WO2007094139A1 - Sawフィルタ装置 - Google Patents

Sawフィルタ装置 Download PDF

Info

Publication number
WO2007094139A1
WO2007094139A1 PCT/JP2007/050020 JP2007050020W WO2007094139A1 WO 2007094139 A1 WO2007094139 A1 WO 2007094139A1 JP 2007050020 W JP2007050020 W JP 2007050020W WO 2007094139 A1 WO2007094139 A1 WO 2007094139A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
inductor
saw
filter device
trap
Prior art date
Application number
PCT/JP2007/050020
Other languages
English (en)
French (fr)
Inventor
Yasumasa Taniguchi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800014178A priority Critical patent/CN101356730B/zh
Priority to EP07706367.5A priority patent/EP1986320B1/en
Priority to JP2008500417A priority patent/JP4640502B2/ja
Publication of WO2007094139A1 publication Critical patent/WO2007094139A1/ja
Priority to US12/132,033 priority patent/US7626475B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • H03H9/6409SAW notch filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6493Side lobe suppression

Definitions

  • the present invention relates to a SAW filter device used as, for example, a band filter of a mobile phone, and more particularly to a SAW filter device having a configuration in which a plurality of 1-port SAW resonators are connected.
  • the surface acoustic wave filter described in Patent Document 1 is a 41 ° rotated Y-cut X-propagation LiNbO.
  • a series arm surface acoustic wave resonator composed of IDT electrodes on a substrate, an output electrode portion connected to one end of the series arm surface acoustic wave resonator, and a parallel arm elasticity whose one end is connected to the output electrode portion A surface wave resonator and a ground electrode connected to the other end of the parallel arm surface acoustic wave resonator;
  • the IDT electrode is formed of a metal film of an A1 alloy whose main component is A or A1.
  • the thickness of the metal film is in the range of 2.5% to 7.5% of the electrode period of the IDT electrode of the parallel arm surface acoustic wave resonator.
  • Non-Patent Document 1 Rayleigh waves and pseudo-waves propagating on a LiNbO substrate are described.
  • the electromechanical coupling coefficient of the surface acoustic wave shows a large value but the Rayleigh wave shows piezoelectricity.
  • the electromechanical coupling coefficient of the pseudo surface acoustic wave is smaller than that of 41 °, but the Rayleigh wave shows almost no piezoelectricity. It is described.
  • Patent Document 1 JP-A-9 121136
  • Non-Patent Document 1 Electronic Material Industries Association, “Surface wave devices and their applications”, published by Nikkan Kogyo Shimbun, page 17, and Figures 1-7 (published first edition on December 25, 1978)
  • Patent Document 1 41 ° rotation cut X propagation on a LiNbO substrate with the above specific film thickness I
  • the trap band can be widened, but in the pass band and in the pass band in the lower band than the trap band. There has been a problem that the insertion loss at the high band side end of the band becomes large.
  • Non-Patent Document 1 in a LiNbO substrate with a rotating Y-cut X propagation with a cut angular force of 1 ° to 60 °, the propagation speed ratio between the Rayleigh wave and the pseudo surface acoustic wave is 0. 8
  • An object of the present invention is to provide a SAW filter device in which a pass band is arranged on the low band side of the trap band in view of the current state of the prior art described above, in the pass band and on the high band side of the pass band.
  • An object of the present invention is to provide a SAW filter device that can reduce the insertion loss at the end and can widen the trap band.
  • a SAW filter device having a trap band and a pass band located on a lower side of the trap band, the ⁇ rotation Y-cut X propagation LiNbO substrate,
  • An IDT battery that is formed on a LiNbO substrate and consists of an alloy consisting mainly of A or A1.
  • a SAW filter device characterized by a normalized film thickness lOOhZ (%) of 2 to 4% and a duty ratio of 0.4 or less.
  • an input terminal an output terminal, A plurality of first inductors inserted in series arms connecting the input terminals, between the input terminal and the ground potential, between the output terminal and the ground potential, and between the plurality of first inductors and the ground potential.
  • the 1-port SAW resonator is connected to each of the two. In this case, the signal passes in the pass band and the frequency band lower than the pass band, the signal is sufficiently attenuated in the trap band, and spurious in the pass band can be effectively reduced.
  • a mounting substrate on which the filter chip is mounted is further provided, and the mounting substrate has one ground terminal and is connected to a ground potential of the filter chip.
  • the one-port SAW resonance is electrically connected to the ground terminal of the mounting board and is located between one of the input terminal and the output terminal and the ground potential.
  • the element is capacitive in the trap band and pass band, and its resonance frequency is higher than the anti-resonance frequency of the remaining one-port SAW resonator.
  • the SAW filter device can be reduced in size, and direct waves between the input and output can be reduced, and deterioration of attenuation in the trap band can be suppressed.
  • a first inductor inserted in a series arm connecting an input terminal and an output terminal, and both ends of the first inductor and a ground potential, respectively.
  • a trap circuit portion having a first resonator connected thereto, and a filter circuit provided at least between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion.
  • the signal can be passed in the pass band and the signal can be attenuated in the frequency band and the trap band lower than the pass band, and the spurious in the pass band of the filter can be effectively reduced.
  • a third inductor inserted in a series arm connecting an input terminal and an output terminal, and a first resonance connected in series to the third inductor
  • a filter circuit portion having a child, at least one first inductor inserted in the series arm, and a second resonance connected between one end of the first inductor and a ground potential.
  • a trap circuit portion having a third resonator connected between the other end of the first inductor and a ground potential, and the filter circuit portion and the trap circuit portion.
  • the passband has a first center frequency, and capacitive components of the first to third resonators and inductance components of the first and third inductors.
  • the second center frequency having the frequency characteristic of the filter is higher than the first center frequency
  • the first to third resonators are constituted by the one-port SAW resonator.
  • the signal can be passed in the pass band, and the signal can be attenuated in a frequency band lower than the pass band, for example, the VHF band, the trap band, and the higher frequency band than the trap band. Can be suppressed.
  • the inductor chip-type inductance component.
  • the inductor can be surface-mounted, and the SAW filter device can be downsized.
  • the inductor may be composed of other inductance components than chip-type inductance components.
  • the filter chip is a single LiNbO substrate.
  • the filter chip includes one LiNbO substrate.
  • a plurality of 1-port SAW resonators have ⁇ rotation Y cut X propagation so as to have a trap band and a pass band located on the lower side of the trap band.
  • An IDT electrode with an alloy strength consisting mainly of A or A1 is used on a LiNbO substrate.
  • the cut angle ⁇ force is 0 ° or more and 55 ° or less
  • the film thickness of the IDT electrode that is, the normalized film thickness is 2% or more and 4% or less, and the duty ratio is 0.4 or less. Therefore, as will be apparent from the description of the embodiments described later, it is possible to effectively reduce the insertion loss in the pass band and at the high band side end of the pass band, and further, the attenuation bandwidth in the trap band. It is possible to widen. Therefore, it is possible to provide a SAW filter device having a wide trap band and a low insertion loss pass band on the lower side of the trap band.
  • FIG. 1 is a circuit diagram of a SAW filter device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating the electrode structure on the lower surface from the upper surface side of the substrate schematically showing the electrode structure formed on the lower surface of the SAW filter chip used in the first embodiment. It is.
  • FIG. 3 is a plan view of a mounting board as a package material used in the first embodiment.
  • FIG. 4 is a schematic front cross-sectional view showing the structure of the SAW filter device of the first embodiment.
  • FIG. 5 is a plan view schematically showing a structure in which an external inductor is connected to a mounting board in the first embodiment.
  • Fig. 6 shows cut angles of 0 °, 1 °, 45 ° and 50 °.
  • (B) is the passband of SAW filter device using LiNbO substrate with ⁇ rotation Y cut X propagation when cut angle 0 is 55 °.
  • FIG. 7 is a diagram showing frequency characteristics on the high side of the passband when the standard thickness of the IDT electrode is 2% and 3% in the first embodiment.
  • FIG. 8 shows a cut angle 0 of 41 °, 45 °, 50 °, 55 °, 60 in the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the IDT electrode standard thickness lOOhZ ⁇ (%) and the electromechanical coupling coefficient ⁇ ⁇ ⁇ ⁇ in the W filter device.
  • FIG. 9 shows the attenuation frequency characteristics of the surface acoustic wave filter device of the first embodiment when ⁇ rotation ⁇ cut X propagation LiNbO substrate cut angles ⁇ are 50 ° and 55 °.
  • FIG. 1 A first figure.
  • FIG. 10 is a circuit diagram showing a circuit configuration of a SAW filter device according to a second embodiment of the present invention.
  • FIG. 11 shows the force of the LiNbO substrate in the SAW filter device of the second embodiment.
  • Fig. 3 is a diagram showing the attenuation frequency characteristics when the 3-t angle 0 force S41 °, 45 °, and 50 °, and (b) shows the attenuation frequency characteristics when the 0 force is 5 °.
  • FIG. 12 is a diagram showing frequency characteristics on the high side of the passband when the duty ratio of the IDT electrode is 0.3, 0.4, and 0.5 in the second embodiment.
  • FIG. 13 is a circuit diagram showing a circuit configuration of a SAW filter device according to a third embodiment of the present invention.
  • FIG. 14 is a plan view schematically showing the structure of a SAW filter device according to a modification of the present invention.
  • FIG. 15 (a) is a schematic partial cutaway front sectional view for explaining the inductor built in the circuit board in the SAW filter device shown in FIG. 14, and
  • FIG. FIG. 6 is a plan view schematically showing an inductance-constituting coiled conductor pattern. Explanation of symbols
  • FIG. 1 is a circuit diagram of a SAW filter device according to the first embodiment of the present invention.
  • the SAW filter device 1 of the present embodiment has a series arm connecting the input terminal IN and the output terminal OUT.
  • Inductors L11 to L13 are arranged in series with each other on this series arm.
  • a surface acoustic wave resonator P11 as a parallel arm resonator is disposed on a parallel arm connecting a connection point between the inductor L11 and the input terminal IN and the ground potential.
  • An elastic surface wave resonator P12 as a parallel arm resonator is arranged on the parallel arm connecting the connection point 2 between the inductors L11 and L12 and the ground potential.
  • a surface acoustic wave resonator P13 as a parallel arm resonator is disposed on the parallel arm between the connection point 3 between the inductors L12 and L13 and the ground potential.
  • a surface acoustic wave resonator P14 as a parallel arm resonator is disposed on the parallel arm between the connection point between the inductor L13 and the output terminal OUT and the ground potential.
  • the surface acoustic wave resonators P11 to P14 are all 1-port SAW resonators, and end portions connected to respective round potentials are commonly connected and connected to a common terminal 4.
  • An inductor La is inserted between the common terminal 4 and the ground potential.
  • SAW filter device 1 is a band rejection filter having a trap band and a pass band located on the lower side of the trap band.
  • the resonance frequency of the first surface acoustic wave resonator P11 and the resonance frequencies of the two second surface acoustic wave resonators P12 and P13 are substantially equal.
  • the resonance frequency of the third surface acoustic wave resonator P14 is higher than the anti-resonance frequency of the second surface acoustic wave resonators P12 and P13, and the third surface acoustic wave resonator P14 Capacitive in the passband.
  • an inductor La due to an electrical connection portion is generated between the common connection point 4 and the ground potential, and the impedance of the surface acoustic wave resonator P11 is reduced in the trap band.
  • a voltage is applied to the signal to generate a signal.
  • the impedance of the third surface acoustic wave resonator P14 is about 50 times larger than the impedance at the resonance frequency in the trap band. That is, since the third surface acoustic wave resonator P14 is capacitive in the pass band, the signal generated by V in the inductor La hardly flows to the output terminal OUT.
  • the surface acoustic wave resonator P14 is connected in parallel to the inductor L13 that not only exhibits capacitance in the trap band, but forms a parallel resonance circuit. Therefore, when the parallel resonance frequency of the parallel resonance circuit is within the trap band of the surface acoustic wave filter device 1, the impedance in the trap band can be increased, and accordingly, the impedance between the inductor La and the output terminal OUT can be increased. Thus, the influence of the direct wave can be more effectively suppressed.
  • FIG. 4 is a schematic front sectional view showing a specific structure of the SAW filter device 1 of the present embodiment.
  • FIG. 2 the electrode structural force formed on the lower surface of the filter chip 11 is shown in a schematic plan view with the piezoelectric substrate 12 being seen through.
  • a 55 ° Y-cut X-propagation LiNbO substrate is used as the piezoelectric substrate 12.
  • the electrode structure shown in FIG. 2 is made of A1. That is, the surface acoustic wave resonators P11 to P14 described above are formed by the electrode structure made of A1. Also, the electrode lands 12a to 12f connected only by the surface acoustic wave resonators P11 to P14 and the electrode lands 12a to 12f are connected to the surface acoustic wave resonators P11 to P14 to realize the circuit configuration shown in FIG. The electrode pattern is similarly formed.
  • the surface acoustic wave resonators P11 to P14 are schematically shown only at the positions where they are formed.
  • the IDT electrodes are composed of a pair of comb electrodes. And a pair of reflectors disposed on both sides of the IDT electrode in the surface wave propagation direction.
  • the electrode film thickness of the surface acoustic wave resonators P11 to P14 is 3% of the surface acoustic wave wavelength. That is, when the IDT electrode thickness is h and the surface acoustic wave wavelength is ⁇ , the IDT electrode standard thickness lOOh / ⁇ is 3%. The duty ratio in the IDT electrode is 0.3.
  • Metal bumps 13a to 13f are formed on the electrode lands 12a to 12f, respectively. Yes. That is, the metal bumps 13 a to 13 f are formed so as to protrude downward from the lower surface of the piezoelectric substrate 12.
  • the mounting substrate 14 shown in FIG. 3 also has an appropriate insulating material force such as an insulating ceramic such as alumina or a synthetic resin.
  • Electrode lands 14 a to 14 e are formed on the upper surface of the mounting substrate 14.
  • the electrode land 14a is an electrode land connected to the input terminal, and the electrode land 14e is connected to the output terminal.
  • the electrode land 14d is an electrode land connected to the ground potential, and the electrode lands 14b and 14c constitute terminals connected to inductors L11 to L13 not shown in FIG.
  • the inductors L11 to L13 shown in FIG. 1 are configured by inductance components different from the mounting board 14, as schematically shown in FIG.
  • an inductance component a chip-type inductance component that can be surface-mounted on a mounting board 14 or a circuit board can be suitably used.
  • the filter chip 11 is flip-chip bonded and mounted on the mounting substrate 14 using bumps 13a, 13c, 13e and the like. Then, by configuring the inductors LI 1 to L13 with the external inductance components shown in FIG. 5, the SAW filter device 1 of the above embodiment can be obtained.
  • the SAW filter device 1 of the present embodiment has a series arm resonator and a parallel arm in that it has a series arm connecting the input terminal IN and the output terminal OUT and a plurality of parallel arms connecting the series arm and the ground potential. It has a circuit configuration similar to a ladder-type bandpass filter with a resonator.
  • a band-stopping filter device such as the SAW filter device 1 is also desired to increase the bandwidth in the trap region, that is, the attenuation bandwidth corresponding to the pass bandwidth of the ladder-type band filter. By configuring as described in Patent Document 1, it is considered possible to increase the attenuation bandwidth in the band rejection filter.
  • the frequency range in which the spurious appears is a frequency range with a large amount of attenuation outside the passband, so that there were few problems.
  • the spurious appears in the passband existing on the lower side of the trap band.
  • the insertion loss tends to be greatly affected.
  • a Rayleigh wave is usually not attenuated, but is known as a surface wave. It is also known that the Rayleigh wave does not depend on the film thickness of the piezoelectric substrate or resonator electrode and the duty ratio of the IDT electrode.
  • the SAW filter device 1 can reduce or eliminate the spurious due to the Rayleigh wave. This will be described based on a more specific experimental example.
  • the electrode normalized film thickness is 3%
  • the duty ratio of the IDT electrode is 0.3
  • the electrode structure is formed by A1
  • the cut angle ⁇ is 41.
  • the spur becomes smaller as the force cut angle ⁇ is greater than 41 °, and spurious as large as 2. OdB is generated, and hardly occurs at 55 °.
  • the cut angle ⁇ force is 8 ° or more, the spurious will not occur at all.
  • the variation in attenuation in the passband is preferably 1. OdB or less. Therefore, if the spurious magnitude is in the range of 1. OdB or less, that is, the cut angle ⁇ force is in the range of 0 ° or more, the variation in attenuation within the passband should be 1. OdB or less. Can be desirable. Therefore, it is preferable that the Y-cut X-propagation LiNbO substrate is a Y-cut X-propagation LiNbO substrate with a cut angle of 50 ° or more. It is desirable to use a plate.
  • the same effect can be obtained if the force is 4% or less, where the ratio of the electrode film thickness to the surface wave wavelength is 3%.
  • FIG. 7 shows the characteristics of the SAW filter device according to the above embodiment in which the standard thickness of the electrode is 3%, and the IDT electrode thickness Z wavelength ratio (%).
  • FIG. 5 is a diagram showing frequency characteristics on the high side of the pass band of a SAW filter device configured in the same manner as in the embodiment except that is changed from 3% to 2%.
  • the broken line shows the result of the above embodiment
  • the solid line shows the result when the normalized film thickness of the IDT electrode is 2%. It can be seen that when the normalized thickness ratio of the IDT electrode is 2%, the insertion loss on the high passband side is slightly degraded. According to the experiment by the present inventor, it has been confirmed that when the normalized film thickness is less than 2%, the insertion loss in the passband tends to be further deteriorated. Therefore, it is desirable that the cut angle ⁇ is 50 ° or more and the standard thickness of the electrode is 2% or more and 4% or less.
  • FIG. 8 shows the case where the duty ratio of the IDT electrode is 0.3 and the cut angle ⁇ of the piezoelectric substrate is changed to 41 °, 45 °, 50 °, 55 °, 60 ° and 64 °.
  • FIG. 5 is a diagram showing a relationship between a standard thickness ratio (%) of an IDT electrode and an electromechanical coupling coefficient.
  • the electromechanical coupling coefficient is 12.5% to It can be 15%.
  • the electromechanical coupling coefficient K is desirably large, but if it is too large, it may be difficult to balance the steepness of the attenuation characteristic in the trap band and the attenuation. Therefore, since the electromechanical coupling coefficient is desirably about 15% or less, the balance between the steepness and the attenuation in the trap can be improved by setting the electromechanical coupling coefficient to 12.5 to 15% as described above. Possible and desirable. Therefore, the cut angle ⁇ must be in the range of 50 to 55 °, and the standard thickness of the IDT electrode must be in the range of 2% to 4%.
  • FIG. 9 shows the attenuation frequency characteristics of the SAW filter device 1 of the above embodiment, that is, the SAW filter device 1 using a rotating Y-cut X-propagation LiNbO substrate with a cut angle ⁇ force of 5 °.
  • the solid line shows the attenuation frequency characteristics of the SAW filter device with 0 ° cut angle and 0 force.
  • the circuit constants of the surface acoustic wave resonators P11 to P14 are as shown in Table 1 below.
  • fr represents the resonance frequency of the surface acoustic wave resonator.
  • the surface acoustic wave resonator has an equivalent circuit in which a series inductance Ll, a series capacitance C1, a series resistance R1, and a parallel capacitance CO are connected in parallel.
  • CO is the parallel capacitance in the equivalent circuit of the surface acoustic wave resonator
  • C1 is the series capacitance in the equivalent circuit
  • L1 is the series inductance in the equivalent circuit
  • R1 is the series resistance in the equivalent circuit.
  • the circuit constants of the surface acoustic wave resonators P11 to P14 are as shown in Table 2 below.
  • the standard thickness of the IDT electrode was 3%, and the duty ratio was 0.3.
  • the thick line A is a line indicating the standard value of the insertion loss in the pass band
  • the thick line B is a line indicating the standard value in the trap band, that is, the attenuation band.
  • the standard value of insertion loss is 2 dB or less at 470 to 770 MHz
  • the standard value of attenuation in the trap band indicated by the bold line B is from 830 to 845 MHz! /, 40 dB or more. .
  • the cut angle ⁇ force exceeds 5 °, the 40dB attenuation bandwidth will be smaller than 25MHz, and the frequency margin of attenuation bandwidth will be small. Therefore, the cut angle ⁇ needs to be 50 ° or more and 55 ° or less.
  • FIG. 10 is a circuit diagram showing a circuit configuration of the SAW filter device according to the second embodiment of the present invention.
  • the circuit configuration of the SAW filter device of the present invention is not limited to the circuit configuration of the first embodiment.
  • the first inductor L21 is connected to the series arm connecting the input terminal IN and the output terminal OUT.
  • first surface acoustic wave resonators P21 and P22 are connected as parallel arm resonators.
  • the first inductor L21 and the surface acoustic wave resonators P21 and P22 constitute a trap circuit portion.
  • filter circuit portions are provided between the trap circuit portion and the input terminal IN and between the trap circuit and the output terminal OUT, respectively.
  • One filter circuit portion includes a second surface acoustic wave resonator S21 as a series arm resonator inserted in series between the input terminal IN and the inductor L21, and a second surface acoustic wave resonator.
  • the S21 has a second inductor L22 connected between the end opposite to the input terminal IN and the ground potential.
  • the other filter circuit portion is connected between the trap circuit and the output terminal OUT. That is, the filter circuit portion includes the first inductor L21 and the output terminal.
  • the second surface acoustic wave resonator as a series arm resonator inserted in series between the child OUT
  • the resonance frequencies of the second surface acoustic wave resonators S 21 and S 22 are substantially matched with the high band side end of the pass band of the SAW filter device 21.
  • the signal can be passed through the pass band, and the frequency band and the trap band can be attenuated lower than the pass band.
  • the surface acoustic wave resonators S21, S22 and P21, P22 are composed of 1-port SAW resonators with IDT electrodes that also have an alloy force with A or A1 as the main component.
  • IDT electrode thickness h a normalized film thickness (hZ ⁇ ) X 100 (%) of 2 to 4% and the duty ratio to 0.4 or less, the Rayleigh wave spurious can be reduced. It can be effectively suppressed.
  • a passband having a wide stopband can be formed.
  • the parallel resonance of the surface acoustic wave resonators S21 and S22 that are series arm resonators and the series resonance of the elastic surface wave resonators P21 and ⁇ 22 as parallel arm resonators are used on the higher side than the passband. Attenuation characteristics can be obtained. Further, unlike the first embodiment, a large attenuation can be obtained even in the VHF frequency band, that is, in the frequency band lower than the pass band.
  • this embodiment can reduce spuriousness when the cut angle ⁇ , the normalized film thickness of the IDT electrode, and the duty ratio are within the above ranges.
  • Fig. 11 (a) shows the pass characteristic of SAW filter device 21 when the cutting angle is 0 force 1 °, 45 ° and 50 °, that is, the pass characteristic from 650 to 750 MHz
  • the pass characteristics in the case of ° are shown.
  • FIG. 12 is similar to the SAW filter device 21 of the second embodiment in which the duty ratio d of the IDT electrode is 0.3, except that the duty ratio d is 0.4.
  • SAW Fi The attenuation frequency characteristics of the SAW filter device constructed in the same manner as above are shown except that the filter device and the duty ratio d prepared for comparison are 0.5. Here, attenuation frequency characteristics on the high side of the pass band are shown.
  • a filter circuit portion including a surface acoustic wave resonator S21 or S22 and a second inductor L22 or L23 is provided in both the front and rear stages of the trap circuit portion.
  • V or only one of the filter circuit portions may be provided.
  • FIG. 13 is a circuit diagram of the SAW filter device according to the third embodiment of the present invention.
  • the trap circuit portion and the filter circuit portion are connected in series at the series arm connecting the input terminal IN and the output terminal OUT.
  • filter circuit portions 32 and 33 are connected to both the front and rear stages of the trap circuit portion.
  • the filter circuit portion 32 is inserted in the series arm connecting the input terminal IN and the output terminal OUT, and the third inductor L31 and the first surface acoustic wave as the series arm resonator connected in series with each other. And a resonator S31.
  • the filter circuit portion 33 also has a third inductor L32 inserted in the series arm and connected in series with each other, and a first surface acoustic wave resonator S32 as a series arm resonator. .
  • the trap circuit portion is configured in the same manner as the trap circuit portion in the second embodiment. That is, the trap circuit portion includes a first inductor L21 inserted in the series arm, and second and second parallel arm resonators connected to each parallel arm connecting both ends of the first inductor L21 and the ground potential. 3 surface acoustic wave resonators P21 and P22.
  • the SAW filter device 31 has a pass band having a first center frequency, and the trap band. Capacitive elements of the second and third surface acoustic wave resonators P21 and P22 in the region, capacitance components of the first surface acoustic wave resonators S31 and S32 in the filter circuit section, and the first and third inductors L 21 , L31 and L32, the second center frequency having the frequency characteristics of the filter constituted by the inductance components is set higher than the first center frequency.
  • the LiNbO substrate with the cut angle ⁇ of the piezoelectric substrate used in the specific range is used as in the first and second embodiments, and A and A1 are the main components. Alloy
  • Each surface acoustic wave resonator P21, P22, S31, S32 is composed of 1-port SAW resonators with IDT electrodes that also have a force, and the IDT electrode standard thickness and duty ratio should be within the above specified range Thus, spurious can be effectively suppressed, which is not desired by Rayleigh waves.
  • the filter circuit portions 32 and 33 are connected to the trap circuit portion, the signal in the pass band is allowed to pass, the frequency in the VHF band lower than the pass band, the trap band, and It is possible to attenuate signals in a frequency band higher than the trap band.
  • FIG. 14 is a schematic plan view of a SAW filter device according to a modification of the present invention.
  • a mounting substrate 43 on which a filter chip is mounted is mounted on a circuit substrate 42 that constitutes a knock.
  • a part of the circuit board 42, that is, a part surrounded by an alternate long and short dash line D in FIG. This will be described with reference to a partially enlarged sectional view and a schematic plan view of a portion surrounded by D in FIGS. 15 (a) and 15 (b).
  • FIG. 15 (a) is a schematic front sectional view showing a part of the circuit board 42 in an enlarged manner.
  • a coil-shaped conductor pattern 44 is provided in the circuit board 42 and an inductor is formed. It is configured.
  • the planar shape of the coiled conductor pattern 44 is shown in FIG. 15 (b).
  • the coiled conductor pattern 44 has a coiled planar shape.
  • the coiled conductor pattern 44 is drawn out to the upper surface of the circuit board 42 by via hole electrodes 45 and 46.
  • the upper ends of the via-hole electrodes 45 and 46 are connected to the electrode lands 47 and 48.
  • electrode Bumps (not shown) protruding from the lower surface force of the mounting substrate 43 on which the filter chip is mounted are joined to the lands 47 and 48.
  • the inductor for configuring the SAW filter device is not only an external inductance component such as a chip-type inductance component, but also a mounting that constitutes a socket. It may be formed by incorporating a conductor pattern in the substrate 43 or the circuit substrate 42 on which the mounting substrate 43 is mounted. In that case, the number of external inductance components can be reduced, or external inductance components can be omitted. Therefore, the SAW filter device can be reduced in size and height. Furthermore, it is difficult for variations in characteristics due to variations in mounting when inductance components are mounted.
  • the IDT electrode may be formed of an alloy whose main component is the force A1 formed by A1.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 トラップ帯域の低域側に通過帯域を有し、通過帯域内及び通過帯域高域側端部における挿入損失を低減することができ、かつトラップ帯域における減衰帯域幅を広くすることが可能なSAWフィルタ装置を提供する。  θ回転YカットX伝搬のLiNbO3基板上に、AlまたはAlを主成分とする合金からなるIDT電極を有する複数の1ポート型SAW共振子からなる弾性表面波共振子P11~P14が形成されているSAWフィルタチップを有し、カット角θが50°~55°、IDT電極の厚みhを弾性表面波の波長λで規格化してなる規格化膜厚100h/λ(%)が2~4%、デューティー比が0.4以下とされている、SAWフィルタ装置1。

Description

明 細 書
SAWフィルタ装置
技術分野
[0001] 本発明は、例えば携帯電話機の帯域フィルタとして用いられる SAWフィルタ装置 に関し、より詳細には、複数の 1ポート型 SAW共振子が接続されている構成を有する SAWフィルタ装置に関する。
背景技術
[0002] 従来、携帯電話機などの通信機器の RF段の帯域フィルタとして、様々な弾性表面 波フィルタが用いられている。この種の弾性表面波フィルタの一例力 例えば下記の 特許文献 1に開示されて ヽる。
[0003] 特許文献 1に記載の弾性表面波フィルタは、 41° の回転 Yカット X伝搬の LiNbO
3 基板上に、 IDT電極からなる直列腕弾性表面波共振子と、該直列腕弾性表面波共 振子の一端に接続された出力電極部と、一端が出力電極部に接続されている並列 腕弾性表面波共振子と、並列腕弾性表面波共振子の他端に接続されたアース電極 部とを有する。ここでは、 IDT電極が Aほたは A1を主成分とする A1合金の金属膜によ り形成されている。そして、この金属膜の厚みが、並列腕弾性表面波共振子の IDT 電極における電極周期の 2. 5%以上、 7. 5%以下の範囲とされている。それによつ て、通過帯域を拡大することができ、かつ通過帯域内のスプリアスがなぐ通過帯域 が平坦な周波数特性を得ることができるとされている。
[0004] また、下記の非特許文献 1では、 LiNbO基板上を伝搬するレイリー波及び疑似弹
3
性表面波のカット角による位相速度や電気機械結合係数の変化が示されている。す なわち、カット角が 41° である 41° 回転 Yカット X伝搬の LiNbO基板では、疑似弹
3
性表面波の電気機械結合係数が大き!ヽ値を示すが、レイリー波が圧電性を示すこと が記載されている。また、 60〜70° のカット角の場合には、疑似弾性表面波の電気 機械結合係数は 41° の場合に比べて小さい値を示すが、レイリー波が圧電性をほと んど示さな 、ことが記載されて 、る。
[0005] 非特許文献 1の図 1. 7では、レイリー波と疑似弾性表面波の伝搬速度の比は、カツ ト角が 41° 〜60° の範囲で 0. 8であることが示されている。
特許文献 1:特開平 9 121136号公報
非特許文献 1 :電子材料工業会編、「表面波デバイスとその応用」日刊工業新聞社刊 、第 17頁及び図 1 · 7 (昭和 53年 12月 25日 初版発行)
発明の開示
[0006] 特許文献 1では、 41° 回転 Υカット X伝搬の LiNbO基板上に上記特定の膜厚で I
3
DT電極を形成することにより、通過帯域の拡大、通過帯域内におけるスプリアスの 低減を果たし得ると記載されている。しカゝしながら、この LiNbO
3基板を用い、トラップ 帯域と、トラップ帯域の低域側に通過帯域を有するフィルタ装置を構成すると、トラッ プ帯域を広くすることはできるが、トラップ帯域よりも低域における通過帯域内及び通 過帯域の高域側端部における挿入損失が大きくなるという問題があった。
[0007] すなわち、非特許文献 1に記載のように、カット角力 1° 〜60° の回転 Yカット X伝 搬の LiNbO基板では、レイリー波と疑似弾性表面波との伝搬速度比は、 0. 8である
3
。従って、トラップ帯域の低域側に通過帯域を形成したフィルタ装置を構成した場合 、トラップ周波数の 0. 8倍の周波数において、レイリー波スプリアスが発生することに なる。そのため、通過帯域における挿入損失が悪ィ匕することがわかる。
[0008] 本発明の目的は、上述した従来技術の現状に鑑み、トラップ帯域の低域側に通過 帯域が配置されて!、る SAWフィルタ装置であって、通過帯域内及び通過帯域高域 側端部における挿入損失を小さくすることが可能であり、し力もトラップ帯域の幅を広 くすることが可能とされている SAWフィルタ装置を提供することにある。
[0009] 本発明によれば、トラップ帯域と、該トラップ帯域の低域側に位置している通過帯域 とを有する SAWフィルタ装置であって、 Θ回転 Yカット X伝搬の LiNbO基板と、前記
3
LiNbO基板上に形成されており、 Aほたは A1を主成分とする合金カゝらなる IDT電
3
極とを有する複数の 1ポート型 SAW共振子を備えるフィルタチップを有し、前記カット 角 0力 0° 〜55° 、前記 IDT電極の厚み hを弾性表面波の波長えで規格ィ匕してな る規格化膜厚 lOOhZ (%)が 2〜4%、デューティー比が 0. 4以下とされていること を特徴とする、 SAWフィルタ装置が提供される。
[0010] 本発明に係る SAWフィルタ装置のある特定の局面では、入力端子と、出力端子と を結ぶ直列腕に挿入されている複数の第 1のインダクタをさらに備え、前記入力端子 とグラウンド電位との間、前記出力端子とグラウンド電位との間及び前記複数の第 1の インダクタ間とグラウンド電位との間のそれぞれに前記 1ポート型 SAW共振子が接続 されている。この場合には、通過帯域と、通過帯域よりも低い周波数帯域において、 信号が通過し、トラップ帯域において信号が十分に減衰され、かつ通過帯域におけ るスプリアスを効果的に低減することができる。
[0011] 本発明の他の特定の局面では、前記フィルタチップが搭載される実装基板がさらに 備えられ、該実装基板が 1個のグラウンド端子を有し、前記フィルタチップのグラウン ド電位に接続される部分の全てが、前記実装基板のグラウンド端子に電気的に接続 されており、かつ前記入力端子及び前記出力端子の内の一方とグラウンド電位との 間に位置している前記 1ポート型 SAW共振子が前記トラップ帯域及び通過帯域にお いて容量性であり、かつその共振周波数が、残りの 1ポート型 SAW共振子の反共振 周波数よりも高くされている。この場合には、 SAWフィルタ装置の小型化を図ることが でき、かつ入出力間の直達波を低減することが可能となり、トラップ帯域における減衰 量の劣化を抑制することができる。
[0012] 本発明のさらに他の特定の局面では、入力端子と出力端子とを結ぶ直列腕に挿入 されている第 1のインダクタと、前記第 1のインダクタの両端とグラウンド電位との間に それぞれ接続された第 1の共振子とを有するトラップ回路部分と、前記入力端子と前 記トラップ回路部分との間及び前記出力端子と前記トラップ回路部分との間の少なく とも一方に設けられたフィルタ回路部分とが備えられており、前記フィルタ回路部分 力 前記直列腕において前記入力端子または出力端子と前記トラップ回路部分との 間に配置された第 2の共振子と、第 2の共振子の一端または他端とグラウンド電位と の間に接続された第 2のインダクタとを有し、前記第 2の共振子の共振周波数が、前 記通過帯域の高域側端部に略一致されており、前記第 1,第 2の共振子が、前記 1ポ ート型 SAW共振子により構成されている。この場合には、通過帯域において信号を 通過させ、通過帯域より低い周波数帯域及びトラップ帯域において信号を減衰させ ることができ、フィルタの通過帯域におけるスプリアスを効果的に低減することができ る。 [0013] 本発明のさらに別の特定の局面では、入力端子と出力端子とを結ぶ直列腕に挿入 されている第 3のインダクタと、前記第 3のインダクタに直列に接続された第 1の共振 子とを有するフィルタ回路部分と、前記直列腕に挿入されている少なくとも 1個の第 1 のインダクタと、前記第 1のインダクタの一方端とグラウンド電位との間に接続されてい る第 2の共振子と、前記第 1のインダクタの他方端とグラウンド電位との間に接続され ている第 3の共振子とを有するトラップ回路部分とが備えられており、前記フィルタ回 路部分とトラップ回路部分とが、直列腕において直列に接続されており、前記通過帯 域が第 1中心周波数を有し、前記第 1〜第 3の共振子の容量成分、及び前記第 1,第 3のインダクタのインダクタンス成分とによって構成されるフィルタの周波数特性の有 する第 2中心周波数が前記第 1中心周波数より高くされており、前記第 1〜第 3の共 振子が前記 1ポート型 SAW共振子により構成されている。この場合には、通過帯域 において信号を通過させ、通過帯域より低い周波数帯域、例えば VHF帯と、トラップ 帯域と、トラップ帯域よりも高い周波数帯域において信号を減衰させることができ、通 過帯域におけるスプリアスを抑圧することができる。
[0014] 本発明のさらに別の特定の局面では、前記インダクタカ チップ型インダクタンス部 品である。その場合には、インダクタを表面実装することができ、 SAWフィルタ装置の 小型化を図ることができる。もっとも、本発明においては、上記インダクタは、チップ型 インダクタンス部品でなぐ他のインダクタンス部品により構成されてもよい。
[0015] 本発明のさらに他の特定の局面では、前記フィルタチップが、 1枚の LiNbO基板
3 を用いて構成されており、該フィルタチップが搭載される実装基板と該実装基板が実 装されている回路基板がさらに備えられており、前記実装基板内に前記インダクタが 内蔵されている。
[0016] 本発明のさらに別の特定の局面では、上記フィルタチップが 1枚の LiNbO基板を
3 用いて構成されており、上記実装基板が実装されている回路基板をさらに備え、該 回路基板内に前記インダクタが内蔵される。
[0017] 上記のように、回路基板内や実装基板内にインダクタが内蔵されている場合には、 インダクタとしての外付けの電子部品を必要としな 、ので、 SAWフィルタ装置のより 一層の小型化を進めることができる。また、部品点数の低減を図ることが可能となる。 さら〖こ、インダクタンス部品の実装ばらつきによる特性のばらつきも生じ難 、。
(発明の効果)
[0018] 本発明に係る SAWフィルタ装置では、トラップ帯域と、トラップ帯域の低域側に位 置している通過帯域とを有するように複数の 1ポート型 SAW共振子が Θ回転 Yカット X伝搬の LiNbO基板上に Aほたは A1を主成分とする合金力もなる IDT電極を用い
3
て形成されている。そして、カット角 Θ力 0° 以上、 55° 以下であり、 IDT電極の膜 厚、すなわち、上記規格化膜厚が 2%以上、 4%以下とされており、デューティー比が 0. 4以下とされているため、後述の実施形態の説明から明らかなように、通過帯域内 及び通過帯域の高域側端部における挿入損失を効果的に低減することができ、さら にトラップ帯域における減衰帯域幅を広くすることが可能とされている。よって、広いト ラップ帯域を有し、かつトラップ帯域の低域側において低挿入損失の通過帯域を有 する SAWフィルタ装置を提供することが可能となる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の第 1の実施形態に係る SAWフィルタ装置の回路図である。
[図 2]図 2は、第 1の実施形態に用いられる SAWフィルタチップの下面に形成されて いる電極構造を模式的に示す基板の上面側から下面の電極構造を透視して示す平 面図である。
[図 3]図 3は、第 1の実施形態で用いられているパッケージ材としての実装基板の平 面図である。
[図 4]図 4は、第 1の実施形態の SAWフィルタ装置の構造を示す模式的正面断面図 である。
[図 5]図 5は、第 1の実施形態において、実装基板に外付けのインダクタが接続さてい る構造を模式的に示す平面図である。
[図6]図6 (&)はカット角0カ 1° 、45° 及び 50。 、(b)はカット角 0が 55° の場合 の Θ回転 Yカット X伝搬の LiNbO基板を用いた SAWフィルタ装置の通過帯域にお
3
ける減衰量周波数特性を示す図である。
[図 7]図 7は、第 1の実施形態において、 IDT電極の規格ィ匕膜厚を 2%及び 3%とした ときの通過帯域高域側の周波数特性を示す図である。 [図 8]図 8は、第 1の実施形態において、カット角 0を 41° 、45° 、50° 、55° 、60 。 及び 64° と変化させた場合の 0回転 Yカット X伝搬の LiNbO基板を用いた SA
3
Wフィルタ装置における IDT電極の規格ィ匕膜厚 lOOhZ λ (%)と電気機械結合係数 Κとの関係を示す図である。
[図 9]図 9は、第 1の実施形態の弾性表面波フィルタ装置において、 Θ回転 Υカット X 伝搬の LiNbO基板のカット角 Θを 50° 及び 55° とした場合の減衰量周波数特性
3
を示す図である。
[図 10]図 10は、本発明の第 2の実施形態に係る SAWフィルタ装置の回路構成を示 す回路図である。
[図 11]図 1 1 (a)は第 2の実施形態の SAWフィルタ装置において、 LiNbO基板の力
3 ット角 0力 S41° 、45° 及び 50° の場合の減衰量周波数特性を、(b)は 0力 5° の 場合の減衰量周波数特性を示す図である。
[図 12]図 12は、第 2の実施形態において、 IDT電極のデューティー比を 0. 3、 0. 4 及び 0. 5とした場合の通過帯域高域側の周波数特性を示す図である。
[図 13]図 13は、本発明の第 3の実施形態に係る SAWフィルタ装置の回路構成を示 す回路図である。
[図 14]図 14は、本発明の変形例に係る SAWフィルタ装置の構造を模式的に示す平 面図である。
[図 15]図 15 (a)は図 14に示した SAWフィルタ装置にお 、て回路基板に内蔵されて いるインダクタを説明するための模式的部分切欠正面断面図であり、 (b)は内蔵され ているインダクタンス構成コイル状導体パターンを模式的に示す平面図である。 符号の説明
1… SAWフィルタ装置
2…接続点
3…接続点
4…共通端子
1 1 · · · SAWフィルタチップ
12…圧電基板 12a〜12f…電極ランド
13a〜13f…バンプ
14· ··パッケージ材としての実装基板
14a〜14e…電極ランド
21〜SAWフイノレタ装置
31〜SAWフィノレタ装置
32, 33…フイノレタ回路部分
41〜SAWフィノレタ装置
42· ··回路基板
43…実装基板
44· ··コイル状導体パターン
45, 46· ··ビアホール電極
47, 48· ··電極ランド
11〜1^13- "第1のィンダクタ
L21…第 1のインダクタ
L22, L23- "第 2のインダクタ
L31, L32- "第 3のインダクタ
Ρ11〜Ρ14· ··弾性表面波共振子
P21, Ρ22…弾性表面波共振子
S21, S22…弾性表面波共振子
S31, S32 弾性表面波共振子
La…インダクタ
ΙΝ· ··入力端子
OUT…出力端子
発明を実施するための最良の形態
[0021] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。
[0022] 図 1は、本発明の第 1の実施形態に係る SAWフィルタ装置の回路図である。 [0023] 本実施形態の SAWフィルタ装置 1は、入力端子 INと、出力端子 OUTとを結ぶ直 列腕を有する。この直列腕に、インダクタ L11〜L13が互いに直列に接続されて配 置されている。
[0024] また、インダクタ L11と入力端子 INとの間の接続点とグラウンド電位とを結ぶ並列腕 に並列腕共振子としての弾性表面波共振子 P11が配置されている。インダクタ L11, L12間の接続点 2と、グラウンド電位とを結ぶ並列腕に並列腕共振子としての弾性表 面波共振子 P12が配置されている。インダクタ L12, L13間の接続点 3とグラウンド電 位との間の並列腕に、並列腕共振子としての弾性表面波共振子 P13が配置されて いる。さらに、インダクタ L13と出力端子 OUTとの間の接続点とグラウンド電位との間 の並列腕に並列腕共振子としての弾性表面波共振子 P14が配置されている。
[0025] 弾性表面波共振子 P11〜P14は、いずれも 1ポート型 SAW共振子であり、各ダラ ゥンド電位に接続される端部が共通接続されており、共通端子 4に接続されている。 この共通端子 4とグラウンド電位との間にインダクタ Laが挿入されている。
[0026] SAWフィルタ装置 1は、トラップ帯域とトラップ帯域の低域側に位置している通過帯 域とを有する帯域阻止型フィルタである。 SAWフィルタ装置 1では、第 1の弾性表面 波共振子 P11の共振周波数と、 2個の第 2の弾性表面波共振子 P12, P13の共振周 波数はほぼ等しくされて 、るが、容量素子としての第 3の弾性表面波共振子 P14の 共振周波数が第 2の弾性表面波共振子 P12, P13の反共振周波数よりも高くされて おり、かつ第 3の弾性表面波共振子 P14はトラップ帯域及び通過帯域において容量 性とされている。
[0027] 本実施形態では、共通接続点 4とグラウンド電位との間に電気的接続部分によるィ ンダクタ Laが生じ、トラップ帯域において、弾性表面波共振子 P 11のインピーダンス が低くなるため、インダクタ Laに電圧が加わり、信号が生じる。しかしながら、本実施 形態では、第 3の弾性表面波共振子 P14のインピーダンスはトラップ帯域において共 振周波数におけるインピーダンスの約 50倍の大きさとされている。すなわち、第 3の 弾性表面波共振子 P14は、通過帯域において容量性であるため、インダクタ Laにお V、て生じた上記信号は、出力端子 OUTには流れ難 、。
[0028] よって、直達波による減衰量の悪ィ匕を抑制することができる。 [0029] また、弾性表面波共振子 P14は、単にトラップ帯域において容量性を示すだけでな ぐインダクタ L13と並列接続されて並列共振回路を構成している。従って、並列共 振回路の並列共振周波数が弾性表面波フィルタ装置 1のトラップ帯域内にある場合 には、トラップ帯域におけるインピーダンスを高めることができ、それによつて、インダ クタ Laと出力端子 OUTの間のインピーダンスをより一層高めることができ、それによ つて、上記直達波の影響をより一層効果的に抑制することができる。
[0030] 次に、上記 SAWフィルタ装置 1の具体的な構造を図 2〜図 5を参照して説明する。
[0031] 本実施形態の SAWフィルタ装置 1では、図 2に示すフィルタチップ 11が、図 3に平 面図で示すパッケージ基板としての実装基板 14上にフリップチップボンディング工法 により実装される。図 4は、この本実施形態の SAWフィルタ装置 1の具体的な構造を 示す模式的正面断面図である。
[0032] 図 2においては、フィルタチップ 11の下面に形成されている電極構造力 圧電基板 12を透かした状態で模式的平面図で示されて ヽる。
[0033] 圧電基板 12としては、本実施形態では 55° Yカット X伝搬の LiNbO基板が用い
3
られている。そして、図 2に示されている電極構造は A1からなる。すなわち、 A1からな る電極構造により、上述した弾性表面波共振子 P11〜P14が形成されている。また、 弾性表面波共振子 P11〜P14だけでなぐ電極ランド 12a〜12fと、電極ランド 12a 〜12fを弾性表面波共振子 P11〜P14と接続し、図 1に示した回路構成を実現する ための電極パターンも同様に形成されている。
[0034] なお、図 2では、弾性表面波共振子 P11〜P14は、その形成される位置のみが模 式的に示されているが、具体的には、一対の櫛歯電極からなる IDT電極と、該 IDT 電極の表面波伝搬方向両側に配置された一対の反射器とを有する、 1ポート型弾性 表面波共振子である。
[0035] 上記弾性表面波共振子 P11〜P14の電極膜厚は、弾性表面波の波長の 3%とさ れている。すなわち、 IDT電極の厚みを h、弾性表面波の波長 λとしたとき、 IDT電 極の規格ィ匕膜厚 lOOh/ λは 3%とされている。また、 IDT電極におけるデューティ 一比は 0. 3とされている。
[0036] 上記電極ランド 12a〜12f上には、それぞれ、金属バンプ 13a〜13fが形成されて いる。すなわち、金属バンプ 13a〜13fが、圧電基板 12の下面から下方に突出する ように形成されている。
[0037] 他方、図 3に示す実装基板 14は、アルミナ等の絶縁性セラミックスあるいは合成榭 脂などの適宜の絶縁性材料力もなる。実装基板 14の上面には、電極ランド 14a〜14 eが形成されている。電極ランド 14aが入力端子に、電極ランド 14eが出力端子に接 続される電極ランドである。電極ランド 14dがグラウンド電位に接続される電極ランド であり、電極ランド 14b, 14cは、図 3では図示されていないインダクタ L11〜L13に 接続される端子を構成して ヽる。
[0038] すなわち、図 1に示したインダクタ L11〜L13は、図 5に略図的に示すように、実装 基板 14とは別のインダクタンス部品により構成されている。このようなインダクタンス部 品としては、実装基板 14や回路基板などに表面実装可能なチップ型インダクタンス 部品を好適に用いることができる。
[0039] 他方、図 4に示すように、上記実装基板 14上に、フィルタチップ 11が、バンプ 13a, 13c, 13eなどを用いてフリップチップボンディングされ、搭載されている。そして、図 5に示した外付けのインダクタンス部品により、インダクタ LI 1〜L13を構成することに より、上記実施形態の SAWフィルタ装置 1を得ることができる。
[0040] 本実施形態の SAWフィルタ装置 1は、入力端子 INと出力端子 OUTとを結ぶ直列 腕と、直列腕とグラウンド電位を結ぶ複数の並列腕を有する点において、直列腕共 振子及び並列腕共振子を有するラダー型の帯域フィルタと類似した回路構成を有す る。 SAWフィルタ装置 1のような帯域阻止型のフィルタ装置も、ラダー型の帯域フィル タの通過帯域幅に相当する、トラップ域における帯域幅、すなわち減衰帯域幅を大き くすることが望まれている。そして、特許文献 1に記載のように構成することにより、帯 域阻止型フィルタにおける減衰帯域幅を大きくすることは一応可能であると考えられ る。
[0041] し力しながら、上記特許文献 1に記載のように構成した場合、実際にはラダー型の 帯域通過フィルタにおける阻止域すなわち、トラップ帯域よりも低域側に存在する通 過帯域にスプリアスが発生することが本願発明者により見出された。上記スプリアスは 、共振子の共振周波数 X O. 8倍の位置に出現する。従って、このスプリアスはレイリ 一波によるスプリアスと考えられ、上記ラダー型の帯域通過フィルタにおいても現れる ものである。
[0042] もっとも、ラダー型の帯域通過フィルタの場合には、上記スプリアスが現れる周波数 域が、通過帯域外の減衰量の大きな周波数域となるため、問題となることは少なかつ た。
[0043] これに対して、本実施形態の SAWフィルタ装置 1のように、帯域阻止型の SAWフィ ルタ装置 1では、上記スプリアスがトラップ帯域の低域側に存在する通過帯域に現れ
、挿入損失に大きく影響しがちであった。
[0044] レイリー波は、通常減衰しな 、、 Qの大き!/、表面波として知られて 、る。また、レイリ 一波は、圧電基板や共振子の電極の膜厚及び IDT電極のデューティー比に依存し ないことも知られている。
[0045] し力しながら、本実施形態によれば、 SAWフィルタ装置 1において、上記レイリー波 によるスプリアスを低減し、あるいは消滅させることができる。これをより具体的な実験 例に基づいて説明する。
[0046] すなわち、 SAWフィルタ装置 1にお ヽて、上記実施形態と同様に、電極規格化膜 厚 3%、 IDT電極のデューティー比を 0. 3とし、 A1により電極構造を形成し、ただし、 カット角 Θ力 41° 、 45° 、 50° 及び 55° の 4種類の Yカット X伝搬の LiNbO基板
3 を用い、 4種類の SAWフィルタ装置を作製し、通過特性を測定した。結果を図 6に示 す。
[0047] 図 6から明らかなように、カット角 Θが 41。 の場合には、 2. OdB程度の大きさのスプ リアスが発生している力 カット角 Θが 41° より大きくなるにつれて、スプリアスが小さ くなり、 55° ではほとんど発生していないことがわかる。また、カット角 Θ力 8° 以上 になると、上記スプリアスが全く発生しない。
[0048] 一般に、通過帯域における減衰量のばらつきは、 1. OdB以下であることが望ましい とされている。従って、上記スプリアスの大きさが 1. OdB以下である範囲、すなわち、 カット角 Θ力 0° 以上の範囲であれば、上記通過帯域内における減衰量のばらつ きを 1. OdB以下とすることができるため、望ましいと考えられる。よって、好ましくは、 Yカット X伝搬の LiNbO基板として、カット角が 50° 以上の Yカット X伝搬 LiNbO基 板を用いることが望ましい。
[0049] なお、本実施形態では、電極の膜厚の表面波の波長に対する割合を 3%とした力 4%以下であれば同様の効果を得ることができることが確かめられている。
[0050] また、図 7は、電極の規格ィ匕膜厚が 3%である上記実施形態の SAWフィルタ装置 の通過帯域高域側の特性と、 IDT電極の膜厚 Z波長の割合 (%)を 3%から 2%に変 更したことを除いては該実施形態と同様にして構成された SAWフィルタ装置の通過 帯域高域側の周波数特性を示す図である。
[0051] 図 7において、破線が上記実施形態の結果を、実線が IDT電極の規格化膜厚が 2 %の場合の結果を示す。 IDT電極の規格化膜厚割合が 2%となると、通過帯域高域 側における挿入損失が若干劣化することがわかる。本願発明者の実験によれば、こ の規格化膜厚が 2%未満となると、通過帯域における挿入損失がより一層劣化する 傾向のあることが確かめられている。従って、カット角 Θを 50° 以上、かつ上記電極 の規格ィ匕膜厚は 2%以上、 4%以下とすることが望ましい。
[0052] 図 8は、 IDT電極のデューティー比が 0. 3であり、圧電基板のカット角 Θを 41° 、 4 5° 、 50° 、55° 、 60° 及び 64° と変化させた場合の IDT電極の規格ィ匕膜厚割合 (%)と電気機械結合係数との関係を示す図である。
[0053] 図 8から明らかなように、カット角 0力 0° 〜55° であり、かつ規格ィ匕膜厚割合が 2 〜4%の場合には、電気機械結合係数を 12. 5%〜15%とすることができる。電気機 械結合係数 Kは、大きいことが望ましいものの、大きすぎるとトラップ帯域における減 衰特性の急峻性と、減衰量とのバランスを図ることが困難となるおそれがある。従って 、電気機械結合係数は 15%以下程度が望ましいため、上記のように、電気機械結合 係数を 12. 5〜15%とすることにより、トラップにおける急峻性と減衰量とのバランスを 高めることができ、望ましい。よって、カット角 Θを 50〜55° の範囲とし、かつ IDT電 極の規格ィ匕膜厚は 2%〜4%の範囲とすることが必要である。
[0054] 図 9に、上記実施形態の SAWフィルタ装置 1、すなわち、カット角 Θ力 5° の回転 Yカット X伝搬の LiNbO基板を用いた SAWフィルタ装置 1の減衰量周波数特性を
3
実線で示し、カット角 0力 0° の SAWフィルタ装置の減衰量周波数特性を破線で 示す。 [0055] 上記カット角 Θ = 50° の SAWフィルタ装置 1におけるインダクタ L11〜L13のイン ダクタンス値は、 Ll l = 15nH、 L12 = 20nH及び L13 = 15nHとした。また、弾性表 面波共振子 P11〜P14の回路定数は下記の表 1に示す通りとした。
[0056] [表 1]
Figure imgf000015_0001
[0057] なお、表 1及び後述の表 2における frは弾性表面波共振子の共振周波数を示す。
また、弾性表面波共振子は、互いに直列に接続された直列インダクタンス Ll、直列 容量 C1及び直列抵抗 R1と、並列容量 COとが並列に接続された等価回路を有する 。表 1中の COは弾性表面波共振子の等価回路における並列容量、 C1は、等価回路 における直列容量、 L1は等価回路における直列インダクタンスを、 R1は等価回路に おける直列抵抗を示す。
[0058] 他方、カット角 0 = 55° の SAWフィルタ装置におけるインダクタ L11〜L13の値は 、 Ll l = 13nH、 L12= 18nH及び L13 = 13nHとした。また、弾性表面波共振子 P 11〜P14の回路定数は下記の表 2に示す通りとした。
[0059] [表 2]
Figure imgf000015_0002
[0060] IDT電極の規格ィ匕膜厚は 3%、デューティー比を 0. 3とした。なお、図 9における太 線 Aは、通過帯域における挿入損失の規格値を示す線であり、太線 Bはトラップ帯域 すなわち、減衰帯域における規格値を示す線である。すなわち、挿入損失の規格値 は 470〜770MHzにおいて、 2dB以下であり、上記太線 Bで示されているトラップ帯 域における減衰量の規格値は 830〜845MHzにお!/、て、 40dB以上である。
[0061] 図 9から明らかなように、カット角 Θ = 50° の場合には 40dB以上の減衰量が得ら れる減衰帯域幅は 28MHzであるのに対し、カット角 Θ = 55° の場合には 40dB減 衰帯域幅は 25MHzである。カット角 Θ = 50° 及び 0 = 55° の場合の 40dB減衰 帯域幅の下限周波数はいずれも 825MHzとしている。また、上記減衰帯域幅の下 限に対しては、それぞれ、 5MHzの周波数の余裕を設けている。
[0062] 通過帯域内の高域側において挿入損失が 2dBとなる周波数と、通過帯域上限の 周波数である 770MHzとの周波数差は、 Θ = 50° の場合は 5MHzであるのに対し 、 0 = 55° の場合には 8MHzとなった。従って、いずれの場合においても周波数余 裕は十分大きいが、 0 = 55° の場合において、周波数の余裕はより大きくなることが ゎカゝる。
[0063] 0 = 50° 未満の場合には、 700MHz近傍に発生するレイリー波スプリアスが存在 するため、挿入損失の規格を満足することができなくなる。また、挿入損失の通過帯 域内における偏差は IdB以下であることが規格上求められる。カット角 Θ力 5° を超 えると、 40dB減衰帯域幅が 25MHzよりも小さくなり、減衰帯域幅の周波数余裕が小 さくなる。従って、カット角 Θは、 50° 以上、 55° 以下であることが必要である。
[0064] 図 10は、本発明の第 2の実施形態に係る SAWフィルタ装置の回路構成を示す回 路図である。
[0065] 本発明の SAWフィルタ装置における回路構成は、第 1の実施形態の回路構成に 限定されるものではない。第 2の実施形態の SAWフィルタ装置 21では、入力端子 IN と出力端子 OUTとを結ぶ直列腕に、第 1のインダクタ L21が接続されている。第 1の インダクタ L21の両端とグラウンド電位とを結ぶ各並列腕において、それぞれ、並列 腕共振子として第 1の弾性表面波共振子 P21, P22が接続されている。この第 1のィ ンダクタ L21と、弾性表面波共振子 P21, P22とによりトラップ回路部分が構成されて いる。
[0066] 本実施形態では、上記トラップ回路部分と入力端子 INとの間、及び上記トラップ回 路と出力端子 OUTとの間に、それぞれ、フィルタ回路部分が設けられている。
[0067] 一方のフィルタ回路部分は、入力端子 INとインダクタ L21との間に直列に挿入され た直列腕共振子としての第 2の弾性表面波共振子 S21と、第 2の弾性表面波共振子 S21の入力端子 INとは反対側の端部とグラウンド電位との間に接続された第 2のイン ダクタ L22とを有する。他方のフィルタ回路部分はトラップ回路と出力端子 OUTとの 間に接続されている。すなわち、該フィルタ回路部分は第 1のインダクタ L21と出力端 子 OUTとの間に直列に挿入された直列腕共振子としての第 2の弾性表面波共振子
S22と、第 2の弾性表面波共振子 S22のトラップ回路部分側端部とグラウンド電位と の間に接続された第 2のインダクタ L23とを有する。
[0068] ここでは、第 2の弾性表面波共振子 S21, S22の共振周波数は、上記 SAWフィル タ装置 21の通過帯域の高域側端部に略一致されている。
[0069] 従って、通過帯域にぉ 、て信号を通過させ、通過帯域よりも低!、周波数帯域及びト ラップ帯域を減衰させることができる。
[0070] 本実施形態においても、使用する圧電基板として、 0回転 Yカット X伝搬の LiNbO
3 基板を用い、上記弾性表面波共振子 S21, S22及び P21, P22を Aほたは A1を主 成分とする合金力もなる IDT電極を有する 1ポート型 SAW共振子により構成し、カツ ト角 Θを 50° 〜55° の範囲、 IDT電極の厚み hの規格化膜厚(hZ λ ) X 100 (%) を 2〜4%、デューティー比を 0. 4以下とすることにより、レイリー波スプリアスを効果 的に抑圧することができる。
[0071] カロえて、本実施形態では、上記フィルタ回路部分がトラップ回路部分に接続されて いるため、阻止域の幅が広い通過帯域を形成することができる。すなわち、直列腕共 振子である弾性表面波共振子 S21, S22の並列共振及び並列腕共振子としての弾 性表面波共振子 P21, Ρ22の直列共振を利用して通過帯域よりも高域側における減 衰特性が得られる。また、第 1の実施形態とは異なり、 VHF周波数帯域すなわち、通 過帯域よりも低域側の周波数帯域においても大きな減衰量を得ることができる。
[0072] 本実施形態にぉ 、て、カット角 Θ、 IDT電極の規格化膜厚及びデューティー比を 上記範囲内とした場合に、スプリアスを低減し得ることを、具体的な実験例に基づき 説明する。図 11 (a)は、カット角 0力 1° 、45° 及び 50° の場合の SAWフィルタ 装置 21の通過特性、すなわち、 650〜750MHzにおける通過特性を示し、図 l l (b )は 0 = 55° の場合の通過特性を示す。図 11 (a) , (b)から明らかなように、カット角 Θが大きくなるにつれて、 675MHz付近に現れるスプリアスが小さくなり、 Θ = 55° の場合にはスプリアスがほとんど現れないことがわかる。
[0073] また、図 12は、 IDT電極のデューティー比 dが 0. 3である上記第 2の実施形態の S AWフィルタ装置 21、デューティー比 dが 0. 4であることを除いては同様の SAWフィ ルタ装置及び比較のために用意したデューティー比 dが 0. 5であることを除 、ては上 記と同様にして構成された SAWフィルタ装置の減衰量周波数特性を示す。ここでは 、通過帯域高域側における減衰量周波数特性が示されている。
[0074] 図 12から明らかなように、デューティー比が 0. 5の場合には、 675MHz付近にお けるスプリアスが大きくなつていることがわかる。また、通過帯域高域側端部近傍、す なわち、 700〜760MHz付近において、スプリアスが増大していることがわかる。従 つて、デューティー比は 0. 5よりも小さいことが好ましぐ本願発明者によれば、 0. 4 以下とすれば、上記第 1の実施形態の場合と同様に、通過帯域高域側におけるスプ リアスを低減し、良好なフィルタ特性の得られることが確かめられて ヽる。
[0075] 第 2の実施形態においては、上記トラップ回路部分の前段及び後段の双方に弾性 表面波共振子 S21または S22と、第 2のインダクタ L22または L23からなるフィルタ回 路部分が設けられて 、たが、 V、ずれか一方のフィルタ回路部分のみが設けられて ヽ てもよい。
[0076] 図 13は、本発明の第 3の実施形態に係る SAWフィルタ装置の回路図である。本実 施形態の SAWフィルタ装置 31では、入力端子 INと出力端子 OUTとを結ぶ直列腕 において、トラップ回路部分と、フィルタ回路部分とが直列に接続されている。本実施 形態では、トラップ回路部分の前段及び後段の双方にフィルタ回路部分 32, 33が接 続されている。フィルタ回路部分 32は、入力端子 INと出力端子 OUTとを結ぶ直列 腕に挿入されており、互 ヽに直列に接続された第 3のインダクタ L31及び直列腕共振 子としての第 1の弾性表面波共振子 S31とを有する。同様にフィルタ回路部分 33もま た、直列腕に挿入されており、互いに直列に接続されている第 3のインダクタ L32と、 直列腕共振子としての第 1の弾性表面波共振子 S32とを有する。
[0077] なお、フィルタ回路部 32, 33は一方のみが設けられてもよい。
[0078] トラップ回路部分は、第 2の実施形態におけるトラップ回路部分と同様に構成されて いる。すなわち、トラップ回路部分は、直列腕に挿入された第 1のインダクタ L21と、 第 1のインダクタ L21の両端とグラウンド電位とを結ぶ各並列腕に接続された並列腕 共振子としての第 2,第 3の弾性表面波共振子 P21, P22とを有する。
[0079] 上記 SAWフィルタ装置 31は、通過帯域が第 1中心周波数を有し、上記トラップ帯 域における第 2,第 3の弾性表面波共振子 P21, P22の容量成分と、フィルタ回路部 における第 1の弾性表面波共振子 S31, S32の容量成分と、第 1,第 3のインダクタ L 21, L31, L32のインダクタンス成分とにより構成されるフィルタの周波数特性が有す る第 2中心周波数が、該第 1中心周波数よりも高くされている。
[0080] 本実施形態においても、第 1,第 2の実施形態と同様に使用する圧電基板のカット 角 Θを上記特定の範囲とした LiNbO基板を用い、 Aほたは A1を主成分とする合金
3
力もなる IDT電極を有する 1ポート型 SAW共振子により各弾性表面波共振子 P21, P22, S31, S32を構成し、 IDT電極の規格ィ匕膜厚及びデューティー比を上記特定 の範囲内とすることにより、レイリー波による所望でな 、スプリアスを効果的に抑圧す ることがでさる。
[0081] また、本実施形態においては、上記フィルタ回路部分 32, 33がトラップ回路部分に 接続されているため、通過帯域における信号を通過させ、通過帯域よりも低い VHF 帯における周波数及びトラップ帯域並びにトラップ帯域よりも高い周波数帯域におけ る信号を減衰させることがでさる。
[0082] 第 1の実施形態においては、インダクタ L11〜L13は、図 5に略図的に示したように 外付けのインダクタンス部品により構成されていた力 図 14、図 15に示すように、回 路基板にインダクタを内蔵させてもよい。すなわち、図 14は、本発明の変形例に係る SAWフィルタ装置の模式的平面図である。本変形例の SAWフィルタ装置 41では、 ノ ッケージを構成している回路基板 42上にフィルタチップが搭載された実装基板 43 が搭載されている。そして、回路基板 42の一部すなわち、図 14の一点鎖線 Dで囲ま れて 、る部分内にぉ 、て回路基板 42にインダクタが内蔵されて 、る。これを図 15 (a ) , (b)に Dで囲まれている部分の部分拡大断面図及び模式的平面図で説明する。
[0083] 図 15 (a)は、回路基板 42の一部を拡大して示す模式的正面断面図であり、ここで は、回路基板 42内に、コイル状導体パターン 44が設けられてインダクタが構成され ている。コイル状導体パターン 44の平面形状を図 15 (b)に示す。
[0084] コイル状導体パターン 44は、コイル状の平面形状を有する。そして、コイル状の導 体パターン 44は、ビアホール電極 45, 46により、回路基板 42の上面に引き出されて いる。ビアホール電極 45, 46の上端が、電極ランド 47, 48に接続されている。電極 ランド 47, 48には、フィルタチップが搭載された実装基板 43の下面力 突出している バンプ(図示せず)が接合されることになる。
[0085] このように、本発明においては、 SAWフィルタ装置を構成するためのインダクタは チップ型インダンタンス部品のような外付けのインダクタンス部品だけでなく、ノ ッケ ージを構成している実装基板 43、または実装基板 43が実装される回路基板 42など に導体パターンを内蔵させることにより形成してもよい。その場合には、外付けのイン ダクタンス部品の数を低減したり、外付けのインダクタンス部品を省略したりすることが できる。従って、 SAWフィルタ装置の小型化及び低背化を進めることが可能となる。 さらに、インダクタンス部品を実装した場合の実装ばらつきによる特性のばらつきも生 じ難い。
[0086] なお、上述した実施形態及び変形例では、 IDT電極は A1により形成した力 A1を 主成分とする合金により IDT電極を形成してもよ 、。

Claims

請求の範囲
[1] トラップ帯域と、該トラップ帯域の低域側に位置している通過帯域とを有する SAW フィルタ装置であって、
Θ回転 Yカット X伝搬の LiNbO基板と、前記 LiNbO基板上に形成されており、 A1
3 3
または A1を主成分とする合金カゝらなる IDT電極とを有する複数の 1ポート型 SAW共 振子を備えるフィルタチップを有し、
前記カット角 Θ力 0° 〜55° 、前記 IDT電極の厚み hを弾性表面波の波長 λで 規格ィ匕してなる規格ィ匕膜厚 lOOhZ (%)が 2〜4%、デューティー比が 0. 4以下と されていることを特徴とする、 SAWフィルタ装置。
[2] 入力端子と、出力端子とを結ぶ直列腕に挿入されている複数の第 1のインダクタを さらに備え、
前記入力端子とグラウンド電位との間、前記出力端子とグラウンド電位との間及び 前記複数の第 1のインダクタ間とグラウンド電位との間のそれぞれに前記 1ポート型 S AW共振子が接続されて ヽる、請求項 1に記載の SAWフィルタ装置。
[3] 前記フィルタチップが搭載される実装基板をさらに備え、該実装基板が 1個のグラウ ンド端子を有し、前記フィルタチップのグラウンド電位に接続される部分の全てが、前 記実装基板の前記グラウンド端子に電気的に接続されており、かつ前記入力端子及 び前記出力端子の内の一方とグラウンド電位との間に位置している前記 1ポート型 S AW共振子が前記トラップ帯域及び通過帯域において容量性であり、かつ該 1ポート 型 SAW共振子の共振周波数が、残りの 1ポート型 SAW共振子の反共振周波数より も高くされていることを特徴とする、請求項 2に記載の SAWフィルタ装置。
[4] 入力端子と出力端子とを結ぶ直列腕に挿入されている第 1のインダクタと、前記第 1 のインダクタの両端とグラウンド電位との間にそれぞれ接続された第 1の共振子とを有 するトラップ回路部分と、
前記入力端子と前記トラップ回路部分との間及び前記出力端子と前記トラップ回路 部分との間の少なくとも一方に設けられたフィルタ回路部分とを備え、
前記フィルタ回路部分が、前記直列腕において前記入力端子または出力端子と前 記トラップ回路部分との間に配置された第 2の共振子と、第 2の共振子の一端または 他端とグラウンド電位との間に接続された第 2のインダクタとを有し、前記第 2の共振 子の共振周波数が、前記通過帯域の高域側端部に略一致されており、前記第 1,第 2の共振子が、前記 1ポート型 SAW共振子により構成されていることを特徴とする、 請求項 1に記載の SAWフィルタ装置。
[5] 入力端子と出力端子とを結ぶ直列腕に挿入されている第 3のインダクタと、前記第 3 のインダクタに直列に接続された第 1の共振子とを有するフィルタ回路部分と、 前記直列腕に挿入されている少なくとも 1個の第 1のインダクタと、前記第 1のインダ クタの一方端とグラウンド電位との間に接続されている第 2の共振子と、前記第 1のィ ンダクタの他方端とグラウンド電位との間に接続されている第 3の共振子とを有するト ラップ回路部分とを備え、
前記フィルタ回路部分とトラップ回路部分とが、直列腕において直列に接続されて おり、
前記通過帯域が第 1中心周波数を有し、前記第 1〜第 3の共振子の容量成分、及 び前記第 1,第 3のインダクタのインダクタンス成分とによって構成されるフィルタの周 波数特性の有する第 2中心周波数が前記第 1中心周波数より高くされており、前記第 1〜第 3の共振子が前記 1ポート型 SAW共振子により構成されていることを特徴とす る、請求項 1の SAWフィルタ装置。
[6] 前記インダクタカ チップ型インダクタンス部品である、請求項 2〜5の 、ずれか 1項 に記載の SAWフィルタ装置。
[7] 前記フィルタチップ力 1枚の LiNbO基板を用いて構成されており、該フィルタチ
3
ップが搭載される実装基板と該実装基板が実装されている回路基板をさらに備え、 前記実装基板内に前記インダクタが内蔵されている、請求項 2〜5のいずれか 1項に 記載の SAWフィルタ装置。
[8] 前記フィルタチップが 1枚の LiNbO基板を用いて構成されており、前記実装基板
3
が実装されている回路基板をさらに備え、該回路基板内に前記インダクタが内蔵され て 、る、請求項 2〜5の!、ずれ力 1項に記載の SAWフィルタ装置。
PCT/JP2007/050020 2006-02-13 2007-01-05 Sawフィルタ装置 WO2007094139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800014178A CN101356730B (zh) 2006-02-13 2007-01-05 Saw滤波器装置
EP07706367.5A EP1986320B1 (en) 2006-02-13 2007-01-05 Saw filter
JP2008500417A JP4640502B2 (ja) 2006-02-13 2007-01-05 Sawフィルタ装置
US12/132,033 US7626475B2 (en) 2006-02-13 2008-06-03 Saw filter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-035385 2006-02-13
JP2006035385 2006-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/132,033 Continuation US7626475B2 (en) 2006-02-13 2008-06-03 Saw filter device

Publications (1)

Publication Number Publication Date
WO2007094139A1 true WO2007094139A1 (ja) 2007-08-23

Family

ID=38371327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050020 WO2007094139A1 (ja) 2006-02-13 2007-01-05 Sawフィルタ装置

Country Status (5)

Country Link
US (1) US7626475B2 (ja)
EP (1) EP1986320B1 (ja)
JP (1) JP4640502B2 (ja)
CN (1) CN101356730B (ja)
WO (1) WO2007094139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062816A (ja) * 2008-09-03 2010-03-18 Murata Mfg Co Ltd 弾性波フィルタ
US9184782B2 (en) 2010-08-11 2015-11-10 Murata Manufacturing Co., Ltd. High-frequency module and communication device
CN109286387A (zh) * 2017-07-21 2019-01-29 株式会社村田制作所 高频滤波器、多路复用器、高频前置电路以及通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048725A1 (en) * 2008-10-31 2010-05-06 Nortel Networks Limited Self-matched band reject filter
KR101387447B1 (ko) * 2010-01-28 2014-04-21 가부시키가이샤 무라타 세이사쿠쇼 탄성표면파 필터장치
WO2011108289A1 (ja) * 2010-03-01 2011-09-09 株式会社村田製作所 弾性波フィルタ装置
DE102010048965B4 (de) 2010-10-20 2015-01-22 Epcos Ag Bandsperrfilter mit einer Serienverschaltung von zumindest zwei pi-Gliedern
JP5182459B2 (ja) * 2011-06-23 2013-04-17 パナソニック株式会社 ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
US9035194B2 (en) * 2012-10-30 2015-05-19 Intel Corporation Circuit board with integrated passive devices
US20140167900A1 (en) 2012-12-14 2014-06-19 Gregorio R. Murtagian Surface-mount inductor structures for forming one or more inductors with substrate traces
US9281799B2 (en) 2013-02-06 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Flip chip type saw band reject filter design
KR101700840B1 (ko) * 2014-11-13 2017-02-01 (주)와이솔 Saw 필터용 커패시터, saw 필터 및 그 제조 방법
WO2019226683A1 (en) 2018-05-25 2019-11-28 Skyworks Solutions, Inc. Filter including acoustic wave resonator in parallel with circuit element
CN109167128B (zh) * 2018-08-20 2021-01-26 武汉衍熙微器件有限公司 一种改善滤波器性能的方法及其滤波器
DE102018124157B4 (de) * 2018-10-01 2023-11-09 Rf360 Singapore Pte. Ltd. Für hohe Frequenzen ausgelegte SAW-Vorrichtung
CN109391160B (zh) * 2018-11-29 2020-09-29 云南电网有限责任公司西双版纳供电局 一种高压设备专用衰减波发生器
JP2021164141A (ja) * 2020-04-03 2021-10-11 株式会社村田製作所 高周波モジュール及び通信装置
CN116169975A (zh) * 2023-02-14 2023-05-26 安徽安努奇科技有限公司 一种带阻滤波器、多频带阻滤波器和无线通信系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350391A (ja) * 1993-06-14 1994-12-22 Hitachi Ltd 弾性表面波装置
JPH09121136A (ja) 1995-04-12 1997-05-06 Matsushita Electric Ind Co Ltd 共振器梯子型弾性表面波フィルタ
JPH1065490A (ja) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Saw帯域阻止フィルタおよびそれを使用した電子機器
WO2000030252A1 (fr) * 1998-11-13 2000-05-25 Matsushita Electric Industrial Co., Ltd. Filtre d'ondes acoustiques de surface
JP2001036378A (ja) * 1999-07-16 2001-02-09 Mitsubishi Electric Corp 弾性波装置
JP2003115748A (ja) * 2001-07-30 2003-04-18 Murata Mfg Co Ltd 弾性表面波分波器、通信装置
JP2004088778A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、及びそれを用いたアンテナ共用器、通信機器
JP2004129238A (ja) * 2002-09-10 2004-04-22 Matsushita Electric Ind Co Ltd 帯域阻止型フィルタ、フィルタ装置、アンテナ共用器、通信機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382113A (ja) 1986-09-26 1988-04-12 Alps Electric Co Ltd 弾性表面波素子
EP0738039B1 (en) 1995-04-12 2000-06-28 Matsushita Electric Industrial Co., Ltd. Resonator ladder surface acoustic wave filter
JPH08321743A (ja) 1995-05-25 1996-12-03 Sanyo Electric Co Ltd 弾性表面波フィルタ
US6262637B1 (en) * 1999-06-02 2001-07-17 Agilent Technologies, Inc. Duplexer incorporating thin-film bulk acoustic resonators (FBARs)
US7061345B2 (en) * 2001-12-14 2006-06-13 Mitsubishi Denki Kabushiki Kaisha Filter circuit with series and parallel elements
US6975180B2 (en) 2002-08-08 2005-12-13 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter, and antenna duplexer and communication equipment using the same
US6879224B2 (en) * 2002-09-12 2005-04-12 Agilent Technologies, Inc. Integrated filter and impedance matching network
JP2004254291A (ja) * 2003-01-27 2004-09-09 Murata Mfg Co Ltd 弾性表面波装置
US20070030094A1 (en) * 2004-08-11 2007-02-08 Ryoichi Omote Duplexer and communication apparatus
WO2007015331A1 (ja) * 2005-08-02 2007-02-08 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
JP4640412B2 (ja) * 2005-08-23 2011-03-02 株式会社村田製作所 弾性波フィルタ
WO2007052483A1 (ja) * 2005-11-01 2007-05-10 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350391A (ja) * 1993-06-14 1994-12-22 Hitachi Ltd 弾性表面波装置
JPH09121136A (ja) 1995-04-12 1997-05-06 Matsushita Electric Ind Co Ltd 共振器梯子型弾性表面波フィルタ
JPH1065490A (ja) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Saw帯域阻止フィルタおよびそれを使用した電子機器
WO2000030252A1 (fr) * 1998-11-13 2000-05-25 Matsushita Electric Industrial Co., Ltd. Filtre d'ondes acoustiques de surface
JP2001036378A (ja) * 1999-07-16 2001-02-09 Mitsubishi Electric Corp 弾性波装置
JP2003115748A (ja) * 2001-07-30 2003-04-18 Murata Mfg Co Ltd 弾性表面波分波器、通信装置
JP2004088778A (ja) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、及びそれを用いたアンテナ共用器、通信機器
JP2004129238A (ja) * 2002-09-10 2004-04-22 Matsushita Electric Ind Co Ltd 帯域阻止型フィルタ、フィルタ装置、アンテナ共用器、通信機器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Surface Acoustic Wave Device and Application Thereof", 25 December 1978, NIKKAN KOGYO SHIMBUN, LTD., article "Hyomenha Debaisu To Sono Oyo", pages: 17
"Surface Acoustic Wave Device and Application Thereof", 25 December 1978, THE NIKKAN KOGYO SHIMBUN, LTD., article "Hyomenha Debaisu To Sono Oyo", pages: 17
See also references of EP1986320A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062816A (ja) * 2008-09-03 2010-03-18 Murata Mfg Co Ltd 弾性波フィルタ
US9184782B2 (en) 2010-08-11 2015-11-10 Murata Manufacturing Co., Ltd. High-frequency module and communication device
CN109286387A (zh) * 2017-07-21 2019-01-29 株式会社村田制作所 高频滤波器、多路复用器、高频前置电路以及通信装置

Also Published As

Publication number Publication date
EP1986320B1 (en) 2013-06-26
EP1986320A1 (en) 2008-10-29
CN101356730B (zh) 2011-02-16
US20080224799A1 (en) 2008-09-18
JP4640502B2 (ja) 2011-03-02
CN101356730A (zh) 2009-01-28
US7626475B2 (en) 2009-12-01
EP1986320A4 (en) 2009-12-02
JPWO2007094139A1 (ja) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4640502B2 (ja) Sawフィルタ装置
JP5799990B2 (ja) チューナブルフィルタ
KR100434609B1 (ko) 탄성표면파 필터장치
US7283016B2 (en) Balanced acoustic wave filter and acoustic wave filter
US7623009B2 (en) Boundary acoustic wave filter device
CN117914282A (zh) 弹性波滤波器、弹性波器件、分波器以及通信装置
US7385464B2 (en) Resonator type filter
JP3498204B2 (ja) 弾性表面波フィルタ、それを用いた通信機装置
JP4640412B2 (ja) 弾性波フィルタ
JP2002300003A (ja) 弾性波フィルタ
JPWO2006016544A1 (ja) デュプレクサ及び通信装置
WO2007052483A1 (ja) 弾性波フィルタ装置
US20180026606A1 (en) Duplexer
JPWO2006040923A1 (ja) 分波器
KR20180117194A (ko) 복합 필터 장치, 고주파 프론트 엔드 회로 및 통신 장치
JPWO2004112246A1 (ja) 弾性表面波分波器
US11323098B2 (en) Duplexer
JP4023730B2 (ja) 弾性表面波装置および分波器
US8339221B2 (en) Elastic wave filter device having narrow-pitch electrode finger portions
JP3981590B2 (ja) 弾性表面波フィルタ素子、弾性表面波フィルタ素子用ベース基板及び弾性表面波フィルタ素子を備える弾性表面波装置
WO2007015331A1 (ja) 弾性波フィルタ装置
WO2017208856A1 (ja) 弾性波フィルタ装置
JP4694868B2 (ja) 弾性表面波フィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001417.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008500417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007706367

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE