WO2007099660A1 - 核酸内包高分子ミセル複合体 - Google Patents

核酸内包高分子ミセル複合体 Download PDF

Info

Publication number
WO2007099660A1
WO2007099660A1 PCT/JP2006/317920 JP2006317920W WO2007099660A1 WO 2007099660 A1 WO2007099660 A1 WO 2007099660A1 JP 2006317920 W JP2006317920 W JP 2006317920W WO 2007099660 A1 WO2007099660 A1 WO 2007099660A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
block copolymer
group
nucleic acid
peg
Prior art date
Application number
PCT/JP2006/317920
Other languages
English (en)
French (fr)
Inventor
Kazunori Kataoka
Yuichi Yamasaki
Seiji Takae
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2008502645A priority Critical patent/JP5277439B2/ja
Priority to US12/281,124 priority patent/US8592385B2/en
Publication of WO2007099660A1 publication Critical patent/WO2007099660A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/0226Quaternisation of polyalkylene(poly)amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to a polymer micelle complex encapsulating a nucleic acid. Specifically, the present invention relates to the above complex as a non-viral gene that can introduce a nucleic acid into a cell in response to a reducing environment in the cell.
  • a gene is stably encapsulated until it is taken up by the target cell, but it is released smoothly after it is taken into the cell (cytoplasm).
  • Viruses with excellent infectivity satisfy the properties of gene vectors with such characteristics, but due to the fear of side effects, attention is focused on non-viral gene vectors.
  • DNA is condensed by the interaction with the polycation part in the block copolymer to form the core part, and the PEG part with excellent hydrophilicity and biocompatibility in the block copolymer is around the core part. It has a structure in which a shell portion is formed. Therefore, for example, DNA can be stably encapsulated in blood. Moreover, since the particle size is about the same as that of viruses (about lOOnm), the foreign substance recognition mechanism in the living body can be avoided.
  • the ethylenediamine unit (-(CH 2 ) 2 -NH- (CH 2 ) 2 _NH 2 ) force contained in the side chain of the polycation in the block copolymer has a two-step pKa, While the complex is formed, it has the effect that the endosome escape is promoted by the proton sponge effect in the cell.
  • the above PIC has improved gene expression efficiency due to these characteristics. Disclosure of the invention
  • the problem to be solved by the present invention is to provide a polyion complex capable of obtaining higher gene expression efficiency for target cells. Furthermore, another object is to provide a nucleic acid delivery device and a nucleic acid delivery kit using the polyion complex.
  • the present inventor has intensively studied to solve the above problems. As a result, the inventors found that the polyion complex obtained can solve the above problems by using a block copolymer obtained by disulfide bond (—S—S—) of a polyethylene render and a polycation, and completed the present invention. That is, the present invention is as follows.
  • a polyion complex comprising a block copolymer in which polyethylene dallicol and polycation are bonded via a disulfide group, and a nucleic acid.
  • examples of the polycation include a polypeptide having a cationic group in a side chain.
  • examples of the block copolymer include a polymer represented by the following general formula (1). It is.
  • R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 12 carbon atoms;
  • R 3 represents a residue derived from an amine compound having a primary amine
  • Li is NH, CO, the following general formula (4):
  • pi represents an integer of 1 to 5.
  • L 2a represents 0C0, 0C0NH, NHCO, NHCOO, NHC0NH, CONH or COO
  • L 3a represents NH or CO
  • ql represents an integer of 1 to 5
  • n represents an integer of 100 to 400.
  • X 1 represents a primary, secondary or tertiary amine compound or an amine compound residue derived from a quaternary ammonium salt, and r represents an integer of 0 to 5.
  • X 2 represents an amine compound residue derived from a primary, secondary or tertiary amine compound or a quaternary ammonium salt.
  • S and t are independent of each other and [NH- (CH 2 ) S ] Independently between units, s represents the integer of 1-5, t represents the integer of 2-5. The group shown by these is mentioned. More specifically, -R 3 is, for example, -NH-
  • examples of the polyion complex of the present invention include those in which a poly force thione moiety in the block copolymer and the nucleic acid are bonded by electrostatic interaction, and further, in the nucleic acid and the block copolymer. And a polycation part of which forms a core part, and a part containing polyethylene dallicol in the block copolymer forms a shell part around the core part.
  • a device for delivering a nucleic acid into a cell comprising the polyion complex described in (1) above.
  • a kit for delivering a nucleic acid into a cell comprising a block copolymer in which polyethylene glycol and a polycation are bonded via a disulfide group.
  • examples of the block copolymer include a polymer represented by the general formula (1) (as described above).
  • block copolymer of the present invention examples include those represented by the general formula (1) (as described above).
  • Another embodiment of the present invention includes a polyion complex characterized by comprising a block copolymer in which polyethylene glycol and polycation are bonded via a disulfide group, and an anionic substance.
  • examples of the block copolymer include a polymer represented by the general formula (1) (as described above).
  • FIG. 1 is a schematic plan view showing the structure of the polyion complex of the present invention.
  • FIG. 2 is a diagram showing the GPC chart in the process of synthesizing PEG-SS-NH 2 over time.
  • FIG. 3 is a diagram showing a 1 H NMR spectrum of PEG-SS-NH 2 .
  • FIG. 4 shows the 1 H NMR spectrum of PEG-SS-PBLA.
  • FIG. 5 is a diagram showing a GPC chart of PEG-SS-P (Asp (DET)).
  • FIG. 6 shows the 1 H NMR spectrum of PEG-SS-P (Asp (DET)).
  • FIG. 7 is a photograph showing the results of PIC agarose gel electrophoresis using PEG-SS-P (Asp (DET)).
  • Fig. 8 is a graph showing the result of etiquemub mouth my door for each PIC.
  • Fig. 9 is a graph showing the particle size measurement results for each PIC.
  • FIG. 10 is a graph showing the measurement results of zeta potential of each PIC.
  • Fig. 11 is a graph showing the results of evaluation of gene expression efficiency in transfection using each PIC. Explanation of symbols:
  • the present inventor has found that the gene expression effect in the conventional polyion complex described above.
  • PEG polyethylene glycol
  • the present inventor considered that a polyion complex in which the PEG moiety is separated in response to some environmental change outside the cell and in the cell is optimal as a polyion complex in which the PEG moiety is easily separated in the cell.
  • extracellular about 10 // M
  • intracellular about 10 mM
  • the present inventors synthesized a copolymer in which PEG and polythione are bonded via a disulfide group as a block copolymer to be used, and a core-shell type using this block copolymer and a nucleic acid.
  • a micellar polyion complex having the following structure was prepared (see Fig. 1).
  • the resulting polyion complex retains its structural stability by the effect of PEG in the extracellular environment such as blood, and after it is taken into the cell, it responds to changes in the reducing environment.
  • the disulfide bond was cleaved and the PEG moiety was easily separated. After separation of the PEG moiety, the substitution between the encapsulated nucleic acid and the intracellular polyanion was promoted, and the polyion complex was dissociated. As a result, the nucleic acid was smoothly released into the cytoplasm, and the gene expression efficiency was dramatically improved.
  • a polyion complex composed of a block copolymer having a disulfide bond and a nucleic acid is extremely useful as an intelligent gene vector capable of efficiently introducing a nucleic acid in response to an environmental change from outside the cell to inside the cell. is there. 2.
  • the polyion complex (PIC) of the present invention is a micellar nucleic acid-containing polymer complex characterized by comprising a specific block copolymer having a disulfide bond and a nucleic acid.
  • the specific block copolymer which is a constituent component of the PIC of the present invention is a block copolymer containing PEG and polythione as constituent components, which are bonded via a disulfide group.
  • the PEG and polycation are not limited in their structure (for example, the degree of polymerization), and can be selected from any structure.
  • the polycation is a polypeptide having a cationic group in the side chain. It is preferable.
  • the force thionic group mentioned here is not limited to a group that has already become a cation by coordination with a hydrogen ion, but also includes a group that becomes a cation when a hydrogen ion is coordinated.
  • Such cationic groups include all known groups.
  • a polypeptide having a cationic group in its side chain is a peptide in which known amino acids having basic side chains (lysine, arginine, histidine, etc.) are peptide-bonded, and various amino acids are peptide-bonded and the side chain is In which is substituted to have a cationic group.
  • specific block copolymer examples include a block copolymer represented by the following general formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 12 carbon atoms include, for example, Examples include til group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, decyl group and undecyl group.
  • Examples of the substituent of the alkyl group include acetalized formyl group, cyano group, formyl group, carboxyl group, amino group, alkoxy group having 1 to 6 carbon atoms, carbonyl group, and acylamide having 2 to 7 carbon atoms.
  • Group, siloxy group, silylamino group, and trialkylsiloxy group (each alkylsiloxy group has 1 to 6 carbon atoms independently).
  • substituent When the above substituent is an acetalized formyl group, it can be converted into another substituent, a formyl group (aldehyde group; -CHO), by hydrolysis under acidic mild conditions.
  • a formyl group aldehyde group; -CHO
  • the above substituent is a formyl group, a carboxyl group or an amino group, for example, via these groups, an antibody or a fragment thereof, or other functional or target-directed It is possible to bind a protein having a property.
  • R 3 which is a moiety containing a cationic group represents a residue derived from an amine compound having a primary amine.
  • Examples of the —R 3 group include groups represented by the following general formula (2) or the following general formula (3), and among them, a group represented by the following general formula (3) is preferable.
  • ⁇ ⁇ represents a primary, secondary or tertiary amine compound or an amine compound residue derived from a quaternary ammonium salt, and r represents an integer of 0 to 5.
  • X 2 represents an amine compound residue derived from a primary, secondary or tertiary amine compound or a quaternary ammonium salt.
  • s and t are independent of each other and independently among [NH- (CH 2 ) S ] units, s represents an integer of 1 to 5 (preferably 2), and t is 2 to 5 (preferably 2 ) Represents an integer.
  • the terminal -X 1 group and -X 2 group are, for example, -NH2, -NH-CH 3 , -N (CH 3 ) 2 , And groups represented by the following formulas (i) to (viii) are preferable, and —NH 2 is particularly preferable among them.
  • Y represents, for example, a hydrogen atom, an alkyl group (having 1 to 6 carbon atoms), and an aminoalkyl group ( Carbon number 1-6)
  • the -R 3 group is specifically ⁇ -NH-NH2 '' or ⁇ -NH- (CH 2 ) 2 - NH- (CH 2) 2 - NH 2 "is particularly preferred, the latter comprising ethylene diammine unit is more preferable Incidentally, the" -.
  • NH- (CH 2) 2 - NH- (CH 2) 2 _NH2 Since pKa is 6.0 and 9.5, it shows two steps, and at pH 7.4, which forms a complex, it is a gauche-type single protonated state (see Reaction Formula 1 below).
  • p i represents an integer of 1 to 5 (preferably 2 to 3).
  • L 2a represents 0C0, 0C0NH, NHC0, NHC00, NHC0NH, CONH or COO
  • L 3a represents NH or CO
  • ql represents an integer of 1 to 5 (preferably 2 to 3).
  • ml and n represent the number of repeating units (degree of polymerization) of each block part. Specifically, ml represents an integer of 30 to: 150 (preferably 60 to: 100), and n represents an integer of 100 to 400 (preferably 200 to 300). M2 represents an integer of 1 to 5 (preferably 1 to 2).
  • the polymer represented by the general formula (1) is a polymer having the following two block parts as essential constituent elements.
  • Block part with side chain that electrostatically binds to nucleic acid Block part having a cationic group in the side chain and degree of polymerization ml: polycation part
  • Block part consisting of polyethylene dallicol (PEG) chain that is hydrophilic and excellent in biocompatibility (Block part of polymerization degree n: PEG part)
  • the molecular weight (Mw) of the block copolymer represented by the general formula (1) is preferably, but not limited to, a force of 23,000 to 45,000, more preferably 28,000 to 34,000.
  • the molecular weight (Mw) of the PEG part is preferably 8,000 to 15,000, more preferably 10,000 to 12,000, and the molecular weight (Mw) of the polycation part. Is preferably 15,000 to 30,000, more preferably 18,000 to 22,000.
  • the method for producing the polymer represented by the general formula (1) is not limited.
  • a segment (PEG segment) including Ri and a block part of a PEG chain is synthesized in advance, and one end of this PEG segment ( R 1 ) In which the side chain is substituted or converted to contain a cationic group as necessary, or the above PEG segment and a block portion having a side chain containing a cationic group are synthesized in advance.
  • Various reaction methods and conditions in the production method can be appropriately selected or set in consideration of conventional methods.
  • the PEG segment can be prepared, for example, using the method for producing a PEG segment portion of a block copolymer described in WO 96/32434, WO 96/33233, and WO 97/06202.
  • the end of the PEG segment opposite to the -Ri group is the part that becomes S-S-LiJ in the general formula (1),-S- S-NH 2 ,-S- S-COOH, (6):
  • p2 represents an integer of 1 to 5 (preferably 2 to 3).
  • L 2b represents OCO, OCONH, NHCO, NHCOO, NHCONH, CONH or COO, and L3b represents NH 2 or COOH.
  • q2 represents an integer of 1 to 5 (preferably 2 to 3).
  • 3-benzyl- Block copolymers were synthesized by polymerizing N-carboxylic acid anhydrides (NCA) of protected amino acids such as L-aspartate (BLA) and NE-ZL-lysine.
  • NCA N-carboxylic acid anhydrides
  • BLA L-aspartate
  • NE-ZL-lysine protected amino acids
  • Examples of the method include substitution or conversion with diethylenetriamine (DET) or the like so as to form a side chain having a group.
  • the nucleic acid that is a component of the core part is not limited, and various DNAs and RNAs that can be used for gene therapy, etc., or PNA (peptide nucleic acid) Preferred examples include plasmid DNA, antisense oligo DNA, and siRNA.
  • nucleic acid molecule Since the nucleic acid molecule becomes polyanion, it can bind to the side chain of the polycation portion of the block copolymer described above by electrostatic interaction.
  • various substances that function in cells such as physiologically active proteins and various peptides can be contained in the core portion together with the nucleic acid.
  • a high molecular weight or low molecular weight “anionic substance” can be used as a constituent component of the core part.
  • peptide hormones, proteins, enzymes and nucleic acids can be used.
  • high-molecular substances such as (DNA, RNA or PNA), or low-molecular substances (water-soluble compounds) having a charged functional group in the molecule.
  • anionic substance for molecules having a plurality of different charged functional groups (anionic group and cationic group), the charged state of the whole molecule is changed to anionic by changing the pH. Including those that can.
  • anionic substances may be used alone or in combination of two or more, and are not limited.
  • a nucleic acid and a part (polycation part) in the block copolymer described above interact to form a core part, and the other part (part containing the PEG part) in the block copolymer It can be said to be a core-shell type micellar composite with a shell part formed around the core part (see Fig. 1).
  • the PIC of the present invention can be easily prepared, for example, by mixing a nucleic acid and a block copolymer in an arbitrary buffer (for example, Tris buffer or the like).
  • the mixing ratio of the block copolymer and the nucleic acid is not limited.
  • the force is preferably 1.5 to 60, more preferably 1.5 to 32, and still more preferably 2 to 8.
  • the N / P ratio is not limited, but 1.5 to It is preferably 32, more preferably 1.5 to 8, more preferably 2 to 8, particularly preferably 4 to 6 (N in this case is a primary contained in the side chain of the polycation moiety. This is the total number of Amins and Grade 2 Amines.)
  • N / P ratio is in the above range, there is no free polymer, which is preferable in that high expression efficiency in ino can be obtained.
  • the cationic group (N) means a group capable of forming an ionic bond by electrostatically interacting with a phosphate group in an encapsulated nucleic acid.
  • the size of the PIC of the present invention is not limited, but, for example, the particle size by dynamic light scattering measurement (DLS) is preferably 30 to: L50 nm, more preferably 50 to lOOnm.
  • DLS dynamic light scattering measurement
  • a nucleic acid delivery device comprising the above-described polyion complex (PIC) is provided.
  • PIC polyion complex
  • the nucleic acid delivery device of the present invention can be used as a means for efficiently introducing a desired nucleic acid encapsulated in the core part of PIC into a target cell using changes in the redox environment inside and outside the cell.
  • a solution containing PIC encapsulating a desired nucleic acid is administered to a test animal and taken into target cells in the body. Subsequently, when PIC taken into the cell moves from the endosome to the cytoplasm, in response to the reducing environment in the cytoplasm, the disulfide bond in the block copolymer is cleaved and the PEG moiety is separated. As a result, the substitution between the nucleic acid encapsulated in PIC and the polyanion present in the cell is promoted, and the desired nucleic acid can be released into the cytoplasm by the dissociation of PIC.
  • the nucleic acid delivery device of the present invention can be applied to various animals such as humans, mice, rats, rabbits, pigs, dogs, cats and the like, and is not limited thereto.
  • parenteral methods such as intravenous infusion are usually adopted, and conditions such as dosage, number of administrations, and administration period should be set appropriately according to the type and condition of the test animal. It comes out.
  • the nucleic acid delivery device of the present invention can be used for treatment (gene therapy) for introducing a desired nucleic acid into cells that cause various diseases. Therefore, the present invention provides a pharmaceutical composition containing the above-mentioned PIC and a method for treating various diseases using the above-mentioned PIC (especially genetics). Child treatment methods) can also be provided. The administration method and conditions are the same as described above.
  • excipients for the above pharmaceutical composition, excipients, fillers, fillers, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffering agents, preservatives, dissolution agents commonly used in drug production Auxiliaries, preservatives, flavoring agents, soothing agents, stabilizers, tonicity agents and the like can be appropriately selected and used in accordance with conventional methods.
  • the form of the pharmaceutical composition is usually an intravenous injection (including infusion), and is provided in the state of, for example, a unit dose ampoule or a multi-dose container.
  • compositions and treatment method are effectively applied to, for example, cancer.
  • the nucleic acid delivery kit of the present invention is characterized by containing the specific block copolymer.
  • the kit can be preferably used for gene therapy for various target cells such as cancer cells.
  • the storage state of the block copolymer is not limited, and a solution state or a powder state can be selected in consideration of its stability (storage property) and ease of use.
  • the kit of the present invention may contain other components in addition to the specific block copolymer.
  • other components include various buffers, various nucleic acids to be introduced into cells (plasmid DNA, antisense oligo DNA, siRNA, etc.), lysis buffers, various proteins, and instructions for use (use manual). be able to.
  • the kit of the present invention is used to prepare a polyion complex (PIC) having a desired nucleic acid to be introduced into a target cell as a core part, and the prepared PIC can be effectively used as a nucleic acid delivery device to a target cell. Can be used.
  • PIC polyion complex
  • PEG-SS-NH2 300 mg was dissolved in CH 2 C1 2 4.5 mL, and CH 2 C1 2 / DMF (10: 1) 11.5 mL i was dissolved ⁇ -benzyl-L-aspartate-N-carboxy anhydride (BLA- NCA) 859 mg was added, followed by stirring at 35 ° C for 2 days. After confirming that the reaction was completed by the disappearance of the peak derived from BLA-NCA by IR, re-precipitated in 200 mL of hexane / ethyl acetate (6: 4), suction filtered, and purified by vacuum drying, Obtained “PEG_SS-PBLA”.
  • the peak of the benzene ring on the side chain of the PBLA part based on the peak b of the main chain of PEG
  • the polymerization degree (m) of the PBLA part was calculated as 100.
  • the yield of PEG-SS-PBLA was 910 mg.
  • Diethylenetriamine was introduced into the side chain of the PBLA part of the obtained PEG-SS-PBLA (aminolysis reaction) to obtain a polycation. It should be noted that the S-S bond is weak to alkali and there is an excess of amine in the aminolysis reaction, so it is necessary to introduce DET with care to prevent the exchange of the S-S bond.
  • N, N-dimethylformamide (DMF) was added to 40 mg of PEG-SS-PBLA and stirred, 0.73 mL of 50 times the amount of DET was added, and the mixture was further stirred at room temperature for 3 minutes. After stirring, the solution was added dropwise to 15 mL of 5% AcOHaq, and finally dialyzed against 0.01N HC1, and then recovered by lyophilization.
  • DMF N, N-dimethylformamide
  • a reporter gene luciferase expression plasmid (Promega, product name: pGL3; hereinafter referred to as “pDNA”) was used.
  • PIC containing pDNA as a core part was prepared. Specifically, for 100 L of pDNA (concentration: 50 / ig / mL) dissolved in lOmM Tris buffer, The solution containing PIC was obtained by adding PEG-SS-P (Asp (DET)) dissolved in 50 ⁇ L of the same buffer.
  • Fig. 8 shows the results of fluorescence measurement after adding ethidium bumbride (EtBr) to the solution obtained in (3) above.
  • EtBr ethidium bumbride
  • N / P 2 is the point where the charge of the polycation of the block copolymer and the charge of the anion of pDNA are just balanced. It can be said.
  • the particle size of PIC was measured by dynamic light scattering measurement (DLS). The result is shown in Fig. 9.
  • the particle size of PIC using PEG-SS-P (Asp (DET)) was about 80 nm regardless of the N / P ratio (the same applies to PIC using PEG-P (Asp (DET))).
  • the zeta potential of PIC was measured. However, for PIC using PEG-SS-P (Asp (DET)), after the measurement, a reducing agent dithiothreitol (DTT) 25 mM was added and the zeta potential was measured again. The results are shown in Fig. 10. PIC (with PEG) using PEG-SS_P (Asp (DET)) and PEG-P (Asp (DET)) is higher than PIC (without PEG) using P (Asp (DET)).
  • the zeta potential was also close to 0 at the / P ratio, indicating the effect of PEG on the charge shielding effect, however, the above DTT was added to the PIC using PEG-SS-P (Asp (DET)).
  • the PEG-SS-P (Asp (DET)) SS bond was cleaved and PEG was separated in a reducing environment.
  • HeLa cells (40,000 cells / well) were seeded on a 24 well plate and incubated for 24 hours.
  • RLU Relative Light Unit
  • a polyion complex capable of exhibiting extremely high gene expression efficiency for a target cell can be provided.
  • the polyion complex of the present invention shows very good structural stability in the state of encapsulating nucleic acids before being taken up by target cells (such as in blood), and after being taken up by cells (cytoplasm) It is extremely useful as an intelligent gene vector that smoothly releases the nucleic acid encapsulated by breaking its stability.
  • a device for delivering a nucleic acid into a cell and a kit for nucleic acid delivery using the polyion complex can also be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、標的細胞に対して十分に高い遺伝子発現効率が得られる、非ウイルス型遺伝子ベクターとしてのポリイオンコンプレックスを提供することを目的とする。 本発明のポリイオンコンプレックスは、ポリエチレングリコール及びポリカチオンがジスルフィド基を介して結合したブロックコポリマーと、核酸とを含むことを特徴とする。

Description

核酸内包高分子ミセル複合体 技術分野
本発明は、 核酸を内包する高分子ミセル複合体に関する。 詳しくは、 細胞内で の還元環境に応答して核酸を細胞内へ導入することができる非ウィルス型遺伝子 'ベクタ一としての上記複合体に関する。 明
背景技術
ヒ トゲノムの解読が完了した現在、 遺伝情報と病気との相関が解明されつつあ る。 そのような中で、 遺伝子を薬として用い、 遺伝子レベルで治療を行う遺伝子 治療は、 これまで治療が困難であった種々の疾患に対する治療法として大きな期 待が寄せられている。 遺伝子治療の達成のためには、 遺伝子を安定に標的部位へ 輸送するベクターの開発が不可欠である。 ベクターに求められている特性は、 1 ) 血中での安定性、 2 ) 細網内皮系による取り込みゃ腎排泄の回避、 3 ) 標的細 胞への選択的取り込み、 4 ) 細胞質内へのスムーズな移行、 5 ) 低毒性などが挙 げられる。 つまり、 標的細胞に取り込まれるまでは安定に遺伝子を内包するが、 細胞 (細胞質) に取り込まれた後はスムーズに遺伝子を放出するという、相反す る 2つの特性を兼ね備えている必要がある。 感染能に優れたウィルスは、 そのよ うな特性を備えた遺伝子ベクターとしての性質を満たすものであるが、 副作用の 恐れという問題が伴うため、 非ウィルス型の遺伝子ベクターに注目が集まってい る。
非ウィルス型遺伝子ベクターとしては、 これまでに、 ポリエチレングリコール (PEG)とポリカチオン (カチオン性のポリペプチド) から構成されるブロックコ ポリマーと、 ポリア二オンである DNAとの間の静電的相互作用により形成され たミセル状のボイ リオンコンプレック ス (PIC ) が報告されている (S. Katayose et al., Bioconjugate Chem., 8, 702-707 (1997); S. Fukushima et al., J. Am. Chem. Soc" 127, 2810—2811 (2005)を参照) 。 この PICは、 DNAが、 ブロックコポリマー中のポリカチオン部分との相互作 用により凝縮してコア部分を形成し、 プロックコポリマー中の親水性及び生体適 合性に優れた PEG部分がコア部分の周囲にシェル部分を形成したような構造と なっている。 そのため、 例えば血中でも DNAを安定に内包することができる。 しかも、 粒径がウィルスと同程度 (約 lOOnm) であるため、 生体内の異物認識 機構を回避することができる。 さらに、 ブロックコポリマー中のポリカチオンの 側鎖に含まれるエチレンジアンミンユニット (- (CH2)2- NH- (CH2)2_NH2) 力 2段階の pKaを有しているため、 DNAとのコンプレックスが形成されながら、 細胞内ではプロトンスポンジ効果によりェンドソームエスケープが促進されると いう効果も有する。 上記 PICは、 このような特性により遺伝子発現効率の向上が 図られたものである。 発明の開示
本発明が解決しようとする課題は、 標的細胞に対してさらに高い遺伝子発現効 率が得られるポリイオンコンプレックスを提供することにある。 さらには、 上記 ポリイオンコンプレックスを用いた、 細胞内への核酸送達デバイス及び核酸送達 用キットを提供することにある。
本発明者は、 上記課題を解決するべく鋭意検討を行った。 その結果、 ポリェチ レンダリコールとポリカチオンとをジスルフイ ド結合 (- S- S- ) させたブロック コポリマーを用いれば、 得られるポリイオンコンプレックスは上記課題を解決し 得ることを見出し、 本発明を完成した。 すなわち、 本発明は以下の通りである。
( 1 ) ポリエチレンダリコール及びポリカチオンがジスルフィ ド基を介して結 合したブロックコポリマーと、 核酸とを含むことを特徴とする、 ポリイオンコン プレックス。
本発明のポリイオンコンプレックスにおいて、 前記ポリカチオンとしては、 例 えば、 側鎖にカチオン性基を有するポリペプチドが挙げられる。 また、 前記プロ ックコポリマーとしては、 例えば、 下記一般式 (1)で示されるポリマーが挙げら れる。
Figure imgf000004_0001
〔式中、 R1及び R2は、 それぞれ独立して、 水素原子、 又は置換されていてもよ い炭素数 1〜12の直鎖状若しくは分枝状のアルキル基を表し、
R3は、 一級アミンを有するァミン化合物由来の残基を表し、
Liは、 NH、 CO、 下記一般式 (4):
Figure imgf000004_0002
(式中、 piは 1〜5の整数を表す。 ) ,
で示される基、 又は下記一般式 (5) :
Figure imgf000004_0003
(式中、 L2aは、 0C0、 0C0NH、 NHCO、 NHCOO、 NHC0NH、 CONH又 は COOを表し、 L3aは、 NH又は COを表す。 qlは 1〜5の整数を表す。 ) で示される基を表し、
mlは 30〜: 150の整数を表し、 ηι2は 1〜5の整数を表し、 nは 100〜400の整数を 表す。 〕
ここで、 一般式 (1)で示されるポリマー中の- R3としては、 例えば、 下記一般式 (2):
-NH-(CH2)r-X1 (2)
(式中、 X1は、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥム塩 由来のァミン化合物残基を表し、 rは 0〜5の整数を表す。 )
で示される基、 又は下記一般式 (3) :
- (NH-(CH2)S] t -X2 (3)
(式中、 X2は、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥム塩 由来のァミン化合物残基を表す。 s及び tは、 それぞれ独立し、 かつ 〔NH- (CH2)S 〕 ユニット間で独立して、 sは 1〜5の整数を表し、 tは 2〜5の整数を表す。 ) で示される基が挙げられる。 より具体的には、 - R3としては、 例えば、 - NH-
NH2 又は - NH- (CH2)2-NH- (CH2)2 - NH2 が挙げられる。
また、 本発明のポリイオンコンプレックスとしては、 例えば、 前記ブロックコ ポリマー中のポリ力チオン部分と前記核酸とが静電的相互作用により結合したも のが挙げられ、 さらに、 前記核酸と前記ブロックコポリマー中のポリカチオン部 分とがコア部分を形成し、 前記ブロックコポリマー中のポリエチレンダリコール を含む部分が前記コア部分の周囲にシェル部分を形成したものも挙げられる。
( 2 ) 上記 (1 ) に記載のポリイオンコンプレックスを含むことを特徴とする、 細胞内への核酸送達デバイス。
( 3 ) ポリエチレングリコール及びポリカチオンがジスルフィ ド基を介して結 合したブロックコポリマーを含む、 細胞内への核酸送達用キット。
本発明のキットにおいて、 上記ブロックコポリマーとしては、 例えば、 一般式 (1) (前記と同様) で示されるポリマーが挙げられる。
( 4 ) ポリエチレングリコール及びポリカチオンがジスルフイ ド基を介して結 合したブロックコポリマー。
本発明のブロックコポリマーとしては、 例えば、 一般式 (1) (前記と同様) で 示されるものが挙げられる。
また、 本発明の他の一態様としては、 ポリエチレングリコール及びポリカチォ ンがジスルフイ ド基を介して結合したブロックコポリマーと、 ァニオン性物質と を含むことを特徴とするポリイオンコンプレックスを挙げることができる。 この 態様において、 上記ブロックコポリマーとしては、 例えば、 一般式 (1) (前記と 同様) で示されるポリマーが挙げられる。 図面の簡単な説明
図 1は、 本発明のポリイオンコンプレックスの構造を示す平面概略図である。 図 2は、 PEG-SS- NH2の合成過程における GPCチヤ一トを経時的に示す図で ある。
図 3は、 PEG- SS- NH21 H NMRスぺク トルを示す図である。 図 4は、 PEG-SS- PBLAの1 H NMRスぺク トルを示す図である。
図 5は、 PEG- SS- P(Asp(DET))の GPCチヤ一トを示す図である。
図 6は、 PEG- SS- P(Asp(DET))の1 H NMRスぺク トルを示す図である。
図 7は、 PEG- SS-P(Asp(DET))を用いた PICのァガロースゲル電気泳動の結 果を示す写真である。
図 8は、 各 PICのェチジゥムブ口マイ ドアッセィの結果を示すグラフである。 図 9は、 各 PICの粒径の測定結果を示すグラフである。
図 1 0は、 各 PICのゼ一タ電位の測定結果を示すグラフである。
図 1 1は、 各 PICを用いたトランスフエクシヨンにおける遺伝子発現効率の評 価結果を示すグラフである。 符号の説明 :
1 ブロックコポリマー (PEG- SS-ポリカチオン)
2 ポリエチレングリコール (PEG)
3 ポリカチオン
4 核酸
5 ポリイオンコンプレックス (PIC) 発明を実施するための最良の形態
以下、 本発明について詳しく説明するが、 本発明の範囲はこれらの説明に拘束 されることはなく、 以下の例示以外についても、 本発明の趣旨を損なわない範囲 で適宜変更し実施し得る。
なお、 本明細書は、 本願優先権主張の基礎となる特願 2006- 054332号明細書の 全体を包含する。 また、 本明細書において引用された全ての先行技術文献、 並び に公開公報、 特許公報及びその他の特許文献は、 参照として本明細書に組み入れ られる。
. 本発明の概要
本発明者は、 前述した従来のポリイオンコンプレックスにおける遺伝子発現効 率を改善するためには、 シェル部分を構成するブロックコポリマー中のポリェチ レングリ コール (PEG) 部分を、 標的細胞内において分離させる必要があると 考えた。 これは、 以下の知見に基づくものである。 すなわち、 ポリカチオン ( PEG部分無しのポリマー) と核酸とを用いて形成したポリイオンコンプレック スは、 PEG-ポリカチオンを用いて形成したポリイオンコンプレックスに比べて、 in σで細胞内に導入した場合、 遺伝子発現効率が非常に高くなるというもの である。
そこで本発明者は、 細胞内で PEG部分が容易に分離するポリイオンコンプレ ックスとして、 細胞外と細胞内での何らかの環境変化に応答して PEG部分が分 離するポリイオンコンプレックスが最適ではないかと考えた。 そして、 細胞外と 細胞内とではダルタチオンの濃度差による酸化還元環境の違いがあることに着目 し (細胞外 (約 10 // M):酸化的環境、 細胞内 (約 10mM):還元的環境) 、 さらに、 ジスルフイ ド結合 (- S- S- ) が還元的環境下において容易に開裂するという知見 を利用して、 PEG部分を分離させる手段について検討した。
その結果、 本発明者は、 使用するブロックコポリマーとして、 PEGとポリ力 チオンとをジスルフィ ド基を介して結合させたコポリマーを合成し、 このブロッ クコポリマーと核酸とを用いて、 コア-シェル型の構造を有するミセル状のポリ イオンコンプレックスを調製した (図 1を参照) 。
得られたポリイオンコンプレックスは、 血中等の細胞外では従来のものと同様 に PEGの効果によって構造安定性が保持され、 細胞内に取り込まれた後は、 還 元的環境への変化に応答してジスルフィ ド結合が開裂し PEG部分が容易に分離 した。 PEG部分の分離後は、 内包された核酸と細胞内のポリア二オンとの置換 が促進されて、 ポリイオンコンプレックスが解離した。 これにより、 核酸が細胞 質内へスムーズに放出され、 遺伝子発現効率が飛躍的に向上した。
以上のように、 ジスルフイ ド結合を有するブロックコポリマーと、 核酸とから 構成されたポリイオンコンプレックスは、 細胞外から細胞内への環境変化に応答 して効率的に核酸導入できるインテリジェント遺伝子ベクターとして極めて有用 である。 2 . ポリイオンコンプレックス
本発明のポリイオンコンプレックス (PIC) は、 ジスルフイ ド結合を有する特 定のブロックコポリマーと、 核酸とを含むことを特徴とする、 ミセル状の核酸内 包高分子複合体である。
(1) ブロックコポリマー
本発明の PICの構成成分である特定のブロックコポリマーは、 PEG及びポリ力 チオンを構成成分として含み、 これらがジスルフィ ド基を介して結合したブロッ クコポリマーである。
上記 PEG及びポリカチオンとしては、 その構造 (例えば重合度) は限定され ず、 任意の構造のものを選択できるが、 なかでもポリカチオンとしては、 カチォ ン性基を側鎖に有するポリペプチドであることが好ましい。 なお、 ここで言う力 チオン性基とは、 水素イオンが配位して既にカチオンとなっている基に限らず、 水素イオンが配位すればカチオンとなる基も含む意味である。 このようなカチォ ン性基としては、 公知のものが全て含まれる。 カチオン性基を側鎖に有するポリ ペプチドとは、 塩基性側鎖を有する公知のアミノ酸 (リシン、 アルギニン、 ヒス チジン等) がペプチド結合してなるもののほか、 各種アミノ酸がペプチド結合し、 その側鎖がカチオン性基を有するように置換されたものも含む。
上記特定のブロックコポリマーとしては、 具体的には、 例えば、 下記一般式 (1)で示されるブロックコポリマーが好ましく挙げられる。
Figure imgf000008_0001
一般式 )中、 R1及び R2は、 それぞれ独立して、 水素原子、 又は置換されてい てもよい炭素数 1〜12の直鎖状若しくは分枝状のアルキル基を表す。
上記炭素数 1〜: 12の直鎖状若しくは分枝状のアルキル基としては、 例えば、 メ チル基、 ェチル基、 n-プロピル基、 イソプロピル基、 n-ブチル基、 sec-ブチル 基、 tert-ブチル基、 n-ペンチル基、 n-へキシル基、 デシル基及びゥンデシル基 等が挙げられる。
また上記アルキル基の置換基としては、 例えば、 ァセタール化ホルミル基、 シ ァノ基、 ホルミル基、 カルボキシル基、 アミノ基、 炭素数 1〜6のアルコキシ力 ルボニル基、 炭素数 2〜 7のァシルアミ ド基、 シロキシ基、 シリルアミノ基、 及 びトリアルキルシロキシ基 (各アルキルシロキシ基は、 それぞれ独立に、 炭素数 1〜6である) 等が挙げられる。
上記置換基がァセタール化ホルミル基である場合、 酸性の温和な条件下で加水 分解することにより、 他の置換基であるホルミル基 (アルデヒ ド基; - CHO) に 転化することができる。 また、 上記置換基 (特に R1における置換基) がホルミ ル基、 又はカルボキシル基若しくはァミノ基の場合は、 例えば、 これらの基を介 して、 抗体若しくはその断片又はその他の機能性若しくは標的指向性を有するタ ンパク質等を結合させることができる。
一般式 (1)中、 カチオン性基を含む部分となる R3は、 一級アミンを有するアミ ン化合物由来の残基を表す。 -R3基としては、 例えば、 下記一般式 (2)又は下記一 般式 (3)で示される基が挙げられ、 中でも下記一般式 (3)で示される基が好ましレ、。
Figure imgf000009_0001
〔式 (2)中、 Χΐは、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥム 塩由来のァミン化合物残基を表し、 rは 0〜5の整数を表す。 〕
- 師- (CH2)S〕 t -X2 (3)
〔式 (3)中、 X2は、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥム 塩由来のァミン化合物残基を表す。 s及び tは、 それぞれ独立し、 かつ 〔NH- (CH2)S〕 ユニット間で独立して、 sは 1〜5 (好ましくは 2) の整数を表し、 tは 2〜 5 (好ましくは 2) の整数を表す。 〕
一般式 (2)及び (3)中、 末端の- X1基及び- X2基 (ァミン化合物残基) としては、 例えば、 -NH2、 - NH-CH3、 -N(CH3)2、 及び下記式 (i)〜(viii)に示される基等が 好ましく挙げられ、 中でも- NH2が特に好ましい。 なお、 下記式 (vi)中、 Yとして は、 例えば、 水素原子、 アルキル基 (炭素数 1〜6 ) 、 及びアミノアルキル基 ( 炭素数 1〜6 ) 等が挙げられる
Figure imgf000010_0001
…ヽ
(H2C)2HC 、CH(CHつ )2 (VUリ 一般式 (1)中、 -R3基としては、 具体的には 「- NH- NH2」 又は 「- NH- (CH2)2- NH- (CH2)2- NH2」 が特に好ましく、 中でもエチレンジアンミンユニットを含む 後者がより好ましい。 なお、 上記 「- NH- (CH2)2- NH- (CH2)2_NH2」 は、 pKaが 6.0及び 9.5とレ、う 2段階を示し、 コンプレックスを形成する pH 7.4では、 gauche型のシングルプロ トン化状態であるので (下記反応式 1参照) 、 核酸と 静電相互作用をすることができる。 一方、 エンドソーム内 (pH 5.5) では、 上 記 「- NH_(CH2)2- NH- (CH2)2- NH2」 は、 さらにプロ トン化され、 anti型に変化 するので (下記反応式 1参照) 、 バッファー効果によるエンドソームエスケープ を促進させる効果を有する。 反応式 1
一 p ai 6.0 J _ pKa2 9.5 j _ ^
— HN +/NH2 ~ 一 HN NH2
NH3+ 、H
anti gauche gauche -80% 一般式 (1)中、 ジスルフイ ド結合 (- s-s_) とともにリンカ一部分となる は、 NH、 C0、 下記一般式 (4):
- (CH2)pl - NH- (4)
〔式 (4)中、 p iは 1〜5 (好ましくは 2〜3) の整数を表す。 〕
で示される基、 又は下記一般式 (5):
Figure imgf000011_0001
〔式 (5)中、 L2aは、 0C0、 0C0NH、 NHC0、 NHC00、 NHC0NH、 CONH 又は COOを表し、 L3aは、 NH又は COを表す。 qlは 1〜5 (好ましくは 2〜3) の 整数を表す。 〕
で示される基を表す。
一般式 (1)中、 ml及び nは、 各ブロック部分の繰り返し単位の数 (重合度) を 表す。 具体的には、 mlは、 30〜: 150 (好ましくは 60〜: 100) の整数を表し、 nは、 100〜400 (好ましくは 200〜300) の整数を表す。 また、 m2は、 1〜5 (好まし くは 1〜2) の整数を表す。
以上より、 一般式 (1)で示されるポリマーは、 以下の 2つのブロック部分を必 須構成要素とするポリマーであると言える。
•核酸と静電結合する側鎖を持つブロック部分 (側鎖にカチオン性基を有する 重合度 m lのブロック部分: ポリカチオン部分)
•親水性であり生体適合性に優れたポリエチレンダリコール (PEG)鎖からなる ブロック部分 (重合度 nのブロック部分: PEG部分)
一般式 (1)で示されるブロックコポリマーの分子量 (Mw) は、 限定はされない 力 23,000〜45,000であることが好ましく、 より好ましくは 28,000〜34,000で ある。 また、 個々のブロック部分については、 PEG部分の分子量 (Mw) は、 8,000〜15,000であることが好ましく、 より好ましくは 10,000〜12,000であり、 ポリカチオン部分の分子量 (Mw) は、 15,000〜30,000であることが好ましく、 より好ましくは 18,000〜22,000である。
一般式 (1)で示されるポリマーの製造方法は、 限定はされないが、 例えば、 Ri と PEG鎖のブロック部分とを含むセグメント (PEGセグメント) を予め合成し ておき、 この PEGセグメントの片末端 (R1と反対の末端) に、 所定のモノマー を順に重合し、 その後必要に応じて側鎖をカチオン性基を含むように置換又は変 換する方法、 あるいは、 上記 PEGセグメントと、 カチオン性基を含む側鎖を有 するプロック部分とを予め合成しておき、 これらを互いに連結する方法などが挙 げられる。 当該製法における各種反応の方法及び条件は、 常法を考慮し適宜選択 又は設定することができる。
上記 PEGセグメントは、 例えば、 WO 96/32434号公報、 WO 96/33233号公報、 WO 97/06202号公報に記載のブロックコポリマーの PEGセグメント部分の製法 を用いて調製することができる。 PEGセグメントのうち- Ri基と反対側の末端は、 一般式 (1)において 「S - S-LiJ となる部分であり、 - S- S - NH2、 - S- S-COOH、 下記一般式 (6):
Figure imgf000012_0001
〔式 (6)中、 p2は 1〜5 (好ましくは 2〜3) の整数を表す。 〕
で示される基、 又は一般式 (7) :
-S-S-L2b-(CH2)q2-L3b (7)
〔式 (7)中、 L2bは、 OCO、 OCONH、 NHCO、 NHCOO、 NHCONH、 CONH 又は COOを表し、 L3bは、 NH2又は COOHを表す。 q2は 1〜5 (好ましくは 2〜3 ) の整数を表す。 〕
で示される基であることが好ましい。
一般式 (1)で示されるポリマーの具体的な製造方法としては、 例えば、 末端に ジスルフイ ド基を介してアミノ基を有する PEGセグメント誘導体を用いて、 そ のァミノ末端に、 ]3 -ベンジル- L-ァスパルテート (BLA) 及び N E -Z-L-リシン 等の保護アミノ酸の N-カルボン酸無水物 (NCA) を重合させてブロックコポリ マーを合成し、 その後、 各ブロック部分の側鎖が前述したカチオン性基を有する 側鎖となるように、 ジエチレントリアミン (DET) 等で置換又は変換する方法 が挙げられる。
(2) 核酸
本発明の PICにおいて、 コア部分の構成成分となる核酸としては、 限定はされ ず、 遺伝子治療等に用い得る各種 DNA及び RNA、 又は PNA (ペプチド核酸) 挙げられるが、 プラスミ ド DNA、 アンチセンスオリゴ DNA、 及ぴ siRNA等が好 ましく挙げられる。
核酸分子はポリア二オンとなるため、 上述したブロックコポリマーのポリカチ オン部分の側鎖と静電的相互作用により結合することができる。
なお本発明においては、 必要に応じ、 上記核酸と共に、 生理活性タンパク質や 各種べプチドなど、 細胞内で機能発現する様々な物質をコア部分に含有させるこ ともできる。
また、 本発明の PICの他の一態様においては、 コア部分の構成成分として、 高 分子量又は低分子量の 「ァニオン性物質」 を用いることができ、 例えば、 ぺプチ ドホルモン、 タンパク質、 酵素及び核酸 (DNA、 RNA又は PNA) 等の高分子物 質、 あるいは分子内に荷電性官能基を有する低分子物質 (水溶性化合物) 等が挙 げられる。 なお、 当該ァニオン性物質としては、 複数の異なる帯電状態の官能基 (ァニオン性基及びカチオン性基) を有する分子について、 pHを変化させるこ とにより分子全体としての帯電状態をァニオン性に変化させることができるもの も含む。 これらァニオン性物質は、 1種のみ用いてもよいし 2種以上を併用して もよく、 限定はされない。
(3) ポリイオンコンプレックス (PIC)
本発明の PICは、 核酸と、 上述したブロックコポリマー中の一部 (ポリカチォ ン部分) とが相互作用してコア部分を形成し、 当該ブロックコポリマー中の他の 部分 (PEG部分を含む部分) がコア部分の周囲にシェル部分を形成したような 状態の、 コア-シェル型のミセル状複合体ということができる (図 1参照) 。
本発明の PICは、 例えば、 核酸とブロックコポリマーとを任意のバッファー ( 例えば Trisバッファ一等) 中で混合することにより容易に調製することができる。 ブロックコポリマーと核酸との混合比は、 限定はされないが、 例えば、 ブロッ クコポリマー中のカチオン性基 (例えばアミノ基) の総数 (N) と、 核酸中のリ ン酸基の総数 (P) との比 (N/P比) 力 1.5〜60であることが好ましく、 より好 ましくは 1.5〜32、 さらに好ましくは 2〜8である。 特に、 ブロックコポリマーが 前記一般式 (1)のコポリマーである場合は、 N/P比は、 限定はされないが、 1.5〜 32であることが好ましく、 より好ましくは 1.5〜8であり、 さらに好ましくは 2〜 8、 特に好ましくは 4〜6である (この場合の Nは、 ポリカチオン部分の側鎖に含 まれる 1級ァミンと 2級ァミンの合計数である。 ) 。 N/P比が上記範囲のときは、 遊離のポリマーが存在せず、 in oでの高い発現効率が得られる等の点で好ま しい。 なお、 上記カチオン性基 (N) は、 内包する核酸中のリン酸基と静電的に 相互作用してイオン結合を形成することができる基を意味する。
本発明の PICの大きさは、 限定はされないが、 例えば、 動的光散乱測定法 ( DLS) による粒径が 30〜: L50nmであることが好ましく、 より好ましくは 50〜 lOOnmである。
3 . 核酸送達デバイス
本発明においては、 上述したポリイオンコンプレックス (PIC) を含む核酸送 達デバイスが提供される。 本発明の核酸送達デバイスは、 細胞内外の酸化還元環 境の変化を利用し、 PICのコア部分に内包した所望の核酸を、 標的細胞内に効率 的に導入する手段として使用できる。
具体的には、 所望の核酸を内包した PICを含む溶液を被験動物に投与して、 体 内の標的細胞に取り込ませる。 その後、 細胞内に取り込まれた PICがエンドソー ムから細胞質に移行すると、 細胞質内の還元的環境に応答して、 ブロックコポリ マー中のジスルフィ ド結合が開裂し、 PEG部分が分離する。 その結果、 PICに内 包された核酸と細胞内に存在するポリア二オンとの置換が促進され、 PICが解離 することにより、 所望の核酸を細胞質内に放出することができる。
本発明の核酸送達デバイスは、 ヒ ト、 マウス、 ラット、 ゥサギ、 ブタ、 ィヌ、 ネコ等の各種動物に適用することができ、 限定はされない。 被験動物への投与方 法は、 通常、 点滴静注などの非経口用法が採用され、 投与量、 投与回数及び投与 期間などの各条件は、 被験動物の種類及び状態に合わせて適宜設定することがで さる。
本発明の核酸送達デバイスは、 各種疾患の原因となる細胞に所望の核酸を導入 する治療 (遺伝子治療) に用いることができる。 よって本発明は、 前述した PIC を含む医薬組成物、 及び、 前述した PICを用いる各種疾患の治療方法 (特に遺伝 子治療方法) を提供することもできる。 なお、 投与の方法及び条件は前記と同様 である。
上記医薬組成物については、 薬剤製造上一般に用いられる賦形材、 充填材、 増 量剤、 結合剤、 湿潤剤、 崩壊剤、 潤滑剤、 界面活性剤、 分散剤、 緩衝剤、 保存剤、 溶解補助剤、 防腐剤、 矯味矯臭剤、 無痛化剤、 安定化剤及び等張化剤等を適宜選 択して使用し、 常法により調製することができる。 また、 医薬組成物の形態は、 通常、 静脈内注射剤 (点滴を含む) が採用され、 例えば、 単位投与量アンプル又 は多投与量容器の状態等で提供される。
上記医薬組成物及び治療方法は、 例えば癌に対して有効に適用される。
4 . 核酸送達用キット
本発明の核酸送達用キットは、 前記特定のブロックコポリマーを含むことを特 徴とする。 当該キットは、 癌細胞等の各種標的細胞に対する遺伝子治療などに好 ましく用いることができる。
本発明のキットにおいて、 ブロックコポリマーの保存状態は、 限定はされず、 その安定性 (保存性) 及び使用容易性等を考慮して溶液状又は粉末状等の状態を 選択できる。
本発明のキットは、 前記特定のブロックコポリマー以外に他の構成要素を含ん でいてもよい。 他の構成要素としては、 例えば、 各種バッファー、 細胞内に導入 する各種核酸 (プラスミ ド DNA、 アンチセンスオリゴ DNA、 siRNA等) 、 溶解 用バッファー、 各種タンパク質及び使用説明書 (使用マニュアル) 等を挙げるこ とができる。
本発明のキットは、 標的細胞内に導入する所望の核酸をコア部分としたポリィ オンコンプレックス (PIC) を調製するために使用され、 調製した PICは、 標 的細胞への核酸送達デバイスとして有効に用いることができる。 以下に、 実施例を挙げて本発明をより具体的に説明するが、 本発明はこれらに 限定されるものではない。 〔実施例 1〕
くポリイオンコンプレックス (PIC) の調製〉
(1) ブロックコポリマーの合成
下記スキーム 1に示す反応を経て、 ポリエチレングリコール (PEG) とポリ カチオンとがジスルフィ ド結合したブロ ック コポリ マー ( PEG- SS- P(Asp(DET))) を得た。 スキーム 1に示す各反応ステップ、 すなわち PEG- SS- NH2の合成、 PEG- SS- PBLAの合成、 及び PEG- SS_P(Asp(DET))の合成につい て、 以下に具体的に説明する。 スキーム 1
Figure imgf000016_0001
PEG^S-PBLA
Figure imgf000016_0002
Detvlene trianine (DEJ
アミノリシス
Figure imgf000016_0003
PEG S-P(/^sp(DET)) (1-1) PEG-SS-NH2の合成
予め、 PEG (重合度 (n)=227) の片末端にチオール基を導入した PEG セグメ ント 「PEG- SH (Mn=10,227)」 を、 日本油脂 (株) より購入した。
この PEG - SH lgと 2- aminoethanethiol 0.77g (100倍量)を MeOH lOOmL に溶解させ、 室温で 13日間攪拌 (4, 6, 8, 13日後に GPC測定) して反応させた。 得られた反応物を、 MeOH に対して透析後、 イオン交換カラムクロマトグラフ ィ一により精製し、 「PEG_SS- NH2」 を得た。 なお、 攪拌開始後、 4, 6, 8, 13 日後、 透析後、 イオン交換精製後に、 一部サンプリングして GPC測定を行った。 図 2に、 各 GPC チャートをまとめて示す。 経時的にみると、 PEG の二量体 が一旦増加した後、 減少していることから、 反応初期は PEG同士で S-S結合し て二量体を形成した後、 徐々に 2- aminoethantiol と置き換わっていったものと 考えられる。 攪拌開始から 8日後には、 上記二量体はほとんど認められなくなつ たため、 実質的に 8日で反応は終了したものと考えられる。 また、 反応後のメタ ノール透析とイオン交換で S - S 結合の交換が起こる恐れがあつたが、 今回の GPC結果ではそれがほとんどないことが確かめられた。
PEG-SS-NH2の収率は 57% (0.57 g)であった。
図 3に示す NMRスぺク トノレより、 アミノエタンチオールの導入率は 93 % となり、 定量的な導入が確認された。 (1-2) PEG-SS-PBLAの合成
PEG - SS-NH2 300mg を CH2C12 4.5mL に溶解させ、 CH2C12/DMF(10 : 1) 11.5mL iこ溶解 し た β -benzyl-L-aspartate-N-carboxy anhydride ( BLA- NCA) 859mg を添加した後、 35°Cで 2 日間攪拌した。 IR により、 BLA-NCA に由来するピークの消失から反応が終了したことを確認した後、 へキサン/酢酸 ェチル (6 :4) 200mL に再沈し、 吸引ろ過し、 減圧乾燥により精製して、 「PEG_ SS- PBLA」 を得た。
図 4に示す 1 H NMRスぺク トノレにより、 ポリ BLA (PBLA) に由来するピー クが認められることから、 BLA-NCA の重合が進行したことが確認された。
PEGの主鎖のピーク b を基準にして、 PBLA部分の側鎖のベンゼン環のピーク f の積分値を比較することにより、 PBLA部分の重合度 (m) は 100 と算出され た。 PEG- SS- PBLAの収量は 910mgであった。
(1-3) PEG- SS- P(Asp(DET))の合成
得られた PEG- SS- PBLAの PBLA部分の側鎖に diethylenetriamine (DET) を導入して (アミノリシス反応) ポリカチオンとした。 なお、 S - S 結合はアル カリに弱く、 アミノ リシス反応においては過剰のァミンが存在するため、 S- S 結合の交換を防ぐことに留意しつつ DETを導入する必要がある。
具体的には、 PEG- SS - PBLA 40mg に N,N-ジメチルホルムアミ ド (DMF) 2mLを加えて攪拌し、 50倍量の DET 0.73mLを添加して、 さらに 3分間室温 で攪拌した。 攪拌後 5% AcOHaq 15mLに滴下し、 最後に 0.01N HC1に対して 透析後、 凍結乾燥により回収した。
図 5に示す GPCチヤートから単峰性のピークが確認されたことにより、 S-S結 合の切断や交換は起きなかったと考えられる。
図 6に示す1 H NMRスペク トルから、 DET由来のピークが認められ、 さらに ピーク cを基準としたピーク f との積分比より DETの定量的導入も確認された。 このようにして、 PEGと、 ポリカチオン (ァスパラギン骨格にエチレンジァ ンミンュニットが結合したアミノ酸のポリマー) とが S-S結合した目的のブロッ クコポリマ一 「 PEG-SS- P(Asp(DET))」 が得られた。 なお、 前記のとおり、 PEG部分の重合度 (n) は 227、 ポリカチオン部分の重合度 (m) は 100であった。
(2) 使用する核酸
細胞内送達用の核酸としては、 レポーター遺伝子であるルシフェラーゼ発現プ ラスミ ド (プロメガ社製, 製品名 : pGL3 ;以下 「pDNA」 と言う) を使用した。
(3) PICの調製
10mMトリス緩衝液 (pH7.4) 中で、 pDNAと PEG- SS- P(Asp(DET))とを混合 することにより、 pDNAをコア部分として内包する PICを調製した。 具体的には、 lOmM Trisバッファーに溶解させた pDNA (濃度: 50 /i g/mL) 100 Lに対して、 同様のバッファー 50 μ Lに溶解させた PEG - SS-P(Asp(DET))を添加することに より、 PICを含む溶液を得た。
なお、 PICとしては、 PEG-SS-P(Asp(DET))の溶解量を適宜調整して、 N/P比 (下記式を参照) 力 「0, 1, 1.5, 2, 2.5, 3, 4, 8, 16, 32」 であるものを、 それぞ れ個別に調製した。 層比 =
〔ポリカチオン部分の側鎖のァミノ基の総数 (1級ァミンと 2級ァミンの合計)〕 / 〔pDNAのリン酸基の総数〕
(4) PIC形成の確認
上記 (3)で得られた溶液中に PICが形成されているかどうかを、 ァガロースゲ ル電気泳動とェチジゥムプロマイ ドアッセィを利用して評価した。
上記 (3)で得られた溶液にローデイングバッファーを加え、 ァガロースゲル電 気泳動を行った。 その結果を図 7に示す。 N/P= lまではフリーの pDNAのバン ドが、 N/P=1.5 からはフリーの pDNAのバンドが消失したことから、 PIC が形 成されたと考えられる。
また、 上記 (3)で得られた溶液にェチジゥムブ口マイ ド (EtBr)を添加した後、 蛍光を測定した結果を図 8に示す。 比較のため、 上記 (3)において、 PEG-SS- P(Asp(DET))の代わり に、 S- S 結合の無いブロ ック コポリ マー 「 PEG - P(Asp(DET))j 又は PEG の無いポリマー(ホモポリマー) 「P(Asp(DET))」 (下 記一般式参照) を使用して得られた溶液に関する結果も併せて示した。 N/P=2 あたりから蛍光の減少がほぼ一定値に達したことから、 そのあたりで PIC の形 成が完了したと考えられる。 PIC 形成の条件では、 DET の 1級ァミンの部分だ けプロ トン化していると考えられるので、 N/P=2 はブロックコポリマーのポリ カチオンの電荷と pDNA のァニオンの電荷がちょうど釣り合う点であると言え る。
Figure imgf000020_0001
Figure imgf000020_0002
ポリマー)
Figure imgf000020_0003
(5) 粒径の測定
PICの粒径を動的光散乱測定法 (DLS) により測定した。 その結果を図 9に示 す。 PEG- SS- P(Asp(DET))を用いた PICの粒径は、 N/P比に関わらず約 80nmで あった (PEG - P(Asp(DET))を用いた PICも同様) 。 これに対し、 P(Asp(DET)) を用いた PICの粒径は、 N/P=2前後において急激に大きくなつたことから、 電荷 の中和により凝集することが示された。 この結果より、 PEG - SS- P(Asp(DET)) を用いた PICは、 最外殻に位置する PEGの立体反発効果により凝集が抑制された と言える。
(6) ゼータ電位の測定
PICのゼータ電位を測定した。 但し、 PEG-SS- P(Asp(DET))を用いた PICにつ いては、 測定後、 還元剤のジチオスレィ トール (DTT) 25mMを添加して、 再度ゼ ータ電位を測定した。 その結果を図 10に示す。 PEG-SS_P(Asp(DET))や PEG- P(Asp(DET)を用いた PIC (PEG有り) は、 P(Asp(DET))を用いた PIC (PEG無 し) に比べて、 高い N/P比でも 0に近いゼータ電位を示したことから、 PEGによ る電荷の遮蔽効果が示された。 しかしながら、 PEG-SS-P(Asp(DET))を用いた PICに上記 DTTを添加した後は、 P(Asp(DET))を用いた PICのゼータ電位に近づ いたことから、 還元環境下では PEG- SS- P(Asp(DET))の S-S結合が開裂し PEG が分離することが示された。 これらの結果より、 PEG-SS-P(Asp(DET))を用い た PICは、 還元環境に応答して PEGが分離する (ひいては内包した核酸を放出す る) インテリジェントキャリアであると言える。
〔実施例 2〕
く遺伝子発現効率の評価〉
24 ゥエルプレート上に HeLa細胞 (40,000 cells/well)を播き、 24時間インキ ュベーシヨンした。 次いで、 実施例 1で得られた 「PEG-SS- P(Asp(DET))を用 いた PIC」 を、 pDNAが 1 ゥエル当たり となる量で添カ卩し、 さらに 24時 間インキュベーションして、 HeLa 細胞内への pDNA のトランスフエクシヨン を行った。 その後、 pDNA の遺伝子発現効率をルシフェラーゼアツセィにより 評価した (N=4, mean ± SE) 。 遺伝子発現量は Relative Light Unit (RLU)/mg タンパク量の単位で得られる。 なお、 PEG - SS- P(Asp(DET))を用いた PIC の代 わりに、 「 PEG- P(Asp(DET)を用いた PIC」 又は 「 P(Asp(DET))を用いた PICJ を添加した場合についても同様の評価を行った。 上記ァッセィの結果を図 11に示す。 「PEG-SS_P(Asp(DET))を用いた PIC」 は、 N/P=8以上では、 「PEG- P(Asp(DET)を用いた PIC」 (S-S結合無し) より 1〜2桁高い値となり、 「P(Asp(DET))を用いた PIC」 とほぼ同程度の遺伝子発現 効率を示し、 さらに N/P=4では、 「P(Asp(DET))を用いた P ;」 との比較でも 1 桁高い値となり優れた遺伝子発現効率を示した。 以上のように、 「PEG-SS- P(Asp(DET))を用いた PIC」 は、 細胞内の還元環境下で開裂し得る S-S結合の効 果により、 比較的低い N/P比であっても'、 S-S結合がないものより格段に高い遺 伝子発現効率を示したことから、 極めて有用な環境応答性の遺伝子ベクターであ ると言 る。 産業上の利用可能性
本発明によれば、 標的細胞に対して極めて高い遺伝子発現効率を発揮し得るポ リイオンコンプレックスを提供することができる。 本発明のポリイオンコンプレ ックスは、 標的細胞に取り込まれる前 (血中など) は、 核酸を内包した状態で非 常に優れた構造安定性を示し、 細胞 (細胞質) に取り込まれた後は、 その構造安 定性を崩して内包していた核酸をスムーズに放出する、 ィンテリジヱント遺伝子 ベクターとして極めて有用である。
また本発明によれば、 上記ポリイオンコンプレックスを用いた、 細胞内への核 酸送達デバイス及び核酸送達用キットを提供することもできる。

Claims

請 求 の 範 囲
たブロックコポリマーと、 核酸とを含むことを特徴とする、 ポリイオンコン プレックス。
前記ポリカチオンが、 側鎖にカチオン性基を有するポリペプチドである、 請 求項 1記載のポリイオンコンプレックス。
前記ブロックコポリマーが下記一般式 (1)で示されるものである、 請求項 1 又は 2記載のポリイオンコンプレックス。
Figure imgf000023_0001
〔式中、 Ri及び R2は、 それぞれ独立して、 水素原子、 又は置換されていても よい炭素数 1〜: 12の直鎖状若しくは分枝状のアルキル基を表し、
R3は、 一級アミンを有するァミン化合物由来の残基を表し、
は、 NH、 CO、 下記一般式 (4):
- (CH2)pl-NH- (4)
(式中、 piは 1〜5の整数を表す。 )
で示される基、 又は下記一般式 (5):
Figure imgf000023_0002
(式中、 L2aは、 OCO、 OCONH、 NHCO、 NHCOO、 NHCONH、 CONH 又は COOを表し、 L3aは、 NH又は COを表す。 qlは 1〜5の整数を表す。 ) で示される基を表し、
mlは 30〜: 150の整数を表し、 m2は 1〜5の整数を表し、 nは 100〜400の整 数を表す。 〕
前記ポリマー中の- R3基が、 下記一般式 (2) : -NH-(CH2)1-X1 (2)
(式中、 X1は、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥ ム塩由来のァミン化合物残基を表し、 rは 0〜5の整数を表す。 )
で示される基、 又は下記一般式 (3) :
- [NH-(CH2)S] t -X2 (3)
(式中、 X2は、 一級、 二級若しくは三級アミン化合物又は四級アンモニゥ ム塩由来のァミン化合物残基を表す。 s及び tは、 それぞれ独立し、 かつ 〔 NH-(CH2)S] ユニット間で独立して、 sは 1〜5の整数を表し、 tは 2〜5の整 数を表す。 )
で示される基を表す、 請求項 3記載のポリイオンコンプレックス。
前記 R3が、 -NH-NH2 又は - NH- (CH2)2_NH- (CH2)2-NH2 である、 請求項 4に記載のポリィオンコンプレックス。
前記ブロックコポリマー中のポリ力チオン部分と前記核酸とが静電的相互作 用により結合したものである、 請求項 1 〜 5のいずれか 1項に記載のポリイ 才ンコンプレックス。
前記核酸と前記ブロックコポリマー中のポリカチオン部分とがコア部分を形 成し、 前記プロックコポリマー中のポリエチレンダリコールを含む部分が前 記コア部分の周囲にシェル部分を形成したものである、 請求項 1 〜 6のいず れか 1項に記載のポリイオンコンプレックス。
請求項 1 〜 7のいずれか 1項に記載のポリイオンコンプレックスを含むこと を特徴とする、 細胞内への核酸送達デバイス。
ポリエチレングリコール及びポリカチオンがジスルフィ ド基を介して結合し たブロックコポリマーを含む、 細胞内への核酸送達用キット。
. ポリエチレングリコール及びポリカチオンがジスルフィ ド基を介して結合 したブロックコポリマー。
. 下記一般式 (1)で示されるものである、 請求項 1 0記載のブロックコポリ マー。
Figure imgf000025_0001
〔式中、 R1及び R2は、 それぞれ独立して、 水素原子、 又は置換されていても よい炭素数 1〜: 12の直鎖状若しくは分枝状のアルキル基を表し、
R3は、 一級アミンを有するァミン化合物由来の残基を表し、
1^は、 NH、 CO、 下記一般式 (4) :
Figure imgf000025_0002
(式中、 piは 1〜5の整数を表す。 )
で示される基、 又は下記一般式 (5) :
-L2a-(CH2)ql-L3a- (5)
(式中、 L2aは、 OCO、 OCONH、 NHCO、 NHC00、 NHCONH、 CONH 又は COOを表し、 L3aは、 NH又は COを表す。 qlは 1〜5の整数を表す。 ) で示される基を表し、
mlは 30〜: 150の整数を表し、 m2は 1〜5の整数を表し、 nは 100〜400の整 数を表す。 〕
PCT/JP2006/317920 2006-03-01 2006-09-04 核酸内包高分子ミセル複合体 WO2007099660A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502645A JP5277439B2 (ja) 2006-03-01 2006-09-04 核酸内包高分子ミセル複合体
US12/281,124 US8592385B2 (en) 2006-03-01 2006-09-04 Polymer micelle complex including nucleic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054332 2006-03-01
JP2006-054332 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007099660A1 true WO2007099660A1 (ja) 2007-09-07

Family

ID=38458782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317920 WO2007099660A1 (ja) 2006-03-01 2006-09-04 核酸内包高分子ミセル複合体

Country Status (3)

Country Link
US (1) US8592385B2 (ja)
JP (1) JP5277439B2 (ja)
WO (1) WO2007099660A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133968A1 (ja) 2008-04-30 2009-11-05 国立大学法人東京大学 電荷変換型三元系ポリプレックス
WO2010093036A1 (ja) 2009-02-13 2010-08-19 国立大学法人東京大学 カチオン性のポリ(アミノ酸)およびその使用
WO2010131777A1 (ja) 2009-05-14 2010-11-18 国立大学法人東京大学 結晶性ポリオール微粒子及びその調製方法
WO2011002077A1 (ja) * 2009-07-02 2011-01-06 国立大学法人 東京大学 高分子ミセル内包TNF-α遺伝子治療剤
WO2011010691A1 (ja) * 2009-07-22 2011-01-27 国立大学法人東京大学 Phd2発現抑制物質搭載ポリイオンコンプレックス
WO2012091137A1 (ja) * 2010-12-28 2012-07-05 国立大学法人 東京大学 TNF-α、CD40L及びGM-CSF併用遺伝子治療剤
WO2012096399A1 (ja) 2011-01-14 2012-07-19 国立大学法人東京大学 粒子組成物および該粒子組成物を用いた医薬組成物
JP2014508153A (ja) * 2011-03-02 2014-04-03 キュアバック ゲーエムベーハー 高齢患者におけるワクチン接種
JP2014508152A (ja) * 2011-02-09 2014-04-03 キュアバック ゲーエムベーハー 新生児及び乳幼児におけるワクチン接種
US8853167B2 (en) 2010-02-23 2014-10-07 Nanocarrier Co., Ltd. Short-chain cationic polyamino acid and use thereof
WO2015121924A1 (ja) * 2014-02-12 2015-08-20 一般社団法人医療産業イノベーション機構 mRNA送達用組成物
WO2015133524A1 (ja) * 2014-03-07 2015-09-11 学校法人東京理科大学 細胞内送達用高分子担体
WO2017002979A1 (ja) * 2015-07-02 2017-01-05 国立大学法人 東京大学 薬剤送達用キャリア及びこれを含む組成物
JP2018188642A (ja) * 2008-11-25 2018-11-29 エコール ポリテクニク フェデラル ド ローザンヌ(エーペーエフエル) ブロックコポリマーおよびその使用
WO2020116635A1 (ja) 2018-12-07 2020-06-11 国立大学法人 東京大学 輸送担体を用いた環状化合物の送達
US11020418B2 (en) 2012-04-27 2021-06-01 Nanocarrier Co., Ltd. Unit structure-type pharmaceutical composition for nucleic acid delivery
US11066665B2 (en) 2015-11-19 2021-07-20 Public University Corporation Nagoya City University Antitumor drug delivery formulation
US11324835B2 (en) 2017-08-31 2022-05-10 Kawasaki Institute Of Industrial Promotion Nucleic acid-loaded unit polyion complex
WO2023243606A1 (ja) * 2022-06-13 2023-12-21 国立大学法人 東京大学 核酸とカチオン性ポリマーとのポリイオンコンプレックスであって、正の表面電位を有し、核酸を脳組織に送達することができるポリイオンコンプレックス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2804815C (en) * 2010-07-09 2016-06-07 The University Of Tokyo Nucleic acid delivery composition and carrier composition, pharmaceutical composition using the same, and method for nucleic acid delivery
WO2012142410A2 (en) * 2011-04-15 2012-10-18 The Regents Of The University Of California Redox responsive polymeric nanocapsules for protein delivery
WO2014078399A1 (en) * 2012-11-13 2014-05-22 Baylor College Of Medicine Multi-arm biodegradable polymers for nucleic acid delivery
JP2019069933A (ja) * 2017-10-05 2019-05-09 公益財団法人川崎市産業振興財団 体内における薬物動態を制御する組成物
US10463746B2 (en) * 2017-11-09 2019-11-05 International Business Machines Corporation Macromolecular chemotherapeutics
JP7352958B2 (ja) * 2018-02-01 2023-09-29 国立大学法人 東京大学 核酸送達用ポリマー化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078084A1 (ja) * 2004-02-13 2005-08-25 Toudai Tlo, Ltd. 2本鎖オリゴ核酸を担持したポリイオンコンプレックスおよびその製造法とそれを含む医薬組成物
EP1621569A1 (en) * 2003-05-08 2006-02-01 Japan Science and Technology Agency Polyethylene glycol/polycation block copolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT852243E (pt) 1995-04-14 2003-03-31 Kazunori Kataoka Polioxido de etileno tendo um residuo de um sacarideo numa das extremidades e um grupo funcional diferente na outra extremidade e processo para a producao do mesmo
AU5346896A (en) 1995-04-19 1996-11-07 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
SI9620107A (sl) 1995-08-10 1998-10-31 Kazunori Kataoka Blok polimer, ki ima funkcionalne skupine na obeh svojih koncih

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621569A1 (en) * 2003-05-08 2006-02-01 Japan Science and Technology Agency Polyethylene glycol/polycation block copolymer
WO2005078084A1 (ja) * 2004-02-13 2005-08-25 Toudai Tlo, Ltd. 2本鎖オリゴ核酸を担持したポリイオンコンプレックスおよびその製造法とそれを含む医薬組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAE S. ET AL.: "Shusa ni Disulfide Ketsugo o Yusuru Polyethylene Glycol - Polycation Block Kyojugotai no Gosei to Idenshi Vector eno Tenkai (Synthesis of Novel Poly (ethylene glycol)-Polycation Block Copolymer Possessing Disulfide Bond in the Main Chain: Application....)", POLYMER PREPRINTS, JAPAN, vol. 54, no. 1, 2005, pages 2203 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133968A1 (ja) 2008-04-30 2009-11-05 国立大学法人東京大学 電荷変換型三元系ポリプレックス
JP2018188642A (ja) * 2008-11-25 2018-11-29 エコール ポリテクニク フェデラル ド ローザンヌ(エーペーエフエル) ブロックコポリマーおよびその使用
WO2010093036A1 (ja) 2009-02-13 2010-08-19 国立大学法人東京大学 カチオン性のポリ(アミノ酸)およびその使用
JP4582821B2 (ja) * 2009-02-13 2010-11-17 国立大学法人 東京大学 カチオン性のポリ(アミノ酸)およびその使用
US8546487B2 (en) 2009-02-13 2013-10-01 The University Of Tokyo Cationic poly (amino acids) and uses thereof
JPWO2010093036A1 (ja) * 2009-02-13 2012-08-16 国立大学法人 東京大学 カチオン性のポリ(アミノ酸)およびその使用
WO2010131777A1 (ja) 2009-05-14 2010-11-18 国立大学法人東京大学 結晶性ポリオール微粒子及びその調製方法
WO2011002077A1 (ja) * 2009-07-02 2011-01-06 国立大学法人 東京大学 高分子ミセル内包TNF-α遺伝子治療剤
JP2011026219A (ja) * 2009-07-22 2011-02-10 Univ Of Tokyo Phd2発現抑制物質搭載ポリイオンコンプレックス
US8791086B2 (en) 2009-07-22 2014-07-29 The University Of Tokyo Polyion complex comprising PHD2 expression inhibiting substance
WO2011010691A1 (ja) * 2009-07-22 2011-01-27 国立大学法人東京大学 Phd2発現抑制物質搭載ポリイオンコンプレックス
US8853167B2 (en) 2010-02-23 2014-10-07 Nanocarrier Co., Ltd. Short-chain cationic polyamino acid and use thereof
JP2012140369A (ja) * 2010-12-28 2012-07-26 Univ Of Tokyo TNF−α、CD40L及びGM−CSF併用遺伝子治療剤
WO2012091137A1 (ja) * 2010-12-28 2012-07-05 国立大学法人 東京大学 TNF-α、CD40L及びGM-CSF併用遺伝子治療剤
US9278075B2 (en) 2011-01-14 2016-03-08 Nanocarrier Co., Ltd. Particle composition and pharmaceutical composition using particle composition
WO2012096399A1 (ja) 2011-01-14 2012-07-19 国立大学法人東京大学 粒子組成物および該粒子組成物を用いた医薬組成物
JP2014508152A (ja) * 2011-02-09 2014-04-03 キュアバック ゲーエムベーハー 新生児及び乳幼児におけるワクチン接種
US9623095B2 (en) 2011-03-02 2017-04-18 Curevac Ag Vaccination in newborns and infants
JP2014508153A (ja) * 2011-03-02 2014-04-03 キュアバック ゲーエムベーハー 高齢患者におけるワクチン接種
US11672856B2 (en) 2011-03-02 2023-06-13 CureVac SE Vaccination in newborns and infants
US10596252B2 (en) 2011-03-02 2020-03-24 Curevac Ag Vaccination in newborns and infants
JP2017149743A (ja) * 2011-03-02 2017-08-31 キュアバック アーゲー 高齢患者におけるワクチン接種
JP2017149744A (ja) * 2011-03-02 2017-08-31 キュアバック アーゲー 新生児及び乳幼児におけるワクチン接種
US10729761B2 (en) 2011-03-02 2020-08-04 Curevac Ag Vaccination in newborns and infants
US11975064B2 (en) 2011-03-02 2024-05-07 CureVac SE Vaccination with mRNA-coded antigens
US10172935B2 (en) 2011-03-02 2019-01-08 Curevac Ag Vaccination in newborns and infants
US12036277B2 (en) 2011-03-02 2024-07-16 CureVac SE Vaccination with mRNA-coded antigens
US11020418B2 (en) 2012-04-27 2021-06-01 Nanocarrier Co., Ltd. Unit structure-type pharmaceutical composition for nucleic acid delivery
US10232054B2 (en) 2014-02-12 2019-03-19 Accurna, Inc. Composition for mRNA delivery
JPWO2015121924A1 (ja) * 2014-02-12 2017-03-30 アキュルナ株式会社 mRNA送達用組成物
WO2015121924A1 (ja) * 2014-02-12 2015-08-20 一般社団法人医療産業イノベーション機構 mRNA送達用組成物
WO2015133524A1 (ja) * 2014-03-07 2015-09-11 学校法人東京理科大学 細胞内送達用高分子担体
JPWO2017002979A1 (ja) * 2015-07-02 2018-04-19 国立大学法人 東京大学 薬剤送達用キャリア及びこれを含む組成物
JP2021035972A (ja) * 2015-07-02 2021-03-04 国立大学法人 東京大学 薬剤送達用キャリア及びこれを含む組成物
WO2017002979A1 (ja) * 2015-07-02 2017-01-05 国立大学法人 東京大学 薬剤送達用キャリア及びこれを含む組成物
US11066665B2 (en) 2015-11-19 2021-07-20 Public University Corporation Nagoya City University Antitumor drug delivery formulation
US11324835B2 (en) 2017-08-31 2022-05-10 Kawasaki Institute Of Industrial Promotion Nucleic acid-loaded unit polyion complex
WO2020116635A1 (ja) 2018-12-07 2020-06-11 国立大学法人 東京大学 輸送担体を用いた環状化合物の送達
WO2023243606A1 (ja) * 2022-06-13 2023-12-21 国立大学法人 東京大学 核酸とカチオン性ポリマーとのポリイオンコンプレックスであって、正の表面電位を有し、核酸を脳組織に送達することができるポリイオンコンプレックス

Also Published As

Publication number Publication date
JPWO2007099660A1 (ja) 2009-07-16
US8592385B2 (en) 2013-11-26
JP5277439B2 (ja) 2013-08-28
US20090258416A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5277439B2 (ja) 核酸内包高分子ミセル複合体
JP5271715B2 (ja) ジスルフィド架橋高分子ミセルを用いた環境応答性siRNAキャリア
He et al. Combinatorial optimization of sequence-defined oligo (ethanamino) amides for folate receptor-targeted pDNA and siRNA delivery
JP5645186B2 (ja) 電荷変換型三元系ポリプレックス
US20060051315A1 (en) Polymers for delivering peptides and small molecules in vivo
WO2009113645A1 (ja) 非荷電性親水性ブロック及び側鎖の一部に疎水性基が導入されカチオン性のポリアミノ酸ブロックを含んでなる共重合体、その使用
WO2004099287A1 (ja) ポリエチレングリコール−ポリカチオンブロック共重合体
JPH07505639A (ja) 自己構築ポリヌクレオチド送達システム
JP2008519128A (ja) 遺伝子送達用の生分解性架橋カチオン性マルチブロックコポリマーおよびそれを製造する方法
JP2007504353A5 (ja)
JP2009502765A (ja) 新規なカルボシランデンドリマー、その調製方法及びその使用
JP2021035972A (ja) 薬剤送達用キャリア及びこれを含む組成物
Gao et al. Novel monodisperse PEGtide dendrons: design, fabrication, and evaluation of mannose receptor-mediated macrophage targeting
WO2010106700A1 (ja) タンパク質の電荷調節剤、及びタンパク質内包高分子ミセル複合体
Zavradashvili et al. Library of cationic polymers composed of polyamines and arginine as gene transfection agents
KR101445265B1 (ko) 히알루론산-핵산 접합체 및 이를 포함하는 핵산 전달용 조성물
JP5277440B2 (ja) 核酸内包高分子ミセル複合体
FR2928373A1 (fr) Polymere derive de la polyethylenimine lineaire pour le transfert de gene.
CN111214461A (zh) 糖靶向修饰siRNA纳米粒子的制备及应用
US20120269895A1 (en) Dendritic pic micelles with bioactive proteins
Tomich et al. Nonviral gene therapy: Peptiplexes
JP2022550901A (ja) 核酸治療薬のための腫瘍標的化ポリペプチドナノ粒子送達システム
JP2010526062A (ja) タンパク質を細胞に送達する方法
US20030175966A1 (en) Cationic sugar derivatives for gene transfer
WO2023136364A1 (ja) サイトカイン内包高分子ミセル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281124

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06797746

Country of ref document: EP

Kind code of ref document: A1