WO2007074806A1 - フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法 - Google Patents

フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法 Download PDF

Info

Publication number
WO2007074806A1
WO2007074806A1 PCT/JP2006/325863 JP2006325863W WO2007074806A1 WO 2007074806 A1 WO2007074806 A1 WO 2007074806A1 JP 2006325863 W JP2006325863 W JP 2006325863W WO 2007074806 A1 WO2007074806 A1 WO 2007074806A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding film
light shielding
film
light
pattern
Prior art date
Application number
PCT/JP2006/325863
Other languages
English (en)
French (fr)
Inventor
Takeyuki Yamada
Hiroyuki Iwashita
Masao Ushida
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to KR1020087018261A priority Critical patent/KR101319659B1/ko
Priority to KR1020127003249A priority patent/KR101333991B1/ko
Priority to JP2007551978A priority patent/JP4968740B2/ja
Publication of WO2007074806A1 publication Critical patent/WO2007074806A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0335Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Definitions

  • the present invention relates to a photomask blank, a photomask manufacturing method, and a semiconductor device manufacturing method in which the dry etching rate of a light shielding film is optimized for a dry etching process for forming a light shielding film pattern.
  • a fine pattern is formed using a photolithography method.
  • a number of substrates called photomasks are usually used to form this fine pattern.
  • This photomask is generally a light-transmitting glass substrate provided with a light-shielding fine pattern having a metal thin film and the like, and at least one photolithography method is used for manufacturing this photomask.
  • Photomask blanks having a light-shielding film on a light-transmitting substrate such as a glass substrate are used for manufacturing a photomask by a photolithography method.
  • a photomask using this photomask blank is manufactured by exposing the resist film formed on the photomask blank to a desired pattern exposure and developing the resist film in accordance with the desired pattern exposure.
  • a resist film formed on the photomask blank is subjected to a desired pattern exposure, and then a developing solution is supplied to dissolve a portion of the resist film that is soluble in the developing solution. Form. Further, in the above etching process, using this resist pattern as a mask, the resist pattern is formed by, for example, wet etching to dissolve a portion where the resist film is formed and the light shielding film is exposed, thereby making the desired mask pattern translucent. Form on the substrate. Thus, a photomask is completed.
  • Patent Document 1 describes a photomask blank provided with a chromium film containing chromium carbide as a light shielding film on a transparent substrate as a mask blank suitable for wet etching. It is. Patent Document 2 also has a laminated film of a halftone material film and a metal film on a transparent substrate as a mask blank that is also suitable for wet etching, and this metal film is formed from the surface side to the transparent substrate side. There is a region composed of materials with different etching rates, and for example, a halftone phase shift mask blank made of a CrNZCrC metal film and a CrON antireflection film is described.
  • the resist pattern in photomask blanks and patterning techniques used in photomask manufacturing are used to make the mask pattern formed on photomasks finer.
  • dry etching power is required.
  • the processing time force S1 of the light shielding film is a major limitation.
  • a material for the light shielding film a chromium-based material is generally used, and in a dry etching case of chromium, a mixed gas of chlorine gas and oxygen gas is used as an etching gas.
  • the resist is an organic film and its main component is carbon, so it is very weak against oxygen plasma which is a dry etching environment. While the light shielding film is patterned by dry etching, the resist pattern formed on the light shielding film must remain with a sufficient film thickness.
  • the resist film thickness must remain so that it remains even if the just etching time is doubled (100% overetching).
  • the etching selectivity between chromium, which is a material of the light shielding film, and the resist film is 1 or less, so the resist film thickness is more than twice the film thickness of the light shielding film. Need thickness Will be.
  • a thin film of the light shielding film can be considered.
  • a thin film of a light shielding film is proposed in Patent Document 3.
  • Patent Document 3 discloses that in the production of a photomask, the etching time can be shortened and the shape of the chromium pattern can be improved by reducing the film thickness of the chromium light-shielding film on the transparent substrate. Has been.
  • Patent Document 1 Japanese Patent Publication No. 62-32782
  • Patent Document 2 Japanese Patent No. 2983020
  • Patent Document 3 Japanese Patent Laid-Open No. 10-69055
  • the light-shielding property becomes insufficient. Therefore, even if pattern transfer is performed using such a photomask, a transfer pattern defect occurs. End up.
  • the light-shielding film requires a predetermined optical density (for example, 2.5 or more) in order to sufficiently secure the light-shielding property. Therefore, whenever the film thickness of the light-shielding film is reduced as in Patent Document 3, Naturally, there is a limit.
  • exposure (drawing) to form a resist pattern on the light-shielding film generally uses an electron beam. In order to control this, the force required to increase the thickness of the CrC film and reduce the sheet resistance of the light-shielding film.
  • the mask blank of Patent Document 2 has a problem that the carbon content in the metal film is high, and when patterning is performed by dry etching, the etching rate decreases, so that the processing time of the light shielding film cannot be shortened. .
  • the mask blank of Patent Document 2 is used for the dry etching process, it is directed in the depth direction of the light-shielding film, and initially the dry etching rate is fast, mainly in the region of the CrC film, and finally CrN. In the film area, it becomes faster again, and there is a problem that the cross-sectional shape of the pattern is deteriorated and the global loading phenomenon is likely to occur.
  • the present invention has been made to solve the conventional problems.
  • the purpose of the present invention is to reduce the dry etching time by first increasing the dry etching rate of the light shielding film.
  • the film thickness of the resist film can be reduced, and as a result, the resist film can be thinned to improve resolution and turn accuracy (CD accuracy), and the cross-sectional shape is improved by reducing the dry etching time. It is an object to provide a photomask blank and a photomask manufacturing method capable of forming a light shielding film pattern.
  • a photomask blank and a photomask manufacturing method capable of forming a light-shielding film pattern having a good cross-sectional shape by a thin film of the light-shielding film while having the light-shielding performance necessary for the light-shielding film.
  • the present invention provides a photomask blank and a photomask manufacturing method that can reduce the global loading phenomenon by optimizing the dry etching rate in the depth direction of the light shielding film and obtain good pattern accuracy. That is.
  • a method for manufacturing a semiconductor device in which a good semiconductor device free from circuit pattern defects can be obtained by pattern transfer onto a semiconductor substrate by a photolithography method using the photomask of the present invention. Is to provide.
  • the present invention has the following configuration.
  • the photomaster blank In a photomask blank having a light-shielding film on a light-transmitting substrate, the photomaster blank patterns the light-shielding film by dry etching using a mask pattern formed on the light-shielding film as a mask.
  • the photomask blank is characterized in that it also has a material force including (Cr) and nitrogen (N), and the diffraction peak by X-ray diffraction is substantially CrN (200).
  • the photomaster blank In a photomask blank having a light-shielding film on a light-transmitting substrate, the photomaster blank patterns the light-shielding film by dry etching using a mask pattern formed on the light-shielding film as a mask.
  • N nitrogen
  • the photomask blank of the present invention is a photomask blank having a light shielding film on a light-transmitting substrate, and the photomask blank is a mask pattern formed on the light shielding film.
  • a photomask blank for dry etching processing corresponding to a method of manufacturing a photomask for patterning the light shielding film by dry etching treatment using a mask as a mask
  • the light shielding film mainly comprises chromium (Cr) and nitrogen ( N), and the diffraction peak by X-ray diffraction is substantially CrN (200).
  • the diffraction peak due to X-ray diffraction is substantially CrN (200), which means that there is one significant diffraction peak and no diffraction peak corresponding to a crystal other than CrN (200) appears.
  • Such a light-shielding film having a material force mainly containing chromium (Cr) and nitrogen (N) and having a diffraction peak due to X-ray diffraction substantially CrN (200) is a light-shielding force that is a single element of chromium.
  • the dry etching rate becomes faster than the film, and the dry etching time can be shortened. Since the dry etching rate can be increased, the thickness of the resist film necessary for patterning the light shielding film can be reduced, and the pattern accuracy (CD accuracy) of the light shielding film is improved.
  • a light-shielding film made of a chromium-based material containing such an element has a desired thin film thickness to some extent without increasing the film thickness at an exposure wavelength of 200 nm or less, which is effective for achieving pattern miniaturization.
  • An optical density (for example, preferably 2.5 or more) can be obtained. In other words, it is possible to achieve a thin film of the light shielding film while having the light shielding performance necessary for the light shielding film.
  • the light shielding film preferably contains nitrogen (N) substantially uniformly in the depth direction when chromium (Cr) is used as a reference.
  • nitrogen (N) is contained substantially uniformly in the depth direction, so that CrN (200) having a substantially uniform composition in the depth direction of the light shielding film. Is formed.
  • the effect of accelerating the dry etching speed by the configuration 1 is further exhibited, and furthermore, the setting of the etching process for making the pattern cross section good, ie, vertical, becomes easy.
  • the configuration in which the light shielding film contains nitrogen (N) substantially uniformly in the depth direction when chromium (Cr) is used as a reference is optimal when combined with configuration 6 described later. That is, as in Configuration 6, when the light shielding film functions as a mask layer when patterning the halftone phase shifter film, the light shielding film pattern is The cross-sectional shape of the halftone phase shifter film pattern formed as a mask is also good.
  • the photomask blank of the present invention is a photomask blank having a light shielding film on a light-transmitting substrate, and the photomask blank uses a mask pattern formed on the light shielding film as a mask.
  • the dry etching rate can be made faster than a light-shielding film that also has a single chromium force, so that the resist film thickness required for patterning the light-shielding film can be reduced and the pattern accuracy of the light-shielding film ( CD accuracy) is improved.
  • a light-shielding film made of a chromium-based material containing such an element is desired to have a desired thin film thickness without increasing the film thickness at an exposure wavelength of 200 nm or less, which is effective for achieving pattern miniaturization.
  • An optical density eg, preferably 2.5 or more
  • the light shielding film has a structure in which nitrogen (N) is contained substantially uniformly in the depth direction when chromium (Cr) is used as a reference, so that the non-turn cross section can be satisfactorily, that is, etched vertically. Setting process.
  • This configuration is optimal when combined with configuration 6 described later. That is, as in Configuration 6, when the light shielding film functions as a mask layer when patterning the halftone phase shifter film, the halftone phase shifter film formed using the light shielding film pattern as a mask The cross-sectional shape of the pattern is also good.
  • the light shielding film further contains oxygen, and the content of oxygen decreases from the surface side toward the translucent substrate side, so that the depth direction of the light shielding film (that is, the light shielding film) It is possible to control the dry etching rate to be slowed by applying force from the surface side to the light-transmitting substrate side. As a result, the global loading phenomenon can be reduced and the pattern accuracy can be improved. As the dry etching rate on the translucent substrate side approaches the dry etching rate on the surface side, the CD bias difference due to pattern density, that is, the global loading error increases. Therefore, dry etching speed on the translucent substrate side Is moderately slowed with respect to the dry etching rate on the surface side, the global loading error is reduced and the pattern accuracy can be improved.
  • the light-shielding film may be formed with an antireflection layer containing oxygen in an upper layer portion thereof.
  • an antireflection layer By forming such an antireflection layer, the reflectance at the exposure wavelength can be suppressed to a low reflectance. Therefore, when the mask pattern is transferred to the transfer object, multiple reflections with the projection exposure surface are performed. It is possible to suppress the deterioration of imaging characteristics.
  • the reflectance with respect to the wavelength for example, 257 nm, 364 nm, 488 nm, etc.
  • the accuracy of detecting defects is improved.
  • a halftone phase shifter film may be formed between the translucent substrate and the light shielding film.
  • the light shielding film may be set so as to have a desired optical density (for example, preferably 2.5 or more) with respect to the exposure light in the laminated structure with the halftone phase shifter film.
  • the photomask manufacturing method including the step of patterning the light-shielding film in the photomask blank according to any one of the configurations 1 to 6 using the dry etching process as in the configuration 7,
  • the etching time can be shortened, and a photomask in which a light-shielding film pattern having a good cross-sectional shape is accurately formed can be obtained.
  • the semiconductor A semiconductor device can be manufactured without a defect in a circuit pattern formed on a substrate.
  • the dry etching time can be shortened, and the reduction in the thickness of the resist film can be reduced.
  • a thin resist film can be formed, and the pattern resolution and pattern accuracy (CD accuracy) can be improved.
  • a photomask blank and a photomask manufacturing method capable of forming a light-shielding film pattern with a good cross-sectional shape can be provided by reducing the dry etching time. According to the present invention, the light-shielding film is necessary.
  • the global loading phenomenon can be reduced by optimizing the dry etching rate in the depth direction of the light shielding film, and good pattern accuracy can be obtained.
  • Photomask blank and photomask manufacturing method Can be provided.
  • the circuit pattern formed on the semiconductor substrate has a defect.
  • Semiconductor devices can be provided.
  • FIG. 1 is a cross-sectional view showing an embodiment of a photomask blank obtained by the present invention.
  • FIG. 2 is a cross-sectional view showing a photomask manufacturing process using a photomask blank.
  • FIG. 3 is a cross-sectional view showing a photomask blank according to a second embodiment of the present invention and a photomask manufacturing process using the photomask blank.
  • FIG. 4 is a cross-sectional view of a halftone phase shift mask obtained by the present invention.
  • FIG. 5 shows the results of Rutherford backscattering analysis of the light shielding film of Example 1. Explanation of symbols
  • FIG. 1 is a cross-sectional view showing a first embodiment of a photomask blank obtained by the present invention.
  • a photomask blank 10 in FIG. 1 is in the form of a binary mask photomask blank having a light-shielding film 2 on a translucent substrate 1.
  • the photomask blank 10 is a mask for dry etching processing corresponding to a photomask manufacturing method for patterning the light shielding film 2 by dry etching using the resist pattern formed on the light shielding film 2 as a mask. It is blank.
  • the translucent substrate 1 a glass substrate is generally used. Since the glass substrate is excellent in flatness and smoothness, when pattern transfer onto a semiconductor substrate using a photomask is performed, high-precision pattern transfer can be performed with no distortion of the transfer pattern!
  • the light-shielding film 2 has a material strength mainly containing chromium (Cr) and nitrogen (N), and a diffraction peak by X-ray diffraction is substantially CrN (200).
  • the diffraction peak by X-ray diffraction is substantially CrN (200), as explained before, there is one significant diffraction peak excluding the diffraction peak derived from impurities, etc. It means that the diffraction peak derived from the composition of the light shielding film does not appear other than the diffraction peak corresponding to the crystal of CrN (200).
  • Such a light-shielding film having a material force mainly containing chromium (Cr) and nitrogen (N) and having a diffraction peak due to X-ray diffraction substantially CrN (200) is a light-shielding force that is a single element of chromium.
  • the dry etching rate is faster than the film, and the dry etching time can be shortened. wear. Since the dry etching rate can be increased, the resist film thickness required for patterning the light shielding film can be reduced, and the pattern accuracy (CD accuracy) of the light shielding film is improved.
  • the light shielding film 2 preferably contains nitrogen (N) substantially uniformly in the depth direction when chromium (Cr) is used as a reference.
  • nitrogen (N) is contained substantially uniformly in the depth direction, so that CrN (200) having a substantially uniform composition in the depth direction of the light-shielding film. Is formed, and the Cr (110) component is substantially not contained. Therefore, the light-shielding film containing nitrogen (N) substantially uniformly in the depth direction when chromium (Cr) is used as a reference is further effective in increasing the dry etching rate according to the present invention. It is easy to set an etching process (etching conditions, etc.) for making the pattern cross section good, that is, vertically.
  • nitrogen (N) when nitrogen (N) is contained substantially uniformly in the depth direction when chromium (Cr) is used as a reference, the vicinity of the surface of the light shielding film and the light transmitting substrate side In the region excluding the light-shielding film interface, it means a state where the average value of nitrogen (N) when chromium (Cr) is set to 1 is ⁇ 0.05.
  • the average value of nitrogen (N) ratio when chromium (Cr) is 1 ⁇ 0.025, more preferably the average value of nitrogen (N) ratio when chromium (Cr) is 1 It is preferable to be ⁇ 0.01.
  • the light-shielding film 2 is a resist film when the patterning of the light-shielding film ends even if the resist film is reduced when patterning by dry etching using the resist pattern formed thereon as a mask. In the dry etching process, it is possible to use a material having a selectivity ratio with respect to a resist exceeding 1.
  • the light-shielding film has a selectivity ratio with the resist of more than 1 and 10 or less, more preferably more than 1 and 5 The following is desirable.
  • such a light-shielding film of a chromium-based material containing chromium and nitrogen does not have to be thick at an exposure wavelength of 200 nm or less, which is effective in achieving pattern miniaturization.
  • a desired optical density for example, preferably 2.5 or more
  • the nitrogen content in the light shielding film 2 is preferably in the range of 15 to 80 atomic%. If the nitrogen content is less than 15 atomic%, it is difficult to obtain the effect of increasing the dry etching rate as compared with chromium alone. Also, if the nitrogen content exceeds 80 atomic%, the absorption coefficient in, for example, ArF excimer lasers (wavelength 193 nm) with a wavelength of 200 nm or less becomes small, so that a desired optical density (for example, 2.5 or more) is obtained. Therefore, it is necessary to increase the film thickness.
  • ArF excimer lasers wavelength 193 nm
  • the light shielding film 2 can further contain oxygen.
  • the oxygen content decreases from the surface side toward the translucent substrate side.
  • the surface side force of the light shielding film is also directed toward the translucent substrate, and the oxygen content is reduced, so that the depth direction of the light shielding film (that is, from the surface side of the light shielding film to the translucent substrate side). It can be controlled to slow down the dry etching speed. As a result, the global loading phenomenon can be reduced and the pattern accuracy can be improved.
  • the dry etching rate force on the translucent substrate side As the dry etching rate on the surface side is approached, the CD bias difference due to pattern density, that is, the global loading error increases. For this reason, if the dry etching rate on the translucent substrate side is moderately slower than the dry etching rate on the surface side, the global loading error can be reduced and the pattern accuracy can be improved.
  • the oxygen content is preferably in the range of 5 to 80 atomic%.
  • the oxygen content is less than 5 atomic%, it is difficult to obtain an effect of controlling the dry etching rate to be slowed in the depth direction of the light shielding film.
  • the content of oxygen is more than 80 atomic 0/0, the absorption coefficient of the following example ArF excimer laser wavelength 200 nm (wavelength 193Ita m) is reduced, desired optical density (e.g. 2.5 or more) In order to obtain this, it becomes necessary to increase the film thickness.
  • the oxygen content in the preferred light shielding film 2 is particularly preferably in the range of 10 to 50 atomic%.
  • the light shielding film 2 may contain both nitrogen and oxygen.
  • the content of nitrogen and oxygen is preferably in the range of 10 to 80 atomic%.
  • nitrogen in the light shielding film 2 The content ratio of nitrogen and oxygen in the case of containing both element and oxygen is not particularly limited and is appropriately determined depending on the absorption coefficient and the like.
  • the light shielding film 2 can contain carbon.
  • the carbon content is preferably in the range of 1 to 20 atomic%. Carbon has the effect of increasing conductivity and the effect of reducing reflectivity. However, if carbon is contained in the light-shielding film, the dry etching rate is reduced, the dry etching time required for patterning the light-shielding film by dry etching is increased, and the resist film is thinned. It becomes difficult.
  • the carbon content is preferably 1 to 20 atomic%, more preferably 3 to 15 atomic%.
  • the method for forming the light shielding film 2 is not particularly limited, but a sputtering film forming method is particularly preferable. According to the sputtering film forming method, a uniform film having a constant film thickness can be formed, which is suitable for the present invention.
  • a chromium (Cr) target is used as the sputtering target, and the sputtering gas introduced into the chamber is argon gas or helium.
  • an inert gas such as lithium gas and a gas such as oxygen, nitrogen, carbon dioxide, or nitrogen monoxide.
  • a light-shielding film containing chromium and nitrogen can be formed.
  • a sputtering gas in which an oxygen gas or a carbon dioxide gas is mixed with an inert gas such as argon gas a light shielding film containing oxygen in chromium can be formed, and an inert gas such as argon gas can be formed.
  • a sputtering gas in which a gas of nitric acid and nitrogen gas is mixed as a gas is used, a light shielding film containing nitrogen and oxygen in chromium can be formed.
  • a light shielding film containing carbon in chromium can be formed.
  • sputtering is performed in an atmosphere containing nitrogen when forming all the layers constituting the light-shielding film.
  • the film thickness of the light shielding film 2 is set so that the optical density with respect to the exposure light is 2.5 or more. Specifically, the thickness of the light shielding film 2 is preferably 90 nm or less. The reason for this is that in order to cope with the recent miniaturization of the pattern size to the submicron level, if the film thickness exceeds 90 nm, the micropattern size during dry etching is reduced. This is because it may be difficult to form a fine pattern due to the loading phenomenon. By reducing the film thickness to some extent, the pattern aspect ratio (ratio of pattern depth to pattern width) can be reduced, and line width errors due to global loading and microloading phenomena can be reduced. it can.
  • the light-shielding film 2 in the present invention can obtain a desired optical density (for example, 2.5 or more) even at a film thickness of 90 nm or less at an exposure wavelength of 200 nm or less.
  • the lower limit of the thickness of the light shielding film 2 can be reduced as long as a desired optical density is obtained.
  • the light shielding film 2 is not limited to a single layer, and may be a multilayer. However, it is preferable that any film contains at least nitrogen.
  • the light shielding film 2 may include, for example, an antireflection layer containing oxygen in the surface layer portion (upper layer portion).
  • an antireflection layer for example, a material such as CrO, CrCO, CrNO, CrCON or the like is preferably mentioned.
  • the reflectivity with respect to the wavelength (for example, 257 nm, 364 nm, 488 nm, etc.) used for defect inspection of photomask blanks and photomasks is, for example, 30% or less in order to detect defects with high accuracy.
  • the carbon content is preferably 5 to 20 atomic%.
  • the carbon content is less than 5 atomic%, the effect of reducing the reflectivity is reduced, and when the carbon content exceeds 20 atomic%, the dry etching rate decreases and the light shielding film is patterned by dry etching. This is not preferable because the dry etching time required for Jung becomes long and it becomes difficult to thin the resist film.
  • the light-shielding film 2 has different contents of chromium and elements such as nitrogen, oxygen, and carbon in the depth direction, and is divided into an antireflection layer on the surface layer portion and other layers (light-shielding layers). Grouped continuously or continuously A compositionally graded composition film may be used. In order to use such a light-shielding film as a composition gradient film, for example, a method of appropriately switching the type (composition) of the sputtering gas during the above-described sputtering film formation during the film formation is suitable.
  • the photomask blank may have a form in which a resist film 3 is formed on the light shielding film 2 as shown in FIG. 2 (a) described later.
  • the film thickness of the resist film 3 is preferably as thin as possible in order to improve the pattern accuracy (CD accuracy) of the light shielding film.
  • the thickness of the resist film 3 is preferably 300 nm or less. More preferably, it is 200 nm or less, more preferably 150 nm or less.
  • the lower limit of the thickness of the resist film is set so that the resist film remains when the light shielding film is dry-etched using the resist pattern as a mask.
  • the resist film 3 is preferably made of a resist-amplified resist with high resist sensitivity.
  • This method of manufacturing a photomask using the photomask blank 10 has a process of patterning the light-shielding film 2 of the photomask blank 10 using dry etching. Specifically, the photomask blank 10 is formed on the photomask blank 10. Performing a desired pattern exposure (pattern drawing) on the resist film, a step of developing the resist film according to the desired pattern exposure to form a resist pattern, and etching the light shielding film along the resist pattern And a step of peeling and removing the remaining resist pattern.
  • FIG. 2 is a cross-sectional view sequentially showing a photomask manufacturing process using the photomask blank 10.
  • FIG. 2 (a) shows a state in which a resist film 3 is formed on the light shielding film 2 of the photomask blank 10 of FIG.
  • the resist material either a positive resist material or a negative resist material can be used.
  • FIG. 2B shows a step of performing desired pattern exposure (pattern drawing) on the resist film 3 formed on the photomask blank 10.
  • Pattern exposure is performed using an electron beam drawing apparatus or the like.
  • the above resist material corresponds to an electron beam or a laser. Those having photosensitivity are used.
  • FIG. 2 (c) shows a process of developing the resist film 3 in accordance with desired pattern exposure to form a resist pattern 3a.
  • the resist film 3 formed on the photomask blank 10 is exposed to a desired pattern, and then a developer is supplied to dissolve a portion of the resist film that is soluble in the developer. Form.
  • FIG. 2 (d) shows a process of etching the light shielding film 2 along the resist pattern 3a. Since the photomask blank of the present invention is suitable for dry etching, dry etching is preferably used for etching.
  • the resist pattern 3a is formed by dry etching using the resist pattern 3a as a mask, and the portion where the light shielding film 2 is exposed is removed, whereby the desired light shielding film pattern 2a (mask pattern) is removed. ) Is formed on the translucent substrate 1.
  • the present invention it is preferable for the present invention to use a chlorine-based gas or a dry etching gas such as a mixed gas containing chlorine-based gas and oxygen gas.
  • a chlorine-based gas or a dry etching gas such as a mixed gas containing chlorine-based gas and oxygen gas.
  • the light-shielding film 2 having a material strength mainly containing chromium and nitrogen can be dry-etched using the above-mentioned dry etching gas to increase the dry etching rate and shorten the dry etching time.
  • the light shielding film pattern having a good cross-sectional shape can be formed.
  • the chlorine-based gas used for the dry etching gas include CI, SiCl, HC1, CC1, and CHC1.
  • FIG. 2 (e) shows a photomask 20 obtained by peeling off and removing the remaining resist pattern 3a.
  • the photomask blank is not limited to a so-called neutral mask photomask blank in which a light-shielding film is formed on a light-transmitting substrate, and may be a photomask blank used for manufacturing a halftone phase shift mask, for example.
  • a light shielding film is formed on one halftone phase shifter film on the light-transmitting substrate, and the halftone phase shifter film and the light shielding film are combined. Therefore, the optical density of the light shielding film itself can be set to a value smaller than 2.5, for example.
  • FIG. 3 (a) a second embodiment of the photomask blank of the present invention will be described using FIG. 3 (a).
  • the photomask blank 30 in FIG. 3 (a) has a light-shielding film 2 composed of a half-tone phase shifter film 4, a light-shielding layer 5 and an antireflection layer 6 on a light-transmitting substrate 1. It is a thing.
  • the translucent substrate 1 and the light shielding film 2 are omitted since they have been described in the first embodiment.
  • the halftone phase shifter film 4 transmits light having an intensity that does not substantially contribute to exposure (for example, 1% to 40% with respect to the exposure wavelength), and has a predetermined phase difference. Is.
  • This halftone phase shifter film 4 has a light semi-transmissive portion patterned from the halftone phase shifter film 4 and an intensity that substantially contributes to exposure when the halftone phase shifter film 4 is not formed.
  • the halftone phase shifter film 4 is preferably made of a material having etching characteristics different from those of the light shielding film 2 formed thereon.
  • halftone phase shifter film 4 and Examples thereof include materials mainly composed of metals such as molybdenum, tungsten, tantalum, and hafnium, silicon, oxygen, and Z or nitrogen.
  • the halftone phase shifter film 4 may be a single layer or a plurality of layers.
  • the light shielding film 2 in the second embodiment is set so that the optical density with respect to the exposure light is 2.5 or more in the laminated structure in which the halftone phase shift film and the light shielding film are combined. .
  • the film thickness of the light shielding film 2 set in such a manner is preferably 50 nm or less. The reason for this is the same as in the first embodiment described above, and it may be difficult to form a fine pattern due to the microloading phenomenon of the pattern during dry etching. By setting the thickness of the light-shielding film to 50 nm or less, the line width error due to the global loading phenomenon and microloading phenomenon during dry etching can be further reduced.
  • the thickness of the resist film formed on the antireflection layer 6 is preferably 250 nm or less. More preferably, it is 200 nm or less, and more preferably 150 nm or less.
  • the lower limit of the thickness of the resist film is set so that the resist film remains when the light shielding film is dry etched using the resist pattern as a mask.
  • the resist film material is preferably a chemically amplified resist having high resist sensitivity.
  • the photomask blank of this example comprises a light shielding film 2 comprising a light shielding layer and an antireflection layer on a light transmitting substrate 1.
  • This photomask blank can be manufactured by the following method.
  • Reactive sputtering is performed in an atmosphere to form a light shielding layer on the light-transmitting substrate 1, and then a mixed gas of argon gas, nitrogen gas, methane gas and helium gas (Ar: 54% by volume, N: 10 #: 3 ⁇ 4%, CH: 6 volume 0/0, the He: 30 vol 0/0) reactive sputtering of phosphorus in the atmosphere Performed grayed, subsequently, a mixed gas of argon gas and Ichisani ⁇ containing gas by performing (Ar:: 90 volume 0/0, NO 10 vol%) reactive sputtering in an atmosphere, to form an antireflective layer Then, the light shielding film 2 was formed on the translucent substrate 1 having a synthetic quartz glass power.
  • the power of the sputtering device when forming the light shielding layer is 1.16 kW, the total gas pressure is 0.17 Pascal (Pa), the power of the sputtering device when forming the antireflection layer is 0.33 kW, and the total gas pressure is A light shielding film was formed under the condition of 0.2 Pa (Pa).
  • the thickness of the light shielding film was 67 nm.
  • the composition of the light-shielding film was analyzed by Rutherford backscattering analysis. As a result, nitrogen (N) was 33.0 atomic%, oxygen (O) was 12.3 atomic%, and hydrogen (H) was 5.9 atomic%. It was a chrome (Cr) film that contained.
  • the light shielding film contained 8.0 atomic% of carbon (C).
  • FIG. 5 is a diagram showing a composition analysis result in the depth direction of the light shielding film by Rutherford backscattering analysis of the light shielding film of this example.
  • the vertical axis in FIG. 5 shows the composition ratio of each element when chromium is 1.
  • the light shielding layer of the light shielding film was a composition gradient film in which chromium, nitrogen, and oxygen and carbon used for forming the antireflection layer were slightly purchased.
  • the antireflection layer was a composition gradient film in which chromium, nitrogen, oxygen, and carbon were slightly purchased.
  • the oxygen content in the light-shielding film is reduced in the depth direction as a whole as the content in the antireflection layer on the surface side increases.
  • the hydrogen in the light shielding film the content of hydrogen in the depth direction of the light shielding film is substantially reduced as a whole when the content in the antireflection layer on the surface side is high as a whole.
  • a particularly characteristic point is that nitrogen is uniformly contained in the depth direction of the light shielding film when chromium is used as a reference.
  • the light shielding film of this example was analyzed by X-ray diffraction, one diffraction peak was detected at a diffraction angle of 2 ⁇ of 44.081 deg, and the light shielding film of this example was CrN (200) It turned out to be a film mainly composed of
  • the optical density of this light shielding film was 3.0.
  • the reflectance of the light shielding film at an exposure wavelength of 193 nm was as low as 14.8%.
  • the photomask defect inspection wavelengths of 257 nm and 364 nm were 19.9% and 19.7%, respectively, and the reflectance was not a problem for inspection.
  • an electron beam drawing resist film FEP171 manufactured by Fuji Film Elect Kokuiku Materials Co., Ltd.
  • the resist film was formed by spin coating using a spinner (rotary coating apparatus). After applying the resist film, a predetermined heat drying process was performed using a heat drying apparatus.
  • a desired pattern is drawn (80 nm line and space pattern) on the resist film formed on the photomask blank using an electron beam lithography system, and then developed with a predetermined developer to form a resist pattern. Formed.
  • a dry etching process for the light shielding film 2 composed of the light shielding layer and the antireflection layer was performed to form a light shielding film pattern 2a.
  • the etching rate of the entire light shielding film was 3.8 AZ seconds.
  • the etching rate in the depth direction of the light shielding film tended to be slow on the translucent substrate side where the etching rate on the surface side of the light shielding film was fast.
  • the light shielding film 2 is made of a material that mainly contains chromium and nitrogen, and is a film mainly composed of CrN (200), thereby increasing the etching rate of the entire light shielding film 2. It came out.
  • the antireflection layer in the light shielding film 2 mainly contains a large amount of oxygen, and the oxygen content decreases in the depth direction, so that the dry etching speed is increased in the depth direction of the light shielding film. By slowing it down moderately, the glowing loading error was reduced to a practically acceptable value.
  • the light shielding film 2 is thin and has a high etching rate and a fast etching time, the cross-sectional shape of the light shielding film pattern 2a is also vertical and good. Further, the resist film remained on the light shielding film pattern 2a.
  • FIG. 3 is a cross-sectional view showing a photomask blank according to the present embodiment and a photomask manufacturing process using the photomask blank.
  • the photomask blank 30 of this example is formed on the translucent substrate 1 with the halftone phase shifter film 4 and the top thereof as shown in FIG.
  • the light shielding layer 2 is composed of the light shielding layer 5 and the antireflection layer 6.
  • a light-shielding film comprising a light-shielding layer having a total thickness of 48 nm and an antireflection layer was formed on the halftone phase shifter film in the same manner as in Example 1.
  • a resist film for electron beam lithography (FEP171 manufactured by Fuji Film Elect Kokuiku Materials Co., Ltd., film thickness: 200 nm), which is a chemically amplified resist, was formed on the photomask blank 30.
  • the resist film was formed by spin coating using a spinner (rotary coating apparatus).
  • a predetermined heat drying process was performed using a heat drying apparatus.
  • a desired pattern is drawn (70 nm line and space pattern) on the resist film formed on the photomask blank 30 using an electron beam drawing apparatus, and then developed with a predetermined developer.
  • a resist pattern 7 was formed (see FIG. 3B).
  • the light shielding film 2 composed of the light shielding layer 5 and the antireflection layer 6 was dry-etched to form a light shielding film pattern 2a (see FIG. 3C).
  • the halftone phase shifter film 4 is etched using the light shielding film pattern 2a and the resist pattern 7 as a mask to form a halftone phase shifter film pattern 4a (see FIG. 4D). ).
  • the cross sectional shape of the light shielding film pattern 2a is good.
  • the cross-sectional shape of was also good.
  • a resist film 8 is applied again, pattern exposure is performed to remove an unnecessary light-shielding film pattern in the transfer region, and then the resist film 8 is developed to form a resist. Pattern 8a was formed (see (e) and (f) of the figure).
  • an unnecessary light-shielding film pattern was removed using wet etching, and the remaining resist pattern was peeled off to obtain a photomask 40 (see (g) in the figure).
  • a light shielding film is formed on the phase shifter film in the peripheral region other than the transfer region (mask pattern forming region).
  • This light shielding film prevents exposure light from passing through this peripheral region.
  • the phase shift mask is a force used as a mask of a reduction projection exposure apparatus (stepper).
  • the phase shift mask is rotated by a covering member (aperture) provided in the exposure apparatus. Exposure is performed by covering the peripheral area so that only the transfer area of the shift mask is exposed.
  • it is difficult to install the covering member so that only the transfer region is accurately exposed, and the exposed portion protrudes into the non-transfer region around the outer periphery of the transfer region.
  • a light-shielding film is provided in the non-transfer area of the mask in order to block the exposed exposure light.
  • the phase shifter film has a light shielding function.
  • this phase shifter film does not completely block exposure light. Allow exposure light to pass through, albeit a small amount that cannot be contributed. Therefore, the exposure light that has passed through the phase shifter film due to this protrusion at the repetition step reaches the area where pattern exposure has already been performed and is subjected to overlapping exposure, or in the case of other shots, it is slightly caused by protrusion.
  • the exposure is performed on the portion that has been exposed. Due to this double exposure, they may add up to the amount that contributes to the exposure and cause defects.
  • a half-tone phase shifter film for an ArF excimer laser (wavelength 193 nm) composed of a TaHf film as a lower layer and an SiON film as an upper layer was formed.
  • This halftone phase shifter film has an ArF excimer laser (wavelength: 193 nm) and a high transmittance of 15.0%, and the phase shift amount is approximately 180 °.
  • a light shielding film composed of a light shielding layer having a total thickness of 48 nm and an antireflection layer was formed in exactly the same manner as in Example 2.
  • a halftone phase shift mask was produced in the same manner as in Example 2 using the photomask blank for the halftone phase shift mask thus obtained.
  • the light transmitting portion in the mask pattern (the mask pattern is not formed and the transparent substrate is exposed!
  • a light-shielding film was formed on the portion excluding the boundary portion with the portion.
  • the halftone phase shift mask shown in FIG. 4 is in a region where the mask pattern of the phase shifter film is formed, and the light transmitting portion in the mask pattern (the mask pattern is not formed and the transparent substrate is exposed).
  • the light shielding film is formed on the portion excluding the boundary portion with the first portion), so that it is originally desired that the light is completely shielded, and the light shielding of the portion is made more complete. . That is, in the region where the mask pattern is formed, the function originally required for the phase shifter film that is the mask pattern is the light transmission. This is because it is desirable to completely shield the other most part (the part excluding the boundary part) which only needs to pass the phase-shifted light only at the boundary part with the excess part.
  • the photomask form of this embodiment is particularly suitable.
  • a photomask blank and a photomask were produced in the same manner as in Example 2 except that the light-shielding film 2 formed on the halftone phase shifter film 4 in Example 2 was formed by sputtering under the following conditions. Shielding film on the halftone phase shifter film, using a sputtering apparatus, using a chromium target as a sputtering target, an argon gas and nitrogen gas and helium gas mixture gas of (Ar: 15 vol 0/0, N: 30 vol 0/0, the He: 55 volume 0/0) atmosphere
  • a halftone phase shift mask was produced in the same manner as in Example 2 using the photomask blank for the halftone phase shift mask thus obtained.
  • a chromium target is used as the sputtering target, and light is transmitted by reactive sputtering in an atmosphere of mixed gas of argon gas and nitrogen gas (Ar: 70% by volume, N: 30% by volume).
  • An antireflection layer is formed by reactive sputtering in a mixed gas and nitrogen monoxide gas mixture atmosphere (Ar: 90% by volume, NO: 10% by volume), and a translucent substrate made of synthetic quartz glass
  • a light shielding film 2 was formed on 1.
  • the power of the sputtering device when forming the light shielding layer is 0.333 kW, the total gas pressure is 0.28 Pascal (Pa), and the power of the sputtering device when forming the antireflection layer is 0.333 kW, all gases.
  • a light shielding film was formed under a pressure of 0.28 Pascal (Pa).
  • the thickness of the light shielding film was 70 nm.
  • a resist film for electron beam lithography (FEP171 manufactured by Fuji Film Elect Kokuiku Materials Co., Ltd.), which is a chemically amplified resist, was formed on the photomask blank.
  • the resist film was formed by spin coating using a spinner (rotary coating apparatus). After applying the resist film, a predetermined heat drying process was performed using a heat drying apparatus.
  • a desired pattern is drawn (80 nm line and space pattern) on the resist film formed on the photomask blank using an electron beam lithography system, and then developed with a predetermined developer to form a resist pattern. Formed.
  • a dry etching process was performed on the light shielding film 2 including the light shielding layer and the antireflection layer to form the light shielding film pattern 2a.
  • the etching rate of the entire light shielding film was 2.4 AZ seconds. In the depth direction of the light shielding film The etching rate was the same on the surface side of the light shielding film and the translucent substrate side.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 遮光膜のドライエッチング速度を高めることで、ドライエッチング時間が短縮でき、レジスト膜の膜減りを低減することができ、レジスト膜を薄膜化して解像性、パターン精度(CD精度)を向上でき、ドライエッチング時間の短縮化による断面形状の良好な遮光膜のパターンが形成することができるフォトマスクブランクを提供する。  本発明は、透光性基板上に遮光膜を有するフォトマスクブランクにおいて、該フォトマスクブランクは、遮光膜上に形成されるマスクパターンをマスクにしてドライエッチング処理により、遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクであって、前記遮光膜は、主にクロム(Cr)と窒素(N)とを含む材料からなり、かつ、X線回折による回折ピークが実質的にCrN(200)である。また、前記遮光膜は、クロム(Cr)を基準としたときに窒素(N)が深さ方向に略均一に含まれている。

Description

明 細 書
フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製 造方法
技術分野
[0001] 本発明は、遮光膜パターン形成のためのドライエッチング処理用に遮光膜のドライ エッチング速度を最適化させたフォトマスクブランク及びフォトマスクの製造方法、並 びに半導体装置の製造方法に関する。 背景技術
[0002] 一般に、半導体装置の製造工程では、フォトリソグラフィ一法を用いて微細パターン の形成が行われている。また、この微細パターンの形成には通常何枚ものフォトマス クと呼ばれている基板が使用される。このフォトマスクは、一般に透光性のガラス基板 上に、金属薄膜等力もなる遮光性の微細パターンを設けたものであり、このフォトマス クの製造にぉ 、てもフォトリソグラフィ一法が用いられて 、る。
[0003] フォトリソグラフィ一法によるフォトマスクの製造には、ガラス基板等の透光性基板上 に遮光膜を有するフォトマスクブランクが用いられる。このフォトマスクブランクを用い たフォトマスクの製造は、フォトマスクブランク上に形成されたレジスト膜に対し、所望 のパターン露光を施す露光工程と、所望のパターン露光に従って前記レジスト膜を 現像してレジストパターンを形成する現像工程と、レジストパターンに沿って前記遮光 膜をエッチングするエッチング工程と、残存したレジストパターンを剥離除去する工程 とを有して行われている。上記現像工程では、フォトマスクブランク上に形成されたレ ジスト膜に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶 なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチングェ 程では、このレジストパターンをマスクとして、たとえばウエットエッチングによって、レ ジストパターンの形成されて ヽな ヽ遮光膜が露出した部位を溶解し、これにより所望 のマスクパターンを透光性基板上に形成する。こうして、フォトマスクが出来上がる。
[0004] 特許文献 1には、ウエットエッチングに適したマスクブランクとして、透明基板上に、 クロム炭化物を含有するクロム膜を遮光膜として備えたフォトマスクブランクが記載さ れている。また、特許文献 2には、同じくウエットエッチングに適したマスクブランクとし て、透明基板上に、ハーフトーン材料膜と金属膜との積層膜を有し、この金属膜は、 表面側から透明基板側に向かってエッチングレートが異なる材料で構成される領域 が存在しており、例えば CrNZCrCの金属膜と CrONの反射防止膜からなるハーフ トーン型位相シフトマスクブランクが記載されている。
[0005] ところで、半導体装置のパターンを微細化するに当たっては、フォトマスクに形成さ れるマスクパターンの微細ィ匕にカ卩え、フォトリソグラフィ一で使用される露光光源波長 の短波長化が必要となる。半導体装置製造の際の露光光源としては、近年では KrF エキシマレーザー(波長 248nm)から、 ArFエキシマレーザー(波長 193nm)、更に は F2エキシマレーザー(波長 157nm)へと短波長化が進んで!/、る。
その一方で、フォトマスクやフォトマスクブランクにおいては、フォトマスクに形成され るマスクパターンを微細化するに当たっては、フォトマスクブランクにおけるレジスト膜 の薄膜ィ匕と、フォトマスク製造の際のパターユング手法として、従来のウエットエツチン グに替わってドライエッチング力卩ェが必要になってきている。
[0006] しかし、レジスト膜の薄膜化とドライエッチング加工は、以下に示す技術的な問題が 生じている。
一つは、フォトマスクブランクのレジスト膜の薄膜ィ匕を進める際、遮光膜の加工時間 力 S1つの大きな制限事項となっていることである。遮光膜の材料としては、一般にクロ ム系の材料が用いられ、クロムのドライエッチングカ卩ェでは、エッチングガスに塩素ガ スと酸素ガスの混合ガスが用いられて ヽる。レジストパターンをマスクにして遮光膜を ドライエッチングでパター-ングする際、レジストは有機膜でありその主成分は炭素で あるので、ドライエッチング環境である酸素プラズマに対しては非常に弱い。遮光膜 をドライエッチングでパター-ングする間、その遮光膜上に形成されて 、るレジストパ ターンは十分な膜厚で残っていなければならない。一つの指標として、マスクパター ンの断面形状を良好にするために、ジャストエッチングタイムの 2倍(100%オーバー エッチング)程度を行っても残存するようなレジスト膜厚にしなければならな 、。例え ば、一般には、遮光膜の材料であるクロムと、レジスト膜とのエッチング選択比は 1以 下となっているので、レジスト膜の膜厚は、遮光膜の膜厚の 2倍以上の膜厚が必要と なることになる。遮光膜の加工時間を短くする方法として、遮光膜の薄膜ィ匕が考えら れる。遮光膜の薄膜ィ匕については、特許文献 3に提案されている。
[0007] 特許文献 3には、フォトマスクの製造において、透明基板上のクロム遮光膜の膜厚 を薄膜ィ匕することにより、エッチング時間を短くでき、クロムパターンの形状を改善す ることが開示されている。
[0008] 特許文献 1 :特公昭 62— 32782号公報
特許文献 2:特許第 2983020号公報
特許文献 3:特開平 10— 69055号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、遮光膜の膜厚を薄くしょうとすると、遮光性が不十分となるため、この ようなフォトマスクを使用してパターン転写を行っても、転写パターン不良が発生して しまう。遮光膜は、その遮光性を十分確保するためには、所定の光学濃度 (例えば 2 . 5以上)が必要となるため、上記特許文献 3のように遮光膜の膜厚を薄くするといつ ても、自ずと限界が生じる。
また、上記特許文献 1に記載されたクロム炭化物を含有するクロム膜を遮光膜とす る場合、ドライエッチング速度が低下する傾向があり、ドライエッチングによる遮光膜 の加工時間の短縮ィ匕を図ることができな!/、。
[0010] さらに、上記特許文献 2に記載された膜厚方向でウエットエッチングレートが異なる CrNZCrCの金属膜においては、 CrC膜を CrN膜よりも厚くする必要があった。その 理由は、第 1に、上層の CrC膜と下層の CrN膜はいずれもウエットエッチングレートが 良好であるが、下層中に窒素が含まれていると、ウエットエッチング処理した場合、ァ ンダーカットが大きくなるという問題が生じるため、 CrN膜の膜厚を相対的に薄くする 必要があった力 である。第 2に、従来露光装置において使用されている波長である i 線(365nm)や KrFエキシマレーザー(248nm)においては、 CrN膜の吸収係数が 小さいため、遮光膜として所望の光学濃度を得るには、遮光性の高い CrC膜を厚め にする必要があった力もである。第 3に、遮光膜上にレジストパターンを形成するため の露光 (描画)は電子線を用いるのが一般的である力 その際のチャージアップを抑 制するためには CrC膜を厚めにして遮光膜のシート抵抗を小さくする必要があった 力もである。しかし、特許文献 2のマスクブランクは、上記金属膜中の炭素含有率が 高くなり、ドライエッチングによりパターユングを行う場合、エッチング速度が低下する ので、遮光膜の加工時間を短縮できないという問題がある。また、特許文献 2のマス クブランクをドライエッチング処理に用いた場合、遮光膜の深さ方向に向力つて、最 初はドライエッチング速度が速ぐ主に CrC膜の領域では遅くなり、最後に CrN膜の 領域では再び速くなるため、パターンの断面形状を劣化させたり、グローバルローデ イング現象が起こりやす 、と ヽぅ問題がある。
[0011] そこで本発明は、従来の問題点を解決するべくなされたものであり、その目的とする ところは、第一に、遮光膜のドライエッチング速度を高めることで、ドライエッチング時 間が短縮でき、レジスト膜の膜減りを低減することができ、その結果、レジスト膜を薄 膜化して解像性、ノターン精度 (CD精度)を向上でき、ドライエッチング時間の短縮 化による断面形状の良好な遮光膜のパターンが形成することができるフォトマスクブ ランク及びフォトマスクの製造方法を提供することである。第二に、遮光膜に必要な遮 光性能を有しつつ、遮光膜の薄膜ィヒにより、断面形状の良好な遮光膜のパターンが 形成することができるフォトマスクブランク及びフォトマスクの製造方法を提供すること である。第三に、遮光膜の深さ方向でのドライエッチング速度を最適化させることでグ ローバルローデイング現象を低減でき、良好なパターン精度が得られるフォトマスクブ ランク及びフォトマスクの製造方法を提供することである。第四に、本発明のフォトマ スクを使用してフォトリソグラフィ一法により半導体基板上にパターン転写することによ り、回路パターンの欠陥のない、良好な半導体装置が得られる半導体装置の製造方 法を提供することである。
課題を解決するための手段
[0012] 上記課題を解決するため、本発明は以下の構成を有する。
(構成 1)透光性基板上に遮光膜を有するフォトマスクブランクにおいて、前記フォトマ スタブランクは、前記遮光膜上に形成されるマスクパターンをマスクにしてドライエツ チング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応す るドライエッチング処理用のフォトマスクブランクであって、前記遮光膜は、主にクロム (Cr)と窒素 (N)とを含む材料力もなり、かつ、 X線回折による回折ピークが実質的に CrN (200)であることを特徴とするフォトマスクブランクである。
(構成 2)前記遮光膜は、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均 一に含まれていることを特徴とする構成 1記載のフォトマスクブランクである。
(構成 3)透光性基板上に遮光膜を有するフォトマスクブランクにおいて、前記フォトマ スタブランクは、前記遮光膜上に形成されるマスクパターンをマスクにしてドライエツ チング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応す るドライエッチング処理用のフォトマスクブランクであって、前記遮光膜は、クロム (Cr) を基準としたときに窒素 (N)が深さ方向に略均一に含まれていることを特徴とするフ オトマスクブランクである。
(構成 4)前記遮光膜は、更に酸素を含み、表面側から透光性基板側に向かって酸 素の含有量が減少していることを特徴とする構成 1乃至 3の何れか一に記載のフォト マスクブランクである。
(構成 5)前記遮光膜の上層部に酸素を含む反射防止層を形成することを特徴とする 構成 1乃至 4の何れか一に記載のフォトマスクブランクである。
(構成 6)前記透光性基板と前記遮光膜との間に、ハーフトーン型位相シフター膜が 形成されていることを特徴とする構成 1乃至 5の何れか一に記載のフォトマスクブラン クである。
(構成 7)構成 1乃至 6の何れか一に記載のフォトマスクブランクにおける前記遮光膜 をドライエッチングによりパター-ングして前記透光性基板上に遮光膜パターンを形 成することを特徴とするフォトマスクの製造方法である。
(構成 8)構成 6に記載のフォトマスクブランクにおける前記遮光膜をドライエッチング によりパターユングして遮光膜パターンを形成した後、該遮光膜パターンをマスクに して、ドライエッチングにより前記ハーフトーン型位相シフター膜をパター-ングして 前記透光性基板上にハーフトーン型位相シフター膜パターンを形成することを特徴 とするフォトマスクの製造方法である。
(構成 9)構成 7又は 8に記載のフォトマスクにおける前記遮光膜パターン又は前記ハ ーフトーン型位相シフター膜パターンをフォトリソグラフィ一法により、半導体基板上 にパターンを転写することを特徴とする半導体装置の製造方法である。
[0014] 構成 1にあるように、本発明のフォトマスクブランクは、透光性基板上に遮光膜を有 するフォトマスクブランクにおいて、前記フォトマスクブランクは、前記遮光膜上に形成 されるマスクパターンをマスクにしてドライエッチング処理により、前記遮光膜をパター ユングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスク ブランクであって、前記遮光膜は、主にクロム (Cr)と窒素 (N)とを含む材料力もなり、 かつ、 X線回折による回折ピークが実質的に CrN (200)である。ここで、 X線回折に よる回折ピークが実質的に CrN (200)であるとは、有意な回折ピークが 1本であり、 C rN (200)以外の結晶に対応する回折ピークが現れないことを意味する。
このような主にクロム (Cr)と窒素 (N)とを含む材料力 なり、かつ、 X線回折による 回折ピークが実質的に CrN (200)であるような遮光膜は、クロム単体力 なる遮光膜 よりもドライエッチング速度が速くなり、ドライエッチング時間の短縮ィ匕を図ることがで きる。ドライエッチング速度を速くできることで、遮光膜のパターユングに必要なレジス ト膜の膜厚を薄くすることができ、遮光膜のパターン精度 (CD精度)が良好になる。ま た、このような元素を含むクロム系材料の遮光膜は、パターンの微細化を達成する上 で有効な 200nm以下の露光波長においては、膜厚を厚くしなくてもある程度の薄膜 で所望の光学濃度 (例えば 2. 5以上であることが好ましい)を得ることができる。つま り、遮光膜に必要な遮光性能を有しつつ、遮光膜の薄膜ィヒを達成することが可能に なる。
[0015] 構成 2にあるように、前記遮光膜は、クロム (Cr)を基準としたときに窒素 (N)が深さ 方向に略均一に含まれていることが好ましい。遮光膜が、クロム (Cr)を基準としたとき に窒素 (N)が深さ方向に略均一に含まれて 、ることで、遮光膜の深さ方向に略均一 な組成の CrN (200)が形成されている。その結果、構成 1によるドライエッチング速 度を速める効果がより一層発揮され、更に、パターン断面を良好、即ち垂直に立たせ るためのエッチングプロセスの設定が容易になる。尚、遮光膜を、クロム (Cr)を基準と したときに窒素 (N)が深さ方向に略均一に含ませる構成は、後述の構成 6と組み合わ せた場合に最適である。即ち、構成 6にあるように、遮光膜がハーフトーン型位相シフ ター膜をパターユングする際のマスク層としての機能を持つ場合、遮光膜パターンを マスクにして形成されるハーフトーン型位相シフター膜パターンの断面形状も良好と なる。
構成 3にあるように、本発明のフォトマスクブランクは、透光性基板上に遮光膜を有 するフォトマスクブランクにおいて、前記フォトマスクブランクは、前記遮光膜上に形成 されるマスクパターンをマスクにしてドライエッチング処理により、前記遮光膜をパター ユングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスク ブランクであって、前記遮光膜は、クロム (Cr)を基準としたときに窒素 (N)が深さ方 向に略均一に含まれて 、ることである。
このような膜とすることにより、クロム単体力もなる遮光膜よりもドライエッチング速度 を速くできることで、遮光膜のパターニングに必要なレジスト膜の膜厚を薄くすること ができ、遮光膜のパターン精度 (CD精度)が良好になる。また、このような元素を含 むクロム系材料の遮光膜は、パターンの微細化を達成する上で有効な 200nm以下 の露光波長においては、膜厚を厚くしなくてもある程度の薄膜で所望の光学濃度 (例 えば 2. 5以上であることが好ましい)を得ることができる。つまり、遮光膜に必要な遮 光性能を有しつつ、遮光膜の薄膜ィ匕を達成することが可能になる。
また、遮光膜を、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均一に含 ませた構成とすることにより、ノターン断面を良好、即ち垂直に立たせるためのエッチ ングプロセスの設定が容易になる。尚、この構成は、後述の構成 6と組み合わせた場 合に最適である。即ち、構成 6にあるように、遮光膜がハーフトーン型位相シフター膜 をパター-ングする際のマスク層としての機能を持つ場合、遮光膜パターンをマスク にして形成されるハーフトーン型位相シフター膜パターンの断面形状も良好となる。 構成 4にあるように、前記遮光膜は、更に酸素を含み、表面側から透光性基板側に 向かって酸素の含有量が減少していることにより、遮光膜の深さ方向(つまり遮光膜 の表面側から透光性基板側)に向力つてドライエッチング速度を遅くさせるように制御 することができる。これにより、グローバルローデイング現象を低減させ、パターン精度 を向上させることができる。透光性基板側のドライエッチング速度が、表面側のドライ エッチング速度に近づくにつれ、パターン粗密による CDバイアス差、即ち、グローバ ルローデイングエラーが大きくなる。そのため、透光性基板側のドライエッチング速度 を、表面側のドライエッチング速度に対し適度に遅くすると、グローバルローデイング エラーが低減し、パターン精度を向上させることができる。
[0017] 構成 5にあるように、前記遮光膜はその上層部に酸素を含む反射防止層を形成す ることができる。このような反射防止層を形成することにより、露光波長における反射 率を低反射率に抑えることができるので、マスクパターンを被転写体に転写するとき に、投影露光面との間での多重反射を抑制し、結像特性の低下を抑制することが出 来る。また、フォトマスクブランクやフォトマスクの欠陥検査に用いる波長(例えば 257 nm、 364nm、 488nm等)に対する反射率を低く抑えることができるので、欠陥を検 出する精度が向上する。
[0018] 構成 6にあるように、透光性基板と遮光膜との間に、ハーフトーン型位相シフター膜 を形成しても良い。
その場合、遮光膜は、ハーフトーン型位相シフター膜との積層構造において、露光 光に対して所望の光学濃度 (例えば 2. 5以上であることが好ましい)となるように設定 されればよい。
[0019] 構成 7にあるように、構成 1乃至 6の何れか一に記載のフォトマスクブランクにおける 遮光膜をドライエッチング処理を用いてパターユングする工程を有するフォトマスクの 製造方法によれば、ドライエッチング時間を短縮でき、断面形状の良好な遮光膜バタ ーンが精度良く形成されたフォトマスクを得ることができる。
構成 8にあるように、構成 6に記載のフォトマスクブランクにおける前記遮光膜をドラ ィエッチングによりパター-ングして遮光膜パターンを形成した後、該遮光膜パター ンをマスクにして、ドライエッチングにより前記ハーフトーン型位相シフター膜パターン を形成するフォトマスクの製造方法によれば、断面形状の良好なハーフトーン型位相 シフター膜パターンが精度良く形成されたフォトマスクを得ることができる。
構成 9にあるように、構成 7又は 8に記載のフォトマスクにおける前記遮光膜パター ン又は前記ハーフトーン型位相シフター膜パターンをフォトリソグラフィ一法により、半 導体基板上にパターンを転写するので、半導体基板上に形成される回路パターンに 欠陥のな 、半導体装置を製造することができる。
発明の効果 [0020] 本発明によれば、遮光膜のドライエッチング速度を高めることで、ドライエッチング時 間が短縮でき、レジスト膜の膜減りを低減することができる。その結果、レジスト膜の薄 膜ィ匕が可能となり、パターンの解像性、パターン精度 (CD精度)を向上することがで きる。更に、ドライエッチング時間の短縮ィ匕により、断面形状の良好な遮光膜パターン が形成できるフォトマスクブランク及びフォトマスクの製造方法を提供することができる また、本発明によれば、遮光膜に必要な遮光性能を有しつつ、遮光膜の薄膜化に より、断面形状の良好な遮光膜のパターンが形成することができるフォトマスクブラン ク及びフォトマスクの製造方法を提供することができる。
さらに、本発明によれば、遮光膜の深さ方向でのドライエッチング速度を最適化さ せることでグローバルローデイング現象を低減でき、良好なパターン精度が得られる フォトマスクブランク及びフォトマスクの製造方法を提供することができる。
またさらに、本発明のフォトマスクにおける遮光膜パターン又はハーフトーン型位相 シフター膜パターンをフォトリソグラフィ一法により、半導体基板上にパターン転写す ることにより、半導体基板上に形成される回路パターンに欠陥のない半導体装置を 提供することができる。
図面の簡単な説明
[0021] [図 1]本発明により得られるフォトマスクブランクの一実施の形態を示す断面図である
[図 2]フォトマスクブランクを用いたフォトマスクの製造工程を示す断面図である。
[図 3]本発明の第二の実施の形態に係るフォトマスクブランク及びこのフォトマスクブラ ンクを用いたフォトマスクの製造工程を示す断面図である。
[図 4]本発明により得られるハーフトーン型位相シフトマスクの断面図である。
[図 5]実施例 1の遮光膜のラザフォード後方散乱分析による結果を示す図である。 符号の説明
[0022] 1 透光性基板
2 遮光膜
3 レジスト膜 4 ハーフトーン型位相シフター膜
5 遮光層
6 反射防止層
2a 遮光膜のパターン
3a レジストパターン
10、 30 フォトマスクブランク
20、 40 フォトマスク
発明を実施するための最良の形態
[0023] 以下、図面を参照して、本発明の実施の形態を詳述する。
図 1は本発明により得られるフォトマスクブランクの第 1の実施の形態を示す断面図 である。
図 1のフォトマスクブランク 10は、透光性基板 1上に遮光膜 2を有するバイナリマスク 用フォトマスクブランクの形態のものである。
上記フォトマスクブランク 10は、前記遮光膜 2上に形成されるレジストパターンをマ スクにしてドライエッチング処理により、前記遮光膜 2をパターユングするフォトマスク の作製方法に対応するドライエッチング処理用のマスクブランクである。
ここで、透光性基板 1としては、ガラス基板が一般的である。ガラス基板は、平坦度 及び平滑度に優れるため、フォトマスクを使用して半導体基板上へのパターン転写を 行う場合、転写パターンの歪み等が生じな!/、で高精度のパターン転写を行える。
[0024] 上記遮光膜 2は、主にクロム(Cr)と窒素 (N)とを含む材料力 なり、かつ、 X線回折 による回折ピークが実質的に CrN (200)である。
ここで、 X線回折による回折ピークが実質的に CrN (200)であるとは、前にも説明し たように、不純物等に由来する回折ピークを除く有意な回折ピークが 1本であり、遮光 膜の組成に由来する回折ピークが CrN (200)の結晶に対応する回折ピーク以外に 現れないことを意味する。
このような主にクロム (Cr)と窒素 (N)とを含む材料力 なり、かつ、 X線回折による 回折ピークが実質的に CrN (200)であるような遮光膜は、クロム単体力 なる遮光膜 よりもドライエッチング速度が速くなり、ドライエッチング時間の短縮ィ匕を図ることがで きる。そして、ドライエッチング速度を速くできることで、遮光膜のパターユングに必要 なレジスト膜の膜厚を薄くすることができ、遮光膜のパターン精度 (CD精度)が良好 になる。
[0025] また本発明において、上記遮光膜 2は、クロム (Cr)を基準としたときに窒素 (N)が 深さ方向に略均一に含まれていることが好ましい。遮光膜が、クロム(Cr)を基準とし たときに窒素 (N)が深さ方向に略均一に含まれて 、ることで、遮光膜の深さ方向に略 均一な組成の CrN (200)が形成されており、 Cr( 110)成分は実質的に含まれてい ない。したがって、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均一に含 まれている遮光膜は、本発明によるドライエッチング速度を速める効果がより一層発 揮され、更に、パターン断面を良好、即ち垂直に立たせるためのエッチングプロセス( エッチング条件など)の設定が容易になる。
ここで、具体的には、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均一 に含まれているとは、遮光膜の表面近傍と、透光性基板側の遮光膜界面を除く領域 において、「クロム(Cr)を 1としたときの窒素(N)の割合の平均値 ±0. 05」となる状 態をいう。好ましくは、クロム(Cr)を 1としたときの窒素(N)の割合の平均値 ±0. 025 、更に好ましくは、クロム (Cr)を 1としたときの窒素 (N)の割合の平均値 ±0. 01とす ることが好ましい。
[0026] 上記遮光膜 2は、その上に形成されるレジストパターンをマスクにしてドライエツチン グによってパターユングする際にレジスト膜の膜減りが起こっても、遮光膜のパター- ング終了時点でレジスト膜が残存するように、ドライエッチング処理において、レジスト との選択比が 1を超える材料とすることができる。選択比は、ドライエッチング処理に 対するレジストの膜減り量と遮光膜の膜減り量の比(=遮光膜の膜減り量 Zレジストの 膜減り量)で表される。好ましくは、遮光膜パターンの断面形状の悪化防止や、グロ 一バルローデイング現象を抑える点から、遮光膜は、レジストとの選択比が 1を超え 1 0以下、更に好ましくは、 1を超え 5以下とすることが望ましい。
[0027] また、このようなクロムと窒素とを含むクロム系材料の遮光膜は、パターンの微細化 を達成する上で有効な 200nm以下の露光波長においては、膜厚を厚くしなくてもあ る程度の薄膜で所望の光学濃度 (例えば 2. 5以上であることが好ましい)を得ること ができる。つまり、遮光膜に必要な遮光性能を有しつつ、遮光膜の薄膜化を達成す ることが可能になる。
[0028] 上記遮光膜 2中の窒素の含有量としては、 15〜80原子%の範囲が好適である。窒 素の含有量が 15原子%未満であると、クロム単体よりもドライエッチング速度が速くな る効果が得られ難い。また、窒素の含有量が 80原子%を超えると、波長 200nm以下 の例えば ArFエキシマレーザー(波長 193nm)においての吸収係数が小さくなるた め、所望の光学濃度 (例えば 2. 5以上)を得るためには膜厚を厚くする必要が生じて しまう。
[0029] 本発明において、上記遮光膜 2は、更に酸素を含むことができる。その場合、表面 側から透光性基板側に向かって酸素の含有量が減少して 、ることが好ま 、。遮光 膜の表面側力も透光性基板側に向力つて酸素の含有量が減少していることにより、 遮光膜の深さ方向(つまり遮光膜の表面側から透光性基板側)に向かってドライエツ チング速度を遅くさせるように制御することができる。これにより、グローバルローディ ング現象を低減させ、パターン精度を向上させることができる。透光性基板側のドライ エッチング速度力 表面側のドライエッチング速度に近づくにつれ、パターン粗密に よる CDバイアス差、即ち、グローバルローデイングエラーが大きくなる。そのため、透 光性基板側のドライエッチング速度を、表面側のドライエッチング速度に対し適度に 遅くすると、グローバルローデイングエラーが低減し、パターン精度を向上させること ができる。
[0030] 遮光膜 2中に酸素を含む場合の酸素の含有量は、 5〜80原子%の範囲が好適で ある。酸素の含有量が 5原子%未満であると、遮光膜の深さ方向に向かってドライエ ツチング速度を遅くさせるように制御する効果が得られ難い。一方、酸素の含有量が 80原子0 /0を超えると、波長 200nm以下の例えば ArFエキシマレーザー(波長 193η m)においての吸収係数が小さくなるため、所望の光学濃度 (例えば 2. 5以上)を得 るためには膜厚を厚くする必要が生じてしまう。また、好ましい遮光膜 2中の酸素の含 有量は特に 10〜50原子%の範囲とするのが好ましい。
[0031] また、遮光膜 2中に窒素と酸素の両方を含んでもよい。その場合の含有量は、窒素 と酸素の合計が 10〜80原子%の範囲とするのが好適である。また、遮光膜 2中に窒 素と酸素の両方を含む場合の窒素と酸素の含有比は、特に制約はされず、吸収係 数等の兼ね合 、で適宜決定される。
また、遮光膜 2中に炭素を含むことができる。遮光膜 2中に炭素を含む場合、炭素 の含有量は、 1〜20原子%の範囲が好適である。炭素は導電性を高める効果、反射 率を低減させる効果がある。しかし、遮光膜中に炭素が含まれていると、ドライエッチ ング速度が低下し、遮光膜をドライエッチングによりパター-ングする際に要するドラ ィエッチング時間が長くなり、レジスト膜を薄膜ィ匕することが困難となる。以上の点から 、炭素の含有量は、 1〜20原子%が好ましぐさらに好ましくは、 3〜15原子%が望ま しい。
[0032] 上記遮光膜 2の形成方法は、特に制約する必要はな 、が、なかでもスパッタリング 成膜法が好ましく挙げられる。スパッタリング成膜法によると、均一で膜厚の一定な膜 を形成することが出来るので、本発明には好適である。透光性基板 1上に、スパッタリ ング成膜法によって上記遮光膜 2を成膜する場合、スパッタターゲットとしてクロム (C r)ターゲットを用い、チャンバ一内に導入するスパッタガスは、アルゴンガスやへリウ ムガスなどの不活性ガスに酸素、窒素もしくは二酸ィ匕炭素、一酸化窒素等のガスを 混合したものを用いる。アルゴンガス等の不活性ガスに窒素ガスを混合したスパッタ ガスを用いると、クロムと窒素を含む遮光膜を形成することができる。また、アルゴンガ ス等の不活性ガスに酸素ガス或いは二酸ィ匕炭素ガスを混合したスパッタガスを用い ると、クロムに酸素を含む遮光膜を形成することができ、またアルゴンガス等の不活性 ガスに一酸ィ匕窒素ガスを混合したスパッタガスを用いると、クロムに窒素と酸素を含む 遮光膜を形成することができる。また、アルゴンガス等の不活性ガスにメタンガスを混 合したスパッタガスを用いると、クロムに炭素を含む遮光膜を形成することができる。 本発明においては、遮光膜を構成する全ての層において、成膜する際、窒素を含 む雰囲気中でスパッタリング成膜する。
[0033] 上記遮光膜 2の膜厚は、露光光に対して光学濃度が 2. 5以上となるように設定され る。具体的には、上記遮光膜 2の膜厚は、 90nm以下であることが好ましい。その理 由は、近年におけるサブミクロンレベルのパターンサイズへのパターンの微細化に対 応するためには、膜厚が 90nmを超えると、ドライエッチング時のパターンのマイクロ ローデイング現象等によって、微細パターンの形成が困難となる場合が考えられるた めである。膜厚をある程度薄くすることによって、パターンのアスペクト比 (パターン幅 に対するパターン深さの比)の低減を図ることができ、グローバルローデイング現象及 びマイクロローデイング現象による線幅エラーを低減することができる。さらに、膜厚を ある程度薄くすることによって、特にサブミクロンレベルのパターンサイズのパターン に対し、パターンへのダメージ (倒壊等)を防止することが可能になる。本発明におけ る遮光膜 2は、 200nm以下の露光波長においては、膜厚を 90nm以下の薄膜として も所望の光学濃度 (例えば 2. 5以上)を得ることができる。遮光膜 2の膜厚の下限に つ!、ては、所望の光学濃度が得られる限りにお 、ては薄くすることができる。
[0034] また、上記遮光膜 2は、単層であることに限られず、多層でもよいが、何れの膜にも 少なくとも窒素を含むことが好ましい。遮光膜 2は、表層部(上層部)に例えば酸素を 含む反射防止層を含むものであってもよい。その場合、反射防止層としては、例えば CrO, CrCO, CrNO, CrCON等の材質が好ましく挙げられる。反射防止層を設け ることによって、露光波長における反射率を例えば 20%以下、好ましくは 15%以下 に抑えることができるので、マスクパターンを被転写体に転写するときに、投影露光面 との間での多重反射を抑制し、結像特性の低下を抑制することができる。さらに、フォ トマスクブランクやフォトマスクの欠陥検査に用いる波長(例えば 257nm、 364nm、 4 88nm等)に対する反射率を例えば 30%以下とすることが、欠陥を高精度で検出す る上で望ましい。特に、反射防止層として炭素を含む膜とすることにより、露光波長に 対する反射率を低減させ、且つ、上記検査波長(特に 257nm)に対する反射率が 20 %以下とすることができるので望ましい。具体的には、炭素の含有量は、 5〜20原子 %とすることが好ましい。炭素の含有量が 5原子%未満の場合、反射率を低減させる 効果が小さくなり、また、炭素の含有量が 20原子%超の場合、ドライエッチング速度 が低下し、遮光膜をドライエッチングによりパターユングする際に要するドライエツチン グ時間が長くなり、レジスト膜を薄膜ィ匕することが困難となるので好ましくない。
なお、反射防止層は必要に応じて透光性基板側にも設けてもよい。
[0035] また、上記遮光膜 2は、クロムと、窒素、酸素、炭素等の元素の含有量が深さ方向で 異なり、表層部の反射防止層と、それ以外の層 (遮光層)で段階的、又は連続的に組 成傾斜した組成傾斜膜としても良い。このような遮光膜を組成傾斜膜とするためには 、例えば前述のスパッタリング成膜時のスパッタガスの種類 (組成)を成膜中に適宜切 替える方法が好適である。
[0036] また、フォトマスクブランクとしては、後述する図 2 (a)にあるように、上記遮光膜 2の 上に、レジスト膜 3を形成した形態であっても構わない。レジスト膜 3の膜厚は、遮光 膜のパターン精度 (CD精度)を良好にするためには、できるだけ薄 、方が好ま 、。 本実施の形態のような所謂ノイナリマスク用フォトマスクブランクの場合、具体的には 、レジスト膜 3の膜厚は、 300nm以下が好ましい。さらに好ましくは、 200nm以下、さ らに好ましくは 150nm以下とすることが望ましい。レジスト膜の膜厚の下限は、レジス トパターンをマスクにして遮光膜をドライエッチングしたときに、レジスト膜が残存する ように設定される。また、高い解像度を得るために、レジスト膜 3の材料はレジスト感度 の高 、ィ匕学増幅型レジストが好まし 、。
[0037] 次に、図 1に示すフォトマスクブランク 10を用いたフォトマスクの製造方法を説明す る。
このフォトマスクブランク 10を用いたフォトマスクの製造方法は、フォトマスクブランク 10の遮光膜 2を、ドライエッチングを用いてパターユングする工程を有し、具体的に は、フォトマスクブランク 10上に形成されたレジスト膜に対し、所望のパターン露光( パターン描画)を施す工程と、所望のパターン露光に従って前記レジスト膜を現像し てレジストパターンを形成する工程と、レジストパターンに沿って前記遮光膜をエッチ ングする工程と、残存したレジストパターンを剥離除去する工程とを有する。
[0038] 図 2は、フォトマスクブランク 10を用いたフォトマスクの製造工程を順に示す断面図 である。
図 2 (a)は、図 1のフォトマスクブランク 10の遮光膜 2上にレジスト膜 3を形成した状 態を示している。尚、レジスト材料としては、ポジ型レジスト材料でも、ネガ型レジスト 材料でも用 、ることができる。
次に、図 2 (b)は、フォトマスクブランク 10上に形成されたレジスト膜 3に対し、所望 のパターン露光 (パターン描画)を施す工程を示す。パターン露光は、電子線描画装 置などを用いて行われる。上述のレジスト材料は、電子線又はレーザーに対応する 感光性を有するものが使用される。
次に、図 2 (c)は、所望のパターン露光に従ってレジスト膜 3を現像してレジストパタ ーン 3aを形成する工程を示す。該工程では、フォトマスクブランク 10上に形成したレ ジスト膜 3に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶 なレジスト膜の部位を溶解し、レジストパターン 3aを形成する。
[0039] 次いで、図 2 (d)は、上記レジストパターン 3aに沿って遮光膜 2をエッチングするェ 程を示す。本発明のフォトマスクブランクはドライエッチングに好適であるため、エッチ ングはドライエッチングを用いることが好適である。該エッチング工程では、上記レジ ストパターン 3aをマスクとして、ドライエッチングによって、レジストパターン 3aの形成 されて 、な 、遮光膜 2が露出した部位を除去し、これにより所望の遮光膜パターン 2a (マスクパターン)を透光性基板 1上に形成する。
このドライエッチングには、塩素系ガス、又は、塩素系ガスと酸素ガスとを含む混合 ガスカゝらなるドライエッチングガスを用いることが本発明にとつて好適である。本発明 における主にクロムと窒素とを含む材料力 なる遮光膜 2に対しては、上記のドライエ ツチングガスを用いてドライエッチングを行うことにより、ドライエッチング速度を高める ことができ、ドライエッチング時間の短縮ィ匕を図ることができ、断面形状の良好な遮光 膜パターンを形成することができる。ドライエッチングガスに用いる塩素系ガスとして は、例えば、 CI , SiCl , HC1、 CC1、 CHC1等が挙げられる。
2 4 4 3
[0040] 尚、クロムと窒素の他に更に酸素を含む材料力 なる遮光膜の場合、遮光膜中の 酸素とクロムと塩素系ガスとの反応により塩ィ匕クロミルが生成されるため、ドライエッチ ングに塩素系ガスと酸素ガスの混合ガス力もなるドライエッチングガスを用いる場合、 遮光膜に含まれる酸素の含有量に応じ、ドライエッチングガス中の酸素の含有量を 低減させることができる。このように酸素の量を低減させたドライエッチングガスを用い てドライエッチングを行うことにより、レジストパターンに悪影響を与える酸素の量を低 減することができ、ドライエッチング時のレジストパターンへのダメージを防止できるた め、遮光膜のパターン精度の向上したフォトマスクが得られる。なお、遮光膜に含ま れる酸素の含有量によっては、ドライエッチングガス中の酸素の量をゼロとした酸素を 含まな 、ドライエッチングガスを用いることも可能である。 [0041] 図 2 (e)は、残存したレジストパターン 3aを剥離除去することにより得られたフォトマ スク 20を示す。こうして、断面形状の良好な遮光膜パターンが精度良く形成されたフ オトマスクが出来上がる。
尚、本発明は以上説明した実施の形態には限定されない。即ち、透光性基板上に 遮光膜を形成した、所謂ノイナリマスク用フォトマスクブランクに限らず、例えば、ハ ーフトーン型位相シフトマスクの製造に用いるためのフォトマスクブランクであってもよ い。この場合、後述する第 2の実施の形態に示すように、透光性基板上のハーフトー ン位相シフタ一膜上に遮光膜が形成される構造となり、ハーフトーン位相シフター膜 と遮光膜とを合わせて所望の光学濃度 (例えば 2. 5以上)が得られればよいため、遮 光膜自体の光学濃度は例えば 2. 5よりも小さい値とすることもできる。
[0042] 次に、図 3 (a)を用いて本発明のフォトマスクブランクの第 2の実施の形態を説明す る。
図 3 (a)のフォトマスクブランク 30は、透光性基板 1上に、ハーフトーン型位相シフタ 一膜 4とその上の遮光層 5と反射防止層 6とからなる遮光膜 2を有する形態のものであ る。透光性基板 1、遮光膜 2については、上記第 1の実施の形態で説明したので省略 する。
上記ハーフトーン型位相シフター膜 4は、実質的に露光に寄与しない強度の光 (例 えば、露光波長に対して 1%〜40%)を透過させるものであって、所定の位相差を有 するものである。このハーフトーン型位相シフター膜 4は、該ハーフトーン型位相シフ ター膜 4をパターユングした光半透過部と、ハーフトーン型位相シフター膜 4が形成さ れていない実質的に露光に寄与する強度の光を透過させる光透過部とによって、光 半透過部を透過して光の位相が光透過部を透過した光の位相に対して実質的に反 転した関係になるようにすることによって、光半透過部と光透過部との境界部近傍を 通過し回折現象によって互いに相手の領域に回りこんだ光が互いに打ち消しあうよう にし、境界部における光強度をほぼゼロとし境界部のコントラスト即ち解像度を向上さ ·¾:るものである。
[0043] このハーフトーン型位相シフター膜 4は、その上に形成される遮光膜 2とエッチング 特性が異なる材料とすることが好ましい。例えば、ハーフトーン型位相シフター膜 4と しては、モリブデン、タングステン、タンタル、ハフニウムなどの金属、シリコン、酸素及 び Z又は窒素を主たる構成要素とする材料が挙げられる。また、ハーフトーン型位相 シフター膜 4は、単層でも複数層であっても構わない。
この第 2の実施の形態における上記遮光膜 2は、ハーフトーン型位相シフト膜と遮 光膜とを合わせた積層構造において、露光光に対して光学濃度が 2. 5以上となるよ うに設定する。そのように設定される遮光膜 2の膜厚は、 50nm以下であることが好ま しい。その理由は、上記第 1の実施の形態と同様であって、ドライエッチング時のパタ ーンのマイクロローデイング現象等によって、微細パターンの形成が困難となる場合 が考えられるからである。遮光膜の膜厚を 50nm以下とすることにより、ドライエツチン グ時のグローバルローデイング現象及びマイクロローデイング現象による線幅エラー を更に低減することができる。また、本実施の形態において、上記反射防止層 6上に 形成するレジスト膜の膜厚は、 250nm以下が好ましい。さらに好ましくは、 200nm以 下、さらに好ましくは 150nm以下とすることが望ましい。レジスト膜の膜厚の下限は、 レジストパターンをマスクにして遮光膜をドライエッチングしたときに、レジスト膜が残 存するように設定される。また、前述の実施の形態の場合と同様、高い解像度を得る ために、レジスト膜の材料はレジスト感度の高い化学増幅型レジストが好ましい。 実施例
以下、実施例により、本発明の実施の形態を更に具体的に説明する。併せて、実 施例に対する比較例についても説明する。
(実施例 1)
本実施例のフォトマスクブランクは、透光性基板 1上に遮光層と反射防止層とからな る遮光膜 2からなる。
このフォトマスクブランクは、次のような方法で製造することができる。
スパッタリング装置を用いて、スパッタターゲットにクロムターゲットを使用し、ァルゴ ンガスと窒素ガスとヘリウムガスの混合ガス(Ar: 30体積0 /0、 N : 30体積0 /0、 He :40
2
体積%)雰囲気中で反応性スパッタリングを行つて透光性基板 1上に遮光層を形成し 、その後、アルゴンガスと窒素ガスとメタンガスとヘリウムガスの混合ガス (Ar: 54体積 %、N : 10#:¾%, CH : 6体積0 /0、 He : 30体積0 /0)雰囲気中で反応性スパッタリン グを行い、引き続き、アルゴンガスと一酸ィ匕窒素ガスの混合ガス (Ar: 90体積0 /0、 NO : 10体積%)雰囲気中で反応性スパッタリングを行うことによって、反射防止層を形成 し、合成石英ガラス力もなる透光性基板 1上に遮光膜 2を形成した。尚、上記遮光層 成膜時のスパッタリング装置のパワーは 1. 16kW、全ガス圧は 0. 17パスカル(Pa)、 反射防止層成膜時のスパッタリング装置のパワーは 0. 33kW、全ガス圧は 0. 28パ スカル (Pa)の条件で遮光膜を形成した。遮光膜の膜厚は、 67nmであった。遮光膜 について、ラザフォード後方散乱分析法により組成分析を行った結果、窒素 (N)は 3 3. 0原子%、酸素(O)は 12. 3原子%、水素 (H)は 5. 9原子%が含まれているクロ ム(Cr)膜であった。また、ォージェ電子分光法により組成分析を行った結果、上記 遮光膜中には炭素 (C)が 8. 0原子%含まれていた。
図 5は本実施例の遮光膜のラザフォード後方散乱分析による遮光膜の深さ方向の 組成分析結果を示す図である。但し、図 5の縦軸は、クロムを 1としたときの各元素の 組成比で示している。
この結果によると、遮光膜のうち遮光層は、クロム、窒素及び反射防止層の形成に 用いた酸素、炭素が若干購入した組成傾斜膜となった。また反射防止層は、クロム、 窒素、及び酸素、並びに、炭素が若干購入した組成傾斜膜となった。なお、遮光膜 中の酸素は表面側の反射防止層中の含有量が高ぐ全体としては深さ方向に向力つ て含有量が減少している。また、遮光膜中の水素については、表面側の反射防止層 中の含有量が高ぐ全体としては遮光膜の深さ方向に向力つて水素の含有量が略減 少している。そして、特に特徴的な点は、クロムを基準としたときに窒素が遮光膜の深 さ方向に均一に含まれて 、ることである。
また、本実施例の遮光膜を X線回折による分析を行ったところ、回折角度 2 Θが 44. 081degの位置に 1本の回折ピークが検出され、本実施例の遮光膜が CrN (200)を 主体とする膜であることが判明した。
この遮光膜の光学濃度は、 3. 0であった。また、この遮光膜の露光波長 193nmに おける反射率は 14. 8%と低く抑えることができた。さらに、フォトマスクの欠陥検査波 長である 257nm又は 364nmに対しては、それぞれ 19. 9%、 19. 7%となり、検査 する上でも問題とならな 、反射率であった。 [0046] 次に、前記フォトマスクブランク上に、化学増幅型レジストである電子線描画用レジ スト膜(富士フィルムエレクト口-クスマテリアルズ社製: FEP171)を形成した。レジス ト膜の形成は、スピンナー(回転塗布装置)を用いて、回転塗布した。尚、上記レジス ト膜を塗布後、加熱乾燥装置を用いて所定の加熱乾燥処理を行った。
次にフォトマスクブランク上に形成されたレジスト膜に対し、電子線描画装置を用い て所望のパターン描画(80nmのラインアンドスペースパターン)を行った後、所定の 現像液で現像してレジストパターンを形成した。
次に、上記レジストパターンに沿って、遮光層と反射防止層とからなる遮光膜 2のド ライエッチング処理を行って遮光膜パターン 2aを形成した。ドライエッチングガスとし て、塩素(C1 )ガスと酸素(O )ガスの混合ガス(CI : 0 =4 : 1)を用いた。このとき、
2 2 2 2
遮光膜全体のエッチング速度は、 3. 8 AZ秒であった。遮光膜の深さ方向における エッチング速度は、遮光膜の表面側のエッチング速度が速ぐ透光性基板側が遅い 傾向であった。
[0047] 本実施例では、遮光膜 2が主にクロムと窒素とを含む材料力 なり、かつ、 CrN (20 0)を主体とする膜であることにより、遮光膜 2全体のエッチング速度を速めることがで きた。また、遮光膜 2における反射防止層に主に酸素を多く含め、かつ深さ方向に向 力つて酸素の含有量が減少するようにして、遮光膜の深さ方向に向力つてドライエツ チング速度を適度に遅くすることで、グロ一ノ レローデイングエラーは実用上許容で きる数値に収まった。このように、遮光膜 2は膜厚が薄い上にエッチング速度が速ぐ エッチング時間も速いことから、遮光膜パターン 2aの断面形状も垂直形状となり良好 となった。また、遮光膜パターン 2a上にはレジスト膜が残存していた。
最後に残存するレジストパターンを剥離して、フォトマスクを得た。その結果、透光 性基板上に 80nmのラインアンドスペースの遮光膜パターンが形成されたフォトマス クを作製することができた。
[0048] (実施例 2)
図 3は、本実施例に係るフォトマスクブランク及びこのフォトマスクブランクを用いた フォトマスクの製造工程を示す断面図である。本実施例のフォトマスクブランク 30は、 同図(a)に示すように、透光性基板 1上に、ハーフトーン型位相シフター膜 4とその上 の遮光層 5と反射防止層 6とからなる遮光膜 2からなる。
このフォトマスクブランク 30は、次のような方法で製造することができる。 合成石英ガラス力もなる透光性基板上に、枚葉式スパッタ装置を用いて、スパッタ ターゲットにモリブデン(Mo)とシリコン(Si)との混合ターゲット(Mo: Si= 8: 92mol %)を用い、アルゴン (Ar)と窒素 (N )との混合ガス雰囲気 (Ar: N = 10体積0 /0: 90
2 2
体積0 /0)で、反応性スパッタリング (DCスパッタリング)により、モリブデン、シリコン、及 び窒素を主たる構成要素とする単層で構成された ArFエキシマレーザー(波長 193 nm)用ハーフトーン型位相シフター膜を膜厚 69nmに形成した。尚、このハーフトー ン型位相シフター膜は、 ArFエキシマレーザー(波長 193nm)でおいて、透過率は 5 . 5%、位相シフト量が略 180° となっている。
[0049] 次に、上記ハーフトーン型位相シフター膜上に、実施例 1と同様にして総膜厚が 48 nmの遮光層及び反射防止層からなる遮光膜を形成した。
次に、前記フォトマスクブランク 30上に、化学増幅型レジストである電子線描画用レ ジスト膜(富士フィルムエレクト口-クスマテリアルズ社製: FEP171、膜厚: 200nm) を形成した。レジスト膜の形成は、スピンナー(回転塗布装置)を用いて、回転塗布し た。尚、上記レジスト膜を塗布後、加熱乾燥装置を用いて所定の加熱乾燥処理を行 つた o
次に、前記フォトマスクブランク 30上に形成されたレジスト膜に対し、電子線描画装 置を用いて、所望のパターン描画(70nmのラインアンドスペースパターン)を行った 後、所定の現像液で現像してレジストパターン 7を形成した(図 3 (b)参照)。
次に、上記レジストパターン 7に沿って、遮光層 5と反射防止層 6とからなる遮光膜 2 のドライエッチングを行って遮光膜パターン 2aを形成した(同図(c)参照)。
[0050] 次に、上述の遮光膜パターン 2a及びレジストパターン 7をマスクに、ハーフトーン型 位相シフター膜 4のエッチングを行ってハーフトーン型位相シフター膜パターン 4aを 形成した(同図(d)参照)。このハーフトーン型位相シフター膜 4のエッチングにおい ては、前記遮光膜パターン 2aの断面形状が影響するため、遮光膜パターン 2aの断 面形状が良好であるために、ハーフトーン型位相シフター膜パターン 4aの断面形状 も良好となった。 次に、残存するレジストパターン 7を剥離後、再度レジスト膜 8を塗布し、転写領域 内の不要な遮光膜パターンを除去するためのパターン露光を行った後、該レジスト 膜 8を現像してレジストパターン 8aを形成した(同図(e)、 (f)参照)。次いで、ウエット エッチングを用いて不要な遮光膜パターンを除去し、残存するレジストパターンを剥 離して、フォトマスク 40を得た(同図 (g)参照)。
その結果、透光性基板上に、 70nmのラインアンドスペースのハーフトーン型位相 シフター膜パターンが形成されたフォトマスクを作製することが出来た。また、グロ一 バルローデイングエラーは実用上許容できる数値に収まった。
尚、図 3 (g)に示す例は、転写領域 (マスクパターン形成領域)以外の領域である周 辺領域において、位相シフター膜上に遮光膜を形成したものである。この遮光膜は、 この周辺領域を露光光が通過できないようにするものである。すなわち、位相シフトマ スクは、縮小投影露光装置 (ステッパー)のマスクとして用いられる力 この縮小投影 露光装置を用いてパターン転写を行うときは、該露光装置に備えられた被覆部材 (ァ パーチヤー)によって位相シフトマスクの転写領域のみを露出させるように周縁領域 を被覆して露光を行う。しカゝしながら、この被覆部材を、精度良く転写領域のみを露 出させるように設置することは難しぐ多くの場合、露出部が転写領域の外周周辺の 非転写領域にはみ出てしまう。通常、マスクの非転写領域にはこのはみ出してきた露 光光を遮断するために遮光膜が設けられる。ハーフトーン型位相シフトマスクの場合 は、位相シフター膜が遮光機能を有しているが、この位相シフター膜は露光光を完 全に遮断するものではなぐ 1回の露光によっては実質的に露光に寄与できない程 度の僅かな量ではあるが露光光を通過させる。それゆえ、繰り返しのステップ時にこ のはみ出しによって位相シフター膜を通過した露光光がすでにパターン露光がなさ れた領域に達して重複露光がされたり、或いは他のショットの際に同様にはみ出しに よる僅かな露光がなされた部分に重ねて露光する場合が生じる。この重複露光によ つて、それらが加算されて露光に寄与する量に達して、欠陥が発生する場合があつ た。マスクパターン形成領域以外の領域である周辺領域にお!ヽて位相シフター膜上 に形成された上記遮光膜はこの問題を解消するものである。また、マスクの周辺領域 に識別用の符号等を付す場合に、遮光膜があると、付された符号等を認識し易くな る。
[0052] (実施例 3)
実施例 1と同じ合成石英ガラスカゝらなる透光性基板上に、枚葉式スパッタ装置を用 いて、スパッタターゲットにタンタル(Ta)とハフニウム(Hf)との混合ターゲット(Ta :H f= 90 : 10at%)を用い、アルゴン (Ar)ガス雰囲気中で、 DCマグネトロンスパッタリン グにより、膜厚 75Aの TaHf膜を形成し、次に、 Siターゲットを用い、アルゴンと酸素 と窒素の混合ガス雰囲気中で、反応性スパッタリングにより、膜厚 740Aの SiON膜( Si: O :N = 40 : 27 : 33at%)を形成した。つまり、 TaHf膜を下層とし、 SiON膜を上 層とする二層で構成された ArFエキシマレーザー(波長 193nm)用ハーフトーン型 位相シフター膜を形成した。尚、このハーフトーン型位相シフター膜は、 ArFエキシ マレーザー(波長 193nm)でおいて、透過率は 15. 0%と高透過率を有し、位相シフ ト量が略 180° となっている。
[0053] 次に、上記ハーフトーン型位相シフター膜上に、実施例 2と全く同様にして総膜厚 が 48nmの遮光層及び反射防止層からなる遮光膜を形成した。
このようにして得られたハーフトーン型位相シフトマスク用のフォトマスクブランクを 用いて、実施例 2と同様に、ハーフトーン型位相シフトマスクを作製した。但し、本実 施例では、図 4に示すように、転写領域内の遮光膜パターンを除去せずに、マスクパ ターンにおける光透過部(マスクパターンが形成されておらず透明基板が露出して!/ヽ る部分)との境界部を除く部分に遮光膜を形成させておいた。
その結果、透光性基板上に、 70nmのラインアンドスペースのハーフトーン型位相 シフター膜パターンが形成されたフォトマスクを作製することが出来た。また、グロ一 バルローデイングエラーは実用上許容できる数値に収まった。
[0054] 図 4に示すハーフトーン型位相シフトマスクは、位相シフター膜のマスクパターンが 形成されている領域にあって、マスクパターンにおける光透過部(マスクパターンが 形成されておらず透明基板が露出して 、る部分)との境界部を除く部分に遮光膜を 形成させておくことによって、本来は完全に遮光されることが望ま 、部分の遮光をよ り完全にするようにしたものである。すなわち、マスクパターンが形成されている領域 内にあっては、マスクパターンである位相シフター膜に本来要求される機能は、光透 過部との境界部のみで位相をシフトさせた光を通過させればよぐ他の大部分 (上記 境界部を除く部分)は、むしろ完全に遮光することが望ましいからである。本実施例の ように、露光光に対する透過率が高い位相シフター膜を備える場合には、本実施例 のフォトマスクの形態は特に好適である。
[0055] (実施例 4)
実施例 2におけるハーフトーン型位相シフター膜 4上に形成する遮光膜 2を、以下 の条件にてスパッタ成膜した以外は実施例 2と同様にしてフォトマスクブランク及びフ オトマスクを作製した。ハーフトーン型位相シフター膜上の遮光膜は、スパッタリング 装置を用いて、スパッタターゲットにクロムターゲットを使用し、アルゴンガスと窒素ガ スとヘリウムガスの混合ガス (Ar: 15体積0 /0、 N: 30体積0 /0、 He: 55体積0 /0)雰囲気
2
中で反応性スパッタリングを行って遮光層を形成した後、アルゴンガスと窒素ガスとメ タンガスとヘリウムガスの混合ガス(Ar: 54体積0 /0、N : 10体積%、じ11 : 6体積%、
2 4
He : 30体積)雰囲気中で反応性スパッタリングを行い、引き続き、アルゴンガスと一 酸化窒素ガスの混合ガス (Ar: 90体積%、 NO: 10体積%)雰囲気中で反応性スパッ タリングを行うことによって、反射防止層を形成し、遮光膜とした。尚、遮光層及び、反 射防止層成膜時のスパッタリング装置のパワー、全ガス圧は、実施例 1と同様の条件 で行い、遮光膜の膜厚は、 48nmとした。
[0056] 本実施例の遮光膜をラザフォード後方散乱分析による遮光膜の深さ方向の組成分 析を行ったところ、クロムを基準 (即ち、 1)としたときの窒素は、遮光膜の深さ方向に 均一に含まれて 、ることを確認した。
また、本実施例の遮光膜を X線回折による分析を行ったところ、回折ピーク強度が 弱く結晶性もあまり高くない膜であった。
このようにして得られたハーフトーン型位相シフトマスク用のフォトマスクブランクを 用いて、実施例 2と同様に、ハーフトーン型位相シフトマスクを作製した。
その結果、透光性基板上に、 70nmのラインアンドスペースのハーフトーン型位相 シフター膜パターンが形成されたフォトマスクを作製することが出来た。また、グロ一 バルローデイングエラーは実用上許容できる数値に収まった。
[0057] (比較例) スパッタリングターゲットにクロムターゲットを使用し、アルゴンガスと窒素ガスの混合 ガス (Ar: 70体積%、 N : 30体積%)雰囲気中で反応性スパッタリングを行って透光
2
性基板 1上に遮光層を形成し、その後、アルゴンガスとメタンガスの混合ガス (Ar: 90 体積0 /0、 CH : 10体積0 /0)雰囲気中で反応性スパッタリングを行い、引き続き、ァルゴ
4
ンガスと一酸化窒素ガスの混合ガス (Ar: 90体積%、 NO: 10体積%)雰囲気中で反 応性スパッタリングを行うことによって、反射防止層を形成し、合成石英ガラスからな る透光性基板 1上に遮光膜 2を形成した。尚、上記遮光層成膜時のスパッタリング装 置のパワーは 0. 33kW、全ガス圧は 0. 28パスカル(Pa)、反射防止層成膜時のスパ ッタリング装置のパワーは 0. 33kW、全ガス圧は 0. 28パスカル(Pa)の条件で遮光 膜を形成した。遮光膜の膜厚は、 70nmであった。
本比較例の遮光膜を X線回折による分析を行ったところ、回折角度 2 Θが 43.993de gと 45.273degの 2本の回折ピークが検出され、本比較例の遮光膜が CrN (200)と Cr (110)の混在する膜であることが判明した。
また、本比較例の遮光膜のラザフォード後方散乱分析による遮光膜の深さ方向の 組成分析結果を行なったところ、クロムを基準としたときに窒素が遮光膜の深さ方向 に均一には含まれておらず、とくに遮光層では深さ方向に窒素が減少して 、ることが わかった。
[0058] 次に、前記フォトマスクブランク上に、化学増幅型レジストである電子線描画用レジ スト膜(富士フィルムエレクト口-クスマテリアルズ社製: FEP171)を形成した。レジス ト膜の形成は、スピンナー(回転塗布装置)を用いて、回転塗布した。尚、上記レジス ト膜を塗布後、加熱乾燥装置を用いて所定の加熱乾燥処理を行った。
次にフォトマスクブランク上に形成されたレジスト膜に対し、電子線描画装置を用い て所望のパターン描画(80nmのラインアンドスペースパターン)を行った後、所定の 現像液で現像してレジストパターンを形成した。
[0059] 次に、上記レジストパターンに沿って、遮光層と反射防止層とからなる遮光膜 2のド ライエッチング処理を行って遮光膜パターン 2aを形成した。ドライエッチングガスとし て、塩素(C1 )ガスと酸素(O )ガスの混合ガス(CI : 0 =4 : 1)を用いた。このとき、
2 2 2 2
遮光膜全体のエッチング速度は、 2. 4 AZ秒であった。遮光膜の深さ方向における エッチング速度は、遮光膜の表面側と透光性基板側とでは同一であった。
本比較例では、遮光膜 2におけるドライエッチング速度が遅いために、遮光膜 2のド ライエッチング時間が長くなり、断面形状の良好な遮光膜パターンが得られな力つた 。また、ドライエッチング時間が長くなることにより、レジスト膜を厚めに形成する必要 があったため、良好な解像性、ノターン精度が得られな力つた。また、遮光膜の深さ 方向に向力つてドライエッチング速度が略一定となったため、グローバルローデイング エラーが大きくなり、グローバルローデイングエラーは実用上許容できる数値に収まら なかった。
(半導体装置の製造方法)
実施例 1〜4によって得られたフォトマスクを露光装置にセットし、半導体基板上の レジスト膜にパターン転写を行って、半導体装置を作製したところ、半導体基板上に 形成された回路パターンの欠陥もなぐ良好な半導体装置を得ることができた。

Claims

請求の範囲
[1] 透光性基板上に遮光膜を有するフォトマスクブランクにおいて、
前記フォトマスクブランクは、前記遮光膜上に形成されるマスクパターンをマスクに してドライエッチング処理により、前記遮光膜をパター-ングするフォトマスクの作製 方法に対応するドライエッチング処理用のフォトマスクブランクであって、
前記遮光膜は、主にクロム (Cr)と窒素 (N)とを含む材料力もなり、かつ、 X線回折 による回折ピークが実質的に CrN (200)であることを特徴とするフォトマスクブランク
[2] 前記遮光膜は、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均一に含ま れていることを特徴とする請求項 1記載のフォトマスクブランク。
[3] 透光性基板上に遮光膜を有するフォトマスクブランクにおいて、
前記フォトマスクブランクは、前記遮光膜上に形成されるマスクパターンをマスクに してドライエッチング処理により、前記遮光膜をパター-ングするフォトマスクの作製 方法に対応するドライエッチング処理用のフォトマスクブランクであって、
前記遮光膜は、クロム (Cr)を基準としたときに窒素 (N)が深さ方向に略均一に含ま れて 、ることを特徴とするフォトマスクブランク。
[4] 前記遮光膜は、更に酸素を含み、表面側力 透光性基板側に向力つて酸素の含 有量が減少していることを特徴とする請求項 1乃至 3の何れか一に記載のフォトマスク ブランク。
[5] 前記遮光膜の上層部に酸素を含む反射防止層を形成することを特徴とする請求項
1乃至 4の何れか一に記載のフォトマスクブランク。
[6] 前記透光性基板と前記遮光膜との間に、ハーフトーン型位相シフター膜が形成さ れていることを特徴とする請求項 1乃至 5の何れか一に記載のフォトマスクブランク。
[7] 請求項 1乃至 6の何れか一に記載のフォトマスクブランクにおける前記遮光膜をドラ ィエッチングによりパター-ングして前記透光性基板上に遮光膜パターンを形成する ことを特徴とするフォトマスクの製造方法。
[8] 請求項 6に記載のフォトマスクブランクにおける前記遮光膜をドライエッチングにより ノ ターニングして遮光膜パターンを形成した後、該遮光膜パターンをマスクにして、ド ライエッチングにより前記ハーフトーン型位相シフター膜をパター-ングして前記透 光性基板上にハーフトーン型位相シフター膜パターンを形成することを特徴とするフ オトマスクの製造方法。
請求項 7又は 8に記載のフォトマスクにおける前記遮光膜パターン又は前記ハーフ トーン型位相シフター膜パターンをフォトリソグラフィ一法により、半導体基板上にパ ターンを転写することを特徴とする半導体装置の製造方法。
PCT/JP2006/325863 2005-12-26 2006-12-26 フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法 WO2007074806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087018261A KR101319659B1 (ko) 2005-12-26 2006-12-26 포토마스크 블랭크 및 포토마스크의 제조 방법과 반도체장치의 제조 방법
KR1020127003249A KR101333991B1 (ko) 2005-12-26 2006-12-26 포토마스크 블랭크 및 포토마스크의 제조 방법
JP2007551978A JP4968740B2 (ja) 2005-12-26 2006-12-26 フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005371908 2005-12-26
JP2005-371908 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007074806A1 true WO2007074806A1 (ja) 2007-07-05

Family

ID=38218026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325863 WO2007074806A1 (ja) 2005-12-26 2006-12-26 フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法

Country Status (4)

Country Link
JP (2) JP4968740B2 (ja)
KR (2) KR101333991B1 (ja)
TW (2) TWI397766B (ja)
WO (1) WO2007074806A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231998A (ja) * 2008-03-31 2013-11-14 Hoya Corp フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
EP2664959A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Half-tone phase shift mask blank and method for manufacturing half-tone phase shift mask
EP2664962A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Photomask blank manufacturing method, photomask blank, photomask, and pattern transfer method
EP2664960A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Photomask Blank, Method For Manufacturing Photomask, And Method For Manufacturing Phase Shift Mask
US8968972B2 (en) 2010-11-22 2015-03-03 Shin-Etsu Chemical Co., Ltd. Photomask blank, process for production of photomask, and chromium-containing material film
WO2015152123A1 (ja) * 2014-03-30 2015-10-08 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
WO2016147518A1 (ja) * 2015-03-19 2016-09-22 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
EP3112934A2 (en) 2015-07-01 2017-01-04 Shin-Etsu Chemical Co., Ltd. Inorganic material film, photomask blank, and method for manufacturing photomask
JP2017049476A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
WO2020261986A1 (ja) * 2019-06-27 2020-12-30 Hoya株式会社 薄膜付基板、多層反射膜付基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005851B2 (en) 2008-06-25 2015-04-14 Hoya Corporation Phase shift mask blank and phase shift mask
KR102198731B1 (ko) * 2008-06-25 2021-01-05 호야 가부시키가이샤 위상 시프트 마스크 블랭크 및 위상 시프트 마스크
WO2010113475A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 マスクブランクおよび転写用マスク
JP5635577B2 (ja) * 2012-09-26 2014-12-03 Hoya株式会社 フォトマスクの製造方法、フォトマスク、パターン転写方法、及びフラットパネルディスプレイの製造方法
JP6229466B2 (ja) 2013-12-06 2017-11-15 信越化学工業株式会社 フォトマスクブランク
JP2016057578A (ja) * 2014-09-12 2016-04-21 信越化学工業株式会社 フォトマスクブランク
US10018905B2 (en) * 2015-04-06 2018-07-10 S & S Tech Co., Ltd Phase shift blankmask and photomask
JP6783551B2 (ja) * 2016-05-20 2020-11-11 アルバック成膜株式会社 マスクブランクスの製造方法
JP7115281B2 (ja) * 2018-12-12 2022-08-09 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983020B1 (ja) * 1998-12-18 1999-11-29 ホーヤ株式会社 ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
JP3276954B2 (ja) * 1998-07-31 2002-04-22 ホーヤ株式会社 フォトマスクブランク、フォトマスク、及びそれらの製造方法並びに微細パターン形成方法
WO2004070472A1 (ja) * 2003-02-03 2004-08-19 Hoya Corporation フォトマスクブランク及びフォトマスク、並びにフォトマスクを用いたパターン転写方法
JP2006276648A (ja) * 2005-03-30 2006-10-12 Hoya Corp 位相シフトマスクブランク及び位相シフトマスクの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297570A (ja) * 1992-04-20 1993-11-12 Toppan Printing Co Ltd フォトマスクブランクの製造方法
JPH0695362A (ja) * 1992-09-10 1994-04-08 Toppan Printing Co Ltd フォトマスクブランク
JP3166812B2 (ja) * 1994-09-09 2001-05-14 凸版印刷株式会社 ハーフトーン型位相シフトマスク
JP3037941B2 (ja) * 1997-12-19 2000-05-08 ホーヤ株式会社 ハーフトーン型位相シフトマスク及びハーフトーン型位相シフトマスクブランク
JP2003195483A (ja) * 2001-12-28 2003-07-09 Hoya Corp フォトマスクブランク、フォトマスク、及びそれらの製造方法
JP4405443B2 (ja) * 2004-10-22 2010-01-27 信越化学工業株式会社 フォトマスクブランクおよびフォトマスクならびにこれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276954B2 (ja) * 1998-07-31 2002-04-22 ホーヤ株式会社 フォトマスクブランク、フォトマスク、及びそれらの製造方法並びに微細パターン形成方法
JP2983020B1 (ja) * 1998-12-18 1999-11-29 ホーヤ株式会社 ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
WO2004070472A1 (ja) * 2003-02-03 2004-08-19 Hoya Corporation フォトマスクブランク及びフォトマスク、並びにフォトマスクを用いたパターン転写方法
JP2006276648A (ja) * 2005-03-30 2006-10-12 Hoya Corp 位相シフトマスクブランク及び位相シフトマスクの製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075314B2 (en) 2008-03-31 2015-07-07 Hoya Corporation Photomask blank, photomask, and method for manufacturing photomask blank
JP2013231998A (ja) * 2008-03-31 2013-11-14 Hoya Corp フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
US9488907B2 (en) 2010-11-22 2016-11-08 Shin-Etsu Chemical Co., Ltd. Photomask blank, process for production of photomask, and chromium-containing material film
US8968972B2 (en) 2010-11-22 2015-03-03 Shin-Etsu Chemical Co., Ltd. Photomask blank, process for production of photomask, and chromium-containing material film
KR20130128337A (ko) 2012-05-16 2013-11-26 신에쓰 가가꾸 고교 가부시끼가이샤 하프톤 위상 시프트 마스크 블랭크 및 하프톤 위상 시프트 마스크의 제조 방법
EP2664959A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Half-tone phase shift mask blank and method for manufacturing half-tone phase shift mask
US9689066B2 (en) 2012-05-16 2017-06-27 Shin-Etsu Chemical Co., Ltd. Photomask blank manufacturing method, photomask blank, photomask, and pattern transfer method
JP2013238777A (ja) * 2012-05-16 2013-11-28 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスクの製造方法、および位相シフトマスクの製造方法
EP2664962A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Photomask blank manufacturing method, photomask blank, photomask, and pattern transfer method
EP2664960A1 (en) 2012-05-16 2013-11-20 Shin-Etsu Chemical Co., Ltd. Photomask Blank, Method For Manufacturing Photomask, And Method For Manufacturing Phase Shift Mask
US9158192B2 (en) 2012-05-16 2015-10-13 Shin-Etsu Chemical Co., Ltd. Half-tone phase shift mask blank and method for manufacturing half-tone phase shift mask
KR20130128338A (ko) 2012-05-16 2013-11-26 신에쓰 가가꾸 고교 가부시끼가이샤 포토마스크 블랭크, 포토마스크의 제조 방법, 및 위상 시프트 마스크의 제조 방법
US9188852B2 (en) 2012-05-16 2015-11-17 Shin-Etsu Chemical Co., Ltd. Photomask blank, method for manufacturing photomask, and method for manufacturing phase shift mask
WO2015152123A1 (ja) * 2014-03-30 2015-10-08 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2015191218A (ja) * 2014-03-30 2015-11-02 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
US9864268B2 (en) 2014-03-30 2018-01-09 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JPWO2016147518A1 (ja) * 2015-03-19 2017-12-28 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
WO2016147518A1 (ja) * 2015-03-19 2016-09-22 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
US10571797B2 (en) 2015-03-19 2020-02-25 Hoya Corporation Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US9851633B2 (en) 2015-07-01 2017-12-26 Shin-Etsu Chemical Co., Ltd. Inorganic material film, photomask blank, and method for manufacturing photomask
KR20170004867A (ko) 2015-07-01 2017-01-11 신에쓰 가가꾸 고교 가부시끼가이샤 무기 재료막, 포토마스크 블랭크 및 포토마스크의 제조 방법
EP3112934A2 (en) 2015-07-01 2017-01-04 Shin-Etsu Chemical Co., Ltd. Inorganic material film, photomask blank, and method for manufacturing photomask
CN106502043A (zh) * 2015-09-03 2017-03-15 信越化学工业株式会社 光掩模坯
JP2017049476A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
CN106502043B (zh) * 2015-09-03 2022-01-18 信越化学工业株式会社 光掩模坯
TWI838542B (zh) * 2019-06-27 2024-04-11 日商Hoya股份有限公司 附薄膜之基板、附多層反射膜之基板、反射型光罩基底、反射型光罩及半導體裝置之製造方法
WO2020261986A1 (ja) * 2019-06-27 2020-12-30 Hoya株式会社 薄膜付基板、多層反射膜付基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP6855645B1 (ja) * 2019-06-27 2021-04-07 Hoya株式会社 薄膜付基板、多層反射膜付基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2007074806A1 (ja) 2009-06-04
JP2012108533A (ja) 2012-06-07
KR101319659B1 (ko) 2013-10-17
KR20120057612A (ko) 2012-06-05
JP5374599B2 (ja) 2013-12-25
TW201341945A (zh) 2013-10-16
KR101333991B1 (ko) 2013-11-27
TW200731005A (en) 2007-08-16
TWI451191B (zh) 2014-09-01
KR20080089442A (ko) 2008-10-06
JP4968740B2 (ja) 2012-07-04
TWI397766B (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
JP4968740B2 (ja) フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法
JP5820557B2 (ja) フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法
JP5455147B2 (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法、並びに半導体装置の製造方法
KR101394715B1 (ko) 포토 마스크의 제조방법 및 포토 마스크 블랭크
JP4834203B2 (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法
KR101780068B1 (ko) 마스크 블랭크 및 전사용 마스크의 제조 방법
TWI446102B (zh) Mask blank and mask
JP4614877B2 (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法
TWI789999B (zh) 遮罩基底、轉印用遮罩及半導體元件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551978

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087018261

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06843247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020127003249

Country of ref document: KR