WO2007074638A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2007074638A1
WO2007074638A1 PCT/JP2006/324743 JP2006324743W WO2007074638A1 WO 2007074638 A1 WO2007074638 A1 WO 2007074638A1 JP 2006324743 W JP2006324743 W JP 2006324743W WO 2007074638 A1 WO2007074638 A1 WO 2007074638A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
shaft
compression element
discharge port
compressor
Prior art date
Application number
PCT/JP2006/324743
Other languages
English (en)
French (fr)
Inventor
Kouki Morimoto
Masanori Yanagisawa
Takehiro Kanayama
Yasukazu Nabetani
Azusa Ujihara
Masahide Higuchi
Hideki Mori
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES06834498.5T priority Critical patent/ES2594615T3/es
Priority to EP06834498.5A priority patent/EP1967736B1/en
Priority to AU2006329387A priority patent/AU2006329387B2/en
Priority to US12/159,147 priority patent/US20090285702A1/en
Priority to CN2006800491971A priority patent/CN101346548B/zh
Publication of WO2007074638A1 publication Critical patent/WO2007074638A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • the present invention relates to a compressor used in, for example, an air conditioner or a refrigerator.
  • a compressor includes a hermetic container, a compression element disposed in the hermetic container, and a motor that is disposed in the hermetic container and drives the compression element via a shaft. It was.
  • the compression element has a bearing that supports the shaft, and the bearing has an oil discharge port that discharges lubricating oil supplied between the bearing and the shaft to the outside of the bearing.
  • the motor has a rotor and a stator disposed on the outer side in the radial direction of the rotor (see Japanese Patent Laid-Open No. 10-153188).
  • the lubricating oil that has flowed to the downstream side (upper side) of the motor together with the refrigerant gas is obstructed by the refrigerant gas and difficult to pass through the outer passage and the inner passage, so that the upstream side of the motor ( Go back to the bottom.
  • an object of the present invention is to provide a compressor that can return the lubricating oil that has flowed to the downstream side of the motor together with the refrigerant gas to the upstream side of the motor in an efficient manner.
  • the compressor of the present invention provides:
  • the motor has a rotor and a stator arranged on the outer side in the radial direction of the rotor, The space inside the radial direction of the stator,
  • the refrigerant gas discharged from the compression element into the sealed container and the lubricating oil in the sealed container serve as a forward passage that flows to the opposite side of the compression element with respect to the motor.
  • the lubricating oil in the airtight container is a return passage for returning to the compression element side with respect to the motor.
  • the space inside the stator in the radial direction is used as an outward passage for the refrigerant gas and the lubricating oil, while the space outside the stator in the radial direction is the sealed container. Since the return passage of the lubricating oil is used, the lubricating oil that has flowed to the downstream side of the motor together with the refrigerant gas can be returned to the upstream side of the motor in an efficient manner.
  • the compression element has a discharge port for discharging refrigerant gas from the compression element into the sealed container,
  • the discharge port of the compression element is on the inner side of the outer peripheral surface of the stator as viewed from the rotational axis direction of the shaft and overlaps the stator when viewed from the direction orthogonal to the rotational axis of the shaft. It is characterized by.
  • the discharge port of the compression element is located on the inner side of the outer peripheral surface of the stator when viewed from the rotation axis direction of the shaft, and on the rotation axis of the shaft. Since it overlaps with the stator as viewed from the orthogonal direction, the refrigerant gas discharged from the compression element can flow mainly into the space inside the outer peripheral surface of the stator. That is, the space inside the outer peripheral surface of the stator can be a passage dedicated to the flow of the refrigerant gas, and the space outside the outer peripheral surface of the stator can be a passage dedicated to the return of the lubricating oil.
  • the stator includes a stator body that includes a plurality of teeth that protrude radially inward and are arranged in the circumferential direction, and a plurality of stators that are wound around each of the teeth. It is wound over the above-mentioned teeth and has a coil.
  • the coil of the stator is so-called concentrated winding, the coil can be easily installed on the tooth. Further, the stator can be efficiently cooled by passing the refrigerant gas between the adjacent coils.
  • the compression element includes a support portion that supports the shaft, and the support portion includes an oil discharge port that discharges lubricating oil supplied between the support portion and the shaft to the outside of the support portion.
  • the stator has a stator core, a coil wound around the stator core, and a guide portion disposed radially outside the coil,
  • the guide portion guides the lubricating oil discharged from the oil discharge port of the support portion together with the refrigerant gas discharged from the compression element into the sealed container to the radially inner side of the stator.
  • the guide portion is a refrigerant in which the lubricating oil discharged from the oil discharge port of the support portion is discharged into the sealed container from the compression element cover. Since the gas is guided to the inside in the radial direction of the stator, the lubricating oil discharged from the oil discharge port can flow into the space inside the stator in the radial direction together with the refrigerant gas.
  • the space inside the stator in the radial direction can be used as a passage dedicated to the passage of the lubricating oil and the refrigerant gas, and the space outside the stator in the radial direction can be used as a passage dedicated to the return of the lubricating oil.
  • the lubricating oil that has flowed to the downstream side (upper side) of the motor together with the refrigerant gas is returned to the upstream side (lower side) of the motor in an efficient manner, and is on the upstream side (lower side) of the motor.
  • the oil level of the oil reservoir can be prevented from running out. Further, the heat generating portion of the stator and the rotor can be efficiently cooled by the lubricating oil flowing on the radially inner side of the stator.
  • the guide portion is located radially outside the oil discharge port of the support portion when viewed from the rotational axis direction of the shaft, and is located above the shaft.
  • the stator core force extends farther than the oil discharge port of the support portion as viewed from the direction perpendicular to the rotation axis.
  • the guide portion is radially outside the oil discharge port as viewed from the rotation axis direction of the shaft, and is orthogonal to the rotation axis of the shaft. Since the stator core force extends farther than the oil discharge port as viewed from the direction in which the oil is discharged, the lubricating oil discharged from the oil discharge port flows together with the refrigerant gas into the space radially inside the stator. be able to.
  • the guide portion is a part of an insulator sandwiched between the coil and the stator core.
  • the guide portion is a part of an insulator sandwiched between the coil and the stator core. Therefore, the insulator can be used as the guide portion, and The number can be reduced.
  • the stator core has a plurality of teeth that protrude radially inward and are arranged in the circumferential direction, and the coil is provided in each of the teeth. Wrapped across multiple teeth above!
  • the coil of the stator is so-called concentrated winding, the coil can be easily installed on the teeth. Further, the stator can be efficiently cooled by passing lubricating oil together with the refrigerant gas between the adjacent coils.
  • the space inside the stator in the radial direction serves as a passage for refrigerant gas and lubricating oil
  • the space outside the stator in the radial direction serves as the sealed container. Since the return passage of the lubricating oil is used, the lubricating oil that has flowed to the downstream side of the motor together with the refrigerant gas can be returned to the upstream side of the motor in an efficient manner.
  • the discharge port of the compression element is located on the inner side of the outer peripheral surface of the stator when viewed from the rotation axis direction of the shaft and is orthogonal to the rotation axis of the shaft. Since it overlaps with the stator as viewed from the direction of rotation, the lubricating oil can be separated efficiently and the motor can be cooled efficiently.
  • the guide portion causes the refrigerant gas discharged from the oil discharge port of the support portion to be discharged into the sealed container from the compression element cover. At the same time, since the guide is guided inward in the radial direction of the stator, it is possible to prevent the oil reservoir from being cut off.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a compressor according to the present invention.
  • FIG. 2 is a cross-sectional view of the vicinity of the compressor motor.
  • FIG. 3 is a plan view of the main part of the compressor.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the compressor of the present invention.
  • FIG. 5 is a plan view of the main part of the compressor.
  • FIG. 6 is a cross-sectional view of the vicinity of the compressor motor.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a compressor according to the present invention.
  • the compressor includes a hermetic container 1, a compression element 2 disposed in the hermetic container 1, and a motor 3 disposed in the hermetic container 1 and driving the compression element 2 via a shaft 12. ing.
  • This compressor is a so-called high-pressure dome type rotary compressor, and the compression element 2 is disposed below and the motor 3 is disposed above in the sealed container 1.
  • a suction pipe 11 for sucking refrigerant gas is attached to the sealed container 1, and an accumulator 10 is connected to the suction pipe 11. That is, the compression element 2 sucks the refrigerant gas from the accumulator 10 through the suction pipe 11.
  • the refrigerant gas is obtained by controlling a condenser, an expansion mechanism, and an evaporator (not shown) that constitute an air conditioner as an example of a refrigeration system together with the compressor.
  • This refrigerant gas is, for example, carbon dioxide or R410A or R22.
  • the compressor discharges compressed high-temperature and high-pressure discharge gas from the compression element 2, fills the inside of the sealed container 1, cools the motor 3, and then discharges from the discharge pipe 13 to the outside. I am trying to discharge. Lubricating oil 9 is stored in the lower part of the high-pressure area in the sealed container 1 above. Yes.
  • the motor 3 includes a rotor 6 and a stator 5 disposed on the outer side in the radial direction of the rotor 6 via a gap.
  • the rotor 6 includes a rotor body 610 and a magnet 620 embedded in the rotor body 610.
  • the rotor body 610 has a cylindrical shape, and is made of laminated electromagnetic steel plates, for example.
  • the shaft 12 is attached to the central hole of the rotor body 610.
  • the magnet 620 is a flat permanent magnet.
  • the six magnets 620 are arranged in the circumferential direction of the rotor main body 610 at equally spaced center angles.
  • the stator 5 includes a stator body 510 and a coil 520 wound around the stator body 510.
  • the coil 520 is partially omitted.
  • the stator main body 510 also has, for example, iron power, and is fitted into the closed container 1 by shrink fitting or the like.
  • the stator main body 510 has an annular portion 511 and nine teeth 512 that protrude inward in the radial direction of the inner circumferential surface of the annular portion 511 and are arranged at equal intervals in the circumferential direction.
  • the coil 520 is wound around each of the teeth 512 and wound around the plurality of teeth 512.
  • An insulator 530 is attached to the stator main body 510.
  • the insulator 530 is disposed on each of both end surfaces of the stator body 510 in the axial direction, and is wound together with the stator body 510 by the coil 520. In FIG. 2, the insulator 530 is omitted.
  • the insulator 530 also has a good heat transfer property such as liquid crystal polymer (LCP), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyimide, polyester, and the like.
  • the insulator 530 includes a peripheral wall portion 531 disposed on the radially outer side of the coil 520 when viewed from the axial direction 12 a of the shaft 12.
  • the peripheral wall portion 531 is formed in an annular shape having cuts at regular intervals in the circumferential direction.
  • the end surface of the peripheral wall portion 531 in the direction of the rotating shaft 12a is more than the end surface of the coil 520 in the direction of the rotating shaft 12a (that is, the coil end) of the stator body in the direction of the rotating shaft 12a. It extends to a position far from 510 centimeters.
  • the motor 3 rotates the rotor 6 together with the shaft 12 by the electromagnetic force generated in the stator 5 by passing an electric current through the coil 520, and the compression element 2 is rotated via the shaft 12. To drive.
  • the motor 3 is a so-called 6-pole 9-slot.
  • the rotor 6 is rotated together with the shaft 12 by an electromagnetic force generated in the stator 5 by passing a current through the coil 520.
  • the compression element 2 includes an upper end plate member 50, a first cylinder 121, an intermediate end plate member 70, a second end plate member 50 in order from top to bottom along the rotation axis of the shaft 12. It has a cylinder 221 and a lower end plate member 60.
  • the upper end plate member 50 and the intermediate end plate member 70 are attached to upper and lower open ends of the first cylinder 121, respectively.
  • the intermediate end plate member 70 and the lower end plate member 60 are attached to the upper and lower open ends of the second cylinder 221, respectively.
  • the first cylinder 121, the upper end plate member 50, and the intermediate end plate member 70 form a first cylinder chamber 122.
  • the second cylinder chamber 222 is formed by the second cylinder 221, the lower end plate member 60, and the intermediate end plate member 70.
  • the upper end plate member 50 includes a disk-shaped main body 51 and a boss 52 provided upward in the center of the main body 51.
  • the main body 51 and the boss 52 are inserted through the shaft 12.
  • the main body 51 is provided with a discharge port 51 a that communicates with the first cylinder chamber 122.
  • a discharge valve 131 is attached to the main body 51 so that the main body 51 is located on the opposite side of the first cylinder 121.
  • the discharge valve 131 is, for example, a reed valve, and opens and closes the discharge port 5 la.
  • a cup-shaped first muffler cover 140 is attached to the main body 51 so as to cover the discharge valve 131 on the side opposite to the first cylinder 121.
  • the first muffler cover 140 is fixed to the main body 51 by a fixing member (such as a bolt). the above The first muffler cover 140 is passed through the boss portion 52.
  • a first muffler chamber 142 is formed by the first muffler cover 140 and the upper end plate member 50.
  • the first muffler chamber 142 and the first cylinder chamber 122 are communicated with each other via the outlet 51a.
  • the lower end plate member 60 includes a disc-shaped main body 61 and a boss 62 provided downward in the center of the main body 61.
  • the body portion 61 and the boss portion 62 are inserted through the shaft 12.
  • the main body 61 is provided with a discharge port (not shown!) Communicating with the second cylinder chamber 222! /
  • a discharge valve (not shown) is attached to the main body 61 so as to be located on the opposite side of the main body 61 from the second cylinder 221, and the discharge valve opens and closes the discharge port.
  • the main body 61 is attached with a linear flat plate-like second muffler cover 240 so as to cover the discharge valve.
  • the second muffler cover 240 is fixed to the main body 61 by a fixing member (such as a bolt).
  • the second muffler cover 240 is passed through the boss portion 62! /.
  • the second muffler cover 240 and the lower end plate member 60 form a second muffler chamber 242.
  • the second muffler chamber 242 and the second cylinder chamber 222 communicate with each other via the discharge port.
  • a cup-shaped third muffler cover 340 is attached to the first muffler cover 140 on the side opposite to the upper end plate member 50 so as to cover it.
  • the first muffler cover 140 and the third muffler cover 340 form a third muffler chamber 342.
  • the first muffler chamber 142 and the third muffler chamber 342 are inserted through a hole (not shown) formed in the first muffler cover 140!
  • the second muffler chamber 242 and the third muffler chamber 342 include the lower end plate member 60, the second cylinder 221, the intermediate end plate member 70, and the first cylinder. 121 and the upper end plate member 50 (not shown) are inserted through holes (not shown).
  • the third muffler chamber 342 and the outside of the third muffler cover 340 are communicated with each other through a discharge port 340a formed in the third muffler cover 340.
  • the element 2 discharges the refrigerant gas into the sealed container 1 from the discharge port 340a.
  • the discharge port 340a is located on the inner side of the outer peripheral surface of the stator 5 as viewed in the direction of the rotation axis 12a of the shaft 12, and is viewed from a direction perpendicular to the rotation axis 12a of the shaft 12.
  • the stator 5 overlaps the above.
  • the discharge port 340a is radially inward and above the lower end surface 531a of the peripheral wall portion 531 of the insulator 530.
  • end plate members 50, 60, 70, the cylinders 121, 221, and the muffler covers 140, 240, 340 are integrally fixed by a fixing member such as a bolt.
  • the upper end plate member 50 of the compression element 2 is attached to the sealed container 1 by welding or the like.
  • One end of the shaft 12 is supported by the upper end plate member 50 and the lower end plate member 60. That is, the shaft 12 is cantilevered. One end portion (support end side) of the shaft 12 enters the inside of the first cylinder chamber 122 and the second cylinder chamber 222.
  • the shaft 12 is provided with a first eccentric pin 126 so as to be positioned in the first cylinder chamber 122.
  • the first eccentric pin 126 is fitted to the first roller 127.
  • the first roller 127 is arranged in the first cylinder chamber 122 so as to be capable of revolving the central axis of the first cylinder chamber 122, and performs compression action by the revolving motion of the first roller 127. I am doing so.
  • the shaft 12 is provided with a second eccentric pin 226 so as to be positioned in the second cylinder chamber 222.
  • the second eccentric pin 226 is fitted to the second roller 227.
  • the second roller 227 is disposed in the second cylinder chamber 222 so as to be capable of revolving the central axis of the second cylinder chamber 222, and performs compression action by the revolving motion of the second roller 227. I am doing so.
  • the first eccentric pin 126 and the second eccentric pin 226 are at a position shifted by 180 ° with respect to the rotation axis of the shaft 12.
  • the first cylinder chamber 122 is partitioned by a blade 128 provided integrally with the first roller 127. That is, the chamber on the right side of the blade 128 has one
  • the suction pipe 11 opens on the inner surface of the first cylinder chamber 122 to form a refrigerant gas suction chamber (low pressure chamber) 123.
  • the discharge port 51a opens on the inner surface of the first cylinder chamber 122 to form a refrigerant gas discharge chamber (high pressure chamber) 124. Yes.
  • the first eccentric pin 126 rotates eccentrically together with the shaft 12, and the first roller 127 fitted to the first eccentric pin 126 includes the first roller 127.
  • the outer peripheral surface makes contact with the inner peripheral surface of the first cylinder chamber 122 and revolves.
  • the blade 128 advances and retreats while both side surfaces of the blade 128 are held by the bushes 125, 125. To do. Then, a low-pressure refrigerant gas is sucked into the suction chamber 123 from the suction pipe 11 and compressed to a high pressure in the discharge chamber 124, and then the high-pressure refrigerant is discharged from the discharge port 51a (shown in FIG. 1). The gas is discharged.
  • the refrigerant gas discharged from the discharge port 51a passes through the first muffler chamber 142 and the third muffler chamber 342, and passes through the discharge port 340a. It is discharged outside the third muffler cover 340.
  • the compression action of the second cylinder chamber 222 is the same as the compression action of the first cylinder chamber 122. That is, low-pressure refrigerant gas is sucked into the second cylinder chamber 222 from the other suction pipe 11, and the refrigerant gas is compressed in the second cylinder chamber 222 by the revolving motion of the second roller 227. Then, the high-pressure refrigerant gas is discharged to the outside of the third muffler cover 340 through the second muffler chamber 242 and the third muffler chamber 342.
  • the discharge port 340a of the compression element 2 has the shaft 12 is also inward of the outer peripheral surface of the stator 5 as viewed in the direction of the rotating shaft 12a, and overlaps with the stator 5 when viewed from the direction perpendicular to the rotating shaft 12a of the shaft 12.
  • the refrigerant gas discharged from the element 2 can flow mainly into the space inside the outer peripheral surface of the stator 5.
  • a space inside the outer peripheral surface of the stator 5 (hereinafter referred to as an inner passage) is a passage dedicated to the passage of the refrigerant gas and the lubricating oil 9, and a space outside the outer peripheral surface of the stator 5 is used.
  • the outer passage can be a passage dedicated to the return of the lubricating oil 9.
  • the space inside the stator 5 in the radial direction, the refrigerant gas discharged from the compression element 2 into the sealed container 1 and the lubricating oil in the sealed container 1 are related to the motor 3.
  • the return path for returning the lubricating oil in the hermetic container 1 to the compression element 2 side with respect to the motor 3 in the space outside the stator 5 in the radial direction on the opposite side to the compression element 2 It is said.
  • the lubricating oil 9 that has flowed together with the refrigerant gas to the downstream side (upper side) of the motor 3 is returned to the upstream side (lower side) of the motor 3 through the outer passage for efficiency,
  • the lubricating oil 9 can also be separated from the refrigerant gas force. Further, the heat generating portions of the stator 5 and the rotor 6 can be efficiently cooled by the refrigerant gas passing through the inner passage.
  • peripheral wall portion 531 is a part of the insulator 530, the flow of the refrigerant gas discharged from the compression element 2 can be guided by the insulator 530. No parts are required and the number of parts can be prevented from increasing.
  • the coil 520 of the stator 5 is so-called concentrated winding, the coil 520 can be easily installed on the tooth 512. Further, the stator 5 can be efficiently cooled by passing refrigerant gas between the adjacent coils 520 and 520.
  • the compression element 2 may be a rotary type in which a roller and a blade are separate bodies.
  • the scroll element or reciprocating type may be used as the compression element 2 above! ,.
  • the compression element 2 may be a single cylinder type having one cylinder chamber.
  • a single-stage muffler in which the third muffler cover 340 is omitted may be used. At this time, above the compression element 2 The discharge port only needs to be above the lower end surface of the stator 5.
  • the peripheral wall 531 may be a part of another member that is not part of the insulator 530, or may be integrally formed with the stator core 510.
  • the coil 520 may be a so-called distributed winding in which the plurality of teeth 512 are wound around.
  • the number of teeth 512 and magnet 620 can be increased or decreased.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the compressor of the present invention.
  • the compressor includes a hermetic container 1001, a compression element 1002 disposed in the hermetic container 1001, and a motor 1003 disposed in the hermetic container 1001 and driving the compression element 1002 via a shaft 1012. Prepare.
  • This compressor is a so-called vertical high-pressure dome-type rotary compressor, and is arranged in the hermetic container 1001 with the compression element 1002 on the bottom and the motor 1003 on the top.
  • the compression element 1002 is driven by the rotor 1006 of the motor 1003 via the shaft 1012.
  • the compression element 1002 sucks the refrigerant gas from the accumulator 1010 through the suction pipe 1011.
  • This refrigerant gas is obtained by controlling a condenser, an expansion mechanism, and an evaporator (not shown) that constitute an air conditioner as an example of a refrigeration system together with the compressor.
  • This refrigerant gas is, for example, carbon dioxide or R410A or R22.
  • the compressor discharges the compressed high-temperature and high-pressure refrigerant gas from the compression element 1002 to fill the inside of the hermetic container 1001, and passes through the gap between the stator 1005 of the motor 1003 and the rotor 1006. After the motor 1003 is cooled, the motor 1003 is discharged to the outside from a discharge pipe 1013 provided on the upper side of the motor 1003.
  • An oil reservoir portion 1099 in which lubricating oil is stored is formed in the lower portion of the high-pressure region in the closed container 1001.
  • the lubricating oil moves from the oil reservoir 1009 to a sliding part such as a bearing of the compression element 1002 or the motor 1003 through an oil passage (not shown) provided in the shaft 1012.
  • This sliding part is lubricated.
  • This lubricating oil is, for example, a polyalkylene glycol oil (such as polyethylene glycol or polypropylene glycol), an ether oil, an ester oil, or a mineral oil.
  • the shaft as the oil passage are a spiral groove provided on the outer peripheral surface of 1012 and a hole provided in the shaft 1012.
  • the compression element 1002 includes a cylinder 1021 attached to the inner surface of the hermetic container 1001, and an upper end plate member 1050 and a lower end plate attached to the upper and lower open ends of the cylinder 1021, respectively. Member 1060.
  • a cylinder chamber 1022 is formed by the cylinder 1021, the upper end plate member 1050, and the lower end plate member 1060.
  • the upper end plate member 1050 has a disc-shaped main body portion 1051 and a boss portion 1052 provided upward in the center of the main body portion 1051.
  • the main body portion 1051 and the boss portion 1052 are passed through the shaft 1012.
  • the upper end plate member 1050 is an example of a support portion that supports the shaft 1012.
  • the end plate member 1050 has an oil discharge port 1050a.
  • the oil discharge port 1050a discharges the lubricating oil supplied between the end plate member 1050 and the shaft 1012 to the outside of the end plate member 1050 through the oil passage (not shown). More specifically, the oil discharge port 1050a is formed in the upper end surface of the boss portion 1052, and is a space between the outer peripheral surface of the shaft 1012 and the inner peripheral surface of the boss portion 1052.
  • the main body 1051 is provided with a discharge port 1051a communicating with the cylinder chamber 1022.
  • a discharge valve 1031 is attached to the main body 1051 so as to be located on the opposite side of the main body 1051 from the cylinder 1021.
  • the discharge valve 1031 is, for example, a reed valve, and opens and closes the discharge port 1051a.
  • a cup-type muffler cover 1040 is attached to the main body portion 1051 so as to cover the discharge valve 1031 on the side opposite to the cylinder 1021.
  • the muffler cover 1040 is fixed to the main body portion 1051 by a fixing member 35 (such as a bolt).
  • the muffler cover 1040 is passed through the boss portion 1052.
  • a muffler chamber 1042 is formed by the muffler cover 1040 and the upper end plate member 1050.
  • the muffler chamber 1042 and the cylinder chamber 1022 communicate with each other through the discharge port 1051a.
  • the muffler cover 1040 has a hole 1043.
  • the hole 1043 is provided in the muffler chamber 1 042 communicates with the outside of the muffler cover 1040.
  • the lower end plate member 1060 has a disk-shaped main body portion 1061 and a boss portion 1062 provided downward in the center of the main body portion 1061.
  • one end of the shaft 1012 is supported by the upper end plate member 1050 and the lower end plate member 1060. That is, the shaft 1012 is cantilevered. One end portion (support end side) of the shaft 1012 enters the cylinder chamber 1022.
  • An eccentric pin 1026 is provided on the support end side of the shaft 1012 so as to be positioned in the cylinder chamber 1022 on the compression element 1002 side.
  • the eccentric pin 1026 is fitted to the roller 1027.
  • the roller 1027 is disposed in the cylinder chamber 1022 so as to be able to revolve, and performs a compression action by the revolving motion of the roller 1027.
  • one end of the shaft 1012 is supported by the housing 1007 of the compression element 1002 on both sides of the eccentric pin 1026.
  • the housing 1007 includes the upper end plate member 1050 and the lower end plate member 1060.
  • the cylinder chamber 1022 is partitioned by a blade 1028 provided integrally with the roller 1027. That is, in the chamber on the right side of the blade 1028, the suction pipe 1011 opens on the inner surface of the cylinder chamber 1022 to form a suction chamber (low pressure chamber) 1022a. On the other hand, in the chamber on the left side of the blade 1028, the discharge port 1051a (shown in FIG. 4) opens on the inner surface of the cylinder chamber 1022, thereby forming a discharge chamber (high pressure chamber) 1022b.
  • Semi-cylindrical bushes 1025 and 1025 are in close contact with both surfaces of the blade 1028 for sealing.
  • the blade 1028 and the bushes 1025, 1025 are lubricated with the lubricating oil.
  • the eccentric pin 1026 rotates eccentrically together with the shaft 1012, and the roller 1027 fitted to the eccentric pin 1026 has an outer peripheral surface of the roller 1027 arranged on the inner periphery of the cylinder chamber 1022. Revolve in contact with the surface.
  • the blade 10 28 advances and retreats while both side surfaces of the blade 1028 are held by the bushes 1025 and 1025. Then, a low-pressure refrigerant gas is sucked into the suction chamber 1022a from the suction pipe 1011 and compressed to a high pressure in the discharge chamber 1022b, and then the high-pressure refrigerant is discharged from the discharge port 105a (shown in FIG. 4). The gas is discharged.
  • the refrigerant gas discharged from the discharge port 1051a is discharged to the outside of the muffler cover 1040 through the muffler chamber 1042.
  • the motor 1003 includes the rotor 1006 and the stator 1005 disposed on the radially outer side of the rotor 1006 via an air gap.
  • the rotor 1006 includes a rotor body 1610 and a magnet 1 620 embedded in the rotor body 1610.
  • the rotor body 1610 has a cylindrical shape, and also has, for example, laminated electromagnetic steel plate forces.
  • the shaft 1012 is attached to the central hole of the rotor body 1610.
  • the magnet 1620 is a flat permanent magnet.
  • the six magnets 1620 1S are arranged at equally spaced center angles in the circumferential direction of the rotor body 1610.
  • the stator 1005 includes a stator core 1510, a coil 1520 wound around the stator core 1510, and a guide portion 1500 disposed on the outer side in the radial direction than the coil 1520.
  • the coil 1520 is partially omitted, and the guide portion 1500 is omitted.
  • the stator core 1510 has a plurality of laminated steel plate forces, and is fitted into the sealed container 1001 by shrink fitting or the like.
  • the stator core 1510 has an annular portion 1511, and nine teeth 1512 that are arranged at equal intervals in the circumferential direction while the inner peripheral surface of the annular portion 1511 protrudes radially inward.
  • the coil 1520 is a so-called concentrated winding in which the coil 1520 is wound around each of the teeth 1512 and is not wound around the plurality of teeth 1512.
  • the motor 1003 has a so-called 6-pole 9-slot.
  • the rotor 1006 is rotated together with the shaft 1012 by electromagnetic force generated in the stator 1005 by passing an electric current through the coil 1520.
  • the guide portion 1500 is a part of an insulator 1530 that is sandwiched between the coil 1520 and the stator core 1510.
  • the insulator 1530 is disposed on each of both end surfaces of the stator core 1510 in the axial direction. Wrapped with Tetacore 1510. In FIG. 6, the insulator 1530 is omitted.
  • the insulator 1530 is made of a resin material having good heat resistance such as liquid crystal polymer (LCP), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyimide or polyester.
  • the insulator 1530 has a peripheral wall portion 1531 disposed on the radially outer side of the coil 1520 when viewed from the direction of the rotating shaft 1012a of the shaft 1012.
  • the peripheral wall portion 1531 is formed in an annular shape having cuts at regular intervals in the circumferential direction. That is, the guide portion 1500 is the peripheral wall portion 1531.
  • the guide portion 1500 is also on the outer side in the radial direction of the oil discharge port 1050a of the end plate member 1050, as viewed in the direction of the rotation axis 1012a of the shaft 1012, and the rotation of the shaft 1012.
  • the end plate member 1050 extends farther from the stator core 1510 than the oil discharge port 1050a.
  • the lower end surface 1531a of the peripheral wall portion 1531 is radially outside and below the oil discharge port 1050a.
  • the lower end surface 1531a of the peripheral wall portion 1531 is located below the lower end surface (that is, the coil end) of the coil 1520.
  • the guide portion 1500 (the peripheral wall portion 1531) discharged the lubricating oil discharged from the oil discharge port 1 050a of the end plate member 1050 from the compression element 1002 into the sealed container 1001. Along with the refrigerant gas, it is guided radially inward of the stator 1005 and flows into the space radially inward of the stator 1005.
  • the space inside the stator 1005 in the radial direction (hereinafter referred to as an inner passage) is a passage dedicated to the passage of lubricating oil and refrigerant gas, and the space outside the stator 1005 in the radial direction (hereinafter referred to as an outer passage). )
  • the refrigerant gas discharged from the compression element 1002 into the sealed container 1001 and the lubricating oil in the sealed container 1001 are compressed with respect to the motor 1003.
  • the outer passage in the radial direction of the state 1005 serves as a return passage for returning the lubricating oil in the hermetic container 1001 to the compression element 1002 side with respect to the motor 1003. Yes.
  • the inner passage refers to an air gap between the stator 1005 and the rotor 1006. Yap and the space between the adjacent coils 1520 and 1520.
  • the outer passage refers to a space between a core cut such as a concave groove or a D-cut surface provided on the outer peripheral surface of the stator core 1510 and the inner peripheral surface of the sealed container 1001.
  • the lubricating oil that has flowed and returned to the downstream side (upper side) of the motor is returned to the upstream side (lower side) of the motor through the outer passage, and the upstream side of the motor It is possible to prevent the oil reservoir 1009 in the (lower) side from being cut off.
  • the lubricating oil in the oil reservoir 1009 can be effectively sent to the compression element 1002 and the motor 1003 via the shaft 1012, and the compressor Reliability is improved.
  • the coil 1520 which is a heat generating portion of the stator 1005, and the heat generating portion of the rotor 1006 can be efficiently cooled by the lubricating oil flowing through the inner passage.
  • the insulator 1530 can also be used as the guide portion 1500, and the number of parts can be reduced.
  • the coil 1520 of the stator 1005 is so-called concentrated winding, the coil 1520 can be easily installed on the tooth 1512. Further, the stator 1005 can be efficiently cooled by passing refrigerant gas between the adjacent coils 1520 and 1520.
  • the compression element 1002 may be a rotary type in which a roller and a blade are separate.
  • a scroll type or a reciprocating type may be used.
  • the compression element 1002 may be a two-cylinder type having two cylinder chambers.
  • the coil 1520 may be a so-called distributed winding in which the plurality of teeth 1512 are wound.
  • the end plate member 1050 as a support portion for supporting the shaft 1012 is the It may be formed integrally with the cylinder 1021 which is separated from the Linda 1021.
  • the guide portion 1500 may be another member connected to the peripheral wall portion 1531 of the insulator 1530 or may be formed integrally with the stator core 1510.
  • the compression element 1002 may be disposed above and the motor 1003 may be disposed below.
  • a spiral groove may be provided on the inner surface of the end plate member 1050.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 圧縮要素2の吐出口340aは、シャフト12の回転軸12a方向からみて、ステータ5の外周面よりも内側にあり、かつ、上記シャフト12の上記回転軸12aに直交する方向からみて、上記ステータ5に重なる。したがって、上記圧縮要素2から吐出された冷媒ガスを、主として、上記ステータ5の外周面よりも内側の空間に、流すことができる。

Description

明 細 書
圧縮機
技術分野
[0001] この発明は、例えばエアコンや冷蔵庫等に用いられる圧縮機に関する。
背景技術
[0002] 従来、圧縮機としては、密閉容器と、この密閉容器内に配置された圧縮要素と、上 記密閉容器内に配置され、上記圧縮要素をシャフトを介して駆動するモータとを備え ていた。上記圧縮要素は、上記シャフトを支持する軸受けを有し、この軸受けは、上 記軸受けと上記シャフトとの間に給油された潤滑油を上記軸受けの外側に吐出する 油吐出口を有している。上記モータは、ロータと、このロータの径方向外側に配置さ れたステータとを有している(特開平 10— 153188号公報参照)。
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、上記従来の圧縮機では、上記軸受けの上記油吐出口から吐出され た潤滑油は、上記圧縮要素から上記密閉容器内に吐出された冷媒ガスとともに、上 記ステータと上記密閉容器の間の空間(外側通路)と、上記ステータと上記ロータの 間の空間(内側通路)とを、流れる。
[0004] したがって、冷媒ガスとともに上記モータの下流側(上側)に流れた潤滑油は、冷媒 ガスに邪魔されて、上記外側通路および上記内側通路を通りにくくなつて、上記モー タの上流側(下側)に戻りに《なる。
[0005] そこで、この発明の課題は、冷媒ガスとともに上記モータの下流側に流れた潤滑油 を、効率よぐ上記モータの上流側に戻すことができる圧縮機を提供することにある。 課題を解決するための手段
[0006] 上記課題を解決するため、この発明の圧縮機は、
密閉容器と、この密閉容器内に配置された圧縮要素と、上記密閉容器内に配置さ れ、上記圧縮要素をシャフトを介して駆動するモータとを備え、
上記モータは、ロータと、このロータの径方向外側に配置されたステータとを有し、 上記ステータの径方向内側の空間を、
上記圧縮要素から上記密閉容器内に吐出された冷媒ガス、および、上記密閉容器 内の潤滑油を、上記モータに関して上記圧縮要素と反対側に流す往き通路とする一 方、
上記ステータの径方向外側の空間を、
上記密閉容器内の潤滑油を、上記モータに関して上記圧縮要素側に戻す戻り通路 とすることを特徴としている。
[0007] この発明の圧縮機によれば、上記ステータの径方向内側の空間を、冷媒ガスおよ び潤滑油の往き通路とする一方、上記ステータの径方向外側の空間を、上記密閉容 器内の潤滑油の戻り通路とするので、冷媒ガスとともに上記モータの下流側に流れた 潤滑油を、効率よぐ上記モータの上流側に戻すことができる。
[0008] また、一実施形態の圧縮機では、
上記圧縮要素は、上記圧縮要素から上記密閉容器内に冷媒ガスを吐出する吐出 口を有し、
上記圧縮要素の上記吐出口は、上記シャフトの回転軸方向からみて、上記ステー タの外周面よりも内側にあり、かつ、上記シャフトの上記回転軸に直交する方向から みて、上記ステータに重なることを特徴としている。
[0009] この実施形態の圧縮機によれば、上記圧縮要素の上記吐出口は、上記シャフトの 回転軸方向からみて、上記ステータの外周面よりも内側にあり、かつ、上記シャフトの 回転軸に直交する方向からみて、上記ステータに重なるので、上記圧縮要素から吐 出された冷媒ガスを、主として、上記ステータの外周面よりも内側の空間に、流すこと ができる。つまり、上記ステータの外周面よりも内側の空間を、冷媒ガスの流れ専用 の通路とし、上記ステータの外周面よりも外側の空間を、潤滑油の戻り専用の通路と することができる。
[0010] したがって、冷媒ガスとともに上記モータの下流側(上側)に流れた潤滑油を、効率 よぐ上記モータの上流側(下側)に戻して、冷媒ガス力も分離することができる。また 、上記ステータゃ上記ロータの発熱部分を、冷媒ガスによって、効率よぐ冷却するこ とがでさる。 [0011] また、一実施形態の圧縮機では、上記ステータは、径方向内側に突出すると共に 周方向に配列された複数のティースを含むステータ本体と、上記各ティースにそれぞ れ卷かれて複数の上記ティースに渡って巻かれて 、な 、コイルとを有して 、る。
[0012] この実施形態の圧縮機によれば、上記ステータの上記コイルは、いわゆる集中巻き であるので、上記コイルを上記ティースに簡単に卷設できる。また、隣り合う上記コィ ルの間に、冷媒ガスを通して、上記ステータを効率よく冷却することができる。
[0013] また、一実施形態の圧縮機では、
上記圧縮要素は、上記シャフトを支持する支持部を有し、この支持部は、上記支持 部と上記シャフトとの間に給油された潤滑油を上記支持部の外側に吐出する油吐出 口を有し、
上記ステータは、ステータコアと、このステータコアに巻かれたコイルと、このコイル よりも径方向外側に配置されたガイド部とを有し、
上記ガイド部は、上記支持部の上記油吐出口から吐出された潤滑油を、上記圧縮 要素から上記密閉容器内に吐出された冷媒ガスとともに、上記ステータの径方向内 側にガイドすることを特徴として 、る。
[0014] この実施形態の圧縮機によれば、上記ガイド部は、上記支持部の上記油吐出口か ら吐出された潤滑油を、上記圧縮要素カゝら上記密閉容器内に吐出された冷媒ガスと ともに、上記ステータの径方向内側にガイドするので、上記油吐出口から吐出された 潤滑油を、冷媒ガスとともに、上記ステータの径方向内側の空間に、流すことができ る。つまり、上記ステータの径方向内側の空間を、潤滑油および冷媒ガスの往き専用 の通路とし、上記ステータの径方向外側の空間を、潤滑油の戻り専用の通路とするこ とがでさる。
[0015] したがって、冷媒ガスとともに上記モータの下流側(上側)に流れた潤滑油を、効率 よぐ上記モータの上流側(下側)に戻して、上記モータの上流側(下側)にある油溜 まり部の油面切れを防止できる。また、上記ステータゃ上記ロータの発熱部分を、上 記ステータの径方向内側を流れる潤滑油によって、効率よぐ冷却することができる。
[0016] また、一実施形態の圧縮機では、上記ガイド部は、上記シャフトの回転軸方向から みて、上記支持部の上記油吐出口よりも径方向外側にあり、かつ、上記シャフトの上 記回転軸に直交する方向からみて、上記支持部の上記油吐出口よりも上記ステータ コア力 遠くまで延びて 、る。
[0017] この実施形態の圧縮機によれば、上記ガイド部は、上記シャフトの回転軸方向から みて、上記油吐出口よりも径方向外側にあり、かつ、上記シャフトの上記回転軸に直 交する方向からみて、上記油吐出口よりも上記ステータコア力 遠くまで延びている ので、上記油吐出口から吐出された潤滑油を、冷媒ガスとともに、上記ステータの径 方向内側の空間に、確実に流すことができる。
[0018] また、一実施形態の圧縮機では、上記ガイド部は、上記コイルと上記ステータコアと の間に挟持されたインシユレータの一部である。
[0019] この実施形態の圧縮機によれば、上記ガイド部は、上記コイルと上記ステータコアと の間に挟持されたインシユレータの一部であるので、上記インシユレータを上記ガイド 部として兼用できて、部品数の減少を図ることができる。
[0020] また、一実施形態の圧縮機では、上記ステータコアは、径方向内側に突出すると共 に周方向に配列された複数のティースを有し、上記コイルは、上記各ティースにそれ ぞれ卷かれて複数の上記ティースに渡って巻かれて 、な!/、。
[0021] この実施形態の圧縮機によれば、上記ステータの上記コイルは、いわゆる集中巻き であるので、上記コイルを上記ティースに簡単に卷設できる。また、隣り合う上記コィ ルの間に、潤滑油を冷媒ガスとともに通して、上記ステータを効率よく冷却することが できる。
発明の効果
[0022] この発明の圧縮機によれば、上記ステータの径方向内側の空間を、冷媒ガスおよ び潤滑油の往き通路とする一方、上記ステータの径方向外側の空間を、上記密閉容 器内の潤滑油の戻り通路とするので、冷媒ガスとともに上記モータの下流側に流れた 潤滑油を、効率よぐ上記モータの上流側に戻すことができる。
[0023] この発明の圧縮機によれば、上記圧縮要素の上記吐出口は、上記シャフトの回転 軸方向からみて、上記ステータの外周面よりも内側にあり、かつ、上記シャフトの回転 軸に直交する方向からみて、上記ステータに重なるので、潤滑油を効率よく分離でき ると共にモータを効率よく冷却できる。 [0024] この発明の圧縮機によれば、上記ガイド部は、上記支持部の上記油吐出口から吐 出された潤滑油を、上記圧縮要素カゝら上記密閉容器内に吐出された冷媒ガスととも に、上記ステータの径方向内側にガイドするので、上記油溜まり部の油面切れを防 止できる。
図面の簡単な説明
[0025] [図 1]本発明の圧縮機の第 1実施形態を示す縦断面図である。
[図 2]圧縮機のモータ付近の横断面図である。
[図 3]圧縮機の要部の平面図である。
[図 4]本発明の圧縮機の第 2実施形態を示す縦断面図である。
[図 5]圧縮機の要部の平面図である。
[図 6]圧縮機のモータ付近の横断面図である。
発明を実施するための最良の形態
[0026] 以下、この発明を図示の実施の形態により詳細に説明する。
[0027] (第 1の実施形態)
図 1は、この発明の圧縮機の第 1実施形態である縦断面図を示している。この圧縮 機は、密閉容器 1と、この密閉容器 1内に配置された圧縮要素 2と、上記密閉容器 1 内に配置され、上記圧縮要素 2をシャフト 12を介して駆動するモータ 3とを備えてい る。この圧縮機は、いわゆる高圧ドーム型のロータリ圧縮機であって、上記密閉容器 1内に、上記圧縮要素 2を下に、上記モータ 3を上に、配置している。
[0028] 上記密閉容器 1には、冷媒ガスを吸入する吸入管 11が取り付けられ、この吸入管 1 1にはアキュームレータ 10が連結されている。つまり、上記圧縮要素 2は、上記アキュ 一ムレータ 10から上記吸入管 11を通して冷媒ガスを吸入する。
[0029] この冷媒ガスは、この圧縮機とともに、冷凍システムの一例としての空気調和機を構 成する図示しない凝縮器、膨張機構、蒸発器を制御することによって得られる。この 冷媒ガスは、例えば、二酸ィ匕炭素や R410Aや R22である。
[0030] 上記圧縮機は、圧縮した高温高圧の吐出ガスを、上記圧縮要素 2から吐出して上 記密閉容器 1の内部に満たして、上記モータ 3を冷却した後、吐出管 13から外部に 吐出するようにしている。上記密閉容器 1内の高圧領域の下部に、潤滑油 9を溜めて いる。
[0031] 図 1と図 2に示すように、上記モータ 3は、ロータ 6と、このロータ 6の径方向外側にェ ァギャップを介して配置されたステータ 5とを有する。
[0032] 上記ロータ 6は、ロータ本体 610と、このロータ本体 610に埋設された磁石 620とを 有する。上記ロータ本体 610は、円筒形状であり、例えば積層された電磁鋼板からな る。上記ロータ本体 610の中央の孔部には、上記シャフト 12が取り付けられている。 上記磁石 620は、平板状の永久磁石である。 6つの上記磁石 620力 上記ロータ本 体 610の周方向に等間隔の中心角度で、配列されている。
[0033] 上記ステータ 5は、ステータ本体 510と、このステータ本体 510に巻かれたコイル 52 0とを有する。なお、図 2では、上記コイル 520を一部省略して、描いている。
[0034] 上記ステータ本体 510は、例えば鉄力もなり、上記密閉容器 1に、焼き嵌めなどによ つて、嵌め込まれている。上記ステータ本体 510は、環状部 511と、この環状部 511 の内周面力 径方向内側に突出すると共に周方向に等間隔に配列された 9つのティ ース 512とを有する。
[0035] 上記コイル 520は、上記各ティース 512にそれぞれ巻かれて複数の上記ティース 5 12に渡って巻かれて!/ヽな!、、 V、わゆる集中巻きである。
[0036] 上記ステータ本体 510には、インシユレータ 530が、取り付けられている。このインシ ユレータ 530は、上記ステータ本体 510の軸方向の両端面のそれぞれに配置され、 上記コイル 520によって、上記ステータ本体 510とともに巻かれている。なお、図 2で は、上記インシユレータ 530を省略して、描いている。
[0037] 上記インシユレータ 530は、例えば、液晶ポリマー(LCP)ゃポリブチレンテレフタレ ート(PBT)やポリフエ-レンサルファイド(PPS)やポリイミドゃポリエステル等の而熱 性のよい榭脂材料力もなる。上記インシユレータ 530は、上記シャフト 12の軸方向 12 aからみて、上記コイル 520の径方向外側に配置された周壁部 531を有する。この周 壁部 531は、例えば、周方向の一定間隔毎に切れ込みを有する環状に形成されて いる。
[0038] 上記周壁部 531の上記回転軸 12a方向の端面は、上記コイル 520の上記回転軸 1 2a方向の端面(つまりコイルエンド)よりも、上記回転軸 12a方向の上記ステータ本体 510カゝら遠い位置に、延在している。
[0039] 上記モータ 3は、上記コイル 520に電流を流して上記ステータ 5に発生する電磁力 によって、上記ロータ 6を上記シャフト 12と共に回転させ、このシャフト 12を介して、上 記圧縮要素 2を駆動する。
[0040] 上記モータ 3は、いわゆる 6極 9スロットである。上記コイル 520に電流を流して上記 ステータ 5に発生する電磁力によって、上記ロータ 6を、上記シャフト 12と共に、回転 させる。
[0041] 上記圧縮要素 2は、上記シャフト 12の回転軸に沿って上から下へ順に、上側の端 板部材 50と、第 1のシリンダ 121と、中間の端板部材 70と、第 2のシリンダ 221と、下 側の端板部材 60とを有する。
[0042] 上記上側の端板部材 50および上記中間の端板部材 70は、上記第 1のシリンダ 12 1の上下の開口端のそれぞれに取り付けられている。上記中間の端板部材 70および 上記下側の端板部材 60は、上記第 2のシリンダ 221の上下の開口端のそれぞれに 取り付けられている。
[0043] 上記第 1のシリンダ 121、上記上側の端板部材 50および上記中間の端板部材 70 によって、第 1のシリンダ室 122を形成する。上記第 2のシリンダ 221、上記下側の端 板部材 60および上記中間の端板部材 70によって、第 2のシリンダ室 222を形成する
[0044] 上記上側の端板部材 50は、円板状の本体部 51と、この本体部 51の中央に上方へ 設けられたボス部 52とを有する。上記本体部 51および上記ボス部 52は、上記シャフ ト 12に挿通されている。上記本体部 51には、上記第 1のシリンダ室 122に連通する 吐出口 51aが設けられている。
[0045] 上記本体部 51に関して上記第 1のシリンダ 121と反対側に位置するように、上記本 体部 51に吐出弁 131が取り付けられている。この吐出弁 131は、例えば、リード弁で あり、上記吐出口 5 laを開閉する。
[0046] 上記本体部 51には、上記第 1のシリンダ 121と反対側に、上記吐出弁 131を覆うよ うに、カップ状の第 1のマフラカバー 140が取り付けられている。この第 1のマフラカバ 一 140は、(ボルト等の)固定部材によって、上記本体部 51に固定されている。上記 第 1のマフラカバー 140は、上記ボス部 52に揷通されている。
[0047] 上記第 1のマフラカバー 140および上記上側の端板部材 50によって、第 1のマフラ 室 142を形成する。上記第 1のマフラ室 142と上記第 1のシリンダ室 122とは、上記吐 出口 51aを介して、連通されている。
[0048] 上記下側の端板部材 60は、円板状の本体部 61と、この本体部 61の中央に下方へ 設けられたボス部 62とを有する。上記本体部 61および上記ボス部 62は、上記シャフ ト 12に挿通されている。上記本体部 61には、上記第 2のシリンダ室 222に連通する( 図示しな!、)吐出口が設けられて!/、る。
[0049] 上記本体部 61に関して上記第 2のシリンダ 221と反対側に位置するように、上記本 体部 61に(図示しな 、)吐出弁が取り付けられ、この吐出弁は上記吐出口を開閉す る。
[0050] 上記本体部 61には、上記第 2のシリンダ 221と反対側に、上記吐出弁を覆うように 、直線状の平板状の第 2のマフラカバー 240が取り付けられている。この第 2のマフラ カバー 240は、(ボルト等の)固定部材によって、上記本体部 61に固定されている。 上記第 2のマフラカバー 240は、上記ボス部 62に揷通されて!/、る。
[0051] 上記第 2のマフラカバー 240および上記下側の端板部材 60によって、第 2のマフラ 室 242を形成する。上記第 2のマフラ室 242と上記第 2のシリンダ室 222とは、上記吐 出口を介して、連通されて!/ヽる。
[0052] 上記第 1のマフラカバー 140には、上記上側の端板部材 50と反対側に、カップ状 の第 3のマフラカバー 340が覆うように取り付けられている。上記第 1のマフラカバー 1 40および上記第 3のマフラカバー 340によって、第 3のマフラ室 342を形成する。
[0053] 上記 1のマフラ室 142と上記第 3のマフラ室 342とは、上記第 1のマフラカバー 140 に形成された(図示しな ヽ)孔部によって、挿通されて!/ヽる。
[0054] 上記 2のマフラ室 242と上記第 3のマフラ室 342とは、上記下側の端板部材 60、上 記第 2のシリンダ 221、上記中間の端板部材 70、上記第 1のシリンダ 121および上記 上側の端板部材 50に形成された(図示しな ヽ)孔部によって、挿通されて ヽる。
[0055] 上記第 3のマフラ室 342と上記第 3のマフラカバー 340の外側とは、上記第 3のマフ ラカバー 340に形成された吐出口 340aによって、連通されている。つまり、上記圧縮 要素 2は、上記吐出口 340aから上記密閉容器 1内に冷媒ガスを吐出する。
[0056] 上記吐出口 340aは、上記シャフト 12の上記回転軸 12a方向力 みて、上記ステー タ 5の外周面よりも内側にあり、かつ、上記シャフト 12の上記回転軸 12aに直交する 方向からみて、上記ステータ 5に重なる。つまり、上記吐出口 340aは、上記インシュ レータ 530の上記周壁部 531の下端面 531aよりも、径方向内側でかつ上側にある。
[0057] 上記端板部材 50, 60, 70、上記シリンダ 121, 221、および、上記マフラカバー 14 0, 240, 340は、ボルト等の固定部材によって、一体に固定されている。上記圧縮要 素 2の上記上側の端板部材 50は、溶接等によって、上記密閉容器 1に取り付けられ ている。
[0058] 上記シャフト 12の一端部は、上記上側の端板部材 50および上記下側の端板部材 60に支持されている。すなわち、上記シャフト 12は、片持ちである。上記シャフト 12 の一端部(支持端側)は、上記第 1のシリンダ室 122および上記第 2のシリンダ室 222 の内部に進入している。
[0059] 上記シャフト 12には、上記第 1のシリンダ室 122内に位置するように、第 1の偏心ピ ン 126を設けている。この第 1の偏心ピン 126は、第 1のローラ 127に嵌合している。 この第 1のローラ 127は、上記第 1のシリンダ室 122内で、上記第 1のシリンダ室 122 の中心軸を公転可能に配置され、この第 1のローラ 127の公転運動で圧縮作用を行 うようにしている。
[0060] 上記シャフト 12には、上記第 2のシリンダ室 222内に位置するように、第 2の偏心ピ ン 226を設けている。この第 2の偏心ピン 226は、第 2のローラ 227に嵌合している。 この第 2のローラ 227は、上記第 2のシリンダ室 222内で、上記第 2のシリンダ室 222 の中心軸を公転可能に配置され、この第 2のローラ 227の公転運動で圧縮作用を行 うようにしている。
[0061] 上記第 1の偏心ピン 126と上記第 2の偏心ピン 226とは、上記シャフト 12の回転軸 に対して、 180° ずれた位置にある。
[0062] 次に、上記第 1のシリンダ室 122の圧縮作用を説明する。
[0063] 図 3に示すように、上記第 1のローラ 127に一体に設けたブレード 128で上記第 1の シリンダ室 122内を仕切っている。すなわち、上記ブレード 128の右側の室は、一の 上記吸入管 11が上記第 1のシリンダ室 122の内面に開口して、冷媒ガスの吸入室( 低圧室) 123を形成している。一方、上記ブレード 128の左側の室は、(図 1に示す) 上記吐出口 51aが上記第 1のシリンダ室 122の内面に開口して、冷媒ガスの吐出室( 高圧室) 124を形成している。
[0064] 上記ブレード 128の両面には、半円柱状のブッシュ 125, 125力密着して、シール を行っている。上記ブッシュ 125, 125は、上記第 1のシリンダ 121に保持されている 。つまり、上記ブレード 128は、上記第 1のシリンダ 121に支持されている。上記ブレ ード 128と上記ブッシュ 125, 125の間、および、上記ブッシュ 125と上記第 1のシリ ンダ 121の間は、上記潤滑油 9で潤滑を行って 、る。
[0065] そして、上記第 1の偏心ピン 126が、上記シャフト 12と共に、偏心回転して、上記第 1の偏心ピン 126に嵌合した上記第 1のローラ 127が、この第 1のローラ 127の外周 面を上記第 1のシリンダ室 122の内周面に接して、公転する。
[0066] 上記第 1のローラ 127が、上記第 1のシリンダ室 122内で公転するに伴って、上記 ブレード 128は、このブレード 128の両側面を上記ブッシュ 125, 125によって保持さ れて進退動する。すると、上記吸入管 11から低圧の冷媒ガスを上記吸入室 123に吸 入して、上記吐出室 124で圧縮して高圧にした後、(図 1に示す)上記吐出口 51aか ら高圧の冷媒ガスを吐出する。
[0067] その後、図 1に示すように、上記吐出口 51aから吐出された冷媒ガスは、上記第 1の マフラ室 142および上記第 3のマフラ室 342を経由して、上記吐出口 340aから上記 第 3のマフラカバー 340の外側に排出される。
[0068] 一方、上記第 2のシリンダ室 222の圧縮作用も、上記第 1のシリンダ室 122の圧縮 作用と同様である。つまり、他の上記吸入管 11から低圧の冷媒ガスを上記第 2のシリ ンダ室 222に吸入し、上記第 2のシリンダ室 222内で上記第 2のローラ 227の公転運 動で冷媒ガスを圧縮して、この高圧の冷媒ガスを、上記第 2のマフラ室 242および上 記第 3のマフラ室 342を経由して、上記第 3のマフラカバー 340の外側に排出する。
[0069] 上記第 1のシリンダ室 122の圧縮作用と上記第 2のシリンダ室 222の圧縮作用とは 、 180° ずれた位相にある。
[0070] 上記構成の圧縮機によれば、上記圧縮要素 2の上記吐出口 340aは、上記シャフト 12の上記回転軸 12a方向力もみて、上記ステータ 5の外周面よりも内側にあり、かつ 、上記シャフト 12の上記回転軸 12aに直交する方向からみて、上記ステータ 5に重な るので、上記圧縮要素 2から吐出された冷媒ガスを、主として、上記ステータ 5の外周 面よりも内側の空間に、流すことができる。
[0071] つまり、上記ステータ 5の外周面よりも内側の空間(以下、内側通路という)を、冷媒 ガスおよび潤滑油 9の往き専用の通路とし、上記ステータ 5の外周面よりも外側の空 間(以下、外側通路という)を、上記潤滑油 9の戻り専用の通路とすることができる。要 するに、上記ステータ 5の径方向内側の空間を、上記圧縮要素 2から上記密閉容器 1 内に吐出された冷媒ガス、および、上記密閉容器 1内の潤滑油を、上記モータ 3に関 して上記圧縮要素 2と反対側に流す往き通路とする一方、上記ステータ 5の径方向 外側の空間を、上記密閉容器 1内の潤滑油を、上記モータ 3に関して上記圧縮要素 2側に戻す戻り通路としている。
[0072] したがって、冷媒ガスとともに上記モータ 3の下流側(上側)に流れた上記潤滑油 9 を、効率よぐ上記外側通路を介して、上記モータ 3の上流側(下側)に戻して、上記 潤滑油 9を冷媒ガス力も分離することができる。また、上記ステータ 5や上記ロータ 6 の発熱部分を、上記内側通路を通る冷媒ガスによって、効率よぐ冷却することがで きる。
[0073] また、上記周壁部 531は、上記インシユレータ 530の一部であるので、上記インシュ レータ 530により、上記圧縮要素 2から吐出された冷媒ガスの流れをガイドすることが 出来ることから、新たな部品を必要とせず、部品数の増加を防止できる。
[0074] また、上記ステータ 5の上記コイル 520は、いわゆる集中巻きであるので、上記コィ ル 520を上記ティース 512に簡単に卷設できる。また、隣り合う上記コイル 520, 520 の間に、冷媒ガスを通して、上記ステータ 5を効率よく冷却することができる。
[0075] なお、この発明は上述の実施形態に限定されない。例えば、上記圧縮要素 2として 、ローラとブレードが別体であるロータリタイプでもよい。上記圧縮要素 2として、ロー タリタイプ以外に、スクロールタイプやレシプロタイプを用いてもよ!、。
[0076] 上記圧縮要素 2として、 1つのシリンダ室を有する 1シリンダタイプでもよい。上記第 3のマフラカバー 340を省略した一段マフラでもよい。このとき、上記圧縮要素 2の上 記吐出口が、上記ステータ 5の下端面よりも、上側にあればよい。
[0077] 上記周壁部 531は、上記インシユレータ 530の一部でなぐ他の部材の一部として もよぐまたは、上記ステータコア 510に一体に形成されてもよい。
[0078] 上記コイル 520を、上記複数のティース 512にわたつて巻いた、いわゆる分布巻き としてもよい。上記ティース 512および上記磁石 620の数量の増減は自由である。
[0079] (第 2の実施形態)
図 4は、この発明の圧縮機の第 2実施形態である縦断面図を示している。この圧縮 機は、密閉容器 1001と、この密閉容器 1001内に配置された圧縮要素 1002と、上 記密閉容器 1001内に配置され、上記圧縮要素 1002をシャフト 1012を介して駆動 するモータ 1003とを備えて 、る。
[0080] この圧縮機は、いわゆる縦型の高圧ドーム型のロータリ圧縮機であって、上記密閉 容器 1001内に、上記圧縮要素 1002を下に、上記モータ 1003を上に、配置してい る。このモータ 1003のロータ 1006によって、上記シャフト 1012を介して、上記圧縮 要素 1002を駆動するようにして 、る。
[0081] 上記圧縮要素 1002は、アキュームレータ 1010から吸入管 1011を通して冷媒ガス を吸入する。この冷媒ガスは、この圧縮機とともに、冷凍システムの一例としての空気 調和機を構成する図示しない凝縮器、膨張機構、蒸発器を制御することによって得 られる。この冷媒ガスは、例えば、二酸ィ匕炭素や R410Aや R22である。
[0082] 上記圧縮機は、圧縮した高温高圧の冷媒ガスを、上記圧縮要素 1002から吐出し て密閉容器 1001の内部に満たすと共に、上記モータ 1003のステータ 1005と上記 ロータ 1006との間の隙間を通して、上記モータ 1003を冷却した後、上記モータ 100 3の上側に設けられた吐出管 1013から外部に吐出するようにしている。
[0083] 上記密閉容器 1001内の高圧領域の下部には、潤滑油が溜められた油溜まり部 10 09が形成されている。この潤滑油は、上記油溜まり部 1009から、上記シャフト 1012 に設けられた(図示しない)油通路を通って、上記圧縮要素 1002や上記モータ 100 3のベアリング等の摺動部に移動して、この摺動部を潤滑する。この潤滑油は、例え ば、(ポリエチレングリコールやポリプロピレングリコール等の)ポリアルキレングリコー ル油や、エーテル油や、エステル油や、鉱油である。上記油通路として、上記シャフト 1012の外周面に設けられた螺旋溝や、上記シャフト 1012の内部に設けられた孔部 である。
[0084] 上記圧縮要素 1002は、上記密閉容器 1001の内面に取り付けられるシリンダ 102 1と、このシリンダ 1021の上下の開口端のそれぞれに取り付けられている上側の端 板部材 1050および下側の端板部材 1060とを備える。上記シリンダ 1021、上記上 側の端板部材 1050および上記下側の端板部材 1060によって、シリンダ室 1022を 形成する。
[0085] 上記上側の端板部材 1050は、円板状の本体部 1051と、この本体部 1051の中央 に上方へ設けられたボス部 1052とを有する。上記本体部 1051および上記ボス部 1 052は、上記シャフト 1012に揷通されている。
[0086] 上記上側の端板部材 1050は、上記シャフト 1012を支持する支持部の一例である 。この端板部材 1050は、油吐出口 1050aを有する。この油吐出口 1050aは、(図示 しない)上記油通路を介して上記端板部材 1050と上記シャフト 1012との間に給油さ れた潤滑油を、上記端板部材 1050の外側に吐出する。具体的に述べると、上記油 吐出口 1050aは、上記ボス部 1052の上端面に形成され、上記シャフト 1012外周面 と上記ボス部 1052内周面との間の空間である。
[0087] 上記本体部 1051には、上記シリンダ室 1022に連通する吐出口 1051aが設けられ ている。上記本体部 1051に関して上記シリンダ 1021と反対側に位置するように、上 記本体部 1051に吐出弁 1031が取り付けられている。この吐出弁 1031は、例えば、 リード弁であり、上記吐出口 1051aを開閉する。
[0088] 上記本体部 1051には、上記シリンダ 1021と反対側に、上記吐出弁 1031を覆うよ うに、カップ型のマフラカバー 1040が取り付けられている。このマフラカバー 1040は 、(ボルト等の)固定部材 35によって、上記本体部 1051に固定されている。上記マフ ラカバー 1040は、上記ボス部 1052に揷通されている。
[0089] 上記マフラカバー 1040および上記上側の端板部材 1050によって、マフラ室 1042 を形成する。上記マフラ室 1042と上記シリンダ室 1022とは、上記吐出口 1051aを 介して、連通されている。
[0090] 上記マフラカバー 1040は、孔部 1043を有する。この孔部 1043は、上記マフラ室 1 042と上記マフラカバー 1040の外側とを連通する。
[0091] 上記下側の端板部材 1060は、円板状の本体部 1061と、この本体部 1061の中央 に下方へ設けられたボス部 1062とを有する。上記本体部 1061および上記ボス部 1
062は、上記シャフト 1012に揷通されている。
[0092] 要するに、上記シャフト 1012の一端部は、上記上側の端板部材 1050および上記 下側の端板部材 1060に支持されている。すなわち、上記シャフト 1012は、片持ちで ある。上記シャフト 1012の一端部(支持端側)は、上記シリンダ室 1022の内部に進 入している。
[0093] 上記シャフト 1012の支持端側には、上記圧縮要素 1002側の上記シリンダ室 102 2内に位置するように、偏心ピン 1026を設けている。この偏心ピン 1026は、ローラ 1 027に嵌合している。このローラ 1027は、上記シリンダ室 1022内で、公転可能に配 置され、このローラ 1027の公転運動で圧縮作用を行うようにして 、る。
[0094] 言い換えると、上記シャフト 1012の一端部は、上記偏心ピン 1026の両側において 、上記圧縮要素 1002のハウジング 1007で支持されている。このハウジング 1007は 、上記上側の端板部材 1050および上記下側の端板部材 1060を含む。
[0095] 次に、上記シリンダ室 1022の圧縮作用を説明する。
[0096] 図 5に示すように、上記ローラ 1027に一体に設けたブレード 1028で上記シリンダ 室 1022内を仕切っている。すなわち、上記ブレード 1028の右側の室は、上記吸入 管 1011が上記シリンダ室 1022の内面に開口して、吸入室 (低圧室) 1022aを形成 している。一方、上記ブレード 1028の左側の室は、(図 4に示す)上記吐出口 1051a が上記シリンダ室 1022の内面に開口して、吐出室(高圧室) 1022bを形成している。
[0097] 上記ブレード 1028の両面には、半円柱状のブッシュ 1025, 1025力密着して、シ ールを行っている。上記ブレード 1028と上記ブッシュ 1025, 1025との間は、上記 潤滑油で潤滑を行って ヽる。
[0098] そして、上記偏心ピン 1026が、上記シャフト 1012と共に、偏心回転して、上記偏 心ピン 1026に嵌合した上記ローラ 1027が、このローラ 1027の外周面を上記シリン ダ室 1022の内周面に接して、公転する。
[0099] 上記ローラ 1027が、上記シリンダ室 1022内で公転するに伴って、上記ブレード 10 28は、このブレード 1028の両側面を上記ブッシュ 1025, 1025によって保持されて 進退動する。すると、上記吸入管 1011から低圧の冷媒ガスを上記吸入室 1022aに 吸入して、上記吐出室 1022bで圧縮して高圧にした後、(図 4に示す)上記吐出口 1 05 laから高圧の冷媒ガスを吐出する。
[0100] その後、図 4に示すように、上記吐出口 1051aから吐出された冷媒ガスは、上記マ フラ室 1042を経由して、上記マフラカバー 1040の外側に排出される。
[0101] 図 4と図 6に示すように、上記モータ 1003は、上記ロータ 1006と、このロータ 1006 の径方向外側にエアギャップを介して配置された上記ステータ 1005とを有する。
[0102] 上記ロータ 1006は、ロータ本体 1610と、このロータ本体 1610に埋設された磁石 1 620とを有する。上記ロータ本体 1610は、円筒形状であり、例えば積層された電磁 鋼板力もなる。上記ロータ本体 1610の中央の孔部には、上記シャフト 1012が取り付 けられている。上記磁石 1620は、平板状の永久磁石である。 6つの上記磁石 1620 1S 上記ロータ本体 1610の周方向に等間隔の中心角度で、配列されている。
[0103] 上記ステータ 1005は、ステータコア 1510と、このステータコア 1510に巻かれたコ ィル 1520と、このコイル 1520よりも径方向外側に配置されたガイド部 1500とを有す る。なお、図 6では、上記コイル 1520を一部省略して描き、上記ガイド部 1500を省 略して描いている。
[0104] 上記ステータコア 1510は、積層された複数の鋼板力 なり、上記密閉容器 1001に 、焼き嵌めなどによって、嵌め込まれている。上記ステータコア 1510は、環状部 151 1と、この環状部 1511の内周面カも径方向内側に突出すると共に周方向に等間隔 に配列された 9つのティース 1512とを有する。
[0105] 上記コイル 1520は、上記各ティース 1512にそれぞれ巻かれて複数の上記ティー ス 1512に渡って巻かれていない、いわゆる集中巻きである。上記モータ 1003は、い わゆる 6極 9スロットである。上記コイル 1520に電流を流して上記ステータ 1005に発 生する電磁力によって、上記ロータ 1006を、上記シャフト 1012と共に、回転させる。
[0106] 上記ガイド部 1500は、上記コイル 1520と上記ステータコア 1510との間に挟持され たインシユレータ 1530の一部である。上記インシユレータ 1530は、上記ステータコア 1510の軸方向の両端面のそれぞれに配置され、上記コイル 1520によって、上記ス テータコア 1510とともに巻かれている。なお、図 6では、上記インシユレータ 1530を 省略して描いている。
[0107] 上記インシユレータ 1530は、例えば、液晶ポリマー(LCP)ゃポリブチレンテレフタ レート(PBT)やポリフエ-レンサルファイド(PPS)やポリイミドゃポリエステル等の耐 熱性のよい榭脂材料からなる。上記インシユレータ 1530は、上記シャフト 1012の回 転軸 1012a方向からみて、上記コイル 1520の径方向外側に配置された周壁部 153 1を有する。この周壁部 1531は、例えば、周方向の一定間隔毎に切れ込みを有する 環状に形成されている。つまり、上記ガイド部 1500は、上記周壁部 1531である。
[0108] 上記ガイド部 1500は、上記シャフト 1012の上記回転軸 1012a方向力もみて、上 記端板部材 1050の上記油吐出口 1050aよりも径方向外側にあり、かつ、上記シャフ ト 1012の上記回転軸 1012aに直交する方向力もみて、上記端板部材 1050の上記 油吐出口 1050aよりも上記ステータコア 1510から遠くまで延びている。
[0109] つまり、上記周壁部 1531の下端面 1531aは、上記油吐出口 1050aよりも、径方向 外側でかつ下側にある。また、上記周壁部 1531の上記下端面 1531aは、上記コィ ル 1520の下端面(つまりコイルエンド)よりも、下側にある。
[0110] 上記ガイド部 1500 (上記周壁部 1531)は、上記端板部材 1050の上記油吐出口 1 050aから吐出された潤滑油を、上記圧縮要素 1002から上記密閉容器 1001内に吐 出された冷媒ガスとともに、上記ステータ 1005の径方向内側にガイドして、上記ステ ータ 1005の径方向内側の空間に流す。
[0111] つまり、上記ステータ 1005の径方向内側の空間(以下、内側通路という)を、潤滑 油および冷媒ガスの往き専用の通路とし、上記ステータ 1005の径方向外側の空間( 以下、外側通路という)を、潤滑油の戻り専用の通路とすることができる。要するに、 上記ステータ 1005の径方向内側の空間を、上記圧縮要素 1002から上記密閉容器 1001内に吐出された冷媒ガス、および、上記密閉容器 1001内の潤滑油を、上記モ ータ 1003に関して上記圧縮要素 1002と反対側に流す往き通路とする一方、上記ス テータ 1005の径方向外側の空間を、上記密閉容器 1001内の潤滑油を、上記モー タ 1003に関して上記圧縮要素 1002側に戻す戻り通路としている。
[0112] ここで、上記内側通路とは、上記ステータ 1005と上記ロータ 1006との間のエアギ ヤップや、上記隣り合うコイル 1520, 1520の間の空間をいう。上記外側通路とは、上 記ステータコア 1510の外周面に設けられた凹溝や Dカット面等のつまりコアカットと 上記密閉容器 1001の内周面との間の空間をいう。
[0113] したがって、上記モータ 1003の上流側(下側)の潤滑油を、冷媒ガスとともに、図 4 の矢印 Aに示すように、上記内側通路を通して、上記モータ 1003の下流側(上側) に、流し、上記モータの下流側(上側)に流れた潤滑油を、図 4の矢印 Bに示すように 、上記外側通路を通して、上記モータの上流側(下側)に戻して、上記モータの上流 側(下側)にある上記油溜まり部 1009の油面切れを防止できる。
[0114] この油面切れの防止によって、上記油溜まり部 1009の潤滑油を、上記シャフト 101 2を介して、上記圧縮要素 1002や上記モータ 1003へ、有効に送ることができて、圧 縮機の信頼性が向上する。
[0115] また、上記内側通路を流れる潤滑油によって、上記ステータ 1005の発熱部分であ る上記コイル 1520や、上記ロータ 1006の発熱部分を、効率よぐ冷却することがで きる。
[0116] また、上記ガイド部 1500は、上記インシユレータ 1530の一部であるので、上記イン シユレータ 1530を上記ガイド部 1500として兼用できて、部品数の減少を図ることが できる。
[0117] また、上記ステータ 1005の上記コイル 1520は、いわゆる集中巻きであるので、上 記コイル 1520を上記ティース 1512に簡単に卷設できる。また、隣り合う上記コイル 1 520, 1520の間に、冷媒ガスを通して、上記ステータ 1005を効率よく冷却すること ができる。
[0118] なお、この発明は上述の実施形態に限定されない。例えば、上記圧縮要素 1002と して、ローラとブレードが別体であるロータリタイプでもよい。上記圧縮要素 1002とし て、ロータリタイプ以外に、スクロールタイプやレシプロタイプを用いてもよい。
[0119] 上記圧縮要素 1002として、 2つのシリンダ室を有する 2シリンダタイプでもよい。上 記コイル 1520を、上記複数のティース 1512にわたつて巻いた、いわゆる分布巻きと してちよい。
[0120] また、上記シャフト 1012を支持する支持部としての上記端板部材 1050は、上記シ リンダ 1021と別部材でなぐ上記シリンダ 1021に一体に形成されていてもよい。また 、上記ガイド部 1500は、上記インシユレータ 1530の上記周壁部 1531でなぐ他の 部材としてもよぐまたは、上記ステータコア 1510に一体に形成されていてもよい。 また、上記圧縮要素 1002が上、上記モータ 1003が下に配置されていてもよい。ま た、上記シャフト 1012に設けられた上記油通路の代わりに、上記端板部材 1050の 内面に螺旋溝を設けるようにしてもょ ヽ。

Claims

請求の範囲
[1] 密閉容器(1, 1001)と、
この密閉容器(1, 1001)内に配置された圧縮要素(2, 1002)と、
上記密閉容器(1, 1001)内に配置され、上記圧縮要素(2, 1002)をシャフト(12) を介して駆動するモータ(3, 1003)と
を備え、
上記モータ(3, 1003)は、ロータ(6, 1006)と、このロータ(6, 1006)の径方向外 側に配置されたステータ(5, 1005)とを有し、
上記ステータ(5, 1005)の径方向内側の空間を、
上記圧縮要素(2, 1002)力も上記密閉容器(1 , 1001)内に吐出された冷媒ガス、 および、上記密閉容器(1, 1001)内の潤滑油を、上記モータ(3, 1003)に関して上 記圧縮要素(2, 1002)と反対側に流す往き通路とする一方、
上記ステータ(5, 1005)の径方向外側の空間を、
上記密閉容器(1, 1001)内の潤滑油を、上記モータ(3, 1003)に関して上記圧縮 要素(2, 1002)側に戻す戻り通路とすることを特徴とする圧縮機。
[2] 請求項 1に記載の圧縮機にお!ヽて、
上記圧縮要素(2)は、上記圧縮要素(2)から上記密閉容器(1)内に冷媒ガスを吐 出する吐出口(340a)を有し、
上記圧縮要素(2)の上記吐出口(340a)は、上記シャフト(12)の回転軸(12a)方 向からみて、上記ステータ(5)の外周面よりも内側にあり、かつ、上記シャフト(12)の 上記回転軸(12a)に直交する方向からみて、上記ステータ(5)に重なることを特徴と する圧縮機。
[3] 請求項 2に記載の圧縮機において、
上記ステータ(5)は、
径方向内側に突出すると共に周方向に配列された複数のティース( 512)を含むス テータ本体(510)と、
上記各ティース(512)にそれぞれ巻かれて複数の上記ティース(512)に渡って巻 かれて!/ヽな ヽコィノレ (520)と を有することを特徴とする圧縮機。
[4] 請求項 1に記載の圧縮機にお!ヽて、
上記圧縮要素(1002)は、上記シャフト(1012)を支持する支持部(1050)を有し、 この支持部(1050)は、上記支持部(1050)と上記シャフト(1012)との間に給油され た潤滑油を上記支持部(1050)の外側に吐出する油吐出口(1050a)を有し、 上記ステータ(1005)は、ステータコア(1510)と、このステータコア(1510)に巻か れたコイル( 1520)と、このコイル (1520)よりも径方向外側に配置されたガイド部( 15 00)とを有し、
上記ガイド部(1500)は、上記支持部(1050)の上記油吐出口(1050a)から吐出 された潤滑油を、上記圧縮要素(1002)力も上記密閉容器(1001)内に吐出された 冷媒ガスとともに、上記ステータ(1005)の径方向内側にガイドすることを特徴とする 圧縮機。
[5] 請求項 4に記載の圧縮機において、
上記ガイド部(1500)は、上記シャフト(1012)の回転軸(1012a)方向力もみて、 上記支持部(1050)の上記油吐出口(1050a)よりも径方向外側にあり、かつ、上記 シャフト(1012)の上記回転軸(1012a)に直交する方向からみて、上記支持部(105 0)の上記油吐出口(1050a)よりも上記ステータコア(1510)力も遠くまで延びている ことを特徴とする圧縮機。
[6] 請求項 4に記載の圧縮機において、
上記ガイド部( 1500)は、上記コイル (1520)と上記ステータコア( 1510)との間に 挟持されたインシユレータ(1530)の一部であることを特徴とする圧縮機。
PCT/JP2006/324743 2005-12-28 2006-12-12 圧縮機 WO2007074638A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES06834498.5T ES2594615T3 (es) 2005-12-28 2006-12-12 Compresor
EP06834498.5A EP1967736B1 (en) 2005-12-28 2006-12-12 Compressor
AU2006329387A AU2006329387B2 (en) 2005-12-28 2006-12-12 Compressor
US12/159,147 US20090285702A1 (en) 2005-12-28 2006-12-12 Compressor
CN2006800491971A CN101346548B (zh) 2005-12-28 2006-12-12 压缩机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005377125 2005-12-28
JP2005-377125 2005-12-28
JP2006080712 2006-03-23
JP2006-080712 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007074638A1 true WO2007074638A1 (ja) 2007-07-05

Family

ID=38217859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324743 WO2007074638A1 (ja) 2005-12-28 2006-12-12 圧縮機

Country Status (7)

Country Link
US (1) US20090285702A1 (ja)
EP (1) EP1967736B1 (ja)
KR (1) KR101038634B1 (ja)
CN (1) CN101346548B (ja)
AU (1) AU2006329387B2 (ja)
ES (1) ES2594615T3 (ja)
WO (1) WO2007074638A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075471A3 (en) * 2007-12-25 2014-04-30 Calsonic Kansei Corporation Electric compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190183A (ja) * 2009-02-20 2010-09-02 Sanyo Electric Co Ltd 密閉型回転圧縮機
JP2013241907A (ja) * 2012-05-22 2013-12-05 Taiho Kogyo Co Ltd バキュームポンプ
JP6428739B2 (ja) * 2016-09-30 2018-11-28 株式会社富士通ゼネラル 圧縮機
CN106438372A (zh) * 2016-10-17 2017-02-22 西安交通大学 一种上排气隔热的旋转式压缩机
CN106351843A (zh) * 2016-10-17 2017-01-25 西安交通大学 一种下排气隔热的旋转式压缩机
CN114423948B (zh) * 2019-10-03 2023-05-12 三菱电机株式会社 密闭型制冷剂压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367095A (ja) * 1989-08-03 1991-03-22 Toshiba Corp ロータリコンプレッサ
JPH05195975A (ja) * 1992-01-21 1993-08-06 Hitachi Ltd 密閉型圧縮機
JPH0865961A (ja) * 1994-08-23 1996-03-08 Toshiba Corp 密閉形圧縮機
JP2001055977A (ja) * 1999-08-11 2001-02-27 Toshiba Kyaria Kk 圧縮機
JP2004316500A (ja) * 2003-04-15 2004-11-11 Fujitsu General Ltd 密閉形圧縮機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618337A (en) * 1970-06-22 1971-11-09 Carrier Corp Hermetic refrigeration compressor
CH525392A (de) * 1970-09-08 1972-07-15 Allweiler Ag Stopfbuchsloses Pumpenaggregat
US3663127A (en) * 1970-11-30 1972-05-16 Tecumseh Products Co Hermetic compressor oil cooling system
US3922114A (en) * 1974-07-19 1975-11-25 Dunham Bush Inc Hermetic rotary helical screw compressor with improved oil management
JP2782858B2 (ja) * 1989-10-31 1998-08-06 松下電器産業株式会社 スクロール気体圧縮機
US6024548A (en) * 1997-12-08 2000-02-15 Carrier Corporation Motor bearing lubrication in rotary compressors
JP2001286112A (ja) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd 冷媒圧縮機
JP3760748B2 (ja) * 2000-09-20 2006-03-29 株式会社日立製作所 密閉形電動圧縮機
US6946769B2 (en) * 2003-05-08 2005-09-20 Asmo Co., Ltd. Insulator and manufacturing method thereof, and stator for electric rotating machine
JP2005006366A (ja) * 2003-06-10 2005-01-06 Moric Co Ltd 電機子用インシュレータ
KR20050018199A (ko) * 2003-08-14 2005-02-23 삼성전자주식회사 용량가변 회전압축기
KR20050039255A (ko) * 2003-10-24 2005-04-29 주식회사 대우일렉트로닉스 모터용 스테이터 인슐레이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367095A (ja) * 1989-08-03 1991-03-22 Toshiba Corp ロータリコンプレッサ
JPH05195975A (ja) * 1992-01-21 1993-08-06 Hitachi Ltd 密閉型圧縮機
JPH0865961A (ja) * 1994-08-23 1996-03-08 Toshiba Corp 密閉形圧縮機
JP2001055977A (ja) * 1999-08-11 2001-02-27 Toshiba Kyaria Kk 圧縮機
JP2004316500A (ja) * 2003-04-15 2004-11-11 Fujitsu General Ltd 密閉形圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1967736A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075471A3 (en) * 2007-12-25 2014-04-30 Calsonic Kansei Corporation Electric compressor

Also Published As

Publication number Publication date
ES2594615T3 (es) 2016-12-21
AU2006329387B2 (en) 2010-10-28
AU2006329387A1 (en) 2007-07-05
KR20080072074A (ko) 2008-08-05
EP1967736B1 (en) 2016-09-14
US20090285702A1 (en) 2009-11-19
KR101038634B1 (ko) 2011-06-03
CN101346548B (zh) 2010-08-11
EP1967736A1 (en) 2008-09-10
CN101346548A (zh) 2009-01-14
EP1967736A4 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4225353B2 (ja) ステータ、モータおよび圧縮機
JP4325667B2 (ja) モータおよび圧縮機
WO2007074638A1 (ja) 圧縮機
US8430648B2 (en) Rotary compressor
WO2013175566A1 (ja) 冷媒圧縮機および冷凍サイクル機器
JP3992071B1 (ja) 圧縮機
EP2090780B1 (en) Compressor
WO2007069564A1 (ja) 圧縮機
KR101447039B1 (ko) 횡형 스크롤 압축기
US20060257272A1 (en) Compressor
JP2008099380A (ja) 圧縮機用モータおよび圧縮機
JP4656028B2 (ja) モータおよび圧縮機
JP2009002352A (ja) 圧縮機
JP2008141805A (ja) 圧縮機
JP4779937B2 (ja) 圧縮機
JP4670799B2 (ja) モータ用インシュレータ、モータおよび圧縮機
JP4720752B2 (ja) モータ用インシュレータ、モータおよび圧縮機
WO2024111194A1 (ja) スクロール圧縮機
JP2007092738A (ja) 圧縮機
JP2016021837A (ja) モータおよび圧縮機
JP2020186651A (ja) 空調用圧縮機
JP2011226296A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049197.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006834498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006834498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159147

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087015527

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006329387

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006329387

Country of ref document: AU

Date of ref document: 20061212

Kind code of ref document: A