WO2007074861A1 - 光学記録媒体及びアザシアニン色素 - Google Patents
光学記録媒体及びアザシアニン色素 Download PDFInfo
- Publication number
- WO2007074861A1 WO2007074861A1 PCT/JP2006/326031 JP2006326031W WO2007074861A1 WO 2007074861 A1 WO2007074861 A1 WO 2007074861A1 JP 2006326031 W JP2006326031 W JP 2006326031W WO 2007074861 A1 WO2007074861 A1 WO 2007074861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- recording medium
- optical recording
- layer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/247—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
- G11B7/2472—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/10—Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
- C07D209/14—Radicals substituted by nitrogen atoms, not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/58—[b]- or [c]-condensed
- C07D209/60—Naphtho [b] pyrroles; Hydrogenated naphtho [b] pyrroles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/96—Spiro-condensed ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/10—The polymethine chain containing an even number of >CH- groups
- C09B23/105—The polymethine chain containing an even number of >CH- groups two >CH- groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B23/00—Methine or polymethine dyes, e.g. cyanine dyes
- C09B23/16—Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms
- C09B23/162—Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms only nitrogen atoms
- C09B23/164—Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms only nitrogen atoms containing one nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/02—Dyestuff salts, e.g. salts of acid dyes with basic dyes
- C09B69/04—Dyestuff salts, e.g. salts of acid dyes with basic dyes of anionic dyes with nitrogen containing compounds
- C09B69/045—Dyestuff salts, e.g. salts of acid dyes with basic dyes of anionic dyes with nitrogen containing compounds of anionic azo dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/2467—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/249—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
- G11B7/2495—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds as anions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B2007/24612—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes two or more dyes in one layer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
- G11B7/2534—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/254—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
- G11B7/2542—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/259—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
Definitions
- the present invention relates to an optical recording medium and an azocyanin dye, and more specifically, an optical recording medium excellent in light resistance capable of supporting a blue laser, and an azocyanin dye suitably used for a recording layer of the optical recording medium. About.
- optical recording media such as CD—RZRW (compact disc-recordable I rewritable), DVD-R / RW (digital video disc-recordable I rewritable), MO (magneto-optic) ice skates are large. Since it can store capacity information and is easily accessible at random, it is widely recognized and widely used as an external storage device in information processing devices such as computers.
- organic dye-based optical recording media provided with a recording layer containing an organic dye compound, represented by 0-1 ⁇ 0 ⁇ 0-1 ⁇ are inexpensive and easy to manufacture. In that respect, it is considered to have an advantage.
- Patent Documents 1 to 4 listed below describe a recording layer for an optical recording medium capable of recording and reproducing information with a laser beam having a short transmission wavelength of about 405 to 430 nm.
- Organic dyes are shown.
- Patent Document 1 Japanese Patent Laid-Open No. 11 105423
- Patent Document 2 Japanese Patent Laid-Open No. 11-78239
- Patent Document 3 Pamphlet of International Publication No. 2006-035554
- Patent Document 4 JP 2001-301333 A
- organic dyes for short wavelengths such as those for blue lasers described in Patent Documents 3 to 4 have a recording mechanism similar to that of conventional optical recording media called CD-R and DVD-R, that is, High-to-low recording.
- High-to-low recording is a recording method that has a higher reflectivity when not recording than when recording, and has a large amount of return light in the unrecorded area, making it an excellent recording material.
- the currently developed recording method using a blue semiconductor laser, such as HD (High Definition) DVD-R and BD (Blu-ray Disc) -R is practical for high-to-low recording. There is a problem that it is difficult.
- the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an optical recording medium capable of recording and reproducing high-density optical information with short-wavelength light such as a blue laser. Another object of the present invention is to provide recording and reproduction of high-density optical information by low-to-high recording, which is a recording mechanism different from the conventional one. In addition to providing an optical recording medium capable of satisfying the requirements, it is also an object of the present invention to provide a novel dye suitably used for this optical recording medium. Note that “Low t 0 High recording” is a recording method in which the reflectance at the time of recording is higher than that at the time of non-recording. In this recording method, it is desirable to reduce the reflectance at the time of non-recording.
- the present inventors have used an azocyanin dye having a specific structure in a recording layer of an optical recording medium, so that a high density can be obtained by short-wavelength light such as a blue laser.
- the present inventors have found that optical information can be recorded and reproduced, and that a new optical recording medium can be put to practical use, particularly by low-to-high recording.
- the gist of the present invention includes at least a substrate and a recording layer provided on the substrate and capable of recording or reproducing information when irradiated with light.
- the present invention resides in an optical recording medium comprising an azacyanine dye represented by the following general formula [I] (claim 1).
- R 1 and R 2 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 4 carbon atoms. R 1 and R 2 may be bonded to each other to form a ring.
- R 3 represents a hydrogen atom or a hydrocarbon group.
- R 3 is a hydrocarbon group
- R 4 represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
- R 5 represents an optionally substituted aromatic ring group or an optionally substituted unsaturated heterocyclic group. Also, two or more compounds of general formula [I] may be bonded via R 5 . However, R 4 and R 5 may be bonded to each other to form a ring structure.
- X— represents a counter-on.
- the benzene ring represented by A may be substituted.
- R 4 is preferably a hydrogen atom
- R 5 is preferably a phenyl group which may be substituted (claim 2).
- R 4 is a hydrogen atom, and R 5 may be substituted
- R 4 and R 5 are preferably bonded to each other to form a 5-membered or 6-membered saturated hydrocarbon ring or saturated heterocyclic ring. Claim 4).
- R 5 is a phenol group, it is preferred that it has no substituent! / (Claim 5).
- X- is preferably an anion of a azo metal complex represented by the following general formula [II] (claim 6).
- ring C and ring D each independently represent an aromatic ring or a heterocyclic ring, provided that at least one of ring C and ring D is a heterocyclic ring.
- Y and Z Each independently represents a group having active hydrogen, and M represents a trivalent metal element.
- the recording layer is one in which information is recorded or reproduced by a laser beam having a wavelength of 350 nm to 530 nm (claim 7).
- Another gist of the present invention resides in an azocyan dye characterized by the following formula (i) (claim 8).
- the optical recording medium of the present invention and the azocyanin dye of the present invention high-density optical information can be recorded / reproduced by a short wavelength light such as a blue laser.
- recording and playback of high-density optical information is possible by low-to-high recording, which is a different recording mechanism.
- FIG. 1 (a) is a partial cross-sectional view schematically showing an example of a layer structure of an optical recording medium according to the first embodiment of the present invention, and (b) is a second sectional view of the present invention.
- FIG. 2 is a partial cross-sectional view schematically showing an example of a layer configuration of an optical recording medium according to an embodiment.
- FIG. 2 is an absorption spectrum of a coating film of azacyanin dye (Exemplary Compound (1)) obtained in Example 1.
- FIG. 3 is an absorption spectrum of a coating film of azacyanin dye (Exemplary Compound (2)) obtained in Example 2.
- FIG. 4 is an absorption spectrum of an azacyanin dye coating film obtained in Comparative Example 1.
- FIG. 5 is a graph showing the relationship between laser recording power and PRSNR in the optical recording media of Examples A to E.
- FIG. 6 is a graph showing the relationship between laser recording power and PRSNR in the optical recording medium (double-layer medium) of Example F.
- FIG. 7] (a) to (f) are diagrams for explaining a method of manufacturing a two-layer optical recording medium according to the third embodiment of the present invention.
- the optical recording medium of the present invention has a substrate and a recording layer provided on the substrate and capable of recording or reproducing information by being irradiated with light, and the recording layer is described later.
- Azacyanin dye represented by the general formula [I] represented by the general formula [I]. In the following description, for convenience of explanation, first, the azocyanin dye contained in the recording layer of the optical recording medium of the present invention will be described, and then the description of the optical recording medium of the present invention will be continued.
- the optical recording medium of the present invention contains an azocyanin dye represented by the following general formula [I] in the recording layer (hereinafter, abbreviated as “azocyanin dye of formula [I]” as appropriate).
- the azocyanin dye of formula [I] has a wavelength of 350 ⁇ ! Since it has a moderate absorption in the blue light region of ⁇ 530 nm, it is a dye compound suitable for recording with blue laser light and having light resistance that can withstand practical use.
- R 1 and R 2 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. R 1 and R 2 may be bonded to each other to form a ring.
- R 3 represents a hydrogen atom or a hydrocarbon group.
- R 3 is a hydrocarbon group
- R 4 represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
- R 5 represents an optionally substituted aromatic ring group or an optionally substituted unsaturated heterocyclic group. Also, two or more compounds of general formula [I] may be bonded via R 5 . However, R 4 and R 5 may be bonded to each other to form a ring structure.
- X— represents a counter-on.
- the benzene ring represented by A may be substituted.
- the substituent basically includes a water-soluble group such as a hydroxyl group and a sulfonic acid group, unless otherwise specified. Make it not exist. This is because, in order for the dye compound to be contained in the recording layer of the optical recording medium, it is first necessary to have a certain degree of solubility in the organic solvent. Furthermore, it is necessary for practical use of the optical disc that such a recording layer is a stable film having a certain degree of water resistance.
- R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 4 carbon atoms. R 1 and R 2 may be combined to form a ring.
- Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. Group, sec butyl group, tert butyl group and the like.
- R 1 or R 2 is a linear or branched alkyl group having 1 to 4 carbon atoms
- substituents include an azulene ring, quinoline ring, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclo Saturated or unsaturated cyclic groups such as hexane ring, cyclohexene ring, naphthalene ring, thiophene ring, benzene ring, piperidine ring, pyridine ring, pyrrolidine ring, pyrrole ring, furan ring, halogen atom (fluorine atom) , Chlorine atom, bromine atom, etc.).
- R 1 or R 2 is particularly preferably a benzene ring bonded to an alkyl group having 1 or 2 carbon atoms.
- Examples of the ring when R 1 and R 2 are combined to form a ring include saturated or unsaturated, such as a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclohexene ring, and a cycloheptane ring.
- the ring structure is formed.
- the ring in the case where R 1 or R 2 has a cyclic substituent and the ring in the case where R 1 and R 2 are combined to form a ring have one or more substituents.
- substituents include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isopropyl group, a 1 propenyl group, a 2-propenyl group, a 2-propynyl group, and a butyl group.
- Aliphatic hydrocarbon groups such as 4-phenyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group and other alicyclic hydrocarbon groups, phenyl group, o tolyl group, m-tolyl group, p-tolyl group, xylyl group, mesityl group, o-tame group, m-tame group, p-tame group, biphenyl group, etc.
- aromatic hydrocarbon group fluoro group, black mouth Group, bro Group, a halo gen group, a methoxy group, such as Yodo group, an alkoxy group such as ethoxy group, Jimechiruamino group, an alkylamino group such as Jechiruamino group, and - Toromoto, furthermore, include substituents by combinations thereof.
- R 3 represents a hydrogen atom or a hydrocarbon group.
- R 3 is a hydrocarbon group
- an optionally substituted linear or branched alkyl group having 1 to 6 carbon atoms is preferable.
- two or more compounds of the general formula [I] may be cross-linked via R 3 .
- R 3 includes, in addition to a linear or branched alkyl group having 1 to 6 carbon atoms, an alkyl group having a larger number of carbon atoms.
- a phenylene group can also be used.
- substituents which may have in the case of Ri ⁇ R 3 alkyl group is not particularly limited unless contrary to the spirit of the present invention, a halogen atom (fluorine atom, chlorine atom, bromine Atoms, etc.), alkoxy groups (methoxy groups, ethoxy groups, etc.), alkylamino groups (dimethylamino groups, jetylamino groups, etc.), aryl groups (phenyl groups, naphthyl groups, etc.) and the like.
- halogen atom fluorine atom, chlorine atom, bromine Atoms, etc.
- alkoxy groups methoxy groups, ethoxy groups, etc.
- alkylamino groups dimethylamino groups, jetylamino groups, etc.
- aryl groups phenyl groups, naphthyl groups, etc.
- Halogen atoms are improved in affinity with halogen-based solvents, polar groups such as alkoxy groups and alkylamino groups are improved in solvation of polar solvents, and aryl groups are dissolved in solvents by inhibiting association of dye molecules due to steric hindrance. This is because an improvement in performance can be expected.
- R 4 represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Among these, a hydrogen atom is preferable.
- R 5 represents an optionally substituted aromatic ring group or an optionally substituted unsaturated heterocyclic group.
- aromatic ring group and the “heterocyclic group” mean groups obtained by removing one hydrogen atom from an aromatic ring and a heterocyclic ring, respectively.
- R 5 is preferably an unsaturated heterocyclic group.
- R 5 is an unsaturated heterocyclic group
- the number of ring members is preferably 5 or 6 members. This is because cyclic structures with 4 or less members are generally unstable, and cyclic structures with 7 or more members are complicated to synthesize.
- the light absorption of the obtained dye has a long wavelength, and the absorption at 405 nm, which is the oscillation wavelength of the blue laser, becomes large.
- R 5 is an unsaturated heterocyclic group, although the kind thereof is not particularly limited, a nitrogen atom as a hetero atom, an oxygen atom, and a heterocyclic group containing a sulfur atom.
- R 5 is an unsaturated heterocyclic group represented by the following formula
- the wavelength of absorption can be adjusted. This is preferable because it becomes possible.
- R 5 is an aromatic ring group or an unsaturated heterocyclic group, these have a substituent! /, May /!
- the substituent is not particularly limited as long as it does not violate the gist of the present invention, but preferred examples include linear or branched alkyl groups having 1 to 8 carbon atoms, fluorinated alkyl groups, alkoxy groups, alkylthio groups. Groups and the like. This is because, in the case of these groups, the solubility in a coating solvent is improved and crystallization in a thin film hardly occurs.
- R 5 is an aromatic ring group or an unsaturated heterocyclic group
- these may further have a condensed ring.
- the kind of the condensed ring is not particularly limited as long as it does not violate the gist of the present invention.
- a 5-membered or 6-membered aromatic ring or heterocyclic ring is preferable. Further, this condensed ring may have the above-described exemplified substituent.
- two or more compounds of the general formula [I] may be bonded via R 5 ! / ,.
- R 4 and R 5 may be bonded to each other to form a ring structure. Forming a strong ring structure is preferable because crystallization is suppressed and solubility in an organic solvent may be obtained.
- the type of ring structure is not particularly limited, but the number of ring members is preferably 5 or 6 members. A ring structure with 4 or less members is generally unstable, and a ring structure with 7 or more members has the power to complicate the synthesis.
- all ring skeleton atoms other than the nitrogen atom to which R 4 and R 5 are bonded may be a carbon atom, or may contain a nitrogen atom, an oxygen atom, a sulfur atom, or the like as a hetero atom.
- this ring structure may have a substituent.
- the type of the substituent is not particularly limited, and examples thereof include those in the case where R 5 is an aromatic ring group or a heterocyclic group, and various substituents exemplified above as the substituent.
- this ring structure further has a condensed ring.
- the kind of the condensed ring is not particularly limited, and examples thereof include various kinds of condensed rings exemplified above as the condensed ring, even when R 5 is an aromatic ring group or a heterocyclic group. Furthermore, this condensed ring may have the above-exemplified substituents.
- R 4 and R 5 form a ring structure
- two or more compounds of the general formula [I] may be bonded through this ring structure.
- the benzene ring represented by A may be substituted.
- the substituent include a halogen atom such as Cl and Br, a linear or branched alkyl group having 1 to 4 carbon atoms, an acetylamino group, and an alkoxy group having 1 to 4 carbon atoms.
- the benzene ring A may further have a condensed ring.
- the kind of the condensed ring is not particularly limited, but a benzene ring is preferable.
- X- represents counter-on. There is no particular limitation as long as it is a monovalent cation, but those that are easy to use include 1 Cl—, Br—, BF—, PF—, SbF—, CH 2 SO—
- a metal complex having a negative charge can be preferably used.
- the individual metal complexes include acetylylacetonate chelate, azo, salicylaldehyde, diimmonium, dithiomonore, dipyrromethene, and squarylium.
- azo metal complex is preferable in terms of light resistance and solubility in a solvent.
- the transition element in the above-mentioned metal complexes include vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, and no ⁇ radium.
- Preferred anions of an azo metal complex as X- include anions of an azo metal complex represented by the following general formula [II].
- ring C and ring D each independently represent an aromatic ring or a heterocyclic ring. However, at least one of ring C and ring D is a heterocyclic ring.
- Y and Z each independently represent a group having active hydrogen.
- M represents a trivalent metal element. The active hydrogens of Y and Z are eliminated and the azo ligand has a charge of 2, and the total charge is 1 from two azo ligands and one metal atom of +3 charge. The metal complex is formed.
- the ring represented by C and D is an aromatic ring or an unsaturated or saturated heterocyclic ring, and may further have a substituent other than Y and Z.
- the type of ring represented by C and D is not particularly limited.
- aromatic rings such as benzene and naphthalene; unsaturated heterocycles such as pyridine, pyrimidine and thiophene; saturated heterocycles such as meldrum acid, barbituric acid and pyridone. Ring; and the like.
- the group represented by Y and Z is a group having active hydrogen, and is a group having a negative charge due to elimination of proton.
- the type of group represented by Y and Z is not particularly limited, and examples thereof include carboxylic acid, sulfonic acid, amino group, hydroxyl group, amide group, boronic acid, and phosphoric acid. Further, a group may be contained in the ring.
- the element represented by M is a trivalent metal element. Assuming that one of the ⁇ , ⁇ and azo bond nitrogen atoms of the azo ligand is coordinated to the metal, a metal complex having two tridentate ligands on one metal element It is thought that the force is stable in 6 conformations. Therefore, the azo metal complex, which has two ligands for 2 and one metal for +3, is the most stable and is equivalent to the azacyanine dye represented by the general formula [I]. I like it because it can be paired with Le. [0053] Among the anions of the azo metal complex represented by the above general formula [II], preferred examples of the anion of the azo metal complex represented by the following general formulas [II 1] to [114] Anions.
- ⁇ represents a transition element belonging to Groups 5 to 12 of the periodic table.
- R U , R 12 , R ′′ to R 17 , R 19 to R 22 , R 25 and R 26 each represent a hydrocarbon group.
- These hydrocarbon groups in may be the same or different from each other, and the type of each hydrocarbon group is not particularly limited, and may be an aliphatic hydrocarbon group or an alicyclic hydrocarbon group.
- aliphatic hydrocarbon group examples include linear or branched aliphatic hydrocarbon groups having 1 to 6 carbon atoms such as a methyl group, Group, propyl group, isopropyl group, isopropyl group, 1 probe group, 2-propyl group, 2-propyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, 2 Butenyl group, 1,3 butagenyl group, pentyl group, isopentyl group, neopentyl group, tert pentyl group, 1-methylpentyl group, 2-methylpentyl group, 2-pentenyl group and the like.
- linear or branched aliphatic hydrocarbon groups having 1 to 6 carbon atoms such as a methyl group, Group, propyl group, isopropyl group, isopropyl group, 1 probe group, 2-propyl group, 2-propyl group, butyl group, isobutyl group, sec but
- Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, and the like.
- one or more hydrogen atoms thereof may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
- the azacyanine dye of the formula [I] having an azo metal complex anion of the above general formulas [II 1] to [II 4] is usually R U , R 12 , R R, although it depends on the type of solvent. “ ⁇ R 17 , R 19 to R 22 , R 25 and R 26 increase in solubility in solvents as the number of carbon atoms increases.
- R 13 , R 18 , R 23 , R 24 and R 27 in the general formulas [II-1], [11 3] and [11 4] represent a hydrogen atom or a substituent.
- substituents in the same molecule may be the same as or different from each other.
- Examples of the individual substituents include, for example, methyl group, ethyl group, propyl group, isopropyl group, isopropenyl group, 1 propenyl group, 2 probe group, 2-propyl group, butyl group.
- An aliphatic hydrocarbon group such as a vinyl group; an alicyclic hydrocarbon group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group; a phenyl group, an o tolyl group, m Tolyl group, p Tolyl group, Xylyl group, Mesityl group, o Tamer group, m — Tameryl group, p Tameryl group, Biphenyl group and other aromatic hydrocarbon groups; Methoxy group, Ethoxy group Group, propoxy
- ether group methoxycarbon group, ethoxycarbonyl group, propoxycarbon group , Ester groups such as acetoxy group and benzoyloxy group, dimethylamino groups, jetylamino groups, dipropylamino groups, diisopropylamino groups, dibutylamino groups, dipentylamino groups and other amino groups; fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, etc.
- Halogen atom of Examples include a droxy group, a carboxy group, a cyano group, a nitro group, and the like; and a substituent formed by combining a plurality of the exemplified substituents.
- the position at which the two -tro groups are bonded to each other is in the ortho position relative to the azo group.
- the position can be either the position or the para position! /, But from the viewpoint of synthesis, the meta position is preferred! /.
- the azacyanine dye of the above formula [I] has many sites into which substituents can be introduced, and effects such as electron-withdrawing property or electron-donating property of the substituent are transmitted by conjugation of the ⁇ -electron system. Since it is easy, the wavelength is easily adjusted.
- substituents having when R 5 is an aromatic ring group or a heterocyclic group by appropriately selecting the substituent to be closed in the case of forming the R 4 and R 5 each other via a ring structure, approximately 350Itaita! It is possible to change the wavelength of the absorption maximum from ⁇ 450nm. Therefore, it is possible to give a large absorption to the recording light wavelength, and as a result, the recording sensitivity is improved.
- Preferred examples of the azacyanin dye of the formula [I] include the following structural formulas (1) to (3), (5), (6), (8) to (16), (20) to (37 (In the following description, the compound represented by each structural formula may be abbreviated as “Exemplary Compound (1)” with the number of the structural formula attached). O However, the following compounds are merely examples, and the azocyanin dye of the formula [I] that can be used in the optical recording medium of the present invention is not limited thereto.
- the azocyanin dyes represented by the following formula (i) represented by the exemplary compounds (27) and (28) (these are appropriately referred to as "azacynin dyes of the present invention") have a novel structure. It is a dye compound and is extremely preferable from the viewpoint that the above-described effects can be obtained particularly remarkably when used in a recording layer of an optical recording medium.
- the method for synthesizing the azocyanin dye of the above formula [I] is not particularly limited.
- 2- (1, 3, 3-trimethylindoline-2-ylidene) acetaldehyde ⁇ 2 -(1, 3,3-Trimethylindolin-2-ylidene) acetaldehyde ⁇ and amine compound are heated in acetic acid, the reaction mixture is released into water and then salted out (K. Venkataraman, The Chemistry of Synthetic Dyes Volume II, 1952, Academic Press, pp.1175, etc.).
- the optical recording medium of the present invention has at least a substrate and a recording layer provided on the substrate and capable of recording or reproducing information by being irradiated with light, and the recording layer is the above-mentioned general recording layer. It contains an azocyanin dye of the formula [I]. If necessary, it may further have layers other than the substrate and the recording layer, such as an undercoat layer, a reflective layer, and a protective layer.
- optical recording medium of the present invention will be specifically described with reference to embodiments.
- the following embodiments are merely for description, and the present invention is applied to the following embodiments.
- the present invention is not limited, and can be freely modified without departing from the spirit of the present invention.
- FIG. 1 (a) is a partial cross-sectional view schematically showing an example of the layer structure of the optical recording medium according to the first embodiment of the present invention.
- the optical recording medium 10 shown in FIG. 1 (a) includes a substrate 1 made of a light transmissive material, a recording layer 2 provided on the substrate 1, a reflective layer 3 laminated on the recording layer 2, and a protective layer. Layer 4 is laminated in order.
- the optical recording medium 10 is generated by laser light L emitted from the substrate 1 side. The information is recorded and played back.
- the side where the protective layer 4 is present is the upper side
- the side where the substrate 1 is present is the lower side
- the surfaces of the layers corresponding to these directions are the respective layers.
- the material of the substrate various materials can be used as long as they are basically transparent at the wavelength of recording light and reproducing light.
- substrate of the structure which provided the resin layer which consists of radiation curable resin, such as photocurable resin, on glass can also be used.
- amorphous polyolefin is preferable from the viewpoints of polycarbonate resin used in the injection molding method, chemical resistance, moisture absorption resistance, and the like. Further, glass is preferable for the viewpoint power such as high-speed response.
- a guide groove for recording / reproducing light is formed on the upper surface.
- a pit may be formed.
- the shape of the guide groove include a concentric shape and a spiral shape with respect to the center of the optical recording medium 10.
- the groove pitch is preferably about 0.2 to 1.2 m.
- the recording layer 2 is a layer formed directly on the upper side of the substrate 1 or on the upper side of an undercoat layer or the like provided on the substrate 1 as necessary.
- the recording layer 2 contains the azocyanin dye of the above formula [I]. contains.
- the azocyanin dye of the formula [I] may be used alone or in combination of two or more in any combination and ratio!
- the recording layer 2 can be used in combination with an azocyanin dye of the formula [I] and, if necessary, other types of dyes can be used together.
- Other dyes are not particularly limited as long as they have appropriate absorption mainly in the oscillation wavelength range of the recording laser light.
- CD-R used for recording and playback using near-infrared laser light having an oscillation wavelength in the wavelength band of 770-830 nm, used in DVD-R, etc., and 620-690 nm
- Dye suitable for recording and reproduction using red laser light having an oscillation wavelength in the wavelength band In the recording layer 2 together with the azocyanin dye of the formula [I], the optical recording medium 10 corresponding to recording and reproduction using a plurality of types of laser beams belonging to different wavelength bands is produced.
- Other dyes other than the azacyanin dye of the formula [I] include metal-containing azo dyes, benzophenone dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium Dyes, metal-containing indoor-phosphorus dyes, triarylmethane dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, pyrylium dyes Etc.
- the recording layer 2 includes a transition metal chelate compound (for example, an acetylene compound) as a singlet oxygen quencher in order to improve stability and light resistance in addition to the azocyanin dye of the formula [I].
- a transition metal chelate compound for example, an acetylene compound
- a transition metal chelate compound for example, an acetylene compound
- a singlet oxygen quencher in order to improve stability and light resistance in addition to the azocyanin dye of the formula [I].
- setnerate chelate, bisphenol dithiol, salicylaldehyde oxime, bisdithio OC-diketone), etc., or a recording sensitivity improver such as a metal compound may be added to improve recording sensitivity. Good.
- the metal compound means a compound in which a metal such as a transition metal is contained in the compound in the form of atoms, ions, clusters, etc., for example, an ethylenediamine complex, an azomethine complex, a phenolic hydroxy Amine complex, phenantorin complex, dihydroxyazobenzene complex, dioxime complex, nitrosaminophenol complex, pyridyltriazine complex, acetylylacetonate complex, metaguchisen complex, vorphiline complex And organometallic compounds such as complexes.
- the metal atom is not particularly limited, but is preferably a transition metal.
- a binder a leveling agent, an antifoaming agent, and the like can be used in combination as necessary.
- Preferable binders include polybutanol, polypyrrole pyrrolidone, nitrocellulose, cellulose acetate, ketone series, acrylic series resin, polystyrene series resin, urethane series resin, polyvinyl butyral, polycarbonate, polyolefin and the like. . Any of these may be used alone, or two or more of these may be used in any combination and ratio.
- Examples of the method for forming the recording layer 2 include various commonly used thin film forming methods such as a vacuum deposition method, a sputtering method, a doctor blade method, a casting method, a spin coating method, and an immersion method.
- the vacuum deposition method or the like is preferable to the coating method from the viewpoint of obtaining the recording layer 2 having a uniform thickness that is preferable for the spin coating method.
- the rotation speed is preferably 500 to 15000 rpm.
- the spin coating may be followed by a treatment such as heating or applying to solvent vapor.
- the coating solvent is not particularly limited as long as it does not erode the substrate 1.
- ketonic alcohol solvents such as diacetone alcohol and 3hydroxyl-3-methyl-2-butanone
- cellosolve solvents such as methyl caffeosolve and ethylcethylsolve
- chains such as n-hexane and n-octane
- Cyclic hydrocarbon solvents Cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane, and other cyclic hydrocarbon solvents
- tetrafluoro Non-fluoroalkyl alcohol solvents such as propanol, otata fanolol pentanol, hexafnoreoro butanol, etc .
- hydroxycarboxylic acid ester solvents such as methyl lactate, ethyl lactate, methyl 2-
- the azocyanin dye of the formula [I] and, if necessary, recording layer components such as other dyes and various additives are installed in a crucible in a vacuum vessel. put, 10- 2 to the vacuum vessel with a suitable vacuum pump: L0- 5 after evacuating to about Pa, heating the crucible to evaporate the recording layer components, on substrate placed facing the crucible Thus, the recording layer 2 is formed.
- the film thickness of the recording layer 2 is not particularly limited because the film thickness varies depending on the recording method and the like, but a certain degree of film thickness is required to enable recording. Usually, it is at least 1 nm or more, preferably 5 nm or more. However, recording is too thick Since it may not be performed well, it is usually 300 nm or less, preferably 200 nm or less, and more preferably 1 OO nm or less.
- the reflective layer 3 is formed on the recording layer 2.
- the thickness of the reflective layer 3 is preferably 50 nm to 300 nm.
- a material having a sufficiently high reflectance at the wavelength of the reproduction light for example, a metal such as Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, Pd, is used alone or It can be used as an alloy.
- Au, Al, and Ag have high reflectivity and are suitable as the material for the reflective layer 3.
- other materials may be added.
- the “main component” means that the content is 50% by weight or more.
- materials other than the main component include Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Cu, Zn, Cd, Ga, In, Si , Ge, Te, Pb, Po, Sn, Bi, Ta, Ti, Pt, Pd, Nd, and other metals and metalloids.
- those containing Ag as a main component are particularly preferable because they are low in cost, easily reflect high reflectivity, and can provide a beautiful white background when a print receiving layer described later is provided.
- an alloy containing about 0.1 atomic% to 5 atomic% of one or more selected from Au, Pd, Pt, Cu, and Nd in Ag has high reflectivity, high durability, high sensitivity, and low cost. It is preferable.
- As a material other than metal it is possible to form a multilayer film by alternately stacking a low refractive index thin film and a high refractive index thin film, and use this as the reflective layer 3.
- Examples of methods for forming the reflective layer 3 include sputtering, ion plating, chemical vapor deposition, and vacuum vapor deposition. Also, a known inorganic or organic intermediate layer or adhesive layer should be provided on the substrate 1 or below the reflective layer 3 in order to improve reflectivity, recording characteristics, or adhesion. You can also.
- the protective layer 4 is formed on the reflective layer 3.
- the material of the protective layer 4 is not particularly limited as long as it protects the reflective layer 3 from external force.
- examples of the organic material include thermoplastic resins, thermosetting resins, electron beam curable resins, ultraviolet rays (hereinafter referred to as “UV” as appropriate) curable resins, and the like.
- examples of the inorganic substance include silicon oxide, silicon nitride, magnesium fluoride (MgF), and tin oxide (SnO).
- thermoplastic resin thermosetting resin, etc.
- the protective layer 4 can be formed.
- a UV curable resin apply a coating solution prepared by dissolving it on the reflective layer 3 or an appropriate solvent on the reflective layer 3 and irradiate it with UV light.
- the protective layer 4 can be formed by curing.
- the UV curable resin for example, acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used. These materials may be used alone or as a mixture of plural kinds.
- the protective layer may be formed as a single layer or a multilayer.
- the method for forming the protective layer 4 as with the recording layer 2, a coating method such as spin coating or casting, or a method such as sputtering or chemical vapor deposition is used. Is preferred.
- the film thickness of the protective layer 4 is usually 0.1 ⁇ m or more, preferably 3 ⁇ m or more because a certain thickness is required to fulfill its protective function. However, if it is too thick, not only the effect will not change, but it may take time and cost to form the protective layer 4, so it is usually 100 ⁇ m or less, preferably 30 ⁇ m or less. It is.
- the layer structure of the optical recording medium 10 has been described by taking as an example a structure in which a substrate, a recording layer, a reflective layer, and a protective layer are laminated in this order.
- other layer structures are employed. It doesn't matter.
- another substrate 1 may be bonded to the upper surface of the protective layer 4 in the layer structure of the above example or to the upper surface of the reflective layer 3 by omitting the protective layer 4 from the layer structure of the above example.
- the substrate 1 may be a substrate itself provided with no layers, or may have an arbitrary layer such as a reflection layer 3 on the bonding surface or the opposite surface.
- the optical recording medium 10 having the layer structure of the above example and the optical recording medium 10 having the layer structure force of the above example in which the protective layer 4 is omitted are applied to the upper surface of each protective layer 4 and Z or the reflective layer 3. Two sheets may be attached facing each other.
- FIG. 1B is a partial cross-sectional view schematically showing an example of the layer structure of the optical recording medium according to the second embodiment of the present invention.
- An optical recording medium 20 shown in FIG. 1 (b) includes a substrate 1 made of a light transmissive material, a reflective layer 3 provided on the substrate 1, a recording layer 2 and a protective film laminated on the reflective layer 3. 5 and were stacked in order It has a structure.
- the optical recording medium 20 records and reproduces information by the laser light L irradiated from the protective coating 5 side.
- the protective coating 5 may be a film or sheet bonded together with an adhesive. The same material as the protective layer 4 described above is used, and a coating liquid for film formation is applied and cured or dried. You may form from what you do.
- the thickness of the protective film 5 is generally 0.1 ⁇ m or more, preferably 3 m or more, since a certain degree of thickness is required to fulfill its protective function. However, if it is too thick, it may take time or cost to form the protective coating 5 that does not change the effect, so it is usually 300 ⁇ m or less, preferably 200 ⁇ m or less. is there.
- the layers such as the recording layer 2 and the reflective layer 3 can be generally the same as those of the optical recording medium 10 of the first embodiment.
- the substrate 1 it is not necessary for the substrate 1 to be transparent. Therefore, in addition to the above-described materials, opaque resin, ceramic, metal (including alloy), or the like is used. Even in such a layer structure, an arbitrary layer may be provided between the above-described layers as necessary as long as the characteristics of the present invention are not impaired.
- the substrate 1 usually requires a certain thickness to ensure the strength of the optical recording media 10 and 20, in this case, the structure of the optical recording medium 20 of the second embodiment (substrate 1, reflective layer 3, recording layer) It is preferable to employ an optical recording medium 20) having a basic layer structure consisting of layer 2 and protective film 5.
- the protective film 5 of the optical recording medium 20 of the second embodiment is thinner and more preferably, so the optical recording medium of the second embodiment is preferable. 20 is used.
- the optical recording medium 10 of the first embodiment the optical recording medium 10 having a basic layer structure including the substrate 1, the recording layer 2, the reflective layer 3, and the protective layer 4
- the recording By reducing the thickness of the transparent substrate 1 through which the laser beam for reproduction passes to about 50 to 300 m, it becomes possible to use it with a reduced convergence.
- an ultraviolet curable resin layer is used to protect the surface of the recording / reproducing laser beam incident surface (usually the lower surface of the substrate 1) and to prevent adhesion of dust or the like.
- Recording / reproduction laser light may be formed on the surface that is not the incident surface of the reproduction laser beam (usually the upper surface of the reflective layer 3 or the protective layer 4).
- the laser beam used for recording and reproducing information is preferably as short as possible from the viewpoint of realizing high-density recording.
- Laser light having a wavelength of 350 to 530 nm is preferable.
- Typical examples of such laser light include laser light having central wavelengths of 405 nm, 410 nm, and 515 nm.
- a laser beam having a wavelength of 350 to 530 nm is obtained by using a high-power semiconductor laser beam having a wavelength of 405 nm, 410 nm of blue or 515 nm of blue-green.
- a semiconductor laser beam capable of continuous oscillation with a fundamental oscillation wavelength of 740 to 960 nm and (b) a solid-state laser beam capable of continuous oscillation with a fundamental oscillation wavelength of 740 to 960 nm that is excited by the semiconductor laser beam.
- Any one of the above oscillation laser beams can also be obtained by wavelength conversion by a second harmonic generation (SHG) element.
- the SHG element may be any piezoelectric element that lacks inversion symmetry, but KDP (KH PO), ADP (NH H PO), BNN (Ba NaNb O), KN (KNbO
- the recording layer 2 (normally, the substrate 1 side force is also transmitted through the substrate 1) 0.4 to 0.6 m Irradiate a laser beam focused to a certain extent.
- the portion of the recording layer 2 irradiated with the laser beam undergoes thermal deformation such as decomposition, heat generation, and dissolution by absorbing the energy of the laser beam, so that the optical characteristics change.
- the recording layer 2 is irradiated with a laser beam having a lower energy (usually from the same direction as when recording).
- a laser beam having a lower energy usually from the same direction as when recording.
- optical recording medium having a plurality of recording layers and a method for manufacturing the same will be described as a third embodiment of the present invention.
- FIG. 7 (a) to 7 (f) are diagrams for explaining a method for manufacturing a two-layer optical recording medium according to the third embodiment of the present invention.
- a first substrate 201 having grooves, lands, and prepits formed on the surface is manufactured by an injection molding method using a stamper.
- a coating solution in which at least an organic dye is dissolved in a solvent is applied to the surface of the first substrate 201 on the uneven side by spin coating or the like, and heated (in order to remove the solvent used in the coating solution)
- the first recording layer 202 is formed by annealing.
- a translucent first reflective layer 203 is formed on the first recording layer 202 by sputtering or vapor deposition by sputtering or vapor deposition of Ag alloy or the like. .
- an ultraviolet curable resin layer 204a is formed on the entire surface of the first reflective layer 203 by spin coating or the like.
- the resin stamper 210 is placed and the unevenness is transferred to the ultraviolet curable resin layer 204a. At this time, it is performed while adjusting the film thickness of the ultraviolet curable resin layer 204a to be within a predetermined range.
- the ultraviolet curable resin layer 204a is cured by irradiating ultraviolet light from the resin stamper 210 side or the like, and when sufficiently cured, the resin stamper 210 is peeled off, and the intermediate layer 204 having irregularities on the surface.
- the resin stamper 210 desirably has good moldability and good shape stability as long as it has sufficient peelability to the resin to be the intermediate layer 204.
- Productivity and cost From this point of view, it is desirable that the resin stamper 210 can be used for multiple transfers. It is desirable that recycling after use is possible.
- the material of the resin stamper 210 include acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (especially amorphous polyolefin), polyester resin, polystyrene resin, and epoxy resin. Examples include fats. Among these, amorphous polyolefins are preferred, such as high productivity such as moldability, cost, low hygroscopicity, and shape stability.
- the second recording layer 205 is formed by heating (annealing).
- a second reflective layer 206 is formed on the second recording layer 205 by sputtering and vapor-depositing an Ag alloy or the like.
- a mirror substrate as the second substrate 208 obtained by injection molding of polycarbonate is bonded to the second reflective layer 206 through the adhesive layer 207. The production of the optical recording medium is completed.
- the optical recording medium and the manufacturing method thereof according to the third embodiment of the present invention have been described above.
- the optical recording medium may have three or more recording layers.
- substrate-incident optical discs but at least the substrate Z reflective layer Z second recording layer Z buffer layer Z intermediate layer Z semi-transparent reflective film Z first recording layer Z
- the present invention can also be applied to a film surface incident type optical disc that records and reproduces information by irradiating laser light from the film surface side.
- a preferable requirement for the dye used in the multilayer medium is that the recording sensitivity is better than that of the dye used in the single-layer medium. This is because when information is recorded in each layer, a phenomenon occurs in which light is absorbed and transmitted in layers other than the recording purpose. Also in this sense, the azacyanin dye of the present application is considered to be more preferable because it has a better recording sensitivity than the conventional one.
- the obtained crystals were separated by filtration, dissolved by adding 100 ml of acetone, and after removing insoluble matters by filtration, acetone was distilled off under reduced pressure.
- the obtained crystals were washed twice with diisopropyl ether and twice with isopropyl alcohol to obtain 2.93 g of the exemplified compound (1) as yellow crystals.
- the obtained exemplary compound (1) was dissolved in octafluoropentanol to a concentration of 1 wt%, and insoluble matters were removed by filtration to prepare a dye solution. .
- the obtained dye solution was dropped onto an injection-molded polycarbonate resin substrate having a diameter of 120 mm and a thickness of 1.2 mm, applied by spinner method (500 rpm), and then dried at 100 ° C for 30 minutes. A dye coating film was formed. When the absorbance of this coating film was measured, the maximum absorption wavelength ( ⁇ ) max was 419 nm.
- Fig. 2 shows the absorption spectrum.
- the obtained crystals were separated by filtration, dissolved in 100 ml of acetone, insoluble matters were removed by filtration, and then acetone was distilled off under reduced pressure.
- the obtained crystals were washed with 50 ml of diisopropyl ether to obtain 1.32 g of the exemplified compound (2) described above.
- a dye coating film was formed on a polycarbonate resin substrate in the same procedure as in Example 1, and the absorbance of this coating film was measured.
- the collection wavelength ( ⁇ ) was 435.5 nm.
- Fig. 3 shows the absorption spectrum.
- the absorbance in chloroform was measured.
- the maximum absorption wavelength ( ⁇ ) was 395.5 nm
- the molar extinction coefficient was 4.2 ⁇ 10 4 .
- a dye coating film was formed on a polycarbonate resin substrate in the same procedure as in Example 1, and the absorbance of this coating film was measured.
- Figure 4 shows the absorption spectrum obtained. The absorption peak is present at a wavelength longer than 500 nm (539 nm), and the absorption near 4 OOnm is extremely small, which is not suitable for the purpose of the present invention using a 405 nm laser.
- Example 1 For the dye represented by the following structural formula (B), Example 1 was carried out under the same conditions as in Example 1. It was coated on the polycarbonate substrate used in the above. The coating film was not crystallized to be transparent and was not suitable for the purpose of the present invention.
- Table 1 below shows the structure of the group R 5 of the above formula [I] and the structure of X-on X— in the dye compounds obtained in Examples 1 to 9.
- “Pr (i)” represents an i-propyl group and “t-Bu” represents a t-butyl group.
- the group of the formula [I] is a methyl group, and the group R 4 is a hydrogen atom.
- the numbers of the exemplified compounds indicate which of the above-mentioned exemplified compounds (1) to (19) corresponds to the dye compounds obtained in Examples 1 to 9.
- Table 1 shows the maximum absorption wavelength of the pigment compounds obtained in Examples 1 to 9 in the black mouth form (in the table, “e solj” column) and the maximum absorption wavelength of the coating film (in the table, “e film”). Column) and molar extinction coefficient in chloroform (column of “ ⁇ ” in the table).
- An optical recording medium can be obtained by forming a protective layer by curing with UV irradiation. This optical recording medium has a maximum absorption wavelength ( ⁇ ) of the dye coating film.
- the exemplary compounds (1) and (2) (the azocyanin dye of the present invention) synthesized in Examples 1 and 2 are compounds having a structure effective for recording of blue laser light.
- an optical recording medium was produced by the following procedure using the exemplary compound (2) synthesized in Example 2.
- the exemplified compound (2) synthesized in Example 2 was dissolved in otafluoropentanol to a concentration of 1.4% by weight, and the insoluble matter was filtered to prepare a dye solution.
- the solution was dropped onto an injection-molded polycarbonate resin substrate having a groove having a track pitch of 400 nm, a groove width of 200 nm, and a groove depth of 70 nm, having a diameter of 12 Omm and a thickness of 0.6 mm, and applied by a spinner method.
- the coating was performed by increasing the rotational speed of 600 rpm to 4900 rpm over 25 seconds and holding at 4900 rpm for 5 seconds. Further, the recording layer was formed by drying at 100 ° C. for 30 minutes.
- a silver alloy film was formed to a thickness of lOOnm by sputtering to form a reflective layer.
- a protective coating agent made of UV curable resin was applied by a spinner method, and UV light was irradiated to form a protective layer having a thickness of 5 ⁇ m.
- an optical recording medium for evaluation was prepared by adhering a polycarbonate substrate having a thickness of 0.6 mm to the surface having the protective layer using a delayed curable adhesive.
- the ability to record information by using the dye of the present invention with a short wavelength laser In addition to this, it satisfies the more severe conditions, that is, the characteristics required as a dye for high-density optical disks. In order to confirm this, an evaluation based on the HD DVD—R standard was conducted.
- Example A On a polycarbonate substrate with a thickness of 0.6 mm, a track pitch of 0.4 m, a groove width of 260 nm, and a groove depth of 60 nm, TFP (2, 2, 3, 3—tetra A recording layer was provided by applying a solution mixed at a concentration of 1.0 wt% with respect to (fluoro-1 propanol) by spin coating and drying at 70 ° C. for 25 minutes. The absorbance at 470 nm measured using air as a reference was 0.32. Thereafter, an AgBi Nd reflective film having a thickness of 120 nm was formed on the recording layer by sputtering. Furthermore, this reflective layer
- An optical recording medium was prepared by adhering a polycarbonate back plate having a thickness of 0.6 mm using an ultraviolet curable resin (SK7100, manufactured by Sony Chemical Co., Ltd.) to the optical recording medium (Example A optical recording medium). ).
- the recording mechanism was a Low To High type, and the optimum recording power was 6.4 mW.
- Figure 5 shows the obtained PRSNR.
- the PRSNR of the optical recording medium of Example A was 34.0, which was a result significantly exceeding the 15 of the standard.
- An optical recording medium was prepared under the same conditions as in Example A except that the exemplified compound (28) described above was used as the dye (the optical recording medium of Example B), and evaluation was performed under the same conditions.
- the recording mechanism was a Low To High type, and the optimum recording power was 6.2 mW.
- Figure 5 shows the obtained PRSNR.
- the PRSNR of the optical recording medium of Example B was 26.0, which was a result well exceeding the 15 of the standard.
- An optical recording medium was prepared under the same conditions as in Example A except that the above exemplified compound (29) was used as a dye (an optical recording medium of Example C), and evaluation was performed under the same conditions.
- An optical recording medium was produced under the same conditions as in Example A except that the exemplified compound (30) described above was used as the dye (the optical recording medium of Example D), and evaluation was performed under the same conditions.
- the recording mechanism was a Low To High type, and the optimum recording power was 7.2 mW.
- Figure 5 shows the obtained PRSNR.
- the PRSNR of the optical recording medium of Example D was 30.0, which was a result well exceeding the 15 of the standard.
- An optical recording medium was prepared under the same conditions as in Example A except that the exemplified compound (31) described above was used as the dye (the optical recording medium of Example E), and evaluation was performed under the same conditions.
- the recording mechanism was a Low To High type, and the optimum recording power was 6.8 mW.
- Figure 5 shows the obtained PRSNR.
- the PRSNR of the optical recording medium of Example E was 26.0, which was a result much higher than 15 of the standard.
- a two-layer medium was prepared using the same dye as in Example A, that is, the exemplified compound (27), and the recording characteristics of the recording layers of Layer 0 and Layer 1 were evaluated.
- Layer 0 means “first recording layer” (recording layer closer to laser incidence)
- Layer 1 means “second recording layer” (recording layer farther from laser incidence).
- an AgBi alloy with a thickness of 20 nm is formed as the “first reflective layer” (translucent reflective layer)
- an Ag film with a thickness of 120 nm is formed as the “second reflective layer”.
- An ultraviolet curable resin was formed as an intermediate layer with a thickness of 25 m.
- the track pitch of the substrate used was 0.4 m, the groove depth was Layer O: 60 nm, Layer 1: 65 nm, both groove widths were 260 and the absorbance at 470 nm was Layer 0: 0.315, Layer 1: 0. 34 5
- the recording conditions were the same as for the single-layer medium, using a tester (ODU-1000 manufactured by Pulse Tech) with a laser wavelength of 405 nm and NA (numerical aperture) of 0.65, linear velocity of 6.61 mZs, and minimum mark length of 204 nm. A random pattern was recorded. Recording and playback were performed in accordance with the HDDVD-R standard Verl. 0 defined by the DVD Forum, and PRS NR (Partial Response SNR) in the standard was evaluated. [0154] As a result of evaluation, the recording mechanism of both Layer 0 and Layer 1 was Low To High type. Figure 6 shows the PRSNR obtained. As is clear from FIG.
- the optimum recording power of Layer 0 was 9.4 mW and PRNSR was 25.1, and the optimum recording power of Layer 1 was 12.5 mW and PRNSR was 24.0.
- the value of PRSNR was a good result that greatly exceeded the standard value of 15.0 for both Layer 0 and Layer 1, and sufficient recording characteristics required for the double-layer medium were secured.
- the field of application of the present invention is not particularly limited, but can be suitably used in the field of optical recording media that perform recording and reproduction using laser light having a short oscillation wavelength such as blue laser light.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
青色レーザー等の短波長の光によって高密度の光情報の記録・再生が可能な光学記録媒体を提供する。
基板と、基板上に設けられ、光が照射されることにより情報の記録又は再生が可能な記録層とを少なくとも有する光学記録媒体において、記録層が一般式[I]で示されるアザシアニン色素を含有するようにする。
(式中、R1及びR2はそれぞれ独立して、水素原子、又は、置換されていてもよい炭素数1~4の直鎖若しくは分岐のアルキル基を表わす。R3は、水素原子、又は、炭化水素基を表わす。R4は、水素原子、又は、炭素数1~4の直鎖又は分岐のアルキル基を表わす。R5は、置換されていてもよい芳香環基、又は、置換されていてもよい不飽和複素環基を表わす。R4とR5とは互いに結合して、環構造を形成していてもよい。X-は、対アニオンを表わす。Aで示されるベンゼン環は、置換されていてもよい。)
Description
明 細 書
光学記録媒体及びァザシァニン色素
技術分野
[0001] 本発明は光学記録媒体及びァザシァニン色素に関し、より詳しくは、青色レーザー に対応が可能な耐光性に優れた光学記録媒体と、その光学記録媒体の記録層に好 適に用いられるァザシァニン色素に関する。
背景技術
[0002] 現在、 CD— RZRW (compact disc - recordable I rewritable)、 DVD-R/RW (d igital video disc - recordable I rewritable)、 MO (magneto-optic)アイスク等の各植 光学記録媒体は、大容量の情報を記憶でき、ランダムアクセスが容易であるために、 コンピュータ等の情報処理装置における外部記憶装置として広く認知され普及して いる。これらの中で、じ0—1^ゃ0¥0—1^に代表される、有機色素化合物が含有され る記録層を設けた有機色素系光学記録媒体は、低コストで且つ製造も容易であると いう点で、優位性を有するものと考えられている。
[0003] 一方、取り扱われる情報量の増大により、媒体の記録密度を高めることが望まれ、 近年、開発が著 、青色レーザー光等の発振波長の短!、レーザー光を用いた高密 度の記録再生可能な光学記録媒体が提唱されつつある。
[0004] 力かる青色レーザー光等の発振波長の短 、レーザー光を用いた光学記録媒体に 関しては、いくつかの報告例がある。し力しながら、記録装置や記録条件の統一がな されて 、な 、状況が続 、ており、望ま U、光学記録媒体の像が見えにくいのが現状 である。
[0005] 力かる状況下において、例えば、下記特許文献 1〜4には、波長 405〜430nm程 度の発信波長が短いレーザー光により情報の記録'再生が可能な光学記録媒体の 記録層用の有機色素が示されている。
[0006] 特許文献 1 :特開平 11 105423号公報
特許文献 2:特開平 11― 78239号公報
特許文献 3 :国際公開第 2006— 035554号パンフレット
特許文献 4:特開 2001— 301333号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、特許文献 1〜2に記載されたような従来の青色レーザー用等の短波 長用有機色素は、現在開発されている半導体レーザー、即ち、波長 405nm近傍の レーザー光の吸収が少ない、或いは、有機溶媒への溶解性があまりよくない等の課 題がある。特に、従来の短波長用有機色素は、その構造上、吸収波長の調整が容易 ではなぐこのため、それらの有機色素を記録層に含む光学記録媒体は、十分な記 録感度が得られにく ヽなどの課題があった。
[0008] また、特許文献 3〜4に記載された青色レーザー用等の短波長用有機色素は、従 来の CD— Rや DVD— Rと呼ばれる光学記録媒体と同様の記録メカニズム、すなわ ち High to Low記録を志向している。 High to Low記録とは、未記録時の反射率が記 録時に比べて高!、記録方法であり、未記録部分の戻り光が多!、材料が優れた記録 材料とされている。し力しながら、現在開発されている青色半導体レーザーを用いた 記録方法、例えば HD (High Definition) DVD— Rや BD (Blu- ray Disc)— Rなどにお いては、 High to Low記録の実用化は困難であるという課題がある。
[0009] 本発明は上述の課題に鑑みてなされたもので、その目的は、青色レーザー等の短 波長の光によって高密度の光情報の記録'再生が可能な光学記録媒体を提供する とともに、この光学記録媒体に好適に用いられる新規な色素を提供することに存する また、本発明のもう一つの目的は、従来と異なる記録メカニズムである Low to High 記録によって高密度の光情報の記録'再生が可能な光学記録媒体を提供するととも に、この光学記録媒体に好適に用いられる新規な色素を提供することに存する。な お、「Low t0 High記録」とは、未記録時よりも記録時の反射率が高い記録方法であり 、当該記録方法においては、未記録時の反射率を低くすることが望ましい。
課題を解決するための手段
[0010] 本発明者らは鋭意検討の結果、特定の構造を有するァザシァニン色素を光学記録 媒体の記録層に用いることにより、青色レーザー等の短波長の光によって高密度の
光情報の記録 ·再生が可能となり、特に Low to High記録による新たな光学記録媒体 の実用化が可能となることを見出し、本発明を完成させた。
[0011] 即ち、本発明の要旨は、基板と、前記基板上に設けられ、光が照射されること〖こより 情報の記録又は再生が可能な記録層とを少なくとも有し、該記録層が、下記一般式 [ I]で示されるァザシァニン色素を含有することを特徴とする、光学記録媒体に存する (請求項 1)。
[化 1]
(一般式 [I]中、
R1及び R2はそれぞれ独立して、水素原子、又は、置換されていてもよい炭素数 1〜4 の直鎖若しくは分岐のアルキル基を表わす。また、 R1及び R2が互いに結合して、環 を形成していてもよい。
R3は、水素原子、又は、炭化水素基を表わす。また、 R3が炭化水素基である場合、 R
3を介して 2以上の一般式 [I]の化合物が架橋されて!、てもよ!/、。
R4は、水素原子、又は、炭素数 1〜4の直鎖又は分岐のアルキル基を表わす。
R5は、置換されていてもよい芳香環基、又は、置換されていてもよい不飽和複素環基 を表わす。また、 R5を介して 2以上の一般式 [I]の化合物が結合されていてもよい。 但し、 R4と R5とは互いに結合して、環構造を形成していてもよい。
X—は、対ァ-オンを表わす。
Aで示されるベンゼン環は、置換されていてもよい。 )
[0012] ここで、上記一般式 [I]中、 R4が水素原子であり、 R5が置換されていてもよいフエ- ル基であることが好ま 、 (請求項 2)。
[0013] また、上記一般式 [I]中、 R4が水素原子であり、 R5が置換されていてもよい 5員又は
6員の不飽和複素環基であることも好ま ヽ (請求項 3)。
[0014] また、上記一般式 [I]中、 R4と R5とが互いに結合して、 5員又は 6員の飽和炭化水素 環又は飽和複素環を形成して 、ることも好ま 、 (請求項 4)。
[0015] また、 R5がフエ-ル基の場合、置換基を有さな!/、ことが好ま 、(請求項 5)。
[0016] また、一般式 [I]中、 X—が下記一般式 [II]で表わされるァゾ系金属錯体の陰イオン であることが好ま 、 (請求項 6)。
[化 2]
(一般式 [II]中、環 C及び環 Dは、各々独立に、芳香族環又は複素環を表わす。但し 、環 C及び環 Dのうち少なくとも一方の環は複素環である。 Y及び Zは、各々独立に、 活性水素を有する基を表わす。 Mは、 3価の金属元素を表わす。 )
[0017] また、該記録層が、波長 350nm〜530nmのレーザー光により情報の記録又は再 生が行なわれるものであることが好ま 、(請求項 7)。
[0018] また、本発明の別の要旨は、下記式 (i)で表わされることを特徴とする、ァザシァ- ン色素に存する(請求項 8)。
[化 3]
X ( i )
(X—は、対ァ-オンを表わす。 )
発明の効果
[0019] 本発明の光学記録媒体及び本発明のァザシァニン色素によれば、青色レーザー 等の短波長の光によって高密度の光情報の記録 *再生が可能である。また、従来と 異なる記録メカニズムである Low to High記録によって高密度の光情報の記録 '再生 が可能である。
図面の簡単な説明
[0020] [図 1] (a)は、本発明の第 1実施形態に係る光記録媒体の層構成の一例を模式的に 表わす部分断面図であり、(b)は、本発明の第 2実施形態に係る光記録媒体の層構 成の一例を模式的に表わす部分断面図である。
[図 2]実施例 1で得られたァザシァニン色素 (例示化合物(1) )の塗布膜の吸収スぺク トルである。
[図 3]実施例 2で得られたァザシァニン色素(例示化合物(2) )の塗布膜の吸収スぺク トルである。
[図 4]比較例 1で得られたァザシァニン色素の塗布膜の吸収スペクトルである。
[図 5]実施例 A〜Eの光学記録媒体におけるレーザー記録パワーと PRSNRとの関係 を示す図である。
[図 6]実施例 Fの光学記録媒体(2層媒体)におけるレーザー記録パワーと PRSNRと の関係を示す図である。
[図 7] (a)〜 (f)は何れも、本発明の第 3実施形態に係る 2層型光記録媒体の製造方 法を説明する図である。
符号の説明
[0021] 1 基板
2 記録層
3 反射層
4 保護層
5 保護被膜
10, 20 光学記録媒体
L レーザー光
201 第 1の基板
202 第 1の記録層
203 第 1の反射層
204 中間層
204a 紫外線硬化性榭脂層
205 第 2の記録層
206 第 2の反射層
207 接着層
208 第 2の基板 (鏡面基板)
210 榭脂スタンパ
発明を実施するための最良の形態
[0022] 以下、本発明の実施の形態について詳細に説明する力 本発明は以下の説明に 限定されるものではなぐその要旨の範囲内において種々に変更して実施することが できる。
[0023] 本発明の光学記録媒体は、基板と、前記基板上に設けられ、光が照射されることに より情報の記録又は再生が可能な記録層とを有し、前記記録層が、後述の一般式 [I ]で示されるァザシァニン色素を含有するものである。以下の記載では説明の便宜上 、まずは本発明の光学記録媒体の記録層に含有されるァザシァニン色素について 説明し、続いて本発明の光学記録媒体の説明に移るものとする。
[0024] [I.ァザシァニン色素]
本発明の光学記録媒体は、その記録層に、下記一般式 [I]で表わされるァザシァ ニン色素を含有する(以下適宜「式 [I]のァザシァニン色素」と略称する。)。式 [I]の ァザシァニン色素は、波長 350ηπ!〜 530nmの青色光領域に適度の吸収を有する ため、青色レーザー光による記録に適し、実用に耐え得る耐光性を有する色素化合 物である。
[0025] [化 4]
[0026] (一般式 [I]中、
R1及び R2はそれぞれ独立して、水素原子、又は、炭素数 1〜4の直鎖若しくは分岐 のアルキル基を表わす。また、 R1及び R2が互いに結合して、環を形成していてもよい
R3は、水素原子、又は、炭化水素基を表わす。また、 R3が炭化水素基である場合、 R
3を介して 2以上の一般式 [I]の化合物が架橋されて!、てもよ!/、。
R4は、水素原子、又は、炭素数 1〜4の直鎖又は分岐のアルキル基を表わす。
R5は、置換されていてもよい芳香環基、又は、置換されていてもよい不飽和複素環基 を表わす。また、 R5を介して 2以上の一般式 [I]の化合物が結合されていてもよい。 但し、 R4と R5とは互いに結合して、環構造を形成していてもよい。
X—は、対ァ-オンを表わす。
Aで示されるベンゼン環は、置換されていてもよい。 )
[0027] 以下、前記一般式 [I]における Ri〜R5の各々について説明する。
なお、 Ri〜R5の説明において「置換されていてもよい」と言う場合、その置換基には 、特に断りのある場合を除き、水酸基ゃスルホン酸基等の水溶性基は原則として含ま れないものとする。これは、色素化合物が光学記録媒体の記録層に含有され得るた めには、まず、有機溶媒に対してある程度の溶解性を有することが必要とされるから である。更に、そのような記録層が、ある程度の耐水性を有する安定な膜であることが 、光ディスクの実用上、必要とされるからである。
[0028] 前記一般式 [I]中、 R1及び R2はそれぞれ独立して、水素原子、又は、置換されてい てもよい炭素数 1〜4の直鎖若しくは分岐のアルキル基を表わす。また、 R1と R2とが結 合して環を形成して 、てもよ 、。炭素数 1〜4の直鎖若しくは分岐のアルキル基として は、例えば、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチ
ル基、 sec ブチル基、 tert ブチル基などが挙げられる。
[0029] R1又は R2が炭素数 1〜4の直鎖若しくは分岐のアルキル基の場合、置換基としては 、例えば、ァズレン環、キノリン環、シクロプロパン環、シクロブタン環、シクロペンタン 環、シクロへキサン環、シクロへキセン環、ナフタレン環、チォフェン環、ベンゼン環、 ピぺリジン環、ピリジン環、ピロリジン環、ピロール環、フラン環などの飽和又は不飽和 の環状基や、ハロゲン原子 (フッ素原子、塩素原子、臭素原子等)などが挙げられる。 これらの中でも、ベンゼン環、ナフタレン環が置換基として好ましぐまた、 R1又は R2と しては、炭素数 1又は 2のアルキル基にベンゼン環が結合したものが特に好まし 、。
R1と R2とが結合して環を形成する場合の環としては、例えば、シクロブタン環、シク 口ペンタン環、シクロへキサン環、シクロへキセン環、シクロヘプタン環などの飽和又 は不飽和の環状構造を形成する。
[0030] R1又は R2が環状の置換基を有する場合の環、および、 R1と R2が結合して環を形成 する場合の環には、一又は複数の置換基を有していてもよい。その場合の置換基と しては、例えば、メチル基、ェチル基、プロピル基、イソプロピル基、イソプロべ-ル基 、 1 プロぺニル基、 2—プロぺニル基、 2—プロピニル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、 2 ブテュル基、 1, 3 ブタジェ-ル基、ペンチ ル基、イソペンチル基、ネオペンチル基、 tert ペンチル基、 1ーメチルペンチル基、 2—メチルペンチル基、 2 ペンテン 4 ィニル基等の脂肪族炭化水素基、シクロ プロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへキセ- ル基などの脂環式炭化水素基、フエ二ル基、 o トリル基、 m トリル基、 p トリル基 、キシリル基、メシチル基、 o タメ-ル基、 m タメ-ル基、 p タメ-ル基、ビフエ-リ ル基などの芳香族炭化水素基、フルォロ基、クロ口基、ブロモ基、ョード基などのハロ ゲン基、メトキシ基、エトキシ基などのアルコキシ基、ジメチルァミノ基、ジェチルァミノ 基などのアルキルアミノ基、及び-トロ基、更には、それらの組み合わせによる置換基 が挙げられる。
[0031] 前記一般式 [I]中、 R3は、水素原子、又は、炭化水素基を表わす。 R3が炭化水素 基である場合、置換されていてもよい炭素数 1〜6の直鎖若しくは分岐のアルキル基 が好ましい。
また、 R3が炭化水素基である場合、 R3を介して 2以上の一般式 [I]の化合物が架橋 されて 、てもよ 、。 2以上の一般式 [I]の化合物を R3を介して架橋する場合における R3としては、炭素数 1〜6の直鎖若しくは分岐のアルキル基のほか、これより炭素数の 多 、アルキル基やフエ-レン基等も用いることができる。
[0032] 尚、 Ri〜R3がアルキル基の場合に有していてもよい置換基としては、本発明の趣旨 に反するものでない限り特に制限されないが、ハロゲン原子 (フッ素原子、塩素原子 、臭素原子等)、アルコキシ基 (メトキシ基、エトキシ基等)、アルキルアミノ基 (ジメチル アミノ基、ジェチルァミノ基等)、ァリール基 (フエニル基、ナフチル基等)などが挙げら れる。ハロゲン原子はハロゲン系溶媒との親和性向上、アルコキシ基やアルキルアミ ノ基等の極性基は極性溶媒の溶媒和向上、ァリール基は立体障害による色素分子 同士の会合抑制により、何れも溶媒への溶解性向上が期待できるためである。
[0033] 前記一般式 [I]中、 R4は、水素原子、又は、炭素数 1〜4の直鎖又は分岐のアルキ ル基を表わす。中でも、水素原子であることが好ましい。
[0034] 前記一般式 [I]中、 R5は、置換されていてもよい芳香環基、又は、置換されていても よい不飽和複素環基を表わす。なお、本明細書において「芳香環基」及び「複素環 基」とは、それぞれ、芳香環及び複素環から水素原子を一つ除いて得られる基をいう ものとする。
[0035] 得られる色素の有機溶媒への溶解性を向上させる観点からは、 R5は、不飽和複素 環基であることが好ましい。
R5が不飽和複素環基の場合、環の員数は 5員又は 6員が好ましい。 4員以下の環 状構造は一般に不安定で、 7員以上の環状構造は合成が煩雑となるからである。
[0036] R5が芳香環基の場合、具体的にはフ ニル基が好ましい。
芳香環基や不飽和複素環基の場合は、アルキル基等の場合に比較して、得られる 色素の光吸収が長波長となり、青色レーザーの発振波長である 405nmの吸収が大 きくなる。
[0037] R5が不飽和複素環基の場合、その種類は特に制限されないが、ヘテロ原子として 窒素原子、酸素原子、硫黄原子等を含有する複素環基が挙げられる。例えば、 R5が 、以下の式で表わされる不飽和複素環基の場合には、吸収の波長を調節することが
可能となるので好ましい。
[0038] [化 5]
[0039] R5が芳香環基又は不飽和複素環基の場合、これらは置換基を有して!/、てもよ!/、。
置換基としては、本発明の趣旨に反するものでない限り特に制限されないが、好まし い例としては、炭素数 1〜8の直鎖又は分岐のアルキル基、フッ化アルキル基、アル コキシ基、アルキルチオ基等が挙げられる。何故ならば、これらの基の場合には、塗 布溶媒に対する溶解性が向上し、薄膜での結晶ィ匕も起こり難いからである。中でも、 炭素数 1〜5の直鎖又は分岐のアルキル基、 -CF、 -OCF、 -SCF、—SC F、
3 3 3 2 5
-OCH、—O— (iso-C H )等が特に好ましい。
3 3 7
[0040] また、 R5が芳香環基又は不飽和複素環基の場合、これらは更に縮合環を有して 、 てもよい。縮合環の種類は本発明の趣旨に反するものでない限り特に制限されない 力 5員又は 6員の芳香環又は複素環が好ましい。また、この縮合環が上記例示の置 換基を有していてもよい。
また、 R5を介して 2以上の一般式 [I]の化合物が結合されて 、てもよ!/、。
[0041] また、 R4と R5とは互いに結合して、環構造を形成していてもよい。力かる環構造を形 成することにより結晶化が抑制され、有機溶媒への溶解性が得られる場合があるので 好ましい。環構造の種類は特に制限されないが、環の員数は 5員又は 6員が好ましい 。 4員以下の環状構造は一般に不安定で、 7員以上の環状構造は合成が煩雑となる 力もである。また、 R4と R5とが結合する窒素原子以外の環骨格原子は、全て炭素原 子であってもよぐヘテロ原子として窒素原子、酸素原子、硫黄原子等を含有してい てもよい。
[0042] R4と R5とが環構造を形成する場合、この環構造は置換基を有して 、てもよ 、。置換 基の種類は特に制限されないが、例としては、 R5が芳香環基又は複素環基の場合に 有して 、てもよ 、置換基として先に例示した各種の置換基が挙げられる。
[0043] また、 R4と R5とが環構造を形成する場合、この環構造は更に縮合環を有して 、ても
よい。縮合環の種類は特に制限されないが、例としては、 R5が芳香環基又は複素環 基の場合に有して 、てもよ 、縮合環として先に例示した各種の縮合環が挙げられる 。更には、この縮合環が上記例示の置換基を有していてもよい。
また、 R4と R5とが環構造を形成する場合、この環構造を介して 2以上の一般式 [I]の 化合物が結合されて 、てもよ 、。
[0044] 前記一般式 [I]中、 Aで示されるベンゼン環は、置換されていてもよい。その場合の 置換基としては、 Cl、 Br等のハロゲン原子、炭素数 1〜4の直鎖又は分岐のアルキル 基、ァセチルァミノ基、炭素数 1〜4のアルコキシ基等が挙げられる。ベンゼン環 Aは 、更に縮合環を有していてもよい。縮合環の種類は特に制限されないが、ベンゼン環 が好ましい。
[0045] 前記一般式 [I]中、 X—は、対ァ-オンを表わす。 1価のァ-オンであれば特に限定 されないが、使用しやすいものとしては、 1 Cl—、 Br―、 BF―、 PF―、 SbF―、 CH SO―
等が挙げられる。
[0046] また、 X—としては、陰電荷を有する金属錯体を好適に用いることが出来る。個々の 金属錯体としては、例えば、ァセチルァセトナートキレート系、ァゾ系、サリチルアル デヒドォキシム系、ジインモニゥム系、ジチォ一ノレ系、ジピロメテン系、スクァリリウム系
、チォカテコールキレート系、チオビスフエノレートキレート系、ビスジチォ ージケ トンキレート系、ビスフエ-レンジチオール系、ホルマザン系の遷移金属キレートなど が挙げられる。これらのうち、耐光性及び溶剤に対する溶解性の点で、ァゾ金属錯体 が好ましい。上記例示等の金属錯体における遷移元素としては、例えば、バナジウム 、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニゥ ム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、ノ《ラジウム、 白金、銅、銀、金、亜鉛、カドミウム、水銀などが挙げられる。これらのうち、経済性及
び生体に対する影響の点で、バナジウム、マンガン、コバルト、銅が好ましい。
[0047] X—として好ましいァゾ金属錯体の陰イオンとしては、下記一般式 [II]で表わされるァ ゾ系金属錯体の陰イオンが挙げられる。
[0048] [化 7]
[0049] 一般式 [II]中、環 C及び環 Dは、各々独立に、芳香族環又は複素環を表わす。但し 、環 C及び環 Dのうち少なくとも一方の環は複素環である。 Y及び Zは、各々独立に、 活性水素を有する基を表わす。 Mは、 3価の金属元素を表わす。 Y及び Zの活性水 素が脱離してァゾ系配位子が 2の電荷を有し、このァゾ系配位子 2個と + 3の電荷 の金属原子 1個から全体で 1の電荷の金属錯体が形成される。
[0050] 前記一般式 [II]中、 C及び Dで表わされる環は、芳香族環又は不飽和若しくは飽和 の複素環であり、 Y及び Z以外の置換基を更に有していてもよい。 C及び Dで表わさ れる環の種類は特に限定されないが、例えば、ベンゼン、ナフタレン等の芳香族環; ピリジン、ピリミジン、チォフェン等の不飽和複素環;メルドラム酸、バルビツール酸、 ピリドン等の飽和複素環;などが挙げられる。
[0051] 前記一般式 [II]中、 Y及び Zで表わされる基は、活性水素を有する基であり、プロト ンが脱離して陰電荷を有するものであればょ 、。 Y及び Zで表わされる基の種類は特 に限定されないが、例えば、カルボン酸、スルホン酸、アミノ基、水酸基、アミド基、ボ ロン酸、リン酸などが挙げられる。また、環内に基が含まれていてもよい。
[0052] 前記一般式 [II]中、 Mで表わされる元素は、 3価の金属元素である。ァゾ系配位子 の有する基 Υ、 Ζ及びァゾ結合の窒素原子の一つが金属に配位すると仮定すれば、 1個の金属元素に 3配座の配位子を 2個有する金属錯体力 6配座で安定ィ匕すると 考えられる。そのため、 2の配位子が 2個と、 + 3の金属が 1個と力もなるァゾ系金 属錯体は、最も安定であり、且つ、一般式 [I]で表わされるァザシァニン色素と等モ ルで対になることができるので好まし 、。
[0053] 上記一般式 [II]で表わされるァゾ系金属錯体の陰イオンの中でも好ましいものとし ては、例えば、下記一般式 [II 1]〜[11 4]で表わされるァゾ金属錯体の陰イオン が挙げられる。
[0054] [化 8]
[0055] [化 9]
[0056] [化 10]
[0057] [化 11]
[0058] 上記一般式 [II 1]〜[II 4]において、 Μは、周期律表の第 5〜12族に属する遷 移元素を表わす。
[0059] 上記一般式 [II 1]〜[11 4]における RU、 R12、 R"〜R17、 R19〜R22、 R25及び R26は 、炭化水素基を表わす。同一分子内におけるこれらの炭化水素基は、互いに同一で あってもよぐ異なっていてもよい。個々の炭化水素基の種類は特に制限されず、脂 肪族炭化水素基でも脂環式炭化水素基でもよ 、。脂肪族炭化水素基の例としては、 炭素数 1〜6の直鎖状又は分枝鎖状の脂肪族炭化水素基、例えば、メチル基、ェチ
ル基、プロピル基、イソプロピル基、イソプロべ-ル基、 1 プロべ-ル基、 2—プロべ ニル基、 2—プロピ-ル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル 基、 2 ブテニル基、 1, 3 ブタジェニル基、ペンチル基、イソペンチル基、ネオペン チル基、 tert ペンチル基、 1ーメチルペンチル基、 2—メチルペンチル基、 2—ペン テン ィニル基等が挙げられる。脂環式炭化水素基の例としては、シクロプロピ ル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへキセ-ル基等 が挙げられる。斯かる炭化水素基は、その一又は複数の水素原子が、例えば、フッ 素原子、塩素原子、臭素原子等のハロゲン原子によって置換されていてもよい。上 記一般式 [II 1 ]〜 [II 4]のァゾ系金属錯体陰イオンを有する式 [I]のァザシァニ ン色素は、溶剤の種類にもよるが、通常は RU、 R12、 R"〜R17、 R19〜R22、 R25及び R26 の炭素数が多くなるほど、溶剤に対する溶解性が増大する。
上記一般式 [II— 1]、 [11 3]、 [11 4]にぉける1^°、 R13、 R18、 R23、 R24及び R27は、 水素原子又は置換基を表わす。同一分子内におけるこれらの置換基は、互いに同 一であってもよぐ異なっていてもよい。個々の置換基の例としては、例えば、メチル 基、ェチル基、プロピル基、イソプロピル基、イソプロぺニル基、 1 プロぺニル基、 2 プロべ-ル基、 2—プロピ-ル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、 2 ブテュル基、 1, 3 ブタジェ-ル基、ペンチル基、イソペンチル基 、ネオペンチル基、 tert ペンチル基、 1ーメチルペンチル基、 2—メチルペンチル 基、 2 ペンテン 4 ィ-ル基等の脂肪族炭化水素基;シクロプロピル基、シクロブ チル基、シクロペンチル基、シクロへキシル基、シクロへキセ -ル基等の脂環式炭化 水素基;フエニル基、 o トリル基、 m トリル基、 p トリル基、キシリル基、メシチル基 、 o タメ-ル基、 m—タメ-ル基、 p タメ二ル基、ビフエ-リル基等の芳香族炭化水 素基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキ シ基、 sec ブトキシ基、 tert ブトキシ基、ペンチルォキシ基、フエノキシ基等のェ 一テル基;メトキシカルボ-ル基、エトキシカルボ-ル基、プロポキシカルボ-ル基、 ァセトキシ基、ベンゾィルォキシ基等のエステル基、ジメチルァミノ基、ジェチルァミノ 基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルァミノ基、ジペンチルァミノ 基等のアミノ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒ
ドロキシ基、カルボキシ基、シァノ基、ニトロ基等;更には前記例示置換基が複数結 合してなる置換基などが挙げられる。
[0061] なお、上記一般式 [II 1]、 [II 2]で表わされるァゾ金属錯体の陰イオンにおいて 、二つの-トロ基が結合する位置は、ァゾ基に対してオルト位、メタ位、パラ位の何れ であっても構わな!/、が、合成上の観点からはメタ位であることが好まし!/、。
[0062] 上記式 [I]のァザシァニン色素は、置換基の導入が可能な部位が多ぐまた、その 置換基の電子吸引性或いは電子供与性などの効果が、 π電子系の共役により伝わ りやすいため、波長の調整が容易であるという特徴を有する。たとえば、 R5が芳香環 基又は複素環基の場合に有する置換基や、 R4と R5とが環構造を形成する場合に有 する置換基を適切に選択することにより、およそ 350ηη!〜 450nmまで吸収極大の 波長を変えることが可能である。従って、記録光波長に大きな吸収を持たせることが 可能であり、その結果、記録感度が向上するのである。
[0063] 式 [I]のァザシァニン色素の好ましい例としては、下記の構造式(1)〜(3)、(5)、 ( 6)、(8)〜(16)、(20)〜(37)で示される化合物が挙げられる(なお、以下の記載で は、各構造式で示される化合物を、その構造式の番号を付して「例示化合物(1)」等 のように略称する場合がある。 ) o但し、以下の化合物はあくまでも例示であって、本 発明の光記録媒体に使用可能な式 [I]のァザシァニン色素はこれらに限定される訳 ではない。
[0064] [化 12]
[化 13]
[化 26]
[0068] [化 30]
[化 32]
[化 34]
[0071] [化 38]
[化 39]
//: O Ϊε09ίε900ί1£AV 93
[化 43]
[0074] なお、上記例示化合物(13)のように、 R5としてチアゾール環基を有する化合物は、 溶解性の向上が期待されるという理由で好ましい。
また、例示化合物(8)のように、 R5として、複素環にベンゼン環が縮合した基を有す る化合物は、親水性が低下するので色素としての安定性が増す (加水分解性が低下 する)という利点がある。
[0075] 以上の例示化合物(1)〜(3)、 (5)、 (6)、 (8)〜(16)、 (20)〜(37)の中でも、光 学記録媒体の記録層に用いた場合に上述の効果がより顕著に得られるという観点か ら、例示化合物(1)〜(3)、(6)、(15)及び(20)〜(23)が好ましい。また、例示化合 物(24)〜( 30)も好ましい。
[0076] 特に、例示化合物(27)及び(28)に代表される、下記式 (i)で表わされるァザシァ ニン色素 (これらを適宜「本発明のァザシァニン色素」という。)は、新規な構造の色素 化合物であり、且つ、光学記録媒体の記録層に用いた場合に上述の効果がとりわけ 顕著に得られるという観点から、極めて好ましい。
[0077] [化 44]
(X—は、対ァ-オンを表わす。 )
[0078] なお、上記式 [I]のァザシァニン色素の合成方法は、特に制限されるものではな 、 力 例えば、 2— (1, 3, 3—トリメチルインドリン— 2—イリデン)ァセトアルデヒド {2- (1, 3,3- Trimethylindolin- 2- ylidene)acetaldehyde}とァミン化合物を酢酸中で加熱し、反 応混合物を水中に放出した後に塩析する方法(K. Venkataraman, The Chemistry of Synthetic Dyes Volume II, 1952, Academic Press, pp.1175等参照)により合成するこ とがでさる。
[0079] [II.光学記録媒体]
本発明の光学記録媒体は、基板と、前記基板上に設けられ、光が照射されることに より情報の記録又は再生が可能な記録層とを少なくとも有し、前記記録層が、上記一 般式 [I]のァザシァニン色素を含有するものである。必要に応じて、更に、下引き層、 反射層、保護層など、基板及び記録層以外の層を有していてもよい。
[0080] 以下、本発明の光学記録媒体について、実施形態を挙げて具体的に説明するが、 以下の実施形態はあくまでも説明のために挙げるものであって、本発明は以下の実 施形態に制限されず、本発明の趣旨に反しない限り自由に変形して実施することが 可能である。
[0081] まず、本発明の第 1実施形態について説明する。図 1 (a)は、本発明の第 1実施形 態に係る光記録媒体の層構成の一例を模式的に表わす部分断面図である。図 1 (a) に示される光学記録媒体 10は、光透過性材料からなる基板 1と、基板 1上に設けら れた記録層 2と、記録層 2上に積層された反射層 3及び保護層 4とが順番に積層され た構造を有している。光学記録媒体 10は、基板 1側から照射されるレーザー光 Lによ
り、情報の記録 '再生が行われる。
[0082] なお、説明の便宜上、光学記録媒体 10において、保護層 4が存在する側を上方、 基板 1が存在する側を下方とし、これらの方向に対応する各層の各面を、それぞれ各 層の上面及び下面とする。
[0083] 基板 1の材料としては、基本的に記録光及び再生光の波長において透明な材料で あれば、様々な材料を使用することができる。具体的には、例えば、アクリル系榭脂、 メタクリル系榭脂、ポリカーボネート榭脂、ポリオレフイン系榭脂 (特に、非晶質ポリオ レフイン)、ポリエステル系榭脂、ポリスチレン榭脂、エポキシ榭脂等の榭脂;ガラス等 が挙げられる。また、ガラス上に光硬化性榭脂等の放射線硬化性榭脂からなる榭脂 層を設けた構造の基板を用いることもできる。中でも、高生産性、コスト、耐吸湿性等 の観点からは、射出成型法にて使用されるポリカーボネート榭脂、耐薬品性及び耐 吸湿性等の観点からは、非晶質ポリオレフインが好ましい。更に、高速応答等の観点 力 は、ガラスが好ましい。
[0084] 榭脂製の基板 1を使用した場合、又は、記録層と接する側 (上側)に榭脂層を設け た基板 1を使用した場合には、上面に、記録再生光の案内溝やピットを形成してもよ い。案内溝の形状としては、光学記録媒体 10の中心を基準とした同心円状の形状 やスパイラル状の形状が挙げられる。スパイラル状の案内溝を形成する場合には、溝 ピッチが 0. 2〜1. 2 m程度であることが好ましい。
[0085] 記録層 2は、基板 1の上側に直接、又は必要に応じて基板 1上に設けた下引き層等 の上側に形成される層であって、上記式 [I]のァザシァニン色素を含有する。式 [I] のァザシァニン色素は、いずれか一種を単独で使用してもよぐ二種以上を任意の 組み合わせ及び比率で併用してもよ!、。
[0086] 更に、記録層 2には、式 [I]のァザシァニン色素にカ卩え、必要に応じて他系統の色 素を併用することもできる。他系統の色素としては、主として記録用レーザー光の発 振波長域に適度な吸収を有するものであればよぐ特に制限されない。また、 CD— R等に使用され、 770〜830nmの波長帯域中に発振波長を有する近赤外レーザー 光を用いた記録 '再生に適する色素や、 DVD— R等に使用され、 620〜690nmの 波長帯域中に発振波長を有する赤色レーザー光を用いた記録'再生に適する色素
等を、式 [I]のァザシァニン色素と併用して記録層 2に含有させることにより、異なる波 長帯域に属する複数種のレーザー光を用いた記録'再生に対応する光学記録媒体 10を製造することもできる。また、上記 CD—R用或いは DVD—R用の色素の中で耐 光性が良好なものを選び、式 [I]のァザシァニン色素と併用することにより、耐光性を 更に向上させることが可能となる。
[0087] 式 [I]のァザシァニン色素以外の他系統の色素としては、含金属ァゾ系色素、ベン ゾフエノン系色素、フタロシアニン系色素、ナフタロシアニン系色素、シァニン系色素 、ァゾ系色素、スクァリリウム系色素、含金属インドア-リン系色素、トリアリールメタン 系色素、メロシアニン系色素、ァズレニウム系色素、ナフトキノン系色素、アントラキノ ン系色素、インドフエノール系色素、キサンテン系色素、ォキサジン系色素、ピリリウム 系色素等が挙げられる。
[0088] また、記録層 2には、式 [I]のァザシァニン色素にカ卩えて、安定性ゃ耐光性の向上 のために、一重項酸素クェンチヤ一として遷移金属キレートイヒ合物(例えば、ァセチ ルァセトナートキレート、ビスフエ-ルジチオール、サリチルアルデヒドォキシム、ビス ジチォ OCージケトン等)等を含有させたり、記録感度の向上のために、金属系化合 物等の記録感度向上剤を含有させたりしてもよい。ここで、金属系化合物とは、遷移 金属等の金属が原子、イオン、クラスタ一等の形でィ匕合物に含まれるものを言い、例 えばエチレンジアミン系錯体、ァゾメチン系錯体、フエ-ルヒドロキシアミン系錯体、フ ェナント口リン系錯体、ジヒドロキシァゾベンゼン系錯体、ジォキシム系錯体、ニトロソ ァミノフエノール系錯体、ピリジルトリアジン系錯体、ァセチルァセトナート系錯体、メタ 口セン系錯体、ボルフイリン系錯体のような有機金属化合物が挙げられる。金属原子 としては特に限定されないが、遷移金属であることが好ましい。
[0089] 更に、必要に応じてバインダー、レべリング剤、消泡剤等を併用することもできる。
好ましいバインダーとしては、ポリビュルアルコール、ポリビュルピロリドン、ニトロセル ロース、酢酸セルロース、ケトン系榭脂、アクリル系榭脂、ポリスチレン系榭脂、ウレタ ン系榭脂、ポリビニルブチラール、ポリカーボネート、ポリオレフイン等が挙げられる。 これらは何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率 で併用してもよい。
[0090] 記録層 2の成膜方法としては、真空蒸着法、スパッタリング法、ドクターブレード法、 キャスト法、スピンコート法、浸漬法等、一般に行なわれている様々な薄膜形成法が 挙げられる。量産性やコストの観点からは、スピンコート法が好ましぐ均一な厚みの 記録層 2が得られるという観点力もは、塗布法よりも真空蒸着法等の方が好ましい。ス ピンコート法による成膜の場合、回転数は 500〜15000rpmが好ましい。また、場合 によっては、スピンコートの後に、加熱する、溶媒蒸気にあてる等の処理を施してもよ い。
[0091] ドクターブレード法、キャスト法、スピンコート法、浸漬法等の塗布法により記録層 2 を形成する場合に、式 [I]のァザシァニン色素を溶解させて基板 1に塗布するために 使用する塗布溶媒は、基板 1を侵食しない溶媒であれば特に限定されない。具体的 には、例えばジアセトンアルコール、 3 ヒドロキシ一 3—メチル 2 ブタノン等のケ トンアルコール系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ系溶媒; n—へキサン、 n—オクタン等の鎖状炭化水素系溶媒;シクロへキサン、メチルシクロ へキサン、ェチルシクロへキサン、ジメチルシクロへキサン、 n—ブチルシクロへキサ ン、 tert—プチルシクロへキサン、シクロオクタン等の環状炭化水素系溶媒;テトラフ ノレォロプロパノール、オタタフノレォロペンタノール、へキサフノレオロブタノ一ノレ等のノ 一フルォロアルキルアルコール系溶媒;乳酸メチル、乳酸ェチル、 2—ヒドロキシイソ 酪酸メチル等のヒドロキシカルボン酸エステル系溶媒等が挙げられる。これらは何れ か一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比率で併用しても よい。
[0092] 真空蒸着法を用いる場合には、例えば、式 [I]のァザシァニン色素と、必要に応じ て他の色素や各種添加剤等の記録層成分とを、真空容器内に設置されたるつぼに 入れ、この真空容器内を適当な真空ポンプで 10— 2〜: L0—5Pa程度にまで排気した後、 るつぼを加熱して記録層成分を蒸発させ、るつぼと向き合って置かれた基板上に蒸 着させること〖こよって、記録層 2を形成する。
[0093] 記録層 2の膜厚は、記録方法等により適した膜厚が異なる為、特に限定するもので はないが、記録を可能とするためにはある程度の膜厚が必要とされるため、通常、少 なくとも lnm以上であり、好ましくは 5nm以上である。但し、あまり厚すぎても記録が
良好に行なえなくなる場合があるので、通常 300nm以下、好ましくは 200nm以下、 より好ましくは 1 OOnm以下である。
[0094] 反射層 3は、記録層 2の上に形成されている。反射層 3の膜厚は、好ましくは 50nm 〜300nmである。反射層 3の材料としては、再生光の波長において十分高い反射率 を有する材料、例えば、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta、 Pd等の金属を、単 独或いは合金にして用いることができる。これらの中でも Au、 Al、 Agは反射率が高く 、反射層 3の材料として適している。また、これらの金属を主成分とした上で、加えて 他の材料を含有させてもよい。ここで「主成分」とは、含有率が 50重量%以上のもの をいう。主成分以外の他の材料としては、例えば、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 M n、 Re、 Fe、 Co、 Rh、 Ir、 Cu、 Zn、 Cd、 Ga、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 Ta 、 Ti、 Pt、 Pd、 Nd等の金属及び半金属を挙げることができる。中でも Agを主成分と するものは、コストが安い点、高反射率が出やすい点、後述する印刷受容層を設けた 場合に地色が白く美しいものが得られる点等から、特に好ましい。例えば、 Agに Au 、 Pd、 Pt、 Cu、及び Ndから選ばれる一種以上を 0. 1原子%〜5原子%程度含有さ せた合金は、高反射率、高耐久性、高感度且つ低コストであり好ましい。具体的には 、例えば、 AgPdCu合金、 AgCuAu合金、 AgCuAuNd合金、 AgCuNd合金等であ る。金属以外の材料としては、低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多 層膜を形成し、これを反射層 3として用いることも可能である。
[0095] 反射層 3を形成する方法としては、例えば、スパッタリング法、イオンプレーティング 法、化学蒸着法、真空蒸着法等が挙げられる。また、基板 1の上や反射層 3の下に、 反射率の向上、記録特性の改善、密着性の向上等のために、公知の無機系又は有 機系の中間層、接着層を設けることもできる。
[0096] 保護層 4は、反射層 3の上に形成される。保護層 4の材料は、反射層 3を外力から 保護するものであれば、特に限定されない。有機物質の材料としては、熱可塑性榭 脂、熱硬化性榭脂、電子線硬化性榭脂、紫外線 (以下適宜「UV」という。)硬化性榭 脂等を挙げることができる。また、無機物質としては、酸化ケィ素、窒化ケィ素、フッ化 マグネシウム(MgF )、酸化スズ(SnO )等が挙げられる。
2 2
[0097] 熱可塑性榭脂、熱硬化性榭脂等を用いる場合は、適当な溶剤に溶解して調製した
塗布液を反射層 3の上に塗布して乾燥させれば、保護層 4を形成することができる。 UV硬化性榭脂を用いる場合は、そのまま反射層 3の上に塗布するカゝ、又は適当な 溶剤に溶解して調製した塗布液を反射層 3の上に塗布し、 UV光を照射して硬化さ せること〖こよって、保護層 4を形成することができる。 UV硬化性榭脂としては、例えば 、ウレタンアタリレート、エポキシアタリレート、ポリエステルアタリレート等のアタリレート 系榭脂を用いることができる。これらの材料は、単独で用いても、複数種を混合して 用いてもよい。また、保護層は、単層として形成しても、多層として形成してもよい。
[0098] 保護層 4の形成方法としては、記録層 2と同様に、スピンコート法やキャスト法等の 塗布法や、スパッタリング法やィ匕学蒸着法等の方法が用いられるが、中でもスピンコ ート法が好ましい。保護層 4の膜厚は、その保護機能を果たすためにはある程度の 厚みが必要とされるため、通常 0. 1 μ m以上であり、好ましくは 3 μ m以上である。伹 し、あまり厚すぎると、効果が変わらないだけでなく保護層 4の形成に時間が力かった りコストが高くなる場合があるので、通常 100 μ m以下であり、好ましくは 30 μ m以下 である。
[0099] 以上、光学記録媒体 10の層構造として、基板、記録層、反射層、保護層をこの順 に積層して成る構造を例に採って説明したが、この他の層構造を採っても構わない。
[0100] 例えば、上例の層構造における保護層 4の上面に、又は上例の層構造から保護層 4を省略して反射層 3の上面に、更に別の基板 1を貼り合わせてもよい。この際の基 板 1は、何ら層を設けていない基板そのものであってもよぐ貼り合わせ面又はその反 対面に反射層 3等任意の層を有するものでもよい。また、同じく上例の層構造を有す る光学記録媒体 10や、上例の層構造力も保護層 4を省略した光学記録媒体 10を、 それぞれの保護層 4及び Z又は反射層 3の上面を相互に対向させて 2枚貼り合わせ てもよい。
[0101] 次に、本発明の第 2実施形態について説明する。図 1 (b)は、本発明の第 2実施形 態に係る光記録媒体の層構成の一例を模式的に表わす部分断面図である。図 1 (b) 中、図 1 (a)と共通する要素については同じ符号を付し、説明を省略する。図 1 (b)に 示される光学記録媒体 20は、光透過性材料からなる基板 1と、基板 1上に設けられた 反射層 3と、反射層 3上に積層された記録層 2及び保護被膜 5とが順番に積層された
構造を有している。光学記録媒体 20は、保護被膜 5側から照射されるレーザー光 L により、情報の記録'再生が行われる。
[0102] 保護被膜 5は、フィルム又はシート状のものを接着剤によって貼り合わせてもよぐま た、前述の保護層 4と同様の材料を用い、成膜用の塗液を塗布し硬化又は乾燥する こと〖こより形成してもよい。保護被膜 5の厚さは、その保護機能を果たすためにはある 程度の厚さが必要とされるため、一般に 0. 1 μ m以上であり、好ましくは 3 m以上で ある。但し、あまり厚すぎると、効果が変わらないだけでなぐ保護被膜 5の形成に時 間がかかったり、コストが高くなる場合があるので、通常 300 μ m以下であり、好ましく は 200 μ m以下である。
[0103] 尚、記録層 2及び反射層 3等の各層は、通常は第 1実施形態の光学記録媒体 10と 同様のものが用い得る。但し、第 2実施形態においては、基板 1は透明である必要は なぐ従って、前述の材料以外にも、不透明な榭脂、セラミック、金属 (合金を含む)等 が用いられる。このような層構成においても、上記各層間には、本発明の特性を損な わない限り、必要に応じて任意の層を有してよい。
[0104] ところで、光学記録媒体 10, 20の記録密度を上げるための一つの手段として、対 物レンズの開口数を上げることがある。これにより情報記録面に集光される光スポット を微小化できる。し力しながら、対物レンズの開口数を上げると、記録'再生を行うた めにレーザー光を照射した際に、光学記録媒体 10, 20の反り等に起因する光スポッ トの収差が大きくなりやすいため、良好な記録再生信号が安定して得られない場合 がある。
[0105] このような収差は、レーザー光が透過する透明基板や保護被膜の膜厚が厚 、ほど 大きくなりやすいので、収差を小さくするためには基板や保護被膜をできるだけ薄く するのが好ましい。ただし、通常、基板 1は光学記録媒体 10, 20の強度を確保する ためにある程度の厚みを要するので、この場合、第 2実施形態の光学記録媒体 20の 構造 (基板 1、反射層 3、記録層 2、保護被膜 5なる基本的層構成の光学記録媒体 20 )を採用するのが好ましい。第 1実施形態の光学記録媒体 10の基板 1を薄くするのに 比べると、第 2実施形態の光学記録媒体 20の保護被膜 5は薄くしゃすいため、好ま しくは第 2実施形態の光学記録媒体 20を用いる。
[0106] 但し、第 1実施形態の光学記録媒体 10の構造 (基板 1、記録層 2、反射層 3、保護 層 4からなる基本的層構成の光学記録媒体 10)であっても、記録 ·再生用レーザー 光が通過する透明な基板 1の厚さを 50〜300 m程度にまで薄くすることにより、収 差を小さくして使用できるようになる。
[0107] また、他の各層の形成後に、記録'再生レーザー光の入射面 (通常は、基板 1の下 面)に、表面の保護ゃゴミ等の付着防止の目的で、紫外線硬化榭脂層や無機系薄 膜等を成膜形成してもよぐ記録 ·再生レーザー光の入射面ではない面 (通常は、反 射層 3や保護層 4の上面)に、インクジェット、感熱転写等の各種プリンタ、或いは各 種筆記具を用いて記入や印刷が可能な印刷受容層を設けてもょ 、。
[0108] 本実施の形態が適用される光学記録媒体 10, 20において、情報の記録 '再生の ために使用するレーザー光は、高密度記録を実現する観点から波長が短いほど好ま しいが、特に波長 350〜530nmのレーザー光が好ましい。かかるレーザー光の代表 例として、中心波長 405nm、 410nm、 515nmのレーザー光が挙げられる。
[0109] 波長 350〜530nmのレーザー光は、波長 405nm、 410nmの青色又は 515nmの 青緑色の高出力半導体レーザー光を使用することによって得られる。また、その他に も例えば (a)基本発振波長が 740〜960nmの連続発振可能な半導体レーザー光、 及び (b)半導体レーザー光によって励起される基本発振波長 740〜960nmの連続 発振可能な固体レーザー光の何れかの発振レーザー光を、第二高調波発生 (Secon d- Harmonic Generation: SHG)素子により波長変換することによつても得られる。
[0110] 尚、 SHG素子としては、反転対称性を欠くピエゾ素子であればいかなるものでもよ いが、 KDP (KH PO )、 ADP (NH H PO )、 BNN (Ba NaNb O )、 KN (KNbO
2 4 4 2 4 2 5 15 3
)、 LBO (LiB O )、化合物半導体等が好ましい。第二高調波の具体例として、基本
3 5
発振波長が 860nmの半導体レーザー光の場合には、その基本発振波長の倍波で ある 430nm、また、半導体レーザー光励起の固体レーザー光の場合には、 Crドー プした LiSrAlF結晶(基本発振波長 860nm)からの倍波の 430nm等が挙げられる
6
[0111] 本発明の各実施の形態に係る光学記録媒体 10, 20に情報の記録を行なう際には 、記録層 2に対して (通常は、基板 1側力も基板 1を透過させ)、通常 0. 4〜0. 6 m
程度に集束したレーザー光を照射する。記録層 2のレーザー光が照射された部分は 、レーザー光のエネルギーを吸収することによって分解、発熱、溶解等の熱的変形を 起こすため、光学的特性が変化する。
[0112] 一方、記録層 2に記録された情報の再生を行なう際には、同じく記録層 2に対して( 通常は、記録時と同じ方向から)、よりエネルギーの低いレーザー光を照射する。記 録層 2において、光学的特性の変化が起きた部分 (すなわち、情報が記録された部 分)の反射率と、変化が起きていない部分の反射率との差を読み取ることにより、情 報の再生が行なわれる。
[0113] 次に、本発明の第 3実施形態として、複数の記録層を有する光記録媒体及びその 製造方法について説明する。
図 7 (a)〜 (f)は、本発明の第 3実施形態に係る 2層型光記録媒体の製造方法を説 明する図である。先ず、図 7 (a)に示すように、表面に溝及びランド、プリピットが形成 された第 1の基板 201を、スタンパを用いた射出成形法等により作製する。次に、少 なくとも有機色素を溶媒に溶解させた塗布液を第 1の基板 201の凹凸を有する側の 表面にスピンコート等により塗布し、塗布液に使用した溶媒を除去するために加熱( ァニール)して第 1の記録層 202を成膜する。第 1の記録層 202を成膜した後、 Ag合 金等をスパッタまたは蒸着することにより、第 1の記録層 202上に、スパッタ法等により 半透明な第 1の反射層 203を成膜する。
[0114] 続いて、図 7 (b)に示すように、第 1の反射層 203の表面全体に紫外線硬化性榭脂 層 204aをスピンコート等により塗布して形成し、さらに、図 7 (c)に示すように、紫外線 硬化性榭脂層 204aをスピンコート等により塗布した後、榭脂スタンパ 210を載置し、 紫外線硬化性榭脂層 204aに凹凸を転写する。このとき、紫外線硬化性榭脂層 204a の膜厚が所定範囲になるように調節しつつ行なう。そして、この状態で榭脂スタンパ 2 10側から紫外線を照射する等して紫外線硬化性榭脂層 204aを硬化させ、十分硬化 したところで榭脂スタンパ 210を剥離し、表面に凹凸を有する中間層 204を形成する
[0115] 尚、榭脂スタンパ 210は、中間層 204となるべき榭脂に対して十分な剥離性を有し ていれば良ぐ成形性が良ぐ形状安定性が良いことが望ましい。生産性及びコスト
の観点から、望ましくは、榭脂スタンパ 210は複数回の転写に使用可能であるのが望 ましい。また、使用後のリサイクルが可能であることが望ましい。また、榭脂スタンパ 21 0の材料としては、例えばアクリル系榭脂、メタクリル系榭脂、ポリカーボネート榭脂、 ポリオレフイン系榭脂(特に非晶質ポリオレフイン)、ポリエステル系榭脂、ポリスチレン 榭脂、エポキシ榭脂等が挙げられる。これらの中でも、成形性等の高生産性、コスト、 低吸湿性、形状安定性等の点力 非晶質ポリオレフインが好まし 、。
[0116] 続いて、図 7 (d)に示すように、有機色素を溶媒に溶解させた塗布液をスピンコート 等により中間層 204表面に塗布し、塗布液に使用した溶媒を除去するために加熱( ァニール)して第 2の記録層 205を成膜する。
[0117] そして、図 7 (e)に示すように、 Ag合金等をスパッタ、蒸着することにより第 2の記録 層 205上に第 2の反射層 206を成膜する。その後、図 7 (f)に示すように、ポリカーボ ネートを射出成形して得られた第 2の基板 208としての鏡面基板を、接着層 207を介 して第 2の反射層 206に貼り合わせて光記録媒体の製造が完了する。
[0118] 以上、本発明の第 3実施形態に係る光記録媒体及びその製造方法について説明 したが、本実施の形態は上記の態様に限定されるものではなぐ種々変形することが できる。例えば、光記録媒体が 3つ以上の複数の記録層を有していてもよい。また、 各層間や最外層として必要に応じて他の層を設けてもよい。基板入射型光ディスク に限られず、少なくとも基板 Z反射層 Z第 2の記録層 Zバッファ一層 Z中間層 Z半 透明反射膜 Z第 1の記録層 Z保護層からなる積層構造を有し、保護層側 (即ち、膜 面側)からレーザー光を照射して情報の記録 ·再生を行なう膜面入射型光ディスクに おいても適用できる。
[0119] 多層媒体に用いられる色素として好適な要件としては、単層媒体に用いられる色素 よりも記録感度が良いことが挙げられる。なぜならば各層に情報を記録する際に、記 録する目的以外の層にも光が吸収、透過する現象が必ず生じるためである。この意 味でも、本願のァザシァニン色素は従来と比較して良好な記録感度を持つことから、 より好ましいと考えられる。
実施例
[0120] 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はその要
旨を超えない限り、以下の実施例に限定されるものではない。
[0121] [I.色素の合成及び評価]
〔実施例 1〕
2— (1, 3, 3—トリメチルインドリン一 2—イリデン)ァセトアルデヒド {2- (1,3,3- Trimet hylindolin-2-ylidene)acetaldehyde} 2g及び 4 -ァミノペンタフルォロェチルチオフエノ ール(4- Aminopentafluoroethylthiophenol) 2. 43gを酢酸 10gに分散させ、 80。Cで 6 時間攪拌した。反応混合物を放冷後、水 200ml中に放出し、ヨウ化ナトリウム約 lgを 加えて結晶を析出させた。得られた結晶を濾別し、アセトン 100mlを加えて溶解させ 、濾過によって不溶物を除去した後、アセトンを減圧留去した。得られた結晶をジイソ プロピルエーテルで 2回、イソプロピルアルコールで 2回洗浄し、上述の例示化合物( 1) 2. 93gを黄色結晶として得た。
[0122] 得られた例示化合物(1)について、クロ口ホルム中での吸光度を測定したところ、最 大吸収波長( λ )は 427nm、モル吸光係数は 5. 2 X 104であった。
max
[0123] また、得られた例示化合物(1)を 1重量%の濃度となるようにォクタフルォロペンタノ ールに溶解させ、不溶物を濾過して除去し、色素溶液を調製した。得られた色素溶 液を直径 120mm、厚さ 1. 2mmの射出成形型ポリカーボネート榭脂基板上に滴下 し、スピナ一法により塗布(500rpm)した後、 100°Cで 30分間乾燥することにより、色 素塗布膜を形成した。この塗布膜の吸光度を測定したところ、最大吸収波長( λ ) max は 419nmであった。吸収スペクトルを図 2に示す。
[0124] 〔実施例 2〕
2— (1, 3, 3—トリメチルインドリン一 2—イリデン)ァセトアルデヒド {2- (1,3,3- Trimet hylindolin-2-ylidene)acetaldehyde} 2gと 3, 4— (メチレンジォキシ)ァ-リン {3.4- (Met hylenedioxy)aniline} l. 37gとを酢酸 10gに分散させ、 80°Cで 2時間攪拌した。反応 混合物を放冷後、水 200ml中に放出し、ヨウ化ナトリウム約 lgを加えて結晶を析出さ せた。得られた結晶を濾別し、アセトン 100mlに溶解させて不溶物を濾過により除い たのち、アセトンを減圧留去した。得られた結晶をジイソプロピルエーテル 50mlで洗 浄し、上述の例示化合物(2) 1. 32gを得た。
[0125] 得られた例示化合物(2)について、クロ口ホルム中での吸光度を測定したところ、最
大吸収波長( λ )は 437nm、モル吸光係数は 3. 9 X 104であった。
max
[0126] また、得られた例示化合物(2)を用いて、実施例 1と同様の手順でポリカーボネート 榭脂基板上に色素塗布膜を形成し、この塗布膜の吸光度を測定したところ、最大吸 収波長(λ )は 435. 5nmであった。吸収スペクトルを図 3に示す。
max
[0127] 〔実施例 3〕
2— (1, 3, 3 トリメチルインドリン一 2—イリデン)ァセトアルデヒド {2- (1,3,3- Trimet hylindolin-2-ylidene)acetaldehyde} 2gと 3 ァミノ 5—ターシャリーブチルイソォキ サゾール(3- Amino- 5- tert- butylisoxazole) l. 40gとを酢酸 10gに分散させ、 50〜6 0°Cで 5時間攪拌した。反応混合物を放冷後、水 100ml中に放出し、へキサフルォロ りん酸アンモ-ゥム (NH PF )数8を加えて結晶を析出させた。得られた結晶を濾別
4 6
し、水 100ml中で 10分間攪拌した後、再び濾過し得られた固体を乾燥することにより 、上述の例示化合物(15) 2. 79gを黄色の結晶として得た。
[0128] 得られた例示化合物(15)について、クロ口ホルム中での吸光度を測定したところ、 最大吸収波長( λ )は 395. 5nm、モル吸光係数は 4. 2 X 104であった。
max
[0129] [比較例 1]
下記構造式 (A)で示される色素を用いて、実施例 1と同様の手順でポリカーボネー ト榭脂基板上に色素塗布膜を形成し、この塗布膜の吸光度を測定した。得られた吸 収スペクトルを図 4に示す。吸収ピークは 500nmよりも長波長(539nm)に存在し、 4 OOnm付近の吸収は極めて小さぐ 405nmレーザーを使用する本発明の目的には そぐわな 、ものであった。
[0130] [化 45]
[0131] [比較例 2]
下記構造式 (B)で示される色素について、実施例 1とほぼ同様の条件で実施例 1
で使用したポリカーボネート基板上に塗布した。塗布膜は結晶化して透明なものが 得られず、本発明の目的にそぐわないものであった。
[化 46]
( Β )
[0133] 〔実施例 4〜9〕
2— (1, 3, 3—トリメチルインドリン一 2—イリデン)ァセトアルデヒドと反応させるアミ ン化合物の種類を変更した他は、実施例 1と基本的に同様の手法により、上記式 [I] のァザシァニン色素に該当する色素化合物を製造した (実施例 4〜9)。
下記表 1に、実施例 1〜9で得られた色素化合物における、上記式 [I]の基 R5の構 造及び対ァ-オン X—の構造を示す。下記表 1において、「Pr(i)」は i—プロピル基を 表わし、「t—Bu」は t—ブチル基を表わしている。なお、実施例 1〜9で得られた何れ の色素化合物においても、上記式 [I]の基 〜 はメチル基であり、基 R4は水素原 子である。また、実施例 1〜9で得られた色素化合物が上述の例示化合物(1)〜(19 )の何れに該当するかを、下記表 1に例示化合物の番号で示している。
[0134] また、実施例 4〜9で得られた色素化合物の各々についても、実施例 1と同様の手 法により、クロ口ホルム中における最大吸収波長(λ )、塗布膜の最大吸収波長(λ max
)及びクロ口ホルム中におけるモル吸光係数を測定した。
max
[0135] 〔評価〕
下記表 1に、実施例 1〜9で得られた色素化合物の、クロ口ホルム中における最大 吸収波長(表中「え soljの欄)、塗布膜の最大吸収波長(表中「え film」の欄)及びク ロロホルム中におけるモル吸光係数 (表中「 ε」の欄)を示す。
[II.光学記録媒体の作製及び評価]
上述の実施例 1及び 2において作製した色素塗布膜上に、必要に応じてスパッタリ ング法にて Ag等を成膜して反射層を形成し、更に UV硬化榭脂をスピンコート等に て塗布 · UV照射により硬化させて保護層を形成することにより、光学記録媒体とする ことができる。この光学記録媒体は、色素塗布膜の最大吸収波長( λ )
maxの値より、例 えば中心波長 405nmの半導体レーザー光による記録再生が可能である。即ち、実
施例 1及び 2において合成した例示化合物(1)及び(2) (本発明のァザシァニン色素 )は、青色レーザー光の記録に対して有効な構造の化合物であることが分かる。
[0138] そこで、実施例 2において合成した例示化合物(2)を用いて、以下の手順により光 学記録媒体を作製した。
実施例 2において合成した例示化合物(2)を、 1. 4重量%の濃度となるようにオタ タフルォロペンタノールに溶解させ、不溶物を濾過することにより色素溶液を調製し た。溶解液をトラックピッチ 400nm、溝幅 200nm、溝深さ 70nmの溝を持つ直径 12 Omm、厚さ 0. 6mmの射出成型ポリカーボネート榭脂基板に滴下し、スピナ一法に より塗布した。なお、塗布は、回転数 600rpm力も 4900rpmへ 25秒かけて回転数を 上げ、 4900rpmで 5秒間保持することによって行なった。更に、 100°Cで 30分間乾 燥することにより、記録層を形成した。次いで、この記録層の上に、スパッタリング法に て銀合金を lOOnmの厚さで成膜し、反射層を形成した。その後、 UV硬化性榭脂か らなる保護コート剤をスピナ一法により塗布し、 UV光を照射して厚さ 5 μ mの保護層 を形成させた。更に、遅延硬化型接着剤を用いて、保護層のある面に、厚さ 0. 6mm のポリカーボネート製基板を接着して、評価用の光学記録媒体を調製した。
[0139] 得られた評価用の光学記録媒体を線速度 6. 61mZsecで回転させながら、波長 4 05nm (対物レンズの開口数 NA=0. 65)のレーザー光で、 8Tマーク Z8Tスペース の単一周波数信号を溝上に記録した。なお、 Tは、周波数 65MHzに対応する基準 クロック周期である。記録パルスストラテジーとして、分割パルス数はマーク長を nTと して(η— 1)、先頭記録パルス幅 2Τ、後続記録パルス幅 0. 6Τ、バイアスパワー 1. 5 mW、再生パワー 0. 4mW、記録パワーを可変とした。その結果、 7mWで変調度 51 %の信号を記録することができた。変調度は、パルスストラテジー等記録条件の最適 ィ匕によって、より大きくなると考えられる。
[0140] 以上より、短波長レーザーで本発明の色素を用いて情報の記録が可能であること を示した力 これに加えて更に厳しい条件、すなわち高密度光ディスク用色素として 要求される特性を満足することを確認するため、 HD DVD— R規格に基づいた評価 を実施した。
[0141] 〔実施例 A〕
厚さ 0. 6mm、トラックピッチ 0. 4 m、溝幅 260nm、溝深さ 60nmのポリカーボネ ート製の基板上に、上述の例示化合物(27)を TFP (2, 2, 3, 3—テトラフルオロー 1 プロパノール)に対し 1. 0重量%の濃度となるように混合した溶液をスピンコート法 で塗布し、 70°Cで 25分乾燥させることにより、記録層を設けた。なお、空気をリファレ ンスとして測定した 470nmでの吸光度は 0. 32であった。その後、この記録層の上に 、スパッタリングにより厚さ 120nmの AgBi Nd 反射膜を設けた。更に、この反射層
0.2 0.5
の上に、紫外線硬化榭脂(ソニーケミカル社製 SK7100)を用いて、 0. 6mm厚のポ リカーボネート製の裏板を接着して、光学記録媒体を作製した (実施例 Aの光学記録 媒体)。
[0142] 得られた実施例 Aの光学記録媒体に対し、レーザー波長 405nm、 NA (開口数) 0 . 65のテスター(パルステック社製 ODU— 1000)を用い、線速度 6. 61m/s,最短 マーク長 204nmで記録を行なった。記録及び再生は、 DVDフォーラムにより定めら れた HD DVD-R¾½-Verl. 0に準拠した方式で、同規格にある PRSNR (Partial Response SNR)の評価を行なった。
[0143] その結果、記録メカニズムは Low To High型であり、最適記録パワーは 6. 4mWで あった。得られた PRSNRを図 5に示す。図 5から明らかなように、実施例 Aの光学記 録媒体の PRSNRは 34. 0と、規格の 15を大きく上回る結果であった。
[0144] 〔実施例 B〕
色素として上述の例示化合物(28)を使用した以外は、実施例 Aと同様の条件で光 学記録媒体を作製し (実施例 Bの光学記録媒体)、同様の条件で評価を行なった。
[0145] この結果、記録メカニズムは Low To High型であり、最適記録パワーは 6. 2mWで あった。得られた PRSNRを図 5に示す。図 5から明らかなように、実施例 Bの光学記 録媒体の PRSNRは 26. 0と、規格の 15を大きく上回る結果であった。
[0146] 〔実施例 C〕
色素として上述の例示化合物(29)を使用した以外は、実施例 Aと同様の条件で光 学記録媒体を作製し (実施例 Cの光学記録媒体)、同様の条件で評価を行なった。
[0147] この結果、記録メカニズムは Low To High型であり、最適記録パワーは 6. 8mWで あった。得られた PRSNRを図 5に示す。図 5から明らかなように、実施例 Cの光学記
録媒体の PRSNRは 28. 0と、規格の 15を大きく上回る結果であった。
[0148] 〔実施例 D〕
色素として上述の例示化合物(30)を使用した以外は、実施例 Aと同様の条件で光 学記録媒体を作製し (実施例 Dの光学記録媒体)、同様の条件で評価を行なった。
[0149] この結果、記録メカニズムは Low To High型であり、最適記録パワーは 7. 2mWで あった。得られた PRSNRを図 5に示す。図 5から明らかなように、実施例 Dの光学記 録媒体の PRSNRは 30. 0と、規格の 15を大きく上回る結果であった。
[0150] 〔実施例 E〕
色素として上述の例示化合物(31)を使用した以外は、実施例 Aと同様の条件で光 学記録媒体を作製し (実施例 Eの光学記録媒体)、同様の条件で評価を行なった。
[0151] この結果、記録メカニズムは Low To High型であり、最適記録パワーは 6. 8mWで あった。得られた PRSNRを図 5に示す。図 5から明らかなように、実施例 Eの光学記 録媒体の PRSNRは 26. 0と、規格の 15を大きく上回る結果であった。
[0152] 〔実施例 F〕
実施例 Aと同一の色素、すなわち例示化合物(27)を用いて 2層媒体を作製し、 Lay er 0、 Layer 1それぞれの記録層の記録特性を評価した。ここで、 Layer 0は「第 1の記 録層」(レーザー入射に近い側の記録層)を意味し、 Layer 1は「第 2の記録層」(レー ザ一入射に遠い側の記録層)を意味する。また、「第 1の反射層」(半透明な反射層) として AgBi 合金を 20nmの膜厚で形成し、「第 2の反射層」として Agを 120nmの膜
1.0
厚で形成し、中間層として紫外線硬化性榭脂を 25 mの膜厚で形成した。使用した 基板のトラックピッチは 0. 4 m、溝深さは Layer O : 60nm、 Layer 1 : 65nm、溝幅は 両者とも 260應であり、また 470nmでの吸光度は Layer 0 : 0. 315、 Layer 1 : 0. 34 5とした。
[0153] 記録条件は単層媒体と同一であり、レーザー波長 405nm、 NA (開口数) 0. 65の テスター(パルステック社製 ODU— 1000)を用い、線速度 6. 61mZs、最短マーク 長 204nmでランダムパターン記録を行なった。記録、再生は DVDフォーラムにより 定められた HDDVD— R規格 Verl. 0に準拠した方式で行ない、同規格にある PRS NR (Partial Response SNR)の評価を行なった。
[0154] 評価の結果、記録メカニズムは Layer 0、 Layer 1ともに Low To High型であった。得 られた PRSNRを図 6に示す。図 6から明らかなように、 Layer 0の最適記録パワーは 9 . 4mW、 PRNSRは 25. 1であり、 Layer 1の最適記録パワーは 12. 5mW、 PRNSR は 24. 0であった。 PRSNRの値は、 Layer 0、 Layer 1ともに規格の 15. 0を大きく上 回る良好な結果であり、 2層媒体に必要な記録特性を十分に確保できた。
産業上の利用可能性
[0155] 本発明の適用分野は特に制限されないが、青色レーザー光等の発振波長の短い レーザー光を用いて記録 ·再生を行なう光学記録媒体の分野において、好適に利用 することが可能である。
[0156] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。 なお、本出願は、 2005年 12月 27日付で出願された日本特許出願 (特願 2005— 375871)、及び、 2006年 6月 23日付で出願された日本特許出願 (特願 2006— 17 4427)に基づいており、その全体が引用により援用される。
Claims
[化 1]
(一般式 [I]中、
R1及び R2はそれぞれ独立して、水素原子、又は、置換されていてもよい炭素数 1〜4 の直鎖若しくは分岐のアルキル基を表わす。また、 R1及び R2が互いに結合して、環 を形成していてもよい。
R3は、水素原子、又は、炭化水素基を表わす。また、 R3が炭化水素基である場合、
R3を介して 2以上の一般式 [I]の化合物が架橋されて!、てもよ!/、。
R4は、水素原子、又は、炭素数 1〜4の直鎖又は分岐のアルキル基を表わす。
R5は、置換されていてもよい芳香環基、又は、置換されていてもよい不飽和複素環基 を表わす。また、 R5を介して 2以上の一般式 [I]の化合物が結合されていてもよい。 但し、 R4と R5とは互いに結合して、環構造を形成していてもよい。
X—は、対ァ-オンを表わす。
Aで示されるベンゼン環は、置換されていてもよい。 )
[2] 上記一般式 [I]中、 R4が水素原子であり、 R5が置換されて 、てもよ 、フエ-ル基で ある
ことを特徴とする、請求項 1記載の光学記録媒体。
[3] 上記一般式 [I]中、 R4が水素原子であり、 R5が置換されていてもよい 5員又は 6員の 不飽和複素環基である
ことを特徴とする、請求項 1記載の光学記録媒体。
[4] 上記一般式 [I]中、 R4と R5とが互いに結合して、 5員又は 6員の飽和炭化水素環又 は飽和複素環を形成して ヽる
ことを特徴とする、請求項 1記載の光学記録媒体。
[5] R5のフエ-ル基力 置換基を有さない
ことを特徴とする、請求項 2記載の光学記録媒体。
[6] 一般式 [I]中、 X—が下記一般式 [II]で表わされるァゾ系金属錯体の陰イオンである ことを特徴とする、請求項 1〜5の何れか一項に記載の光学記録媒体。
[化 2]
(一般式 [II]中、
環 C及び環 Dは、各々独立に、芳香族環又は複素環を表わす。但し、環 C及び環 D のうち少なくとも一方の環は複素環である。
Y及び Zは、各々独立に、活性水素を有する基を表わす。
Mは、 3価の金属元素を表わす。 )
[7] 該記録層が、波長 350ηπ!〜 530nmのレーザー光により情報の記録又は再生が行 なわれるものである
ことを特徴とする、請求項 1〜6の何れか一項に記載の光学記録媒体。
[8] 下記式 (i)で表わされる
ことを特徴とする、ァザシァニン色素。
[化 3]
(X—は、対ァ-オンを表わす。 )
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/159,223 US20100173114A1 (en) | 2005-12-27 | 2006-12-27 | Optical recording medium and azacyanine dye |
EP06843413A EP1967378A1 (en) | 2005-12-27 | 2006-12-27 | Optical recording medium and azacyanine dye |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005375871 | 2005-12-27 | ||
JP2005-375871 | 2005-12-27 | ||
JP2006174427A JP2007196661A (ja) | 2005-12-27 | 2006-06-23 | 光学記録媒体及びアザシアニン色素 |
JP2006-174427 | 2006-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007074861A1 true WO2007074861A1 (ja) | 2007-07-05 |
Family
ID=38218083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/326031 WO2007074861A1 (ja) | 2005-12-27 | 2006-12-27 | 光学記録媒体及びアザシアニン色素 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100173114A1 (ja) |
EP (1) | EP1967378A1 (ja) |
JP (1) | JP2007196661A (ja) |
TW (1) | TW200737177A (ja) |
WO (1) | WO2007074861A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102325660B (zh) * | 2008-12-22 | 2014-04-02 | 太阳诱电株式会社 | 光信息记录介质用色素及光信息记录介质 |
TWI467570B (zh) * | 2010-01-18 | 2015-01-01 | Taiyo Yuden Kk | Optical information recording media pigments and the use of its optical information recording media |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238182B (zh) | 2005-07-14 | 2013-09-11 | 三菱化学媒体株式会社 | 光学记录介质、光记录材料及金属络合物 |
JP5160330B2 (ja) * | 2008-07-25 | 2013-03-13 | 太陽誘電株式会社 | 光情報記録媒体用色素及び光情報記録媒体 |
TW201331936A (zh) | 2012-01-24 | 2013-08-01 | Taiyo Yuden Kk | 光記錄媒體 |
TW201340102A (zh) | 2012-01-24 | 2013-10-01 | Taiyo Yuden Kk | 光記錄媒體 |
TW201342372A (zh) | 2012-01-24 | 2013-10-16 | Taiyo Yuden Kk | 光記錄媒體 |
JP6056402B2 (ja) | 2012-11-15 | 2017-01-11 | ソニー株式会社 | 光記録媒体用基板の製造方法 |
JP6161558B2 (ja) * | 2014-03-27 | 2017-07-12 | 日本化薬株式会社 | メチン化合物 |
JP6161207B2 (ja) * | 2014-03-27 | 2017-07-12 | 日本化薬株式会社 | メチン化合物 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224793A (ja) * | 1989-12-22 | 1991-10-03 | Fuji Photo Film Co Ltd | 情報記録媒体および光情報記録方法 |
JPH04201482A (ja) * | 1990-11-30 | 1992-07-22 | Fuji Photo Film Co Ltd | 情報記録媒体および光情報記録方法 |
JP2001301333A (ja) * | 2000-02-16 | 2001-10-31 | Fuji Photo Film Co Ltd | 情報記録媒体および記録方法 |
JP2002212454A (ja) * | 2000-02-10 | 2002-07-31 | Hayashibara Biochem Lab Inc | シアニン色素 |
JP2005054150A (ja) * | 2003-08-07 | 2005-03-03 | Asahi Denka Kogyo Kk | シアニン化合物、光学記録材料及び光学記録媒体 |
JP2006015719A (ja) * | 2004-06-30 | 2006-01-19 | Ind Technol Res Inst | 光記録媒体用の染料 |
JP2006089434A (ja) * | 2004-09-27 | 2006-04-06 | Asahi Denka Kogyo Kk | 複素環化合物及び光学記録材料 |
JP2006151823A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Denka Kogyo Kk | シアニン化合物、該化合物を用いた光学記録材料、及び光学記録媒体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1132901A3 (en) * | 2000-02-16 | 2001-11-28 | Fuji Photo Film Co., Ltd. | Information recording medium and recording method |
JP2002229195A (ja) * | 2001-02-01 | 2002-08-14 | Fuji Photo Film Co Ltd | 光重合性組成物及びそれを用いた記録材料 |
TW200702396A (en) * | 2005-04-07 | 2007-01-16 | Clariant Int Ltd | Basic yellow dyes as dye component for optical data recording media |
-
2006
- 2006-06-23 JP JP2006174427A patent/JP2007196661A/ja not_active Withdrawn
- 2006-12-27 EP EP06843413A patent/EP1967378A1/en not_active Withdrawn
- 2006-12-27 TW TW095149146A patent/TW200737177A/zh unknown
- 2006-12-27 US US12/159,223 patent/US20100173114A1/en not_active Abandoned
- 2006-12-27 WO PCT/JP2006/326031 patent/WO2007074861A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03224793A (ja) * | 1989-12-22 | 1991-10-03 | Fuji Photo Film Co Ltd | 情報記録媒体および光情報記録方法 |
JPH04201482A (ja) * | 1990-11-30 | 1992-07-22 | Fuji Photo Film Co Ltd | 情報記録媒体および光情報記録方法 |
JP2002212454A (ja) * | 2000-02-10 | 2002-07-31 | Hayashibara Biochem Lab Inc | シアニン色素 |
JP2001301333A (ja) * | 2000-02-16 | 2001-10-31 | Fuji Photo Film Co Ltd | 情報記録媒体および記録方法 |
JP2005054150A (ja) * | 2003-08-07 | 2005-03-03 | Asahi Denka Kogyo Kk | シアニン化合物、光学記録材料及び光学記録媒体 |
JP2006015719A (ja) * | 2004-06-30 | 2006-01-19 | Ind Technol Res Inst | 光記録媒体用の染料 |
JP2006089434A (ja) * | 2004-09-27 | 2006-04-06 | Asahi Denka Kogyo Kk | 複素環化合物及び光学記録材料 |
JP2006151823A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Denka Kogyo Kk | シアニン化合物、該化合物を用いた光学記録材料、及び光学記録媒体 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102325660B (zh) * | 2008-12-22 | 2014-04-02 | 太阳诱电株式会社 | 光信息记录介质用色素及光信息记录介质 |
US9135941B2 (en) | 2008-12-22 | 2015-09-15 | Taiyo Yuden Co., Ltd. | Dye for optical information recording medium and optical information recording medium |
TWI467570B (zh) * | 2010-01-18 | 2015-01-01 | Taiyo Yuden Kk | Optical information recording media pigments and the use of its optical information recording media |
Also Published As
Publication number | Publication date |
---|---|
TW200737177A (en) | 2007-10-01 |
JP2007196661A (ja) | 2007-08-09 |
EP1967378A1 (en) | 2008-09-10 |
US20100173114A1 (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4818000B2 (ja) | 光学記録媒体および金属錯体化合物。 | |
WO2007074861A1 (ja) | 光学記録媒体及びアザシアニン色素 | |
WO2006104196A1 (ja) | 光学記録媒体、金属錯体化合物及び有機色素化合物 | |
WO2007007748A1 (ja) | 光学記録媒体、光記録材料および金属錯体化合物 | |
JP2008195915A (ja) | ヒドラジドキレート錯体化合物および該化合物を用いた光学記録媒体およびその記録方法 | |
JP4178783B2 (ja) | 光学記録媒体 | |
JP4750504B2 (ja) | 光記録媒体及びアゾ系金属キレート色素添加剤 | |
JP3876970B2 (ja) | 光学記録媒体の記録層形成用色素、及びそれを用いた光学記録媒体、その光学記録媒体の記録方法 | |
JP5352986B2 (ja) | 金属錯体化合物、光学記録媒体及び光記録材料 | |
JP4120340B2 (ja) | 光学記録媒体および光学記録方法 | |
JP3960276B2 (ja) | 光学記録媒体および光学記録方法 | |
JP2003019867A (ja) | 光記録媒体 | |
WO2011102348A1 (ja) | ヒドラジドキレート錯体化合物およびこれを用いた光学記録媒体 | |
CN101346243A (zh) | 光学记录介质和氮杂菁色素 | |
JP2008239973A (ja) | シアニン色素及び光学記録媒体 | |
JP2005305839A (ja) | 光記録材料及び光記録媒体 | |
JP2006218695A (ja) | 光学記録媒体用色素 | |
JP2002002110A (ja) | 光学記録媒体 | |
JP2005131816A (ja) | 短波長対応の追記型光記録媒体 | |
JP2010194870A (ja) | 光学記録媒体の記録層形成用色素および該色素を用いた光学記録媒体およびその記録方法 | |
JP2007112066A (ja) | 光記録材料及び光記録媒体 | |
JP2011057881A (ja) | シアニン色素及び光学記録媒体 | |
JP2009114345A (ja) | 金属錯体化合物、光学記録媒体、光記録材料及び色素 | |
JPH02164586A (ja) | 光学情報記録媒体 | |
WO2005014300A1 (ja) | 光学記録媒体および光学記録方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680049361.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2560/KOLNP/2008 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006843413 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12159223 Country of ref document: US |