US3663127A - Hermetic compressor oil cooling system - Google Patents

Hermetic compressor oil cooling system Download PDF

Info

Publication number
US3663127A
US3663127A US93550A US3663127DA US3663127A US 3663127 A US3663127 A US 3663127A US 93550 A US93550 A US 93550A US 3663127D A US3663127D A US 3663127DA US 3663127 A US3663127 A US 3663127A
Authority
US
United States
Prior art keywords
compressor
oil
windings
motor
run
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US93550A
Inventor
Robert J Cheers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecumseh Products Co
Original Assignee
Tecumseh Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecumseh Products Co filed Critical Tecumseh Products Co
Application granted granted Critical
Publication of US3663127A publication Critical patent/US3663127A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Definitions

  • Walker Attorney-Bames, Kisselle, Raisch & Choate ABSTRACT A hermetic motor-compressor unit of the vertical shaft type having an electric motor mounted above and driving the gas pump of the unit.
  • the motor has its main stator winding wound radially inwardly of the auxiliary or start winding so that the end turns of the main winding are directly in the path of the lubricating oil which is flung from the outlet or outlets of a crankshaft oil passage fed from an oil pump in the sump of the compressor.
  • the relatively cool oil thus directly impinges against and drains downwardly along the main winding to thereby effect more efficient cooling of the motor.
  • Cooling of hermetic refrigeration motors is important to the efficiency and life of the compressor.
  • two methods which have been used generally to cool hermetic motors are oil recirculation and refrigerant gas circulation, usually augmented by some type of centrifugal pump and/or fan within the unit.
  • oil recirculation and refrigerant gas circulation usually augmented by some type of centrifugal pump and/or fan within the unit.
  • FIG. I is a vertical sectional view taken on the line I[ of FIG. 2 illustrating an exemplary but preferred embodiment of a hermetic compressor constructed in accordance with the present invention, a portion of the hermetic casing and refrigerant intake being shown in side elevation.
  • FIG. 2 is a horizontal sectional view taken on the line II-II of FIG. 1.
  • FIG. 3 is a fragmentary vertical sectional view taken on the line II
  • FIG. I illustrates a twin cylinder hermetic compressor which, except for the stator winding and oil circulating structure, is conventional and well-known in the art.
  • compressor 10 may comprise a I970 Model AH compressor constructed commercially by Tecumseh Products Company of Tecumseh, Michigan, assignee of the present invention, and sold under the trademark TECUMSEH.
  • compressor 10 has the usual two par1 hermetically sealed steel casing 12, a twin cylinder refrigerant gas pump I4 and superposed electric motor resiliently suspended as a unit in the casing, a one piece vertically oriented crankshaft-motor shaft 16 and a rotor l8 of motor 15 secured to the upper end of shaft 16 for rotating the same.
  • a stator 20 of motor I5 is suitably supported stationarily on pump 14 and has a conventional laminated core 22 with axial slots 24 (FIG. 2) opening to the inner periphery 26 of the stator in which are wound the main or run winding(s) and start or auxiliary winding(s) of the electric motor in a manner described in more detail hereinafter.
  • motor 15 is a single-phase alternating current induction type commonly employed in hermetic oompressors and may be either the two-pole type shown herein or a four-pole type, with the stator windings wound in a distributed manner in slots 24.
  • Shaft 16 is journalled at its lower end in a bearing 28 to which is attached a stationary portion of a centrifugal oil pump 30 of conventional construction which in a well-known manner cooperates with radial passages in the pump and lower end of shaft I6 to pump oil from the liquid refrigerant-oil sump 32 at the bottom of the casing I2 into and upwardly through a central oil-conducting passageway in shaft 16.
  • This passageway includes a passage 34 extending upwardly coincident with the axis of shaft 16 to a point above the upper end of an inboard bearing 38 and about even with the lower surface 40 of the rotor core 42.
  • the oil passageway also includes a slightly larger diameter passage 43 communicating at its lower end with the upper end of passage 34 and extending upwardly in shaft 16 coincident with the axis thereof to an outwardly flared outlet at the upper end of the shaft formed by the beveled surface 44, as best seen in FIG. 3.
  • a pair of diametrically opposite radial slots 46 and 48 are formed across the upper end of shaft 16 (FIG. 2).
  • the upper end of rotor 18 preferably has an end ring 50 provided with a series of upright radially extending blades 52 which rotate with rotor 18 and are arranged in a semi-circular row concentric with the upper end of shaft 16, the blades being juxtaposed to the usual balancing counterweight 53.
  • the main or run winding of stator 20in the two-pole version illustrated herein consists of a left winding 60 and a right winding 62 (as viewed in FIG. 2) electrically interconnected as one main or run winding and an auxiliary or start winding consisting of a left winding 64 and a right winding 66 (as viewed in FIG. 2) also electrically interconnected as one winding.
  • the start windings 64 and 66 are wound in their respective core slots 24 prior to the winding of run windings 60 and 62 so that the start windings are disposed radially outwardly of the run windings as best indicated in FIG. 1.
  • a sheath 68 of Mylar or other suitable electrical insulating material is then placed around the exposed end turns of start windings 64 and 66 to insulate them from the main windings 60 and 62 which are wound against but radially inwardly of the start windings.
  • the start and run windings may be wound in distributed fashion through the same slots 24 in which they have hitherto been wound in previous compressor motors of this type by suitable automatic winding machines well known in the art.
  • the upper end turns 70 and 72 of start windings 64 and 66 respectively and the upper end turns 74 and 76 of run windings 60 and 62 respectively are arranged as shown in FIGS.
  • end turns 74 and 76 disposed radially inwardly of end turns 70 and 72 and projecting axially slightly thereabove.
  • the run winding end turns 74 and 76 project axially beyond the end surface 77 of ring 50 by a distance about equal to the axial projection of the upper ends of blades 52 from the upper end surface 79 of core 22.
  • the upper end surface 78 of shaft 16 is located about one-fourth inch below surface 77, but it is to be understood that end surface 78 may be generally flush with surface 77 or even project thereabove by as much as five-eighths inch.
  • a portion of the oil stream is thus diverted from passage 34 and is eventually flung radially outwardly from the upper end of bearing 38 as indicated by the arrows in FIG. 1.
  • the oil leaving the upper end of bearing 38 impinges against the inner peripheral surface 84 of the lower end ring 85 of rotor 18 which is formed as a series of fan blades.
  • Surface 84 is thus interrupted so that the oil is dispersed and thrown off outwardly between the fan blades and radially outwardly against the lower end turns 86 and 88 of run windings 60 and 62 respectively, to thereby help cool the run windings.
  • This oil cooling augments the cooling effect of the refrigerant gas entering the casing at inlet port 90.
  • the whirling rotor 18 and the suction at intake 91 induces a flow of refrigerant gas downwardly and inwardly through the annular space between end turns 86 and 88 and the upper surface 92 of crankcase 94 of compressor 14 which produces a gas flow upwardly through the cylindrical clearance space between rotor 18 and the inner periphery 26 of core 22.
  • This oil drains by gravity down over the motor windings and stator and finds its way back to the sump 32, some oil draining along the inner wall of the casing 12 and some draining through the oil return opening 100 in the top wall 92 of the crankcase 94. As the oil drains back, it is cooled by contact with the casing walls and by the incoming refrigerant gas (in the disclosed example of a low side casing) so that the temperature of the oil in the sump 32 remains relatively cool compared to the running temperature of the motor windings.
  • the circulating oil provides an effective cooling medium in the compressor which can be relied upon to significantly reduce the temperature of the run windings 60 and 62 of the electric motor. Since run windings 60 and 62 are located radially inward of the start windings 64 and 66, the flow of cooling oil to the run windings is not obstructed and hence the run windings are subjected to a much heavier oil flow over a greater portion of their area.
  • start windings 64 and 66 receive less cooling oil, this does not pose a problem because these windings are in many applications only fully energized for a relatively brief period at compressor start-up, and in most applications do not constitute the primary source of motor heat during running of the compressor.
  • the compressor cooling system of the present invention thus significantly reduces the average operating temperature of the electric motor of the compressor for any given load. Hence compressor is able to run under a more severe loading for a longer period of time, thereby increasing the capacity rating of the compressor without a corresponding increase in the size or cost of the compressor.
  • a motor-compressor unit having a hermetically sealed casing with communicating motor and compressor chambers, an electric motor arranged in the motor chamber comprising a stator core having run and start windings wound thereon, a rotor disposed within said stator and a motor shaft carrying said rotor for rotation therewith, said motor shaft being drivingly connected to a gas pump of said compressor and having an oil conducting passageway extending axially therethrough, and means for supplying oil from a casing sump to said passageway in said shaft in response to rotation of said rotor, the improvement wherein said start windings are disposed radially outwardly of the portion of said run windings adjacent thereto, said shaft having outlet means connected to said passageway and oriented relative to said run windings such that oil leaving said passa eway via said outlet means is directed toward said run wm tags to effect cooling of the same.
  • outlet means includes a second outlet leading from said passageway to a space in said motor chamber below said rotor and stator core, said run windings having lower end turns projecting beneath said stator core into the path of oil emerging from said second outlet.

Abstract

A hermetic motor-compressor unit of the vertical shaft type having an electric motor mounted above and driving the gas pump of the unit. The motor has its main stator winding wound radially inwardly of the auxiliary or start winding so that the end turns of the main winding are directly in the path of the lubricating oil which is flung from the outlet or outlets of a crankshaft oil passage fed from an oil pump in the sump of the compressor. The relatively cool oil thus directly impinges against and drains downwardly along the main winding to thereby effect more efficient cooling of the motor.

Description

United States Patent Cheers 51 May 16, 1972 [54] HERMETIC COMPRESSOR OIL COOLING SYSTEM [72] Inventor: R0hertJ.Cheers,Tecumseh,Mich.
[73] Assignee: Tecumseh Products Company, Tecumseh,
Mich.
[22] Filed: Nov. 30, 1970 [21] Appl.No.: 93,550
[52] US. Cl ..417/372,417/415, 417/902, 310/54 [51] Int. Cl. ..F04b 17/00, F04b 35/00, F04b 39/02, H021: 9/00, H02k 9/20 [58] Field of Search ..4l7/415, 410, 372, 902; 310/54 [56] References Cited UNITED STATES PATENTS 2,435,108 l/l948 Touborg ..417/372 X 3,075,106 1/1963 Chi ..3l0/54 X Primary Examiner-Robert M. Walker Attorney-Bames, Kisselle, Raisch & Choate ABSTRACT A hermetic motor-compressor unit of the vertical shaft type having an electric motor mounted above and driving the gas pump of the unit. The motor has its main stator winding wound radially inwardly of the auxiliary or start winding so that the end turns of the main winding are directly in the path of the lubricating oil which is flung from the outlet or outlets of a crankshaft oil passage fed from an oil pump in the sump of the compressor. The relatively cool oil thus directly impinges against and drains downwardly along the main winding to thereby effect more efficient cooling of the motor.
7 Claims, 3 Drawing Plgures PATEHTEDMM 18 I972 SHEET 1 BF 2 INVENTOR POBE/PTJCHEEPS ATTORNEYS PATENTEDMY 16 1972 .ililEl 2 UF 2 INVENTOR POEE/QTJ. CHEERS ATTORNEYS HERMETIC COMPRESSOR OIL COOLING SYSTEM This invention relates to hermetic compressors and more particularly to an improved oil cooling system for the electric motor of the compressor.
Cooling of hermetic refrigeration motors is important to the efficiency and life of the compressor. In the past, two methods which have been used generally to cool hermetic motors are oil recirculation and refrigerant gas circulation, usually augmented by some type of centrifugal pump and/or fan within the unit. Also, it has been conventional practice to employ in hermetic compressors electric motors which are wound with the main winding or windings of the stator radially outwardly of the start winding or windings and these windings have been separated by various types of insulation. Hence when the oil and refrigerant gas delivered from the centrifugal device or devices impinges upon the windings, very little of this cooling medium reaches the main windings because it is blocked by the start windings and by the insulation between start and main windings.
The problem of motor cooling becomes most critical for those models of hermetic compressors designed for use in low temperature applications because of the poor conductivity of the low density refrigerant gas which is relied upon in part to effect cooling of the motor winding by conducting motor heat to the hermetic casing of the compressor. In such applications, the liquid oil contained in the hermetic casing must be relied upon more heavily to effect cooling of the winding. Hence it is important that this oil be circulated in the most efficient manner possible relative to the principal heat source which, during normal or running operation of the compressor, comprises the main winding of the motor stator. At this time the stator start winding does not generate any significant amount of heat.
Accordingly, it is an object of the present invention to provide an improved hermetic compressor construction wherein the cooling oil delivery system and motor windings are arranged relative to one another to promote more efficient cooling of the motor without increasing the cost of the compressor, thereby improving the operational efficiency of the compressor.
Other objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings wherein:
FIG. I is a vertical sectional view taken on the line I[ of FIG. 2 illustrating an exemplary but preferred embodiment of a hermetic compressor constructed in accordance with the present invention, a portion of the hermetic casing and refrigerant intake being shown in side elevation.
FIG. 2 is a horizontal sectional view taken on the line II-II of FIG. 1.
FIG. 3 is a fragmentary vertical sectional view taken on the line II||II of FIG. 2.
Referring in more detail to the accompanying drawings, FIG. I illustrates a twin cylinder hermetic compressor which, except for the stator winding and oil circulating structure, is conventional and well-known in the art. For example, compressor 10 may comprise a I970 Model AH compressor constructed commercially by Tecumseh Products Company of Tecumseh, Michigan, assignee of the present invention, and sold under the trademark TECUMSEH. Accordingly, compressor 10 has the usual two par1 hermetically sealed steel casing 12, a twin cylinder refrigerant gas pump I4 and superposed electric motor resiliently suspended as a unit in the casing, a one piece vertically oriented crankshaft-motor shaft 16 and a rotor l8 of motor 15 secured to the upper end of shaft 16 for rotating the same. A stator 20 of motor I5 is suitably supported stationarily on pump 14 and has a conventional laminated core 22 with axial slots 24 (FIG. 2) opening to the inner periphery 26 of the stator in which are wound the main or run winding(s) and start or auxiliary winding(s) of the electric motor in a manner described in more detail hereinafter. Preferably motor 15 is a single-phase alternating current induction type commonly employed in hermetic oompressors and may be either the two-pole type shown herein or a four-pole type, with the stator windings wound in a distributed manner in slots 24.
Shaft 16 is journalled at its lower end in a bearing 28 to which is attached a stationary portion of a centrifugal oil pump 30 of conventional construction which in a well-known manner cooperates with radial passages in the pump and lower end of shaft I6 to pump oil from the liquid refrigerant-oil sump 32 at the bottom of the casing I2 into and upwardly through a central oil-conducting passageway in shaft 16. This passageway includes a passage 34 extending upwardly coincident with the axis of shaft 16 to a point above the upper end of an inboard bearing 38 and about even with the lower surface 40 of the rotor core 42. The oil passageway also includes a slightly larger diameter passage 43 communicating at its lower end with the upper end of passage 34 and extending upwardly in shaft 16 coincident with the axis thereof to an outwardly flared outlet at the upper end of the shaft formed by the beveled surface 44, as best seen in FIG. 3. A pair of diametrically opposite radial slots 46 and 48 are formed across the upper end of shaft 16 (FIG. 2). The upper end of rotor 18 preferably has an end ring 50 provided with a series of upright radially extending blades 52 which rotate with rotor 18 and are arranged in a semi-circular row concentric with the upper end of shaft 16, the blades being juxtaposed to the usual balancing counterweight 53.
The main or run winding of stator 20in the two-pole version illustrated herein consists of a left winding 60 and a right winding 62 (as viewed in FIG. 2) electrically interconnected as one main or run winding and an auxiliary or start winding consisting of a left winding 64 and a right winding 66 (as viewed in FIG. 2) also electrically interconnected as one winding. In accordance with one feature of the present invention, the start windings 64 and 66 are wound in their respective core slots 24 prior to the winding of run windings 60 and 62 so that the start windings are disposed radially outwardly of the run windings as best indicated in FIG. 1. A sheath 68 of Mylar or other suitable electrical insulating material is then placed around the exposed end turns of start windings 64 and 66 to insulate them from the main windings 60 and 62 which are wound against but radially inwardly of the start windings. The start and run windings may be wound in distributed fashion through the same slots 24 in which they have hitherto been wound in previous compressor motors of this type by suitable automatic winding machines well known in the art. Hence the upper end turns 70 and 72 of start windings 64 and 66 respectively and the upper end turns 74 and 76 of run windings 60 and 62 respectively are arranged as shown in FIGS. 1, 2 and 3 with end turns 74 and 76 disposed radially inwardly of end turns 70 and 72 and projecting axially slightly thereabove. In addition, the run winding end turns 74 and 76 project axially beyond the end surface 77 of ring 50 by a distance about equal to the axial projection of the upper ends of blades 52 from the upper end surface 79 of core 22. In the example illustrated herein, the upper end surface 78 of shaft 16 is located about one-fourth inch below surface 77, but it is to be understood that end surface 78 may be generally flush with surface 77 or even project thereabove by as much as five-eighths inch.
In operation of compressor 10, when the start and run windings of the motor are energized rotor 18 is rotated to drive shaft 16 which in turn produces reciprocation of the pistons 80 and 82 of the compressor in the usual manner. Rotation of shaft 16 causes pump 30 to pump oil from the sump 32 upwardly in passage 34 as indicated by the arrows in FIG. I. Some of the lubricating oil flowing up passage 34 is diverted to lateral oiling passages (not shown) in shaft 16 which feed oil to the connecting rod and piston wrist pin bearings in the usual manner. Another such oiling port 96 (FIG. I) diverts a portion of the oil from passage 34 and feeds it to helical external passages (not shown) in the portion of shaft 16 passing through bearing 38 for lubrication of this bearing. A portion of the oil stream is thus diverted from passage 34 and is eventually flung radially outwardly from the upper end of bearing 38 as indicated by the arrows in FIG. 1. The oil leaving the upper end of bearing 38 impinges against the inner peripheral surface 84 of the lower end ring 85 of rotor 18 which is formed as a series of fan blades. Surface 84 is thus interrupted so that the oil is dispersed and thrown off outwardly between the fan blades and radially outwardly against the lower end turns 86 and 88 of run windings 60 and 62 respectively, to thereby help cool the run windings. This oil cooling augments the cooling effect of the refrigerant gas entering the casing at inlet port 90. The whirling rotor 18 and the suction at intake 91 induces a flow of refrigerant gas downwardly and inwardly through the annular space between end turns 86 and 88 and the upper surface 92 of crankcase 94 of compressor 14 which produces a gas flow upwardly through the cylindrical clearance space between rotor 18 and the inner periphery 26 of core 22.
The remainder of the oil which is pumped past port 96 flows up passage 34 and then up passage 43 to the upper end outlet 44 of shaft 16 from which it is flung radially outwardly by the centrifugal action of the whirling shaft. The oil is further impelled by blades 52 which act not only as a centrifugal fan on the refrigerant gas but also fling off any oil striking the blades so that there is a constant cone-like spray of oil leaving blades 52 and being flung against as well as over the encircling upper end turns 74 and 76 of run windings 60 and 62. This oil drains by gravity down over the motor windings and stator and finds its way back to the sump 32, some oil draining along the inner wall of the casing 12 and some draining through the oil return opening 100 in the top wall 92 of the crankcase 94. As the oil drains back, it is cooled by contact with the casing walls and by the incoming refrigerant gas (in the disclosed example of a low side casing) so that the temperature of the oil in the sump 32 remains relatively cool compared to the running temperature of the motor windings.
Because the oil flow and oil cooling rate remain relatively constant compared to the density of the refrigerant gas in the casing, the circulating oil provides an effective cooling medium in the compressor which can be relied upon to significantly reduce the temperature of the run windings 60 and 62 of the electric motor. Since run windings 60 and 62 are located radially inward of the start windings 64 and 66, the flow of cooling oil to the run windings is not obstructed and hence the run windings are subjected to a much heavier oil flow over a greater portion of their area. Although the start windings 64 and 66 receive less cooling oil, this does not pose a problem because these windings are in many applications only fully energized for a relatively brief period at compressor start-up, and in most applications do not constitute the primary source of motor heat during running of the compressor. The compressor cooling system of the present invention thus significantly reduces the average operating temperature of the electric motor of the compressor for any given load. Hence compressor is able to run under a more severe loading for a longer period of time, thereby increasing the capacity rating of the compressor without a corresponding increase in the size or cost of the compressor.
1 claim:
1. In a motor-compressor unit having a hermetically sealed casing with communicating motor and compressor chambers, an electric motor arranged in the motor chamber comprising a stator core having run and start windings wound thereon, a rotor disposed within said stator and a motor shaft carrying said rotor for rotation therewith, said motor shaft being drivingly connected to a gas pump of said compressor and having an oil conducting passageway extending axially therethrough, and means for supplying oil from a casing sump to said passageway in said shaft in response to rotation of said rotor, the improvement wherein said start windings are disposed radially outwardly of the portion of said run windings adjacent thereto, said shaft having outlet means connected to said passageway and oriented relative to said run windings such that oil leaving said passa eway via said outlet means is directed toward said run wm tags to effect cooling of the same.
2. The compressor as set forth in claim 1 wherein said run windings have end turns projecting axially beyond at least one axial end face of said stator core and said outlet means comprises at least one outlet located axially between said end face of said core and the axially outermost portion of said end turns.
3. The compressor as set forth in claim 2 wherein said rotor has a plurality of blades thereon disposed radially between said shaft and said end turns of said run windings and located in the path of oil flow from said one outlet to said end turns.
4. The compressor as set forth in claim 2 wherein said shaft is oriented upright, said motor is disposed above said gas pump and said sump is disposed below said gas pump.
5. The compressor as set forth in claim 4 wherein said one outlet is located at the upper end of said shaft and said end turns comprise the upper end turns of said run windings.
6. The compressor as set forth in claim 5 wherein said outlet means includes a second outlet leading from said passageway to a space in said motor chamber below said rotor and stator core, said run windings having lower end turns projecting beneath said stator core into the path of oil emerging from said second outlet.
7. The compressor as set forth in claim 1 wherein said run and start windings are wound in distributed fashion through a plurality of said slots on said core such that said run winding has first and second end turns projecting respectively axially beyond the axially opposite ends of said stator core and each of said end turns is arranged as an annulus concentrically encircling said shaft, and said outlet means comprises first and second outlets oriented to direct oil from said passageway radially outwardly toward said first and second end turns respectively.
* s s t a

Claims (7)

1. In a motor-compressor unit having a hermetically sealed casing with communicating motor and compressor chambers, an electric motor arranged in the motor chamber comprising a stator core having run and start windings wound thereon, a rotor disposed within said stator and a motor shaft carrying said rotor for rotation therewith, said motor shaft being drivingly connected to a gas pump of said compressor and having an oil conducting passageway extending axially therethrough, and means for supplying oil from a casing sump to said passageway in said shaft in response to rotation of said rotor, the improvement wherein said start windings are disposed radially outwardly of the portion of said run windings adjacent thereto, said shaft having outlet means connected to said passageway and oriented relative to said run windings such that oil leaving said passageway via said outlet means is directed toward said run windings to effect cooling of the same.
2. The compressor as set forth in claim 1 wherein said run windings have end turns projecting axially beyond at least one axial end face of said stator core and said outlet means comprises at least one outlet located axially between said end face of said core and the axially outermost portion of said end turns.
3. The compressor as set forth in claim 2 wherein said rotor has a plurality of blades thereon disposed radially between said shaft and said end turns of said run windings and located in the path of oil flow from said one outlet to said end turns.
4. The compressor as set forth in claim 2 wherein said shaft is oriented upright, said motor is disposed above said gas pump and said sump is disposed below said gas pump.
5. The compressor as set forth in claim 4 wherein said one outlet is located at the upper end of said shaft and said end turns comprise the upper end turns of said run windings.
6. The compressor as set forth in claim 5 wherein said outlet means includes a second outlet leading from said passageway to a space in said motor chamber below said rotor and stator core, said run windings having lower end turns projecting beneath said stator core into the path of oil emerging from said second outlet.
7. The compressor as set forth in claim 1 wherein said run and start windings are wound in distributed fashion through a plurality of said slots on said core such that said run winding has first and second end turns projecting respectively axially beyond the axially opposite ends of said stator core and each of said end turns is arranged as an annulus concentrically encircling said shaft, and said outlet means comprises first and second outlets oriented to direct oil from said passageway radially outwardly toward said first and second end turns respectively.
US93550A 1970-11-30 1970-11-30 Hermetic compressor oil cooling system Expired - Lifetime US3663127A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9355070A 1970-11-30 1970-11-30

Publications (1)

Publication Number Publication Date
US3663127A true US3663127A (en) 1972-05-16

Family

ID=22239540

Family Applications (1)

Application Number Title Priority Date Filing Date
US93550A Expired - Lifetime US3663127A (en) 1970-11-30 1970-11-30 Hermetic compressor oil cooling system

Country Status (12)

Country Link
US (1) US3663127A (en)
BE (1) BE775928A (en)
BR (1) BR7107827D0 (en)
CA (1) CA948164A (en)
DE (1) DE2159099A1 (en)
DK (1) DK139599B (en)
ES (1) ES397470A1 (en)
FR (1) FR2115995A5 (en)
GB (1) GB1370921A (en)
IT (1) IT946242B (en)
NL (1) NL7116019A (en)
TR (1) TR17461A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922114A (en) * 1974-07-19 1975-11-25 Dunham Bush Inc Hermetic rotary helical screw compressor with improved oil management
DE2617369A1 (en) * 1976-04-21 1977-11-03 Danfoss As ENCLOSED MOTOR COMPRESSOR FOR REFRIGERATION MACHINES
FR2493490A1 (en) * 1980-07-18 1982-05-07 Aspera Spa IMPROVEMENT IN HERMETIC COMPRESSORS FOR REFRIGERATING FLUIDS
US4370104A (en) * 1980-07-22 1983-01-25 White Consolidated Industries, Inc. Suction muffler for refrigeration compressor
US4384635A (en) * 1980-06-11 1983-05-24 Tecumseh Products Company Continuous curvature noise suppressing compressor housing
US4388756A (en) * 1978-10-25 1983-06-21 General Electric Company Methods of making improved rotor assembly
US4396361A (en) * 1979-01-31 1983-08-02 Carrier Corporation Separation of lubricating oil from refrigerant gas in a reciprocating compressor
EP0179799A1 (en) * 1984-04-30 1986-05-07 Beckman Instruments Inc Centrifugal oil pump flow proportioning and cooling system.
US5101931A (en) * 1990-05-23 1992-04-07 Copeland Corporation Discharge muffler and method
US5222874A (en) * 1991-01-09 1993-06-29 Sullair Corporation Lubricant cooled electric drive motor for a compressor
US5228843A (en) * 1989-10-06 1993-07-20 Intreprinderea De Frigidere Gaesti Compressor for domestic refrigerators
US5252039A (en) * 1991-02-05 1993-10-12 Matsushita Refrigeration Co. Enclosed motor-driven compressor
US5322419A (en) * 1989-10-06 1994-06-21 Arctic S.A. Compressor for domestic refrigerators
US5468360A (en) * 1993-09-09 1995-11-21 David; Lennie F. Electrolytic chlorination
US5538404A (en) * 1992-10-25 1996-07-23 Bristol Compressors, Inc. Compressor unit shell construction
AU672518B2 (en) * 1993-09-09 1996-10-03 Clearwater Australia Pty Limited Electrolytic chlorination
US6401472B2 (en) * 1999-04-22 2002-06-11 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor apparatus
US20020109420A1 (en) * 2001-01-15 2002-08-15 Hiroshi Matsunaga Hermetic motor-driven compressor
WO2003089793A1 (en) * 2002-04-16 2003-10-30 Lg Electronics Inc. Structure for reducing refrigerant flow loss in compressor
US20040189429A1 (en) * 2003-03-28 2004-09-30 Saban Daniel M. Liquid-cooled inductive devices with interspersed winding layers and directed coolant flow
US20040223854A1 (en) * 2000-12-01 2004-11-11 Tomell Phillip A. Reciprocating piston compressor having improved noise attenuation
US20060275150A1 (en) * 2005-05-23 2006-12-07 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor
US20070297925A1 (en) * 2005-05-12 2007-12-27 Jianping Zhong Integrated electric motor driven compressor
US20090195092A1 (en) * 2008-01-31 2009-08-06 Gagnon Gilles D Winding end turn cooling in an electric machine
US20090285702A1 (en) * 2005-12-28 2009-11-19 Daikin Industries, Ltd. Compressor
US20100119388A1 (en) * 2007-05-31 2010-05-13 Helmut Zeinlinger Coolant Compressor
US20100156205A1 (en) * 2007-08-24 2010-06-24 Sunco Investments Ltd. Multistage variable reluctance motor/generator
CN101832252A (en) * 2010-05-05 2010-09-15 奉化市天风汽车空压机有限公司 Energy-saving automobile water-cooling air compressor
US20100237725A1 (en) * 2007-11-09 2010-09-23 Kazutaka Tatematsu Rotating electric machine and drive device
US20110057523A1 (en) * 2009-09-07 2011-03-10 Yong Bin Li Brushless motor
US20120107151A1 (en) * 2009-06-26 2012-05-03 Mitsubishi Electric Corporation Refrigerant compressor
US8937413B2 (en) 2012-10-09 2015-01-20 Chrysler Group Llc Electric motor with coolant shield assembly
WO2016132061A1 (en) * 2015-02-19 2016-08-25 Valeo Equipements Electriques Moteur Electrical rotating machine with optimised cooling
CN106716785A (en) * 2014-10-13 2017-05-24 比泽尔制冷设备有限公司 Compressor
US20170328359A1 (en) * 2014-11-27 2017-11-16 Provtagaren Ab Pump control for low flow volumes
US11125233B2 (en) 2019-03-26 2021-09-21 Emerson Climate Technologies, Inc. Compressor having oil allocation member
US11680568B2 (en) 2018-09-28 2023-06-20 Emerson Climate Technologies, Inc. Compressor oil management system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435108A (en) * 1943-12-18 1948-01-27 Tecumseh Refrigeration Sales A Refrigeration compressor
US3075106A (en) * 1961-03-09 1963-01-22 Gen Electric Dynamoelectric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435108A (en) * 1943-12-18 1948-01-27 Tecumseh Refrigeration Sales A Refrigeration compressor
US3075106A (en) * 1961-03-09 1963-01-22 Gen Electric Dynamoelectric machine

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922114A (en) * 1974-07-19 1975-11-25 Dunham Bush Inc Hermetic rotary helical screw compressor with improved oil management
DE2617369A1 (en) * 1976-04-21 1977-11-03 Danfoss As ENCLOSED MOTOR COMPRESSOR FOR REFRIGERATION MACHINES
US4388756A (en) * 1978-10-25 1983-06-21 General Electric Company Methods of making improved rotor assembly
US4396361A (en) * 1979-01-31 1983-08-02 Carrier Corporation Separation of lubricating oil from refrigerant gas in a reciprocating compressor
US4384635A (en) * 1980-06-11 1983-05-24 Tecumseh Products Company Continuous curvature noise suppressing compressor housing
FR2493490A1 (en) * 1980-07-18 1982-05-07 Aspera Spa IMPROVEMENT IN HERMETIC COMPRESSORS FOR REFRIGERATING FLUIDS
US4478559A (en) * 1980-07-18 1984-10-23 Aspera S.P.A. Compressor with ducted crankshaft having a grooved end for oil distribution
US4370104A (en) * 1980-07-22 1983-01-25 White Consolidated Industries, Inc. Suction muffler for refrigeration compressor
EP0179799A1 (en) * 1984-04-30 1986-05-07 Beckman Instruments Inc Centrifugal oil pump flow proportioning and cooling system.
EP0179799A4 (en) * 1984-04-30 1988-06-08 Beckman Instruments Inc Centrifugal oil pump flow proportioning and cooling system.
US5322419A (en) * 1989-10-06 1994-06-21 Arctic S.A. Compressor for domestic refrigerators
US5228843A (en) * 1989-10-06 1993-07-20 Intreprinderea De Frigidere Gaesti Compressor for domestic refrigerators
US5101931A (en) * 1990-05-23 1992-04-07 Copeland Corporation Discharge muffler and method
US5222874A (en) * 1991-01-09 1993-06-29 Sullair Corporation Lubricant cooled electric drive motor for a compressor
US5252039A (en) * 1991-02-05 1993-10-12 Matsushita Refrigeration Co. Enclosed motor-driven compressor
US5538404A (en) * 1992-10-25 1996-07-23 Bristol Compressors, Inc. Compressor unit shell construction
US5468360A (en) * 1993-09-09 1995-11-21 David; Lennie F. Electrolytic chlorination
AU672518B2 (en) * 1993-09-09 1996-10-03 Clearwater Australia Pty Limited Electrolytic chlorination
US6401472B2 (en) * 1999-04-22 2002-06-11 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor apparatus
US20040223854A1 (en) * 2000-12-01 2004-11-11 Tomell Phillip A. Reciprocating piston compressor having improved noise attenuation
US7210912B2 (en) * 2000-12-01 2007-05-01 Tecumseh Products Company Reciprocating piston compressor having improved noise attenuation
US6680550B2 (en) * 2001-01-15 2004-01-20 Matsushita Electric Industrial Co., Ltd. Hermetic motor-driven compressor
US20020109420A1 (en) * 2001-01-15 2002-08-15 Hiroshi Matsunaga Hermetic motor-driven compressor
WO2003089793A1 (en) * 2002-04-16 2003-10-30 Lg Electronics Inc. Structure for reducing refrigerant flow loss in compressor
US20040189429A1 (en) * 2003-03-28 2004-09-30 Saban Daniel M. Liquid-cooled inductive devices with interspersed winding layers and directed coolant flow
US7075399B2 (en) * 2003-03-28 2006-07-11 Hamilton Sunstrand Corporation Liquid-cooled inductive devices with interspersed winding layers and directed coolant flow
US20070297925A1 (en) * 2005-05-12 2007-12-27 Jianping Zhong Integrated electric motor driven compressor
US7759828B2 (en) * 2005-05-12 2010-07-20 Sullair Corporation Integrated electric motor driven compressor
US20060275150A1 (en) * 2005-05-23 2006-12-07 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor
US8317489B2 (en) * 2005-05-23 2012-11-27 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor
US20090285702A1 (en) * 2005-12-28 2009-11-19 Daikin Industries, Ltd. Compressor
US20100119388A1 (en) * 2007-05-31 2010-05-13 Helmut Zeinlinger Coolant Compressor
US8575816B2 (en) * 2007-05-31 2013-11-05 Acc Austria Gmbh Coolant compressor
US8310124B2 (en) 2007-08-24 2012-11-13 Sunco Investments Limited Multistage variable reluctance motor/generator
US8138652B2 (en) 2007-08-24 2012-03-20 Sunco Investments Limited Multistage variable reluctance motor/generator
US20100156205A1 (en) * 2007-08-24 2010-06-24 Sunco Investments Ltd. Multistage variable reluctance motor/generator
US20100237725A1 (en) * 2007-11-09 2010-09-23 Kazutaka Tatematsu Rotating electric machine and drive device
US8242646B2 (en) * 2007-11-09 2012-08-14 Toyota Jidosha Kabushiki Kaisha Rotating electric machine and drive device
US20090195092A1 (en) * 2008-01-31 2009-08-06 Gagnon Gilles D Winding end turn cooling in an electric machine
US8198762B2 (en) * 2008-01-31 2012-06-12 Pratt & Whitney Canada Corp. Winding end turn cooling in an electric machine
US20120107151A1 (en) * 2009-06-26 2012-05-03 Mitsubishi Electric Corporation Refrigerant compressor
US8753098B2 (en) * 2009-06-26 2014-06-17 Mitsubishi Electric Corporation Refrigerant compressor
US20110057523A1 (en) * 2009-09-07 2011-03-10 Yong Bin Li Brushless motor
US8415843B2 (en) * 2009-09-07 2013-04-09 Johnson Electric S.A. Brushless motor
CN102013780B (en) * 2009-09-07 2014-03-12 德昌电机(深圳)有限公司 Miniature brushless motor
CN101832252A (en) * 2010-05-05 2010-09-15 奉化市天风汽车空压机有限公司 Energy-saving automobile water-cooling air compressor
US8937413B2 (en) 2012-10-09 2015-01-20 Chrysler Group Llc Electric motor with coolant shield assembly
CN106716785A (en) * 2014-10-13 2017-05-24 比泽尔制冷设备有限公司 Compressor
US20170222520A1 (en) * 2014-10-13 2017-08-03 Bitzer Kuehlmaschinenbau Gmbh Compressor
US10374488B2 (en) * 2014-10-13 2019-08-06 Bitzer Kuehlmaschinenbau Gmbh Compressor
CN106716785B (en) * 2014-10-13 2020-06-23 比泽尔制冷设备有限公司 Compressor with a compressor housing having a plurality of compressor blades
US20170328359A1 (en) * 2014-11-27 2017-11-16 Provtagaren Ab Pump control for low flow volumes
JP2018503764A (en) * 2014-11-27 2018-02-08 プロフタガレン アクチエボラグProvtagaren Ab Low flow pump control
FR3033098A1 (en) * 2015-02-19 2016-08-26 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE WITH OPTIMIZED COOLING
WO2016132061A1 (en) * 2015-02-19 2016-08-25 Valeo Equipements Electriques Moteur Electrical rotating machine with optimised cooling
US11680568B2 (en) 2018-09-28 2023-06-20 Emerson Climate Technologies, Inc. Compressor oil management system
US11125233B2 (en) 2019-03-26 2021-09-21 Emerson Climate Technologies, Inc. Compressor having oil allocation member

Also Published As

Publication number Publication date
TR17461A (en) 1975-07-23
ES397470A1 (en) 1974-06-01
CA948164A (en) 1974-05-28
FR2115995A5 (en) 1972-07-07
NL7116019A (en) 1972-06-01
BR7107827D0 (en) 1973-06-12
BE775928A (en) 1972-05-26
AU3564771A (en) 1973-05-17
GB1370921A (en) 1974-10-16
DE2159099A1 (en) 1972-06-15
IT946242B (en) 1973-05-21
DK139599B (en) 1979-03-12

Similar Documents

Publication Publication Date Title
US3663127A (en) Hermetic compressor oil cooling system
KR840001587B1 (en) Two-speed refrigerant motor compressor
US3285504A (en) Refrigerant apparatus
US4576555A (en) Oil dispersing device
US3584980A (en) Two-speed compressor
KR880001486B1 (en) Refrigeration compressor
US7631729B2 (en) Reciprocating electric compressor
US6411000B1 (en) Motor with a cooling means
JPS6310313B2 (en)
CA2090381C (en) Horizontal rotary compressor
CN102996453A (en) Electric compressor
US3049285A (en) Refrigerating apparatus
US4743176A (en) Gas flow system for a compressor
EP1139549A2 (en) Sealed motor compressor
US3836290A (en) Motor compressor unit
US3311292A (en) Comprbssoe lubrication during reverse rotation
US4358254A (en) Variable capacity compressor
JPH03225098A (en) Vertical rotor structure of hermetic com- pressor
US11784525B2 (en) Compressor
CA1216832A (en) Oil cooled, hermetic refrigerant compressor
US4252506A (en) Variable capacity compressor
US3560116A (en) Enclosed motor-compressor,particularly a small refrigerating machine
US7993114B2 (en) Electric compressor
US3295753A (en) Refrigerating apparatus
US1967033A (en) Refrigerating apparatus