device
JP2013545286A (ja) * 2010-10-07 2013-12-19 ジョージア・テック・リサーチ・コーポレーション 電界効果トランジスタおよびその製造方法
JP2016025246A (ja) * 2014-07-22 2016-02-08 株式会社デンソー 有機トランジスタおよび有機トランジスタの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904011B (zh) * 2007-12-27 2012-12-26 索尼公司 薄膜半导体装置和场效应晶体管
CN102110713B (zh) * 2009-12-29 2013-08-07 财团法人工业技术研究院 晶体管
TWI458150B (zh) * 2012-01-11 2014-10-21 E Ink Holdings Inc 薄膜電晶體
JP5664828B2 (ja) * 2012-06-15 2015-02-04 Dic株式会社 絶縁膜及びそれを用いた有機薄膜トランジスタ
TWI566405B (zh) * 2013-11-08 2017-01-11 元太科技工業股份有限公司 有機無機混合型電晶體
KR102450399B1 (ko) * 2015-10-06 2022-09-30 삼성전자주식회사 박막 트랜지스터, 그 제조 방법, 그리고 상기 박막 트랜지스터를 포함하는 전자 장치
US10049940B1 (en) * 2017-08-25 2018-08-14 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and method for metal gates with roughened barrier layer
CN106531887B (zh) * 2016-12-05 2019-05-07 吉林大学 一种可低电压擦写的铁电有机晶体管非易失性存储器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509299A (ja) * 2001-11-05 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー シロキサンポリマー界面を有する有機薄膜トランジスタ
JP2005509298A (ja) * 2001-11-05 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー ポリマー界面を有する有機薄膜トランジスタ
JP2005093700A (ja) * 2003-09-17 2005-04-07 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、並びに電子機器の製造方法
JP2006013480A (ja) * 2004-05-28 2006-01-12 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置
JP2006013468A (ja) * 2004-06-24 2006-01-12 Samsung Sdi Co Ltd 有機薄膜トランジスタ及びその製造方法
JP2006049836A (ja) * 2004-08-07 2006-02-16 Samsung Sdi Co Ltd 薄膜トランジスタ及びその製造方法
WO2006019157A1 (ja) * 2004-08-20 2006-02-23 National Institute Of Advanced Industrial Science And Technology 半導体素子及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981970A (en) * 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
JP4386978B2 (ja) * 1998-08-07 2009-12-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7098525B2 (en) * 2003-05-08 2006-08-29 3M Innovative Properties Company Organic polymers, electronic devices, and methods
KR100995451B1 (ko) * 2003-07-03 2010-11-18 삼성전자주식회사 다층 구조의 게이트 절연막을 포함하는 유기 박막 트랜지스터
KR100500779B1 (ko) * 2003-10-10 2005-07-12 엘지.필립스 엘시디 주식회사 박막 트랜지스터 어레이 기판의 제조 방법
DE102004009600B4 (de) * 2004-02-27 2008-04-03 Qimonda Ag Selbstorganisierende organische Dielektrikumsschichten auf der Basis von Phosphonsäure-Derivaten
US7692184B2 (en) * 2004-03-24 2010-04-06 Japan Science And Technology Agency Substrate with organic thin film, and transistor using same
US7491590B2 (en) 2004-05-28 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor in display device
JP4502382B2 (ja) * 2004-11-02 2010-07-14 キヤノン株式会社 有機トランジスタ
KR101086159B1 (ko) * 2005-01-07 2011-11-25 삼성전자주식회사 불소계 고분자 박막을 포함하는 유기 박막 트랜지스터
US7151276B2 (en) * 2005-03-09 2006-12-19 3M Innovative Properties Company Semiconductors containing perfluoroether acyl oligothiophene compounds
US20060214154A1 (en) * 2005-03-24 2006-09-28 Eastman Kodak Company Polymeric gate dielectrics for organic thin film transistors and methods of making the same
US7435989B2 (en) * 2005-09-06 2008-10-14 Canon Kabushiki Kaisha Semiconductor device with layer containing polysiloxane compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509299A (ja) * 2001-11-05 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー シロキサンポリマー界面を有する有機薄膜トランジスタ
JP2005509298A (ja) * 2001-11-05 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー ポリマー界面を有する有機薄膜トランジスタ
JP2005093700A (ja) * 2003-09-17 2005-04-07 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、並びに電子機器の製造方法
JP2006013480A (ja) * 2004-05-28 2006-01-12 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置
JP2006013468A (ja) * 2004-06-24 2006-01-12 Samsung Sdi Co Ltd 有機薄膜トランジスタ及びその製造方法
JP2006049836A (ja) * 2004-08-07 2006-02-16 Samsung Sdi Co Ltd 薄膜トランジスタ及びその製造方法
WO2006019157A1 (ja) * 2004-08-20 2006-02-23 National Institute Of Advanced Industrial Science And Technology 半導体素子及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461670B (en) * 2007-04-25 2012-05-16 Merck Patent Gmbh Process for preparing an electronic device
US8637343B2 (en) 2007-04-25 2014-01-28 Merck Patent Gmbh Process for preparing an electronic device
JP2009266865A (ja) * 2008-04-22 2009-11-12 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ及びその製造方法
US20100261017A1 (en) * 2009-04-13 2010-10-14 Fujifilm Corporation Method of producing gas barrier laminate and gas barrier laminate obtained
JP2010278173A (ja) * 2009-05-28 2010-12-09 Sony Corp 薄膜トランジスタ、薄膜トランジスタの製造方法、表示装置、および電子機器
US20110115034A1 (en) * 2009-11-19 2011-05-19 Industrial Technology Research Institute Transistor
JP2013545286A (ja) * 2010-10-07 2013-12-19 ジョージア・テック・リサーチ・コーポレーション 電界効果トランジスタおよびその製造方法
JP2016025246A (ja) * 2014-07-22 2016-02-08 株式会社デンソー 有機トランジスタおよび有機トランジスタの製造方法

Also Published As

Publication number Publication date
TWI412168B (zh) 2013-10-11
US20090166611A1 (en) 2009-07-02
US7851788B2 (en) 2010-12-14
TW200742141A (en) 2007-11-01
JPWO2007099690A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2007099690A1 (ja) 有機トランジスタ及びその製造方法
TWI460897B (zh) 製備電子裝置之方法
TWI508283B (zh) 製造場效電晶體之方法
TWI300273B (ja)
JP5598410B2 (ja) 有機半導体素子の製造方法および有機半導体素子
WO2007026778A1 (ja) トランジスタ、有機半導体素子及びこれらの製造方法
US7507613B2 (en) Ambipolar organic thin-film field-effect transistor and making method
KR20090012783A (ko) 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
WO2007099689A1 (ja) 有機トランジスタ及びその製造方法
US8202759B2 (en) Manufacturing method of organic semiconductor device
Park et al. Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates
TWI382540B (zh) Thin film semiconductor device and field effect transistor
EP2117059B1 (en) Organic Thin Film Transistors
CN101257092A (zh) 一种有机薄膜晶体管及其制备方法
JP2009246342A (ja) 電界効果型トランジスタ及びその製造方法並びに画像表示装置
CN103283026B (zh) 电子器件
Pandey et al. Unidirectionally Aligned Donor–Acceptor Semiconducting Polymers in Floating Films for High‐Performance Unipolar n‐Channel Organic Transistors
JP5807374B2 (ja) 薄膜トランジスタ基板の製造方法およびトップゲート構造薄膜トランジスタ基板
JP5891625B2 (ja) 有機半導体素子の製造方法および有機半導体素子
TWI450429B (zh) 有機薄膜電晶體及其製造方法
JP2010040768A (ja) 有機半導体素子の製造方法、および有機半導体素子
JP5630364B2 (ja) 有機半導体素子の製造方法および有機半導体素子
Kim et al. Organic thin‐film devices on paper substrates
KR102061075B1 (ko) 공유 결합을 이용한 유기 반도체 소자 및 이의 제조방법
JP5254540B2 (ja) トランジスタ、有機半導体素子及びこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008502654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12224492

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06843476

Country of ref document: EP

Kind code of ref document: A1