WO2007074509A1 - Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法 - Google Patents

Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法 Download PDF

Info

Publication number
WO2007074509A1
WO2007074509A1 PCT/JP2005/023869 JP2005023869W WO2007074509A1 WO 2007074509 A1 WO2007074509 A1 WO 2007074509A1 JP 2005023869 W JP2005023869 W JP 2005023869W WO 2007074509 A1 WO2007074509 A1 WO 2007074509A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight line
tcp
angle
connection terminal
handling device
Prior art date
Application number
PCT/JP2005/023869
Other languages
English (en)
French (fr)
Inventor
Masataka Onozawa
Masayoshi Ichikawa
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to PCT/JP2005/023869 priority Critical patent/WO2007074509A1/ja
Priority to JP2007551823A priority patent/JP4926075B2/ja
Priority to CNA2005800524398A priority patent/CN101346635A/zh
Priority to TW095148414A priority patent/TW200730844A/zh
Publication of WO2007074509A1 publication Critical patent/WO2007074509A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station

Definitions

  • the present invention is manufactured using TCP (Tape Carrier Package) and COF (Chip On Film) (hereinafter, TCP, COF, and other TAB (Tape Automated Bonding) mounting technologies, which are one type of IC device.
  • TCP Transmission Carrier Package
  • COF Chip On Film
  • TAB Tape Automated Bonding
  • a test apparatus for TCP is generally composed of a tester body, a test head, and a TCP handling apparatus (hereinafter sometimes referred to as “TCP handler”).
  • TCP handler transports a carrier tape on which multiple TCPs are formed on a tape (including the concept of film; the same shall apply hereinafter) and carries the carrier to the probe card probe that is electrically connected to the test head.
  • This TCP handler transports a carrier tape on which multiple TCPs are formed on a tape (including the concept of film; the same shall apply hereinafter) and carries the carrier to the probe card probe that is electrically connected to the test head.
  • the TCP handler should be connected in advance to ensure that the TCP test pad and each probe of the probe card can be contacted before performing a test in actual operation.
  • the initial settings are made for, and the settings are registered.
  • the initial setting of the TCP handler is performed as follows, for example. First, transport the TCP to the test position and hold the transported TCP with the pusher unit. And TCP depends on the camera Move the pusher unit to a height where it can be clearly recognized, take a picture of the TCP test pad with the camera, and display the image on the monitor. The operator looks at the monitor and visually grasps the rotation angle of the TCP. Next, in order to clearly recognize the probe of the probe card by the camera, the TCP moves the pusher unit to a height that cannot be clearly recognized by the camera, and then the probe of the probe card is photographed by the camera and the image is taken. Display on the monitor.
  • the operator While watching the monitor, the operator manually rotates the probe card stage to adjust the probe card rotation angle with respect to the TCP rotation angle. Then, the push unit is moved to a height where the TCP can be clearly recognized by the camera together with the probe. While watching the monitor, the operator manually moves the probe card stage in the X-axis and Z- or Y-axis directions to check whether all the TCP test pads can contact the probe on the probe card. The position set in this way is registered as the initial setting.
  • TCP test pads have become smaller and narrower, making it difficult to align the pad and probe in the initial setting. As a result, the initial setting time is long.
  • TCP and probe may not always be aligned correctly. This may cause problems such as out of contour failure, unstable contact resistance, short circuit between adjacent pins, etc. during actual operation. It may occur. [0009]
  • the present invention has been made in view of such a situation, and a TCP handling device capable of accurately and easily aligning the contact terminal of the contact portion and the external terminal of the TCP, It is another object of the present invention to provide a method capable of accurately and easily performing alignment processing on a TCP handling device.
  • the present invention conveys a carrier tape on which a plurality of TCPs are formed to a plurality of connection terminals of a contact portion electrically connected to a test head.
  • a TCP handling device capable of sequentially applying a plurality of TCPs to a test by pressing a carrier tape and connecting an external terminal of the TCP to the connection terminal, wherein the contact unit includes the plurality of connection terminals.
  • a moving device that can move the device around the plane direction and the vertical axis, and an imaging device that can take an image of the external terminal of the TCP under test and the connection terminal.
  • the external terminal of the TCP under test is imaged to obtain the coordinate data of the external terminal, and the connection terminal is imaged to obtain the coordinate data of the connection terminal, and the external terminal coordinate data is acquired. Then, from the coordinate data of the connection terminal, the amount of positional deviation between the external terminal and the connection terminal is obtained, and the contact unit is moved by the moving device based on the amount of positional deviation, and the external terminal of the TCP under test
  • the coordinate data force of the external terminal of the TCP to be aligned and the contact terminal of the contact portion is obtained, and the contact displacement is determined based on the displacement amount. Since the part can be moved automatically, alignment of the TCP external terminal and the contact terminal of the contact part can be performed accurately and easily. Therefore, when using a TCP handling device, the initial setting can be performed efficiently in a short time.
  • the coordinate data of the external terminal and the coordinate data of the connection terminal are obtained, and the position of the external terminal and the connection terminal around the vertical axis is obtained.
  • the amount of deviation is obtained, and based on the amount of positional deviation around the vertical axis, the moving device moves the contact portion around the vertical axis, and secondly, the coordinate data of the connection terminal is obtained again.
  • the positional displacement amount in the planar direction between the external terminal and the connection terminal is obtained and the contact unit is moved in the planar direction by the moving device based on the positional displacement amount in the planar direction.
  • the alignment between the TCP and the contact portion can be performed more accurately by sequentially performing the alignment around the vertical axis and the alignment in the plane direction separately. .
  • the amount of positional deviation around the vertical axis between the external terminal and the connection terminal is the angle of the first straight line obtained from coordinate data of two or more locations of the external terminal. It can be obtained from the difference between the angle and the angle of the second straight line obtained from the coordinate data at two or more locations of the connection terminal (Invention 3).
  • the TCP handling device further includes a display device and can display the first straight line and Z or the second straight line on the display device.
  • the first straight line and the Z or second straight line are displayed on the display device, whereby the positional deviation around the vertical axis can be visually confirmed.
  • the first straight line can be overlaid on the display device and overlaid on the image of the external terminal photographed by the imaging device (Invention 5).
  • the second straight line can be superimposed on the image of the connection terminal photographed by the imaging device and displayed on the display device (Invention 6).
  • a value of a difference between the angle of the first straight line and the angle of the second straight line can be displayed on the display device (Invention 7).
  • the amount of positional deviation about the vertical axis can be visually expressed as a numerical value. Can be confirmed.
  • the contact portion is moved around the vertical axis, and the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value.
  • the contact portion is moved around a vertical axis, and the difference between the angle of the first straight line and the angle of the second straight line is larger than a predetermined value. It is preferable to emit a notification sound when the volume is reduced (Invention 9). According to this invention (Invention 9), even when the operator is not looking at the display device, it is possible to visually confirm that the alignment around the vertical axis has been completed.
  • the TCP handling device further includes an imaging device moving device capable of moving the imaging device, and the imaging device is moved by the imaging device moving device.
  • an imaging device moving device capable of moving the imaging device, and the imaging device is moved by the imaging device moving device.
  • the imaging device can take images of a plurality of parts far from and located at the external terminals and a plurality of parts far from each other in the connection terminals, The amount of displacement can be determined with better accuracy, and the alignment between the TCP and the contact portion can be performed more accurately.
  • the TCP handling device further includes a movable diffusion reflecting plate, and the connection terminal is used when photographing the connection terminal of the contact portion. It is preferable to insert the diffusive reflector between the carrier tape and the carrier tape (Invention 11). According to the powerful invention (Invention 11), the high-contrast connection terminal image can be obtained by using the diffuse reflector as the background, so that the coordinate data of the connection terminal can be obtained with good accuracy. , TCP and contact can be aligned more accurately.
  • the present invention conveys a carrier tape on which a plurality of TCPs are formed, presses the carrier tape against a plurality of connection terminals of a contact portion electrically connected to the test head, and A TCP handling device capable of sequentially attaching a plurality of TCPs to a test by connecting a terminal to the connection terminal, an imaging device capable of photographing the external terminal of the TCP under test and the connection terminal;
  • the contact portion having the plurality of connection terminals is movable in the plane direction and the vertical axis, and is provided at two locations of the external terminals of the TCP under test by the imaging device.
  • a TCP handling device is provided that can display a second straight line obtained from a target data cover on the display device (Invention 12).
  • the operator can move the contact portion around the vertical axis while viewing the first straight line and the Z or second straight line displayed on the display device. It is possible to accurately and easily align the TCP and the contact portion around the vertical axis.
  • the first straight line can be overlaid on the display device and superimposed on the image of the external terminal photographed by the imaging device (Invention 13),
  • the second straight line can be overlaid on the display device and superimposed on the image of the connection terminal photographed by the imaging device (Invention 14).
  • an inclination angle and Z or a coordinate value of a predetermined point of the first straight line and Z or the second straight line can be further displayed on the display device.
  • the operator can align the TCP and the contact part based on the tilt angle and the Z or coordinate value displayed on the display device. TCP and contact can be aligned more accurately and easily.
  • a value of a difference between the angle of the first straight line and the angle of the second straight line can be displayed on the display device (Invention 16).
  • the operator by displaying the value of the difference between the angles of the two straight lines, the operator can adjust the alignment between the TCP and the contact portion so that the value approaches 0 (d eg). And the alignment can be performed more accurately and easily.
  • the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value by moving the contact portion around a vertical axis.
  • the powerful invention (Invention 17) by changing the colors of the first straight line and the Z or second straight line, the operator can visually recognize that the correction of the positional deviation around the vertical axis has been completed. Therefore, alignment of TCP and contact part Can be performed more easily.
  • the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value by moving the contact portion around a vertical axis.
  • a notification sound Invention 18
  • the operator can visually confirm that the correction of the positional deviation around the vertical axis has been completed. Matching can be performed more easily.
  • the TCP handling device further includes an imaging device moving device capable of moving the imaging device, and the imaging device is moved by the imaging device moving device.
  • an imaging device moving device capable of moving the imaging device
  • the imaging device is moved by the imaging device moving device.
  • the imaging device can take images of a plurality of parts located far from the external terminals and a plurality of parts located far from the connection terminals, the first straight line and the second line The angle of the straight line can be obtained more accurately, and the alignment between the TCP and the contact portion can be performed more accurately.
  • the TCP handling device further includes a movable diffusion reflection plate, and when the connection terminal of the contact portion is photographed, the connection terminal and the carrier It is preferable to insert the diffuse reflector between the tape (Invention 20).
  • a high-contrast connection terminal image can be obtained by using the diffuse reflector as a background, so the angle of the second straight line can be obtained more accurately.
  • the TCP and the contact part can be aligned more accurately.
  • the present invention conveys a carrier tape on which a plurality of TCPs are formed, presses the carrier tape against a plurality of connection terminals of a contact portion electrically connected to the test head, and By connecting a terminal to the connection terminal, a plurality of TCPs can be sequentially subjected to a test.
  • a method for aligning connection terminals in a TCP handling device which includes firstly the coordinate data of the external terminal and the connection terminal.
  • connection terminal 21 To obtain a positional deviation amount around the vertical axis between the external terminal and the connection terminal, and based on the positional deviation amount around the vertical axis, move the contact portion around the vertical axis, Second, The coordinate data of the connection terminal is obtained again, the amount of positional deviation in the plane direction between the external terminal and the connection terminal is obtained, and the contact portion is moved in the plane direction based on the amount of positional deviation in the plane direction.
  • a method for aligning connection terminals characterized by being moved (Invention 21).
  • the present invention conveys a carrier tape on which a plurality of TCPs are formed, presses the carrier tape against a plurality of connection terminals of a contact portion electrically connected to the test head, and A connection method of a connection terminal in a TCP handling device capable of sequentially attaching a plurality of TCPs to a test by connecting the terminal to the connection terminal, and acquiring the coordinate data of the external terminal and the coordinate data of the connection terminal Then, the amount of positional deviation about the vertical axis and the amount of positional deviation in the plane direction between the external terminal and the connection terminal are obtained, and the contact portion is moved about the vertical axis based on the amount of positional deviation. And a method of aligning the connecting terminals, characterized in that they are moved in the Z or plane direction (Invention 22).
  • the amount of positional deviation about the vertical axis between the external terminal and the connection terminal is a first straight line obtained from coordinate data of two or more locations of the external terminal. It is preferable to obtain from the difference between the angle of the line and the angle of the second straight line obtained from the coordinate data of two or more positions of the connection terminal (Invention 23).
  • the first straight line and the second straight line are displayed on a display device, and the contact portion is moved around a vertical axis so that the angle of the first straight line
  • the difference between the angle of the second straight line and the angle of the second straight line is smaller than a predetermined value, it is preferable to change the color of the first straight line and Z or the second straight line displayed on the display device.
  • the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value by moving the contact portion around a vertical axis. Sometimes it is preferable to emit a notification sound (Invention 26).
  • the present invention conveys a carrier tape on which a plurality of TCPs are formed, presses the carrier tape against a plurality of connection terminals of a contact portion electrically connected to the test head, and By connecting a terminal to the connection terminal, a plurality of TCPs can be sequentially subjected to a test.
  • This is a method for aligning connection terminals in a TCP handling device, which uses an imaging device to connect two or more external terminals of the TCP under test. Captured and acquired coordinate data force of the external terminal The first straight line obtained is displayed on a display device, two or more locations of the connection terminal are captured by the imaging device, and the acquired coordinate data of the connection terminal is obtained.
  • the obtained second straight line is displayed on the display device together with the first straight line, so that the operator can see the first straight line and the second straight line displayed on the display device.
  • the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value by moving the contact portion around a vertical axis.
  • the difference between the angle of the first straight line and the angle of the second straight line becomes smaller than a predetermined value by moving the contact portion around a vertical axis. Sometimes it is preferable to emit a notification sound (Invention 31).
  • the TCP handling device or the connection terminal alignment method of the present invention it is possible to accurately and easily align the contact terminal of the contact portion and the external terminal of the TCP. Can do.
  • FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention.
  • FIG. 2 is a side view of the pusher unit in the TCP handler according to the embodiment.
  • FIG. 3 is a plan view of a pusher stage in the TCP handler according to the embodiment.
  • FIG. 4 is a plan view of the probe card stage in the TCP handler according to the embodiment.
  • FIG. 5 is a front view of the probe card stage in the TCP handler according to the embodiment.
  • FIG. 6A is a flowchart (part 1) showing an operation at the time of initial setting of the TCP handler according to the embodiment.
  • FIG. 6B is a flowchart (No. 2) showing the operation at the time of initial setting of the TCP handler according to the embodiment.
  • FIG. 6C is a flowchart (part 3) showing the operation at the time of initial setting of the TCP handler according to the embodiment.
  • FIGS. 7A to 7G are schematic views of a monitor display screen at the time of initial setting of the TCP handler according to the embodiment.
  • FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention
  • FIG. 2 is a side view of a pusher unit in the TCP handler according to the embodiment
  • FIG. 4 is a plan view of a pusher stage in the TCP handler according to the embodiment
  • FIG. 4 is a plan view of a probe card stage in the TCP handler according to the embodiment
  • FIG. 5 is a TCP handler according to the embodiment. 2 is a front view of the probe card stage in FIG.
  • the TCP test apparatus 1 includes a tester main body (not shown), a test head 10 electrically connected to the tester main body, and a TCP handler 2 provided on the upper side of the test head 10.
  • the TCP handler 2 sequentially applies a plurality of TCPs formed on the carrier tape 5 to the test.
  • the TCP handler 2 is attached to each test. Let's say.
  • the present invention is not limited to this, and a plurality of TCPs arranged in the series direction and in the Z or parallel direction on the carrier tape 5 may be simultaneously subjected to the test.
  • the TCP handler 2 includes a feed reel 21 and a take-up reel 22, on which the carrier tape 5 before the test is wound.
  • the carrier tape 5 is also unwound on the take-up reel 21 and is taken up on the take-up reel 22 after being subjected to the test.
  • the space between the take-out reel 21 and the take-up reel 22 is the three spacer rolls 23a, which span the protective tape 51 peeled off from the carrier tape 5 from the take-out reel 21 to the take-up reel 22.
  • 23b and 23c are provided. Each of the spacer rolls 23a, 23b, 23c is movable up and down so that the tension of the protective tape 51 can be adjusted.
  • a tape guide 24a On the lower side of the feeding reel 21, a tape guide 24a, a feeding limit roller 25a, an in-side sub sprocket 25b and an in-side guide roller 25c are provided. While being guided by the tape guide 24a, the carrier tape 5 is conveyed to the pusher unit 3 through the squeeze limit roller 25a, the in-side sub sprocket 25b, and the in-side guide roller 25c.
  • a tape guide 24b, a take-off limit roller 25f, an out-side sub sprocket 25e, and an out-side guide roller 25d are provided on the lower side of the take-up reel 22, and the carrier tape 5 after being subjected to the test 5 Is wound around the take-up reel 22 while being guided by the tape guide 24b via the out-side guide roller 25d, the out-side sub-sprocket 25e and the take-up limit roller 25f.
  • a push unit 3 is provided between the in-side guide roller 25c and the out-side guide roller 25d.
  • a servo motor 31 capable of rotating a ball screw 32 is attached to a frame (pusher frame) 36 of the pusher unit 3 via a bracket 361.
  • a pusher body 33 to which the ball screw 32 is screwed is attached via two linear motion guides (hereinafter referred to as “LM guides”) 37 in the Z-axis direction.
  • the pusher body 33 is movable in the vertical direction (Z-axis direction) while being guided by the re-motion guide 37 by driving the servo motor 31.
  • a suction plate 34 that is connected to a negative pressure source (not shown) and can hold the carrier tape 5 by suction.
  • a tension sprocket 35a is provided on the front side of the pusher body 33 (left side in FIG. 1), and a main sprocket 35b is provided on the rear side of the pusher body 33 (right side in FIG. 1).
  • the carrier tape 5 is held with a desired tension.
  • a pusher stage 4 is installed on the back surface side of the pusher body 33 in the pusher frame 36 so as to be placed on the base 38.
  • the top table 48 which is a rotating table, is fixed to the pusher frame 36.
  • a servo motor 41a that rotates a ball screw 42a having an axis in the X-axis direction
  • a servo motor 41b that rotates a ball screw 42b having an axis in the Y-axis direction
  • Servo motor 41c for rotating ball screw 42c having an axis in the Y-axis direction
  • servo motor 41b and servo motor 41c are positioned at both ends on base 40, respectively.
  • the ball screw 42a is screwed with a sliding block 44a that is guided by the LM guides 43a, 43a in the X-axis direction and is slidable in the X-axis direction.
  • a sliding plate 46a is attached to the sliding block 44a via a Y-axis LM guide 45a so as to be slidable in the Y-axis direction.
  • a rotating member 47a having a roller ring inside is fixed to the upper side of the sliding plate 46a, and the rotating member 47a is rotatably attached to the top table 48.
  • a sliding block 44b that is guided by LM guides 43b, 43b in the Y-axis direction and is slidable in the Y-axis direction is screwed into the ball screw 42b.
  • a sliding plate 46b is attached to the sliding block 44b through an LM guide 45b in the X-axis direction so as to be slidable in the X-axis direction.
  • a rotating member 47b having a roller ring inside is fixed to the upper side of the sliding plate 46b, and the rotating member 47b is rotatably attached to the top table 48.
  • the ball screw 42c is screwed with a sliding block 44c that is guided by LM guides 43c, 43c in the Y-axis direction and is slidable in the Y-axis direction.
  • a sliding plate 46c is attached to the sliding block 44c through an LM guide 45c in the X-axis direction so as to be slidable in the X-axis direction.
  • a rotating member 47c having a roller ring inside is fixed to the upper side of the sliding plate 46c, and the rotating member 47c is rotatably attached to the top table 48.
  • the servo motor 41a is driven to slide the sliding block 44a, the sliding plate 46b, and the sliding plate 46c in the X-axis direction.
  • the top table 48 can be moved in the X-axis direction.
  • the servo motor 41b and the servo motor 41c are driven, and the slide block 44b, the slide block 44c and the slide By sliding the plate 46a in the same direction as the Y axis, the top table 48 can be moved in the vertical direction.
  • the servo motor 41a is driven to slide the slide block 44a in the X-axis direction
  • the servo motor 41b and the servo motor 41c are driven to make the slide block 44b and the slide block 44c Y
  • the top table 48 can be rotated about its vertical axis by sliding in the opposite direction of the axis and rotating the rotating members 47a, 45b, 45c.
  • the pusher unit 3 can be moved in the X-axis and Y-axis directions and rotated around the vertical axis.
  • a probe card stage 7 on which a probe card 8 is mounted is installed below the pusher unit 3 and above the test head 10.
  • the probe card stage 7 includes a type that can be moved and controlled by a motor drive mechanism and a type that has only a manual adjustment function.
  • the probe card stage 7 has a motor drive mechanism.
  • a servo motor 711 for rotating a ball screw 712 having an axis in the X-axis direction, and four LMs in the X-axis direction Guide 713 is provided on the base 71 of the probe card stage 7.
  • a servo motor 711 for rotating a ball screw 712 having an axis in the X-axis direction, and four LMs in the X-axis direction Guide 713 is provided on these four LM guides 713.
  • rectangular X bases 72 are provided which are guided by the LM guides 713 so as to be slidable in the X-axis direction.
  • a threaded portion 721 into which a ball screw 712 is threaded is formed on one side of the X base 72.
  • a servo motor 722 for rotating a ball screw 723 having an axis in the Y-axis direction and two LM guides 724 in the Y-axis direction are provided on the X base 72.
  • a rectangular Y base 73 is provided that is slidably guided in the Y-axis direction by the LM guides 724.
  • a ball screw 723 is screwed to one side of the Y base 73 to form a screwed portion 731.
  • a servo motor 732 for rotating a ball screw 733 having an axis in the Y-axis direction, and a connection ring 734 for rotatably supporting the card ring 735 are provided on the Y base 73.
  • a part of the card ring 735 is formed with a threaded portion 736 into which a ball screw 733 is threaded.
  • the probe card 8 with multiple probes 81 is Removably attached to the card ring 735! /
  • each probe 81 of the probe card 8 is electrically connected to the tester body via the test head 10.
  • the X base 72 and hence the probe card 8 can be moved in the X-axis direction, and the servo motor 722 is driven.
  • the Y base 73 and thus the probe card 8 can be moved in the Y-axis direction.
  • the card ring 735 and the probe card 8 can be rotated around the vertical axis by driving the servo motor 732 to rotate the ball screw 733 and moving the screwing portion 736.
  • the TCP handler 2 is equipped with a control device that can automatically control the drive of the servo motors 711, 722, and 732, thereby automatically moving the probe card 8 around the X axis direction, the Y axis direction, and the vertical axis. Can be moved with.
  • the first camera 6a is on the front side of the pusher unit 3 (left side in FIG. 1)
  • the second camera (imaging device) 6b is on the lower side of the test head 10
  • the pusher unit 3 A third camera 6c is provided on the rear side (right side in Fig. 1).
  • the test head 10 is formed with a gap through which the second camera 6b can photograph the probe card 8.
  • a mark punch 26a and a reject punch 26b are provided between the pusher unit 3 and the third camera 6c. Based on the test results, the mark punch 26a has one or more holes in the specified position in the corresponding TCP, and the reject punch 26b is determined to be defective as a result of the test. It is something that punches out TCP.
  • Each camera 6a, 6b, 6c causes the display device 9 to display images taken by these cameras so that the operator can approve the images.
  • the first camera 6a and the third force camera 6c are for determining the presence or absence of TCP on the carrier tape 5 and the position and number of holes by the mark punch 26a.
  • the second camera 6b is for acquiring positional deviation information between the TCP and the probe card 8, and can acquire positional deviation information for a plurality of objects in the field of view.
  • the second camera 6b is mounted on the camera stage 61, and the vertical and horizontal directions (X-axis and Y-axis directions) and the vertical direction (Z-axis) are viewed by an actuator provided in the camera stage 61. It can move in the axial direction.
  • the second camera 6b moves in the vertical and horizontal directions (X-axis—Y-axis direction) in plan view, so that the second camera 6b is located at a position farther from the test pads P and the probe card 8 that are located farther away from the TCP Since the probe 81 can be photographed, the amount of positional deviation between the TCP and the probe card 8 can be obtained with better accuracy.
  • the second camera 6b moves in the vertical direction (Z-axis direction), thereby changing the focal position of the second camera 6b to focus on the desired part of the test pad P or the probe 81 that is the imaging target. be able to. As a result, a clear contour image of the imaging target region can be acquired, and the coordinate data of the test node P or the probe 81 can be accurately obtained.
  • the second camera 6b itself has a focus adjustment function, and can control the focus position of the second camera 6b externally to focus on the desired part of the test pad P or the probe 81 that is the imaging target. You may do it.
  • the display device 9 includes an image processing unit and a motor that displays an image captured by the second camera 6b.
  • the image processing unit has means for overlaying and displaying an image photographed by the second camera 6b and predetermined lines, characters, and the like on the monitor.
  • a diffusive reflecting plate 11 is detachably provided between the carrier tape 5 held by the suction plate 34 and the probe card 8.
  • the diffusive reflector 11 can reciprocate in the X-axis direction.
  • the diffuse reflector 11 has fine irregularities formed on the surface thereof, and can diffuse and reflect light from an illumination light source (not shown). Therefore, when the diffuse reflector 11 is inserted between the carrier tape 5 and the probe card 8, the background of the probe 81 can be made uniformly bright or dark, and the second camera 6b allows the probe 81 to High contrast images can be obtained.
  • the conditions of the irradiation light source irradiation light amount, irradiation color, irradiation angle
  • the discrimination power of the probe 81 against the background (test pad) is clear. Oh ,.
  • probe card 8 When using TCP handler 2, move probe card 8 so that all probes 81 of probe card 8 are positioned in the center of corresponding test pad P before operating TCP handler 2. It is necessary to make initial settings. Ie TC If the P type is changed, the TCP of a different production lot is tested, or the probe card 8 is changed, the TCP test pad P and the probe card 8 probe 81 should contact each other. The X-axis position of the probe card stage 7 Z-axis position Z ⁇ It is necessary to determine and register the reference position of the rotation angle (this position is called “registered position”). Since pusher stage 4 is used during TCP test execution, it is assumed that it remains in the uncontrolled state by default.
  • FIGS. 6A to 6C are flowcharts showing the initial setting operation of the TCP handler 2
  • FIGS. 7A to 7G are monitor display screens when the TCP handler 2 is initially set. It is a schematic diagram.
  • the TCP handler 2 transports the reference TCP to the test position (step S01), and the second camera 6b uses the second camera 6b to connect one end of many test pads P in the TCP. Photograph a plurality of positioned test pads P (step S02). Based on the captured image (first image), the image processing unit of the TCP handler 2 uses each coordinate data (X, Y) of the central portion of the plurality of test pads P included in the first image.
  • pdl dl is acquired and the first image is displayed on the monitor (see step S03, Fig. 7 (a)).
  • Each coordinate data obtained in this operation is mapped to the coordinate system of the camera stage 61.
  • the TCP handler 2 moves the second camera 6b by the camera stage 61, and the second camera 6b moves a plurality of TCPs located at different ends of the multiple test pads P in the TCP.
  • Photograph test pad P (step S04).
  • the image processing unit of the TCP handler 2 acquires coordinate data (X, Y) of each of the central portions of the plurality of test pads P included in the second image.
  • the second image is displayed as pd2 pd2
  • the image processing unit of the TCP handler 2 acquires the acquired coordinate data (X, Y) and (X, Y pdl pdl pd2 p
  • An angle ⁇ between a straight line passing through the position coordinates of the center of the test pad P included in the image (array of test pads P) and a straight line in the X-axis direction (horizontal line in FIG. 7) is calculated (step S06). And d
  • a first straight line L1 having the angle ⁇ is generated and the second image (current image) is displayed on the monitor.
  • the first straight line LI is overlaid and displayed (see step 07, Fig. 7 (b)).
  • the TCP handler 2 inserts the diffuse reflector 11 between the carrier tape 5 and the probe card 8 (step S08). Then, the second camera 6b is moved by the camera stage 61, and the plurality of probes 81 corresponding to the plurality of test pads P included in the first image are photographed by the second camera 6b (step S09). Based on the captured image (third image), the image processing unit of the TCP handler 2 acquires the coordinate data (X, Y) of each of the tip portions of the plurality of probes 81 included in the third image.
  • the third image is pbl bl
  • the TCP handler 2 moves the second camera 6b by the camera stage 61, and images the plurality of probes 81 corresponding to the plurality of test pads P included in the second image by the second camera 6b. (Step Sl l). Based on the captured image (fourth image), the image processing unit of TCP handler 2 obtains the coordinate data (X, Y) of each of the tips of the plurality of probes 81 included in the fourth image. And display the fourth image on the monitor. Pb2 pb2
  • Step SI 2 (Step SI 2).
  • the image processing unit of the TCP handler 2 acquires the acquired coordinate data (X, Y) and (X, Y pbl pbl pb2 p
  • the angle ⁇ between the straight line passing through the position coordinates of the tip of the probe 81 included in the image (arrangement of probes 81) and the straight line in the X-axis direction (horizontal line in FIG. 7) is calculated (step S13).
  • the first straight line L1 and the second straight line L2 are overlaid and displayed (see step S14, FIG. 7 (d)). In this way, by displaying the first straight line L1 and the second straight line L2 on the monitor, it is possible to visually confirm the amount of positional deviation around the vertical axis.
  • the TCP handler 2 determines the angle ⁇ of the first straight line L1 obtained in steps S06 and S13.
  • the difference value ⁇ between the angle ⁇ of d and the second straight line L2 is calculated (step S15). And If the absolute value of the obtained difference value ⁇ is larger than the predetermined value D (step S 16, Yes;), the TCP handler 2 rotates the probe card stage 7 based on the difference value ⁇ . (Step S17), when the absolute value of the difference value ⁇ is less than or equal to the predetermined value D (Step S18, Yes), the rotational movement of the probe card stage 7 is stopped (Step S19), and the second direct Change the color of line L2 (see step S20, Fig. 7 (e)).
  • step S16, No if the absolute value of the difference value ⁇ is less than or equal to the predetermined value D in step S16 (step S16, No), the color of the second straight line L2 is kept as it is without rotating the probe card stage 7. Is changed (step S20). In this way, by changing the color of the second straight line L2, it is possible to visually confirm on the monitor that the positional deviation around the vertical axis between the test pad P and the probe 81 has been corrected.
  • the TCP handler 2 moves the second camera 6b by the camera stage 61, and the plurality of probes 81 corresponding to the plurality of test pads P included in the first image by the second camera 6b. Is taken again (step S21). As a result, even if the probe card 8 moves around the vertical axis in step S17 and the target probe 81 is out of the field of view of the second camera 6b, it is possible to take an image again. Based on the captured image (fifth image), the image processing unit of the TCP handler 2 uses each coordinate data (X, Y) of the tip ends of the plurality of probes 81 included in the fifth image.
  • pb3 pb3 is acquired and the fifth image is overlaid on the first image and displayed on the monitor (see step S22, FIG. 7 (f)).
  • the TCP handler 2 moves the second camera 6b by the camera stage 61, and uses the second camera 6b to move the plurality of probes 81 corresponding to the plurality of test pads P included in the second image. Take another picture (step S23). Based on the captured image (sixth image), the image processing unit of the TCP handler 2 acquires the coordinate data (X, Y) of each of the tips of the plurality of probes 81 included in the sixth image.
  • the sixth image is displayed as an overlay on the monitor (see step S24, Fig. 7 (f)).
  • the TCP handler 2 uses the coordinate data (X, Y) of the two locations of the test pad P and pdl dl
  • the TCP handler 2 moves the probe card stage 7 in the X axis direction and the Z or Y axis direction based on the difference values ⁇ , ⁇ (Step S27), and the difference value ⁇ ,
  • the absolute value of ⁇ is less than or equal to the predetermined value P (Step S28, Yes)
  • the movement of the probe card stage 7 is stopped (see Step S29, Fig. 7 (g)), and the position of the probe force stage 7 is Register (step S30).
  • the absolute value of the difference values ⁇ and ⁇ is equal to or smaller than the predetermined value P in step S26 (No in step S26)
  • the position without moving the probe card stage 7 is registered (step S30). .
  • the TCP handler 2 leaves the diffuse reflector 11 between the carrier tape 5 and the probe card 8 (step S31), and ends the initial setting.
  • the alignment between the TCP test pad P and the probe 81 of the probe card 8 can be automatically performed. Positioning can be performed accurately and easily.
  • the alignment of the TCP test pad TCP and the probe 81 of the probe card 8 is performed by sequentially performing the alignment around the vertical axis and the alignment in the X-axis direction and the ⁇ -axis direction separately. Can be performed more accurately.
  • TCP handler that performs an initial setting for the alignment between the TCP test pad P and the probe 81 of the probe card 8 by manual operation.
  • the TCP handler according to the present embodiment has substantially the same configuration as the TCP handler 2 described above, but the servo motors 711, 722, and 732 that are the drive sources of the probe card stage 7 are driven by the operation of the operator. Alternatively, the servo motors 711, 722, and 732 may be omitted, and the probe card stage 7 may be operated by operating an operation rod or the like.
  • steps S01 to S15 are executed in the same manner as described above.
  • the TCP handler has an angle ⁇ of the first straight line L1 and a second straight line d
  • the TCP handler While observing the first straight line L1 and the second straight line L2 (see Fig. 7 (d)) displayed on the two lines, rotate the probe card stage 7 manually. [0090] Then, when the absolute value of the difference value ⁇ is equal to or smaller than the predetermined value D (step SlOl, Yes), the TCP handler changes the color of the second straight line L2 (step S102, FIG. 7 (e)). The operator confirms this and stops the rotational movement of the probe card stage 7. After step S102, the TCP handler leaves the diffusing reflector 11 between the carrier tape 5 and the probe card 8 (step S103).
  • the operator can move the probe card 8 around the vertical axis by a desired angular amount while viewing the first straight line L1 and the second straight line L2 displayed on the monitor. At the same time, it can be confirmed by changing the color of the second straight line L2 that the correction of the displacement of the probe card 8 around the vertical axis has been completed, so the TCP test pad P and the probe 81 of the probe card 8 Alignment around the vertical axis can be performed accurately, easily and quickly.
  • the correction of the positional deviation in the X-axis direction and the Z- or Y-axis direction by manual operation may be performed by the same method as before. Specifically, the pusher unit 3 is moved to a height at which the TCP can be clearly recognized by the second camera 6b together with the probe 81. The operator moves the probe card stage 7 in the X-axis direction and Z- or Y-axis direction by manual operation while looking at the monitor on which test pad P and probe 81 are displayed. Check if P can contact probe 81 of probe card 8. The position of the probe card stage 7 set in this way is registered (step S104), and the initial setting is completed.
  • the angle 0 and the first line L1 of the first line L1 are used together with or instead of the first line L1 and the second line L2.
  • the angle 0 of the straight line L2 is displayed numerically on the monitor, or the phase between both straight lines pd pb
  • the opposite angle (for example, the angle of the second straight line L2 with respect to the first straight line L1 when the first straight line L1 is used as a reference) may be displayed numerically (FIG. 7 (d), ( e)). Like this This makes it possible to visually confirm the amount of positional deviation between the TCP and the probe card 8 by means of numerical values.
  • the probe card stage 7 can be rotated and moved so that the angle ⁇ of the second straight line L2 approaches the value of the angle ⁇ pb p of the first straight line L1.
  • the probe card stage 7 When displaying the relative angle of the numerical value, the probe card stage 7 should be rotated so that the angle value approaches O (deg).
  • step S14 to S20 or S102 the coordinates of the center and both ends of the first straight line L1 and the second straight line L2 may be displayed numerically on the monitor. ! /, And the relative coordinate value between the two straight lines (for example, the central part of the first straight line L1 relative to the first straight line L1 and the central part of the second straight line L2 The coordinate values of both ends may be displayed numerically on the monitor. In this way, the amount of misalignment between the TCP and the probe card 8 can be visually confirmed by numerical values.
  • step S20 or S102 the angle 0 of the first straight line L1 and the second straight line L
  • a TCP handler 2 may be provided to display the external lighting device. By issuing an alert in this way, the operator can confirm that the alignment around the vertical axis has been completed.
  • the alignment of the TCP and the probe card 8 around the vertical axis and the alignment in the planar direction are performed separately, but the present invention is not limited to this. Both may be performed simultaneously. Specifically, acquired in steps S03 and S05 Coordinate data (X, Y) and (X, Y) of test pad P and pdl dl pd2 pd2 in steps S09 and S11
  • the amount of positional deviation around the straight axis and the amount of positional deviation in the X-axis and Y-axis directions are obtained, and based on these positional deviation amounts, the probe card stage 7 is moved around the vertical axis in the ZX-axis direction and ZY-axis direction.
  • the test pad P and the probe 81 may be aligned. As a result, the work time required to correct the misalignment between the TCP and the probe card 8 is shortened.
  • the present invention is extremely useful for accurately and easily aligning the contact terminal of the contact portion and the external terminal of the TCP at the initial setting of the TCP handling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 第2カメラ6bにより、被試験TCPのテストパッドPを撮影して当該テストパッドPの座標データを取得するとともに、プローブカード8のプローブ81を撮影して当該プローブ81の座標データを取得し、テストパッドPの座標データおよびプローブ81の座標データから、テストパッドPとプローブ81との位置ずれ量を求め、当該位置ずれ量に基づいてプローブカードステージ7によりプローブカード8を移動させ、被試験TCPのテストパッドPに対するプローブ81の位置合わせを自動的に行う。これにより、TCPのテストパッドPとプローブカード8のプローブ81との位置合わせを、正確にかつ容易に行うことができる。

Description

明 細 書
TCPハンドリング装置および TCPハンドリング装置における接続端子の 位置合わせ方法
技術分野
[0001] 本発明は、 ICデバイスの 1種である TCP (Tape Carrier Package)や COF (Chip On Film) (以下、 TCP、 COF、その他 TAB (Tape Automated Bonding)実装技術によつ て製造されたデバイスを纏めて「TCP」 t\、う。)を試験するのに用いられる TCPハン ドリング装置、および TCPハンドリング装置における接続端子の位置合わせ方法に 関するものである。
背景技術
[0002] ICデバイス等の電子部品の製造過程においては、最終的に製造された ICデバイ スやその中間段階にあるデバイス等の性能や機能を試験する電子部品試験装置が 必要であり、 TCPの場合には、 TCP用の試験装置が使用される。
[0003] TCP用の試験装置は、一般的にテスタ本体と、テストヘッドと、 TCPハンドリング装 置(以下「TCPハンドラ」という場合がある。)とから構成される。この TCPハンドラは、 テープ (フィルムの概念も含むものとする。以下同じ。)上に TCPが複数形成されたキ ャリアテープを搬送して、テストヘッドに電気的に接続されているプローブカードのプ ローブにキャリアテープを押圧し、 TCPのテストパッドをプローブにコンタクトさせるこ とにより、複数の TCPを順次試験に付す機能を備えている。
[0004] ところで、 TCPハンドラを使用して効率良く正確に試験を行うためには、 TCPのテス トパッドとプローブカードの各プローブとを確実にコンタクトさせることが必要である。
[0005] このようなことから、 TCPハンドラを使用する場合には、実稼動させて試験を行う前 に、 TCPのテストパッドとプローブカードの各プローブとを確実にコンタクトできるよう に、予め TCPハンドラについて初期設定を行い、その設定を登録する作業を行って いる。
[0006] TCPハンドラの初期設定は、例えば、次のように行われる。まず、 TCPを試験位置 まで搬送し、搬送した TCPをプッシャユニットで保持する。そして、 TCPがカメラによ つて明瞭に認識できる高さまでプッシャユニットを移動し、 TCPのテストパッドをカメラ で撮影し、その画像をモニターに表示する。オペレータは、モニターを見て、 TCPの 回転角を目視で把握する。次に、プローブカードのプローブをカメラによって明瞭に 認識するために、 TCPがカメラによって明瞭に認識できな 、高さまでプッシャユニット を移動してから、プローブカードのプローブをカメラで撮影し、その画像をモニターに 表示する。オペレータは、モニターを見ながら、マニュアル操作にてプローブカードス テージを回転させて、 TCPの回転角に対するプローブカードの回転角を調整する。 そして、 TCPがプローブとともにカメラによって明瞭に認識できる高さまでプッシャュ ニットを移動する。オペレータは、モニターを見ながら、マ-ユアル操作にてプローブ カードステージを X軸方向および Zまたは Y軸方向に移動して、 TCPの全てのテスト パッドがプローブカードのプローブと接触できるか確認する。このようにして設定した 位置を初期設定として登録する。
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記の初期設定方法では、 TCPの回転角の把握およびプローブ力 ードの回転角の調整は、オペレータの感覚によるものであるため、オペレータによつ ては多大な作業時間を要することがある。また、プローブカードの回転角を調整する ときに TCPのテストパッドがモニターに表示されないため、 TCPの回転角に対するプ ローブカードの回転角の調整は非常に難しいものとなっている。そして、 TCPの全て のテストパッドがプローブカードのプローブと接触できな!ヽ場合には、プッシャユニット の移動とプローブカードステージの回転を交互に繰り返し行う必要があり、その作業 は非常に煩雑である。
[0008] 特に、近年の TCPの多ピン化および小型化に伴い、 TCPのテストパッドが小さくか つ狭ピッチになっているため、初期設定におけるパッドとプローブとの位置合わせ作 業はより困難なものになっており、初期設定にかかる作業時間も長くなつている。また
、 TCPとプローブとの位置合わせを必ずしも正確に行うことができないことがあり、こ のようなことが原因で実稼動中にコンタ外不良、接触抵抗の不安定化、隣接ピン間 のショートなどが発生することもある。 [0009] 本発明は、このような実状に鑑みてなされたものであり、コンタクト部の接触端子と T CPの外部端子との位置合わせを正確にかつ容易に行うことができる TCPハンドリン グ装置、および TCPハンドリング装置にぉ 、て位置合わせ処理を正確にかつ容易に 行うことができる方法を提供することを目的とする。
課題を解決するための手段
[0010] 上記目的を達成するために、第 1に本発明は、 TCPが複数形成されたキャリアテー プを搬送して、テストヘッドに電気的に接続されているコンタクト部の複数の接続端子 にキャリアテープを押圧し、 TCPの外部端子を前記接続端子に接続させることにより 、複数の TCPを順次試験に付すことのできる TCPハンドリング装置であって、前記複 数の接続端子を備えているコンタクト部を、その平面方向および垂直軸回りに移動さ せることのできる移動装置と、被試験 TCPの外部端子および前記接続端子を撮影す ることのできる撮像装置とを備えており、前記撮像装置により、被試験 TCPの外部端 子を撮影して当該外部端子の座標データを取得するとともに、前記接続端子を撮影 して当該接続端子の座標データを取得し、前記外部端子の座標データおよび前記 接続端子の座標データから、前記外部端子と前記接続端子との位置ずれ量を求め、 前記位置ずれ量に基づいて、前記移動装置により前記コンタクト部を移動させ、被試 験 TCPの外部端子に対する前記接続端子の位置合わせを行うことを特徴とする TC Pハンドリング装置を提供する (発明 1)。
[0011] 上記発明(発明 1)によれば、位置合わせの対象である TCPの外部端子およびコン タクト部の接触端子の座標データ力 これらの位置ずれ量を求め、その位置ずれ量 に基づいてコンタクト部を自動的に移動させることができるため、 TCPの外部端子と コンタクト部の接触端子との位置合わせを、正確にかつ容易に行うことができる。した がって、 TCPハンドリング装置を使用する際、その初期設定を短時間で効率良く行う ことができる。
[0012] 上記発明(発明 1)においては、第 1に、前記外部端子の座標データおよび前記接 続端子の座標データを取得して、前記外部端子と前記接続端子との垂直軸回りの位 置ずれ量を求め、当該垂直軸回りの位置ずれ量に基づいて、前記移動装置により前 記コンタクト部を垂直軸回りに移動させ、第 2に、再度前記接続端子の座標データを 取得して、前記外部端子と前記接続端子との平面方向の位置ずれ量を求め、当該 平面方向の位置ずれ量に基づいて、前記移動装置により前記コンタクト部を平面方 向に移動させることが好ましい (発明 2)。力かる発明(発明 2)によれば、垂直軸回り の位置合わせと平面方向の位置合わせとを、別々に順次行うことで、 TCPとコンタク ト部との位置合わせをより正確に行うことができる。
[0013] 上記発明(発明 1)においては、前記外部端子と前記接続端子との垂直軸回りの位 置ずれ量は、前記外部端子の 2箇所以上の座標データから得られる第 1の直線の角 度と、前記接続端子の 2箇所以上の座標データから得られる第 2の直線の角度との 差から求めることができる(発明 3)。
[0014] 上記発明(発明 3)においては、前記 TCPハンドリング装置は、表示装置をさらに備 えており、前記第 1の直線および Zまたは前記第 2の直線を前記表示装置に表示し 得ることが好ましい (発明 4)。かかる発明(発明 4)によれば、第 1の直線および Zまた は第 2の直線を表示装置に表示することで、垂直軸回りの位置ずれを視覚的に確認 することができる。
[0015] 上記発明(発明 4)においては、前記第 1の直線を、前記撮像装置で撮影した前記 外部端子の画像に重ねて前記表示装置にオーバーレイ表示し得ることが好ましく( 発明 5)、また、上記発明(発明 4)においては、前記第 2の直線を、前記撮像装置で 撮影した前記接続端子の画像に重ねて前記表示装置にオーバーレイ表示し得るこ とが好ましい (発明 6)。
[0016] 上記発明(発明 4)においては、前記第 1の直線の角度と前記第 2の直線の角度と の差の値を前記表示装置に表示し得ることが好ましい (発明 7)。かかる発明(発明 7) によれば、第 1の直線の角度と第 2の直線の角度との差の値を表示装置に表示する ことで、垂直軸回りの位置ずれの量を数値として視覚で確認することができる。
[0017] 上記発明(発明 4)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 前記表示装置に表示する前記第 1の直線および Zまたは前記第 2の直線の色を変 更することが好ましい (発明 8)。かかる発明(発明 8)によれば、垂直軸回りの位置ず れが補正されたことを表示装置により視覚的に確認することができる。 [0018] 上記発明(発明 4)にお 、ては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 通知音を発することが好ましい (発明 9)。かかる発明(発明 9)によれば、オペレータ が表示装置を見ていない場合であっても、垂直軸回りの位置合わせが完了したこと を聴覚で確認することができる。
[0019] 上記発明(発明 3)においては、前記 TCPハンドリング装置は、前記撮像装置を移 動させることのできる撮像装置移動装置をさらに備えており、前記撮像装置は、前記 撮像装置移動装置による移動により、前記外部端子の 2箇所以上および前記接続端 子の 2箇所以上を撮影することが好ましい (発明 10)。かかる発明(発明 10)によれば 、撮像装置が外部端子の互いに遠 、位置にある複数部位および接続端子の互いに 遠い位置にある複数部位を撮影することができるため、 TCPとコンタクト部との位置 ずれ量をより良好な精度で求めることができ、 TCPとコンタクト部との位置合わせをよ り正確に行うことができる。
[0020] 上記発明(発明 1)にお 、ては、前記 TCPハンドリング装置は、移動可能な拡散反 射板をさらに備えており、前記コンタクト部の接続端子を撮影するときに、前記接続端 子と前記キャリアテープとの間に前記拡散反射板を挿入することが好ま 、(発明 11 )。力かる発明(発明 11)によれば、拡散反射板を背景にすることで高コントラストな接 続端子の画像を得ることができるため、接続端子の座標データを良好な精度で取得 することができ、 TCPとコンタクト部との位置合わせをより正確に行うことができる。
[0021] 第 2に本発明は、 TCPが複数形成されたキャリアテープを搬送して、テストヘッドに 電気的に接続されているコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子を前記接続端子に接続させることにより、複数の TCPを順次試験に 付すことのできる TCPハンドリング装置であって、被試験 TCPの外部端子および前 記接続端子を撮影することのできる撮像装置と、表示装置とを備えており、前記複数 の接続端子を備えているコンタクト部は、その平面方向および垂直軸回りに移動可 能となっており、前記撮像装置により被試験 TCPの外部端子の 2箇所以上を撮影し て取得した前記外部端子の座標データから得られる第 1の直線および Zまたは前記 撮像装置により前記接続端子の 2箇所以上を撮影して取得した前記接続端子の座 標データカゝら得られる第 2の直線を、前記表示装置に表示し得ることを特徴とする TC Pハンドリング装置を提供する (発明 12)。
[0022] 上記発明(発明 12)によれば、オペレータは、表示装置に表示された第 1の直線お よび Zまたは第 2の直線を見ながらコンタクト部を垂直軸回りに移動することができる ため、 TCPとコンタクト部との垂直軸回りの位置合わせを正確かつ容易に行うことが できる。
[0023] 上記発明(発明 12)においては、前記第 1の直線を、前記撮像装置で撮影した前 記外部端子の画像に重ねて前記表示装置にオーバーレイ表示し得ることが好ましく (発明 13)、また、上記発明(発明 12)においては、前記第 2の直線を、前記撮像装 置で撮影した前記接続端子の画像に重ねて前記表示装置にオーバーレイ表示し得 ることが好ましい (発明 14)。
[0024] 上記発明(発明 12)においては、前記第 1の直線および Zまたは前記第 2の直線の 、傾き角度および Zまたは所定のポイントの座標数値をさらに前記表示装置に表示 し得るようにしてもよい (発明 15)。力かる発明(発明 15)によれば、オペレータは、表 示装置に表示された傾き角度および Zまたは座標数値をも基準にして、 TCPとコン タクト部との位置合わせを行うことができるため、 TCPとコンタクト部との位置合わせを より正確にかつ容易に行うことができる。
[0025] 上記発明(発明 12)においては、前記第 1の直線の角度と前記第 2の直線の角度と の差の値を前記表示装置に表示し得ることが好ましい (発明 16)。かかる発明(発明 1 6)によれば、両直線の角度の差の値を表示することで、オペレータは、その値を 0 (d eg)に近づけるようにして TCPとコンタクト部との位置合わせを行うことができ、当該位 置合わせをより正確にかつ容易に行うことができる。
[0026] 上記発明(発明 12)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 前記表示装置に表示する前記第 1の直線および Zまたは前記第 2の直線の色を変 更することが好ましい (発明 17)。力かる発明(発明 17)によれば、第 1の直線および Zまたは第 2の直線の色を変更することで、オペレータは垂直軸回りの位置ずれの 補正が終了したことを視認することができるため、 TCPとコンタクト部との位置合わせ をより容易に行うことができる。
[0027] 上記発明(発明 12)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 通知音を発することが好ましい (発明 18)。力かる発明(発明 18)によれば、通知音を 発することで、オペレータは垂直軸回りの位置ずれの補正が終了したことを聴覚で確 認することができるため、 TCPとコンタクト部との位置合わせをより容易に行うことがで きる。
[0028] 上記発明(発明 12)においては、前記 TCPハンドリング装置は、前記撮像装置を移 動させることのできる撮像装置移動装置をさらに備えており、前記撮像装置は、前記 撮像装置移動装置による移動により、前記外部端子の 2箇所以上および前記接続端 子の 2箇所以上を撮影することが好ましい (発明 19)。かかる発明(発明 19)によれば 、撮像装置が外部端子の互いに遠 、位置にある複数部位および接続端子の互いに 遠い位置にある複数部位を撮影することができるため、第 1の直線および第 2の直線 の角度をより正確に求めることができ、 TCPとコンタクト部との位置合わせをより正確 に行うことができる。
[0029] 上記発明(発明 12)においては、前記 TCPハンドリング装置は、移動可能な拡散反 射板をさらに備えており、前記コンタクト部の接続端子を撮影するときに、前記接続端 子と前記キャリアテープとの間に前記拡散反射板を挿入することが好ましい (発明 20 )。かかる発明(発明 20)によれば、拡散反射板を背景にすることで高コントラストな接 続端子の画像を得ることができるため、第 2の直線の角度をより正確に求めることがで き、 TCPとコンタクト部との位置合わせをより正確に行うことができる。
[0030] 第 3に本発明は、 TCPが複数形成されたキャリアテープを搬送して、テストヘッドに 電気的に接続されているコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子を前記接続端子に接続させることにより、複数の TCPを順次試験に 付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であつ て、第 1に、前記外部端子の座標データおよび前記接続端子の座標データを取得し て、前記外部端子と前記接続端子との垂直軸回りの位置ずれ量を求め、当該垂直 軸回りの位置ずれ量に基づいて、前記コンタクト部を垂直軸回りに移動させ、第 2に、 再度前記接続端子の座標データを取得して、前記外部端子と前記接続端子との平 面方向の位置ずれ量を求め、当該平面方向の位置ずれ量に基づいて、前記コンタ タト部を平面方向に移動させることを特徴とする接続端子の位置合わせ方法を提供 する (発明 21)。
[0031] また、本発明は、 TCPが複数形成されたキャリアテープを搬送して、テストヘッドに 電気的に接続されているコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子を前記接続端子に接続させることにより、複数の TCPを順次試験に 付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であつ て、前記外部端子の座標データおよび前記接続端子の座標データを取得して、前 記外部端子と前記接続端子との垂直軸回りの位置ずれ量および平面方向の位置ず れ量を求め、それらの位置ずれ量に基づいて、前記コンタクト部を垂直軸回りにおよ び Zまたは平面方向に移動させることを特徴とする接続端子の位置合わせ方法を提 供する (発明 22)。
[0032] 上記発明(発明 21, 22)においては、前記外部端子と前記接続端子との垂直軸回 りの位置ずれ量は、前記外部端子の 2箇所以上の座標データから得られる第 1の直 線の角度と、前記接続端子の 2箇所以上の座標データから得られる第 2の直線の角 度との差から求めることが好ま 、 (発明 23)。
[0033] 上記発明(発明 23)においては、前記第 1の直線の角度と前記第 2の直線の角度と の差の値を表示装置に表示することが好ましい (発明 24)。
[0034] 上記発明(発明 23)においては、前記第 1の直線および前記第 2の直線を表示装 置に表示し、前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と 前記第 2の直線の角度との差が所定値よりも小さくなつたときに、前記表示装置に表 示する前記第 1の直線および Zまたは前記第 2の直線の色を変更することが好まし い (発明 25)。
[0035] 上記発明(発明 23)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 通知音を発することが好まし 、 (発明 26)。
[0036] 上記発明(発明 21, 22)においては、前記コンタクト部の接続端子を撮影するとき に、前記接続端子と前記キャリアテープとの間に拡散反射板を挿入することが好まし い (発明 27)。
[0037] 第 4に本発明は、 TCPが複数形成されたキャリアテープを搬送して、テストヘッドに 電気的に接続されているコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子を前記接続端子に接続させることにより、複数の TCPを順次試験に 付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であつ て、撮像装置により被試験 TCPの外部端子の 2箇所以上を撮影し、取得した前記外 部端子の座標データ力 得られる第 1の直線を表示装置に表示し、撮像装置により 前記接続端子の 2箇所以上を撮影し、取得した前記接続端子の座標データカゝら得ら れる第 2の直線を前記第 1の直線とともに表示装置に表示し、もってオペレータは、 前記表示装置に表示されている前記第 1の直線および前記第 2の直線を見ながら前 記コンタクト部を垂直軸回りに移動させることができることを特徴とする接続端子の位 置合わせ方法を提供する (発明 28)。
[0038] 上記発明(発明 28)においては、前記第 1の直線の角度と前記第 2の直線の角度と の差の値を表示装置に表示することが好ましい (発明 29)。
[0039] 上記発明(発明 28)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 前記表示装置に表示する前記第 1の直線および Zまたは前記第 2の直線の色を変 更することが好ま U、 (発明 30)。
[0040] 上記発明(発明 28)においては、前記コンタクト部を垂直軸回りに移動させて、前記 第 1の直線の角度と前記第 2の直線の角度との差が所定値よりも小さくなつたときに、 通知音を発することが好ましい (発明 31)。
[0041] 上記発明(発明 28)においては、前記コンタクト部の接続端子を撮影するときに、前 記接続端子と前記キャリアテープとの間に拡散反射板を挿入することが好ましい (発 明 32)。
発明の効果
[0042] 本発明の TCPハンドリング装置または接続端子の位置合わせ方法によれば、コン タクト部の接触端子と TCPの外部端子との位置合わせを正確にかつ容易に行うこと ができる。
図面の簡単な説明
[0043] [図 1]図 1は、本発明の一実施形態に係る TCPハンドラを用いた TCP試験装置を示 す正面図である。
[図 2]図 2は、同実施形態に係る TCPハンドラにおけるプッシャユニットの側面図であ る。
[図 3]図 3は、同実施形態に係る TCPハンドラにおけるプッシャステージの平面図で ある。
[図 4]図 4は、同実施形態に係る TCPハンドラにおけるプローブカードステージの平 面図である。
[図 5]図 5は、同実施形態に係る TCPハンドラにおけるプローブカードステージの正 面図である。
[図 6A]図 6Aは、同実施形態に係る TCPハンドラの初期設定時の動作を示すフロー チャート図(その 1)である。
[図 6B]図 6Bは、同実施形態に係る TCPハンドラの初期設定時の動作を示すフロー チャート図(その 2)である。
[図 6C]図 6Cは、同実施形態に係る TCPハンドラの初期設定時の動作を示すフロー チャート図(その 3)である。
[図 7]図 7 (a)〜 (g)は、同実施形態に係る TCPハンドラの初期設定時におけるモニタ 一表示画面の概略図である。
符号の説明
[0044] 1 TCP用の試験装置
2 TCPハンドラ
3 プッシャユニット
4 プッシャステージ
5 キャリアテープ
6b 第 2カメラ (撮像装置)
7 プローブカードステージ 8 プローブカード
81 プローブ (接触端子)
9 表示装置
10 テストヘッド
11 拡散反射板
21 卷出リール
22 卷取リール
P TCPのテストパッド (外部端子)
発明を実施するための最良の形態
[0045] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
図 1は、本発明の一実施形態に係る TCPハンドラを用いた TCP試験装置を示す正 面図であり、図 2は、同実施形態に係る TCPハンドラにおけるプッシャユニットの側面 図であり、図 3は、同実施形態に係る TCPハンドラにおけるプッシャステージの平面 図であり、図 4は、同実施形態に係る TCPハンドラにおけるプローブカードステージ の平面図であり、図 5は、同実施形態に係る TCPハンドラにおけるプローブカードス テージの正面図である。
[0046] まず、本発明の実施形態に係る TCPハンドラを備えた TCP用の試験装置の全体 構成について説明する。 TCP用の試験装置 1は、図示しないテスタ本体と、テスタ本 体に電気的に接続されたテストヘッド 10と、テストヘッド 10の上側に設けられた TCP ハンドラ 2とから構成されて 、る。
[0047] TCPハンドラ 2は、キャリアテープ 5上に複数形成された各 TCPを順次試験に付す ものであり、本実施形態では、説明の簡略ィ匕のために TCPを 1個ごと試験に付すも のとする。ただし、本発明はこれに限定されるものではなぐキャリアテープ 5上におい て直列方向および Zまたは並列方向に並んだ複数の TCPを同時に試験に付すよう にしてもよい。
[0048] TCPハンドラ 2は、卷出リール 21と卷取リール 22とを備えており、卷出リール 21に は試験前のキャリアテープ 5が巻き取られている。キャリアテープ 5は、卷出リール 21 力も巻き出され、試験に付された後に卷取リール 22に巻き取られる。 [0049] 卷出リール 21と卷取リール 22との間〖こは、キャリアテープ 5から剥離した保護テー プ 51を卷出リール 21から卷取リール 22に架け渡す 3個のスぺーサロール 23a, 23b , 23cが設けられている。各スぺーサロール 23a, 23b, 23cは、保護テープ 51の張 力を調整することができるように、それぞれ上下可動となって 、る。
[0050] 卷出リール 21の下側には、テープガイド 24a、卷出リミットローラ 25a、イン側サブス プロケット 25bおよびイン側ガイドローラ 25cが設けられており、卷出リール 21から卷 き出されたキャリアテープ 5は、テープガイド 24aによってガイドされつつ、卷出リミット ローラ 25a、イン側サブスプロケット 25bおよびイン側ガイドローラ 25cを経てプッシャ ユニット 3に搬送される。
[0051] 卷取リール 22の下側には、テープガイド 24b、卷取リミットローラ 25f、アウト側サブ スプロケット 25eおよびアウト側ガイドローラ 25dが設けられており、試験に付された後 のキャリアテープ 5は、アウト側ガイドローラ 25d、アウト側サブスプロケット 25eおよび 卷取リミットローラ 25fを経て、テープガイド 24bによってガイドされつつ、卷取リール 2 2に巻き取られる。
[0052] そして、イン側ガイドローラ 25cと、アウト側ガイドローラ 25dとの間には、プッシャュ ニット 3が設けられている。
[0053] 図 1および図 2に示すように、プッシャユニット 3のフレーム(プッシャフレーム) 36に は、ボールねじ 32を回転させることのできるサーボモータ 31がブラケット 361を介し て取り付けられているとともに、ボールねじ 32が螺合しているプッシャ本体部 33が 2 本の Z軸方向のリニアモーションガイド(以下「LMガイド」 t\、う。) 37を介して取り付 けられている。このプッシャ本体部 33は、サーボモータ 31を駆動させることにより、リ ユアモーションガイド 37にガイドされながら上下方向(Z軸方向)に移動可能となって いる。
[0054] このプッシャ本体部 33の下端部には、負圧源(図示省略)に接続されてキャリアテ ープ 5を吸着保持することのできる吸着プレート 34が設けられている。
プッシャ本体部 33の前段側(図 1中左側)には、テンションスプロケット 35aが設けら れており、プッシャ本体部 33の後段側(図 1中右側)には、メインスプロケット 35bが設 けられており、所望の張力でキャリアテープ 5を保持するようになっている。 [0055] 図 2および図 3に示すように、プッシャフレーム 36におけるプッシャ本体部 33の背 面側には、基台 38に載せられるようにしてプッシャステージ 4が設置されており、プッ シャステージ 4の回転台であるトップテーブル 48はプッシャフレーム 36に固定されて いる。
[0056] プッシャステージ 4のベース 40上には、 X軸方向に軸を有するボールねじ 42aを回 転させるサーボモータ 41aと、 Y軸方向に軸を有するボールねじ 42bを回転させるサ ーボモータ 41bと、 Y軸方向に軸を有するボールねじ 42cを回転させるサーボモータ 41cとが設けられており、サーボモータ 41bおよびサーボモータ 41cは、それぞれべ ース 40上の両端部に位置している。
[0057] ボールねじ 42aには、 X軸方向の LMガイド 43a, 43aにガイドされて X軸方向に摺 動可能な摺動ブロック 44aが螺合している。摺動ブロック 44aには、 Y軸方向の LMガ イド 45aを介して摺動板 46aが Y軸方向に摺動可能に取り付けられて 、る。摺動板 4 6aの上側には、内部にローラリングを有する回転部材 47aが固定されており、回転部 材 47aは、トップテーブル 48に回転自在に取り付けられて 、る。
[0058] ボールねじ 42bには、 Y軸方向の LMガイド 43b, 43bにガイドされて Y軸方向に摺 動可能な摺動ブロック 44bが螺合している。摺動ブロック 44bには、 X軸方向の LMガ イド 45bを介して摺動板 46bが X軸方向に摺動可能に取り付けられて 、る。摺動板 4 6bの上側には、内部にローラリングを有する回転部材 47bが固定されており、回転部 材 47bは、トップテーブル 48に回転自在に取り付けられて 、る。
[0059] ボールねじ 42cには、 Y軸方向の LMガイド 43c, 43cにガイドされて Y軸方向に摺 動可能な摺動ブロック 44cが螺合している。摺動ブロック 44cには、 X軸方向の LMガ イド 45cを介して摺動板 46cが X軸方向に摺動可能に取り付けられて 、る。摺動板 4 6cの上側には、内部にローラリングを有する回転部材 47cが固定されており、回転部 材 47cは、トップテーブル 48に回転自在に取り付けられて 、る。
[0060] このような構成を有するプッシャステージ 4においては、サーボモータ 41aを駆動し て、摺動ブロック 44a、摺動板 46bおよび摺動板 46cを X軸方向に摺動させることによ り、トップテーブル 48を X軸方向に移動させることができる。また、サーボモータ 41b およびサーボモータ 41cを駆動して、摺動ブロック 44b、摺動ブロック 44cおよび摺動 板 46aを Y軸同方向に摺動させることにより、トップテーブル 48を Υ軸方向に移動さ せることができる。さらには、サーボモータ 41aを駆動して、摺動ブロック 44aを X軸方 向に摺動させるとともに、サーボモータ 41bおよびサーボモータ 41cを駆動して、摺 動ブロック 44bおよび摺動ブロック 44cを互いに Y軸反対方向に摺動させ、そして各 回転部材 47a, 45b, 45cを回転させることにより、トップテーブル 48をその垂直軸回 りに回転させることができる。このようなプッシャステージ 4によれば、プッシャユニット 3 を X軸 Y軸方向に移動させること、および垂直軸回りに回転移動させることができる
[0061] 一方、図 1に示すように、プッシャユニット 3の下側であって、テストヘッド 10の上部 には、プローブカード 8を搭載したプローブカードステージ 7が設置されている。ここで 、プローブカードステージ 7は、モーター駆動機構で移動制御できるものと、手動調 整機能のみを有するものとがあるが、本実施形態では、モーター駆動機構を有するも のとする。
[0062] 図 4および図 5に示すように、プローブカードステージ 7の基台 71上には、 X軸方向 に軸を有するボールねじ 712を回転させるサーボモータ 711と、 4つの X軸方向の L Mガイド 713とが設けられている。それら 4つの LMガイド 713上には、各 LMガイド 7 13により X軸方向に摺動可能にガイドされる矩形の Xベース 72が設けられている。こ の Xベース 72の一側部には、ボールねじ 712が螺合している螺合部 721が形成され ている。
[0063] Xベース 72上には、 Y軸方向に軸を有するボールねじ 723を回転させるサーボモ ータ 722と、 2本の Y軸方向の LMガイド 724とが設けられている。それら 2本の LMガ イド 724上には、各 LMガイド 724により Y軸方向に摺動可能にガイドされる矩形の Y ベース 73が設けられている。この Yベース 73の一側部には、ボールねじ 723が螺合 して 、る螺合部 731が形成されて!、る。
[0064] Yベース 73上には、 Y軸方向に軸を有するボールねじ 733を回転させるサーボモ ータ 732と、カードリング 735を回転自在に支持する接続リング 734とが設けられてい る。カードリング 735の一部には、ボールねじ 733が螺合している螺合部 736が形成 されている。複数のプローブ 81を備えたプローブカード 8は、 4本のピン 82によって カードリング 735に着脱自在に取り付けられて!/、る。
[0065] 図 4および図 5には示さないが、プローブカード 8の各プローブ 81は、テストヘッド 1 0を介してテスタ本体に電気的に接続されている。
[0066] このような構成を有するプローブカードステージ 7においては、サーボモータ 711を 駆動することにより、 Xベース 72、ひいてはプローブカード 8を X軸方向に移動させる ことができ、サーボモータ 722を駆動することにより、 Yベース 73、ひいてはプローブ カード 8を Y軸方向に移動させることができる。また、サーボモータ 732を駆動してボ ールねじ 733を回転させ、螺合部 736を移動させることにより、カードリング 735およ びプローブカード 8をその垂直軸回りに回転させることができる。なお、 TCPハンドラ 2は、サーボモータ 711, 722, 732の駆動を自動で制御し得る制御装置を備えてお り、これによりプローブカード 8を X軸方向、 Y軸方向、および垂直軸回りに自動で移 動させることができる。
[0067] 図 1に示されるように、プッシャユニット 3の前段側(図 1中左側)に第 1カメラ 6aが、 テストヘッド 10の下側に第 2カメラ (撮像装置) 6bが、プッシャユニット 3の後段側(図 1 中右側)に第 3カメラ 6cが、それぞれ設けられている。なお、テストヘッド 10には、第 2 カメラ 6bがプローブカード 8を撮影することのできる間隙が形成されている。
[0068] プッシャユニット 3と第 3カメラ 6cとの間には、マークパンチ 26aおよびリジェクトパン チ 26bが設けられている。マークパンチ 26aは、試験の結果に基づいて、該当する T CPにっき所定の位置に 1個または複数個の孔を開けるものであり、リジェクトパンチ 2 6bは、試験の結果不良品であると判断された TCPを打ち抜くものである。
[0069] 各カメラ 6a, 6b, 6cは、これらカメラによって撮影した画像を、オペレータが視認可 能なように表示装置 9に表示させる。これらのカメラのうち、第 1カメラ 6aおよび第 3力 メラ 6cは、キャリアテープ 5上における TCPの有無やマークパンチ 26aによる孔の位 置や数を判断するためのものである。そして、第 2カメラ 6bは、 TCPとプローブカード 8との間の位置ずれ情報を取得するためのものであり、視野内の複数の対象につい て位置ずれ情報を取得できるようになって 、る。
[0070] また、第 2カメラ 6bは、カメラステージ 61上に搭載されており、カメラステージ 61が 有するァクチユエータによって平面視縦横方向(X軸 Y軸方向)および上下方向(Z 軸方向)に移動可能となっている。第 2カメラ 6bが平面視縦横方向 (X軸— Y軸方向) に移動することで、第 2カメラ 6bが TCPの互いに遠い位置にある複数のテストパッド P およびプローブカード 8の互いに遠い位置にあるプローブ 81を撮影することができる ため、 TCPとプローブカード 8との位置ずれ量をより良好な精度で求めることができる 。また、第 2カメラ 6bが上下方向(Z軸方向)に移動することで、第 2カメラ 6bの焦点位 置を変更して、撮像目標であるテストパッド Pまたはプローブ 81の所望部位に焦点を 合わせることができる。これにより撮像目標部位の明瞭な輪郭画像を取得でき、テスト ノ^ド Pまたはプローブ 81の座標データを的確に求めることができる。なお、第 2カメ ラ 6b自身が焦点調節機能を備えて、第 2カメラ 6bの焦点位置を外部制御し、撮像目 標であるテストパッド Pまたはプローブ 81の所望部位に焦点を合わせることができるよ うにしてもよい。
[0071] そして、表示装置 9は、画像処理部と、第 2カメラ 6bが撮影した画像を表示するモ- ターとを有している。画像処理部は、第 2カメラ 6bにより撮影された画像と、所定の直 線、文字等とをモニターにオーバーレイ表示する手段を有している。
[0072] プッシャユニット 3とプローブカード 8との間には、拡散反射板 11が、吸着プレート 3 4に保持されたキャリアテープ 5とプローブカード 8との間に挿脱可能に設けられてい る。本実施形態では、拡散反射板 11は X軸方向に往復移動可能となっている。拡散 反射板 11は、その表面に微細な凹凸が形成されており、照明光源(図示せず)から の光を拡散して反射することができる。したがって、拡散反射板 11がキャリアテープ 5 とプローブカード 8との間に挿入されると、プローブ 81の背景を均一に明るい状態ま たは暗い状態にすることができ、第 2カメラ 6bによってプローブ 81の高コントラストな 画像を得ることができる。なお、拡散反射板 11を設けずに、照射光源の条件 (照射光 量、照射色、照射角度)を変更して、プローブ 81の背景 (テストパッド)に対する識別 力 り明瞭になるようにしてもょ 、。
[0073] 次に、 TCPハンドラ 2の使用方法および動作について説明する。
TCPハンドラ 2を使用する場合には、 TCPハンドラ 2を実稼動させる前に、予めプロ ーブカード 8の全てのプローブ 81が、対応するテストパッド Pの中央位置へ位置決め されるようにプローブカード 8を移動させる初期設定を行う必要がある。すなわち、 TC Pの品種を変更した場合や、異なる生産ロットの TCPを試験する場合、あるいはプロ ーブカード 8を変更した場合には、 TCPのテストパッド Pとプローブカード 8のプロ一 ブ 81とがコンタクトするように、プローブカードステージ 7の X軸位置 ZY軸位置 Z Θ 回転角の基準位置を決定し、登録する必要がある(この位置を「登録位置」という)。 なお、プッシャステージ 4は、 TCPの試験実行時に使用するので、初期設定では非 制御状態のままと仮定する。
[0074] 図 6A〜図 6Cは、上記 TCPハンドラ 2の初期設定の動作を示すフローチャート図で あり、図 7 (a)〜(g)は、上記 TCPハンドラ 2の初期設定時のモニター表示画面の概 略図である。
[0075] TCPハンドラ 2は、初期設定の動作を開始すると、基準となる TCPを試験位置まで 搬送し (ステップ S01)、第 2カメラ 6bによって、 TCPにおいて多数のテストパッド Pの 中の一端部に位置する複数のテストパッド Pを撮影する (ステップ S02)。 TCPハンド ラ 2の画像処理部は、撮影された画像 (第 1画像)に基づいて、当該第 1画像に含ま れる複数のテストパッド Pの中心部のそれぞれの座標データ (X , Y )
pdl dl を取得する とともに、当該第 1画像をモニターに表示する (ステップ S03,図 7 (a)参照)。なお、 本動作で得られる各座標データは、カメラステージ 61の座標系にマッピングするもの とする。
[0076] 次に、 TCPハンドラ 2は、カメラステージ 61によって第 2カメラ 6bを移動させて、第 2 カメラ 6bによって、 TCPにおいて多数のテストパッド Pの中の別の端部に位置する複 数のテストパッド Pを撮影する (ステップ S04)。 TCPハンドラ 2の画像処理部は、撮影 された画像 (第 2画像)に基づいて、当該第 2画像に含まれる複数のテストパッド Pの 中心部のそれぞれの座標データ (X , Y )を取得するとともに、当該第 2画像をモ pd2 pd2
二ターに表示する (ステップ S05)。
[0077] TCPハンドラ 2の画像処理部は、取得した座標データ (X , Y )および (X , Y pdl pdl pd2 p
)に基づいて、第 1画像に含まれるテストパッド Pの中心部の位置座標および第 2画 d2
像に含まれるテストパッド Pの中心部の位置座標を通る直線 (テストパッド Pの配列)の X軸方向の直線(図 7中水平線)との角度 Θ を演算する (ステップ S06)。そして、当 d
該角度 Θ を有する第 1の直線 L1を生成し、モニターに上記第 2画像 (現在画像)に 重ねて第 1の直線 LIをオーバーレイ表示する (ステップ 07,図 7 (b)参照)。
[0078] 次に、 TCPハンドラ 2は、キャリアテープ 5とプローブカード 8との間に拡散反射板 1 1を挿入する (ステップ S08)。そして、カメラステージ 61によって第 2カメラ 6bを移動さ せて、第 2カメラ 6bによって、上記第 1画像に含まれる複数のテストパッド Pに対応す る複数のプローブ 81を撮影する(ステップ S09)。 TCPハンドラ 2の画像処理部は、 撮影された画像 (第 3画像)に基づいて、当該第 3画像に含まれる複数のプローブ 81 の先端部のそれぞれの座標データ (X , Y )を取得するとともに、当該第 3画像を pbl bl
モニターに表示する (ステップ S 10,図 7 (c)参照)。ここで、プローブ 81の背景は拡 散反射板 11となっているため、高コントラストなプローブ 81の画像を得ることができる 。したがって、プローブ 81の座標データを良好な精度で取得することができ、 TCPの テストパッド Pとプローブカード 8のプローブ 81との位置合わせをより正確に行うことが できる。
[0079] TCPハンドラ 2は、カメラステージ 61によって第 2カメラ 6bを移動させて、第 2カメラ 6 bによって、上記第 2画像に含まれる複数のテストパッド Pに対応する複数のプローブ 81を撮影する (ステップ Sl l)。 TCPハンドラ 2の画像処理部は、撮影された画像 (第 4画像)に基づいて、当該第 4画像に含まれる複数のプローブ 81の先端部のそれぞ れの座標データ (X , Y )を取得するとともに、当該第 4画像をモニターに表示す pb2 pb2
る(ステップ SI 2)。
[0080] TCPハンドラ 2の画像処理部は、取得した座標データ (X , Y )および (X , Y pbl pbl pb2 p
)に基づいて、第 3画像に含まれるプローブ 81の先端部の位置座標および第 4画 b2
像に含まれるプローブ 81の先端部の位置座標を通る直線 (プローブ 81の配列)の X 軸方向の直線(図 7中水平線)との角度 Θ を演算する (ステップ S 13)。そして、当該 b
角度 Θ を有する第 2の直線 L2を生成し、モニターに上記第 4画像 (現在画像)に重 b
ねて第 1の直線 L1および第 2の直線 L2をオーバーレイ表示する (ステップ S 14,図 7 (d)参照)。このように、第 1の直線 L1および第 2の直線 L2をモニター上に表示するこ とで、垂直軸回りの位置ずれ量を視覚的に確認することができる。
[0081] 次に、 TCPハンドラ 2は、ステップ S06, S 13で得られた第 1の直線 L1の角度 Θ
d および第 2の直線 L2の角度 Θ の差分値 Δ Θを演算する (ステップ S 15)。そして、 得られた差分値 Δ Θの絶対値が所定値 Dよりも大きい場合には (ステップ S 16, Yes ;)、 TCPハンドラ 2は、差分値 Δ Θに基づいてプローブカードステージ 7を回転移動さ せ (ステップ S 17)、差分値 Δ Θの絶対値が所定値 D以下になった場合に (ステップ S 18, Yes)、プローブカードステージ 7の回転移動を停止し (ステップ S19)、第 2の直 線 L2の色を変更する (ステップ S20,図 7 (e)参照)。一方、ステップ S16において、 差分値 Δ Θの絶対値が所定値 D以下である場合には (ステップ S16, No)、プロ一 ブカードステージ 7を回転移動させることなぐそのまま第 2の直線 L2の色を変更する (ステップ S20)。このように、第 2の直線 L2の色を変更することで、テストパッド Pとプ ローブ 81との垂直軸回りの位置ずれが補正されたことをモニター上で視覚的に確認 することができる。
[0082] 次に、 TCPハンドラ 2は、カメラステージ 61によって第 2カメラ 6bを移動させて、第 2 カメラ 6bによって、上記第 1画像に含まれる複数のテストパッド Pに対応する複数のプ ローブ 81を再度撮影する (ステップ S21)。これにより、ステップ S 17でプローブカード 8が垂直軸回りに移動して、目的とするプローブ 81が第 2カメラ 6bの視野力も外れた 場合であっても、再度撮影することができる。 TCPハンドラ 2の画像処理部は、撮影さ れた画像 (第 5画像)に基づいて、当該第 5画像に含まれる複数のプローブ 81の先 端部のそれぞれの座標データ (X , Y )
pb3 pb3を取得するとともに、上記第 1画像に重ね て当該第 5画像をモニターにオーバーレイ表示する (ステップ S22,図 7 (f)参照)。
[0083] 同様に、 TCPハンドラ 2は、カメラステージ 61によって第 2カメラ 6bを移動させて、 第 2カメラ 6bによって、上記第 2画像に含まれる複数のテストパッド Pに対応する複数 のプローブ 81を再度撮影する (ステップ S23)。 TCPハンドラ 2の画像処理部は、撮 影された画像 (第 6画像)に基づいて、当該第 6画像に含まれる複数のプローブ 81の 先端部のそれぞれの座標データ (X , Y )を取得するとともに、上記第 2画像に重 pb4 pb4
ねて当該第 6画像をモニターにオーバーレイ表示する (ステップ S24,図 7 (f)参照)。
[0084] 続いて、 TCPハンドラ 2は、テストパッド Pの 2箇所の座標データ(X , Y )および pdl dl
(X ,Y )と、プローブ 81の 2箇所の座標データ(X , Υ )および (X , Υ )と pd2 pd2 pb3 pb3 pb4 pb4 から、テストパッド Pとプローブ 81との X成分および Y成分の差分値 ΔΧ, ΔΥを演算 する (ステップ S25)。そして、得られた差分値 ΔΧ, ΔΥの絶対値が所定値 Pよりも大 きい場合に (ステップ S26, Yes)、 TCPハンドラ 2は、差分値 ΔΧ, ΔΥに基づいてプ ローブカードステージ 7を X軸方向および Zまたは Y軸方向に移動させ (ステップ S27 )、差分値 ΔΧ, ΔΥの絶対値が所定値 P以下になった場合に (ステップ S28, Yes)、 プローブカードステージ 7の移動を停止し (ステップ S29,図 7 (g)参照)、プローブ力 ードステージ 7のその位置を登録する(ステップ S30)。一方、ステップ S26において、 差分値 ΔΧ, ΔΥの絶対値が所定値 P以下である場合には (ステップ S26, No)、プ ローブカードステージ 7を移動させることなぐその位置を登録する(ステップ S30)。
[0085] 最後に、 TCPハンドラ 2は、拡散反射板 11をキャリアテープ 5とプローブカード 8と の間から退出させて (ステップ S31)、初期設定を終了する。
[0086] 以上のように、本実施形態に係る TCPハンドラ 2によれば、 TCPのテストパッド Pと プローブカード 8のプローブ 81との位置合わせを自動的に行うことができ、したがつ て当該位置合わせを正確にかつ容易に行うことができる。特に本実施形態では、垂 直軸回りの位置合わせと X軸方向 ·Υ軸方向の位置合わせとを、別々に順次行うこと で、 TCPのテストパッド Ρとプローブカード 8のプローブ 81との位置合わせをより正確 に行うことができる。
[0087] 次に、本発明の別の実施形態として、 TCPのテストパッド Pとプローブカード 8のプ ローブ 81との位置合わせに関する初期設定をマニュアル操作で行う TCPハンドラに ついて説明する。
[0088] 本実施形態に係る TCPハンドラは、上記 TCPハンドラ 2と略同様の構成を有するが 、プローブカードステージ 7の駆動源であるサーボモータ 711, 722, 732は、ォペレ ータの操作により駆動するものであってもよぐあるいはサーボモータ 711, 722, 73 2が省略されて、プローブカードステージ 7が操作杆等を操作することにより動作する ものであってもよい。
[0089] 本実施形態に係る TCPハンドラの初期設定の動作では、上記と同様にしてステツ プ S01〜S15を実行する。 TCPハンドラが第 1の直線 L1の角度 Θ および第 2の直 d
線 L2の角度 Θ の差分値 Δ Θを演算している間 (ステップ S 15)、オペレータは、モ b
二ターに表示された第 1の直線 L1および第 2の直線 L2 (図 7 (d)参照)を見ながら、 マニュアル操作でプローブカードステージ 7を回転移動させる。 [0090] そして TCPハンドラは、差分値 Δ Θの絶対値が所定値 D以下になった場合に (ステ ップ SlOl, Yes)、第 2の直線 L2の色を変更する(ステップ S 102,図 7 (e)参照)。ォ ペレータは、それを確認してプローブカードステージ 7の回転移動を停止する。 TCP ハンドラは、ステップ S102の後、拡散反射板 11をキャリアテープ 5とプローブカード 8 との間から退出させる(ステップ S103)。
[0091] 上記のように、オペレータは、モニターに表示された第 1の直線 L1および第 2の直 線 L2を見ながら、プローブカード 8を所望の角度量で垂直軸回りに移動させることが できるとともに、プローブカード 8の垂直軸回りの位置ずれの補正が終了したことを第 2の直線 L2の色の変更により確認することができるため、 TCPのテストパッド Pとプロ ーブカード 8のプローブ 81との垂直軸回りの位置合わせを正確かつ容易に、さらに は迅速に行うことができる。
[0092] マニュアル操作による X軸方向および Zまたは Y軸方向の位置ずれの補正は、従 来と同様の方法で行えばよい。具体的には、 TCPがプローブ 81とともに第 2カメラ 6b によって明瞭に認識できる高さまでプッシャユニット 3を移動する。オペレータは、テス トパッド Pおよびプローブ 81が表示されたモニターを見ながら、マ-ユアル操作にて プローブカードステージ 7を X軸方向および Zまたは Y軸方向に移動して、 TCPの全 てのテストパッド Pがプローブカード 8のプローブ 81と接触できるか確認する。このよう にして設定したプローブカードステージ 7の位置を登録し (ステップ S 104)、初期設 定を終了する。
[0093] 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであ つて、本発明を限定するために記載されたものではない。したがって、上記実施形態 に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物を も含む趣旨である。
[0094] 例えば、上記実施形態においては、ステップ S14〜S20または S102にて、第 1の 直線 L1および第 2の直線 L2とともに、またはそれらの代わりに、第 1の直線 L1の角 度 0 および第 2の直線 L2の角度 0 をモニターに数値表示したり、両直線間の相 pd pb
対的な角度 (例えば、第 1の直線 L1を基準としたときの当該第 1の直線 L1に対する 第 2の直線 L2の角度)を数値表示したりしてもよい(図 7 (d) , (e)参照)。このようにす ることで、 TCPとプローブカード 8との位置ずれ量を、数値によって視覚的に確認す ることがでさる。
[0095] TCPのテストパッド Pとプローブカード 8のプローブ 81との位置合わせをマニュアル 操作で行うには、第 1の直線 L1の角度 0 および第 2の直線 L2の角度 0 をモニタ
pd pb
一に数値表示する場合は、第 2の直線 L2の角度 Θ の値を第 1の直線 L1の角度 Θ pb p の値に近づけるようにプローブカードステージ 7を回転移動させればよぐ両直線間 d
の相対的な角度を数値表示する場合には、当該角度値を O (deg)に近づけるように プローブカードステージ 7を回転移動させればよ 、。
[0096] さら〖こは、ステップ S 14〜S20または S 102〖こて、第 1の直線 L1および第 2の直線 L 2の中央部や両端部の座標値をモニターに数値表示してもよ!/、し、両直線間の相対 的な座標値 (例えば、第 1の直線 L1を基準としたときの当該第 1の直線 L1の中央部 や両端部に対する第 2の直線 L2の中央部や両端部の座標値)をモニターに数値表 示してもよい。このようにすることで、 TCPとプローブカード 8との位置ずれ量を、数値 によって視覚的に確認することができる。
[0097] また、ステップ S 17またはマニュアル操作によるプローブカードステージ 7の回転移 動中にて、第 1の直線 L1の角度 Θ および第 2の直線 L2の角度 Θ の差分値 Δ Θ
pd pb
の大きさに応じて、所定のパルス間隔のパルス音、所定の周波数の音または所定の 音色に順次変更した音を発生させたりして、オペレータが位置合わせ状態を聴覚で 容易に認識できるようにしてもよ 、。
[0098] また、ステップ S20または S 102にて、第 1の直線 L1の角度 0 および第 2の直線 L
d
2の角度 Θ の差分値 Δ Θが所定値 D以下になったときに、垂直軸回りの位置合わ
b
せの完了を通知するために、モニター上にメッセージを表示したり、外部点灯装置を
TCPハンドラ 2に設けて当該外部点灯装置を点灯表示したりしてもよい。このようにァ ラートを発することで、オペレータは垂直軸回りの位置合わせが完了したことを確認 することができる。
[0099] さらに、上記実施形態では、 TCPおよびプローブカード 8の垂直軸回りの位置合わ せと平面方向の位置合わせとを、別々に行うようにしたが、本発明はこれに限定され ることなく、両者を同時に行ってもよい。具体的には、ステップ S03, S05で取得した テストパッド Pの座標データ(X , Y )および (X , Y )と、ステップ S09, S11で pdl dl pd2 pd2
取得したプローブ 81の座標データ (X , Y )および (X , Y )とに基づいて、垂 pbl bl pb2 pb2
直軸回りの位置ずれ量ならびに X軸方向および Y軸方向の位置ずれ量を求め、それ らの位置ずれ量に基づいて、プローブカードステージ 7を垂直軸回り ZX軸方向 ZY 軸方向に移動させて、テストパッド Pとプローブ 81との位置合わせを行ってもよい。こ れにより、 TCPとプローブカード 8との位置ずれ補正の作業時間力 より短縮される。 産業上の利用可能性
本発明は、 TCPハンドリング装置の初期設定時において、コンタクト部の接触端子 と TCPの外部端子との位置合わせ作業を正確にかつ容易に行うのに極めて有用で ある。

Claims

請求の範囲
[1] TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気的に接続さ れて 、るコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子 を前記接続端子に接続させることにより、複数の TCPを順次試験に付すことのできる TCPハンドリング装置であって、
前記複数の接続端子を備えているコンタクト部を、その平面方向および垂直軸回り に移動させることのできる移動装置と、被試験 TCPの外部端子および前記接続端子 を撮影することのできる撮像装置とを備えており、
前記撮像装置により、被試験 TCPの外部端子を撮影して当該外部端子の座標デ ータを取得するとともに、前記接続端子を撮影して当該接続端子の座標データを取 得し、
前記外部端子の座標データおよび前記接続端子の座標データから、前記外部端 子と前記接続端子との位置ずれ量を求め、
前記位置ずれ量に基づいて、前記移動装置により前記コンタクト部を移動させ、被 試験 TCPの外部端子に対する前記接続端子の位置合わせを行う
ことを特徴とする TCPハンドリング装置。
[2] 第 1に、前記外部端子の座標データおよび前記接続端子の座標データを取得して
、前記外部端子と前記接続端子との垂直軸回りの位置ずれ量を求め、当該垂直軸 回りの位置ずれ量に基づいて、前記移動装置により前記コンタクト部を垂直軸回りに 移動させ、
第 2に、再度前記接続端子の座標データを取得して、前記外部端子と前記接続端 子との平面方向の位置ずれ量を求め、当該平面方向の位置ずれ量に基づいて、前 記移動装置により前記コンタクト部を平面方向に移動させる
ことを特徴とする請求項 1に記載の TCPハンドリング装置。
[3] 前記外部端子と前記接続端子との垂直軸回りの位置ずれ量は、前記外部端子の 2 箇所以上の座標データから得られる第 1の直線の角度と、前記接続端子の 2箇所以 上の座標データ力 得られる第 2の直線の角度との差から求めることを特徴とする請 求項 1に記載の TCPハンドリング装置。
[4] 前記 TCPハンドリング装置は、表示装置をさらに備えており、
前記第 1の直線および Zまたは前記第 2の直線を前記表示装置に表示し得ること を特徴とする請求項 3に記載の TCPハンドリング装置。
[5] 前記第 1の直線を、前記撮像装置で撮影した前記外部端子の画像に重ねて前記 表示装置にオーバーレイ表示し得ることを特徴とする請求項 4に記載の TCPハンドリ ング装置。
[6] 前記第 2の直線を、前記撮像装置で撮影した前記接続端子の画像に重ねて前記 表示装置にオーバーレイ表示し得ることを特徴とする請求項 4に記載の TCPハンドリ ング装置。
[7] 前記第 1の直線の角度と前記第 2の直線の角度との差の値を前記表示装置に表示 し得ることを特徴とする請求項 4に記載の TCPハンドリング装置。
[8] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、前記表示装置に表示する前記 第 1の直線および Zまたは前記第 2の直線の色を変更することを特徴とする請求項 4 に記載の TCPハンドリング装置。
[9] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、通知音を発することを特徴とす る請求項 4に記載の TCPハンドリング装置。
[10] 前記 TCPハンドリング装置は、前記撮像装置を移動させることのできる撮像装置移 動装置をさらに備えており、
前記撮像装置は、前記撮像装置移動装置による移動により、前記外部端子の 2箇 所以上および前記接続端子の 2箇所以上を撮影する
ことを特徴とする請求項 3に記載の TCPハンドリング装置。
[11] 前記 TCPハンドリング装置は、移動可能な拡散反射板をさらに備えており、
前記コンタ外部の接続端子を撮影するときに、前記接続端子と前記キャリアテープ との間に前記拡散反射板を挿入する
ことを特徴とする請求項 1に記載の TCPハンドリング装置。
[12] TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気的に接続さ れて 、るコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子 を前記接続端子に接続させることにより、複数の TCPを順次試験に付すことのできる TCPハンドリング装置であって、
被試験 TCPの外部端子および前記接続端子を撮影することのできる撮像装置と、 表示装置とを備えており、
前記複数の接続端子を備えているコンタクト部は、その平面方向および垂直軸回り に移動可能となっており、
前記撮像装置により被試験 TCPの外部端子の 2箇所以上を撮影して取得した前記 外部端子の座標データから得られる第 1の直線および Zまたは前記撮像装置により 前記接続端子の 2箇所以上を撮影して取得した前記接続端子の座標データ力ゝら得 られる第 2の直線を、前記表示装置に表示し得る
ことを特徴とする TCPハンドリング装置。
[13] 前記第 1の直線を、前記撮像装置で撮影した前記外部端子の画像に重ねて前記 表示装置にオーバーレイ表示し得ることを特徴とする請求項 12に記載の TCPハンド リング装置。
[14] 前記第 2の直線を、前記撮像装置で撮影した前記接続端子の画像に重ねて前記 表示装置にオーバーレイ表示し得ることを特徴とする請求項 12に記載の TCPハンド リング装置。
[15] 前記第 1の直線および Zまたは前記第 2の直線の、傾き角度および Zまたは所定 のポイントの座標数値をさらに前記表示装置に表示し得ることを特徴とする請求項 12 に記載の TCPハンドリング装置。
[16] 前記第 1の直線の角度と前記第 2の直線の角度との差の値を前記表示装置に表示 し得ることを特徴とする請求項 12に記載の TCPハンドリング装置。
[17] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、前記表示装置に表示する前記 第 1の直線および Zまたは前記第 2の直線の色を変更することを特徴とする請求項 1 2に記載の TCPハンドリング装置。
[18] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、通知音を発することを特徴とす る請求項 12に記載の TCPハンドリング装置。
[19] 前記 TCPハンドリング装置は、前記撮像装置を移動させることのできる撮像装置移 動装置をさらに備えており、
前記撮像装置は、前記撮像装置移動装置による移動により、前記外部端子の 2箇 所以上および前記接続端子の 2箇所以上を撮影する
ことを特徴とする請求項 12に記載の TCPハンドリング装置。
[20] 前記 TCPハンドリング装置は、移動可能な拡散反射板をさらに備えており、
前記コンタ外部の接続端子を撮影するときに、前記接続端子と前記キャリアテープ との間に前記拡散反射板を挿入する
ことを特徴とする請求項 12に記載の TCPハンドリング装置。
[21] TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気的に接続さ れて 、るコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子 を前記接続端子に接続させることにより、複数の TCPを順次試験に付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であって、
第 1に、前記外部端子の座標データおよび前記接続端子の座標データを取得して 、前記外部端子と前記接続端子との垂直軸回りの位置ずれ量を求め、当該垂直軸 回りの位置ずれ量に基づ!/、て、前記コンタクト部を垂直軸回りに移動させ、
第 2に、再度前記接続端子の座標データを取得して、前記外部端子と前記接続端 子との平面方向の位置ずれ量を求め、当該平面方向の位置ずれ量に基づいて、前 記コンタクト部を平面方向に移動させる
ことを特徴とする接続端子の位置合わせ方法。
[22] TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気的に接続さ れて 、るコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子 を前記接続端子に接続させることにより、複数の TCPを順次試験に付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であって、
前記外部端子の座標データおよび前記接続端子の座標データを取得して、前記 外部端子と前記接続端子との垂直軸回りの位置ずれ量および平面方向の位置ずれ 量を求め、それらの位置ずれ量に基づいて、前記コンタクト部を垂直軸回りにおよび
Zまたは平面方向に移動させる
ことを特徴とする接続端子の位置合わせ方法。
[23] 前記外部端子と前記接続端子との垂直軸回りの位置ずれ量は、前記外部端子の 2 箇所以上の座標データから得られる第 1の直線の角度と、前記接続端子の 2箇所以 上の座標データ力 得られる第 2の直線の角度との差から求めることを特徴とする請 求項 21または 22に記載の接続端子の位置合わせ方法。
[24] 前記第 1の直線の角度と前記第 2の直線の角度との差の値を表示装置に表示する ことを特徴とする請求項 23に記載の TCPハンドリング装置。
[25] 前記第 1の直線および前記第 2の直線を表示装置に表示し、前記コンタクト部を垂 直軸回りに移動させて、前記第 1の直線の角度と前記第 2の直線の角度との差が所 定値よりも小さくなつたときに、前記表示装置に表示する前記第 1の直線および Zま たは前記第 2の直線の色を変更することを特徴とする請求項 23に記載の接続端子の 位置合わせ方法。
[26] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、通知音を発することを特徴とす る請求項 23に記載の接続端子の位置合わせ方法。
[27] 前記コンタ外部の接続端子を撮影するときに、前記接続端子と前記キャリアテープ との間に拡散反射板を挿入することを特徴とする請求項 21または 22に記載の接続 端子の位置合わせ方法。
[28] TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気的に接続さ れて 、るコンタクト部の複数の接続端子にキャリアテープを押圧し、 TCPの外部端子 を前記接続端子に接続させることにより、複数の TCPを順次試験に付すことのできる TCPハンドリング装置における接続端子の位置合わせ方法であって、
撮像装置により被試験 TCPの外部端子の 2箇所以上を撮影し、取得した前記外部 端子の座標データから得られる第 1の直線を表示装置に表示し、
撮像装置により前記接続端子の 2箇所以上を撮影し、取得した前記接続端子の座 標データから得られる第 2の直線を前記第 1の直線とともに表示装置に表示し、 もってオペレータは、前記表示装置に表示されている前記第 1の直線および前記 第 2の直線を見ながら前記コンタクト部を垂直軸回りに移動させることができることを 特徴とする接続端子の位置合わせ方法。
[29] 前記第 1の直線の角度と前記第 2の直線の角度との差の値を表示装置に表示する ことを特徴とする請求項 28に記載の TCPハンドリング装置。
[30] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、前記表示装置に表示する前記 第 1の直線および Zまたは前記第 2の直線の色を変更する
ことを特徴とする請求項 28に記載の接続端子の位置合わせ方法。
[31] 前記コンタクト部を垂直軸回りに移動させて、前記第 1の直線の角度と前記第 2の 直線の角度との差が所定値よりも小さくなつたときに、通知音を発することを特徴とす る請求項 28に記載の接続端子の位置合わせ方法。
[32] 前記コンタ外部の接続端子を撮影するときに、前記接続端子と前記キャリアテープ との間に拡散反射板を挿入することを特徴とする請求項 28に記載の接続端子の位 置合わせ方法。
PCT/JP2005/023869 2005-12-27 2005-12-27 Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法 WO2007074509A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/023869 WO2007074509A1 (ja) 2005-12-27 2005-12-27 Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法
JP2007551823A JP4926075B2 (ja) 2005-12-27 2005-12-27 Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法
CNA2005800524398A CN101346635A (zh) 2005-12-27 2005-12-27 Tcp处理装置以及tcp处理装置中的连接端子的对位方法
TW095148414A TW200730844A (en) 2005-12-27 2006-12-22 TCP processing device and position alignment method for connecting terminal of TCP processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023869 WO2007074509A1 (ja) 2005-12-27 2005-12-27 Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法

Publications (1)

Publication Number Publication Date
WO2007074509A1 true WO2007074509A1 (ja) 2007-07-05

Family

ID=38217746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023869 WO2007074509A1 (ja) 2005-12-27 2005-12-27 Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法

Country Status (4)

Country Link
JP (1) JP4926075B2 (ja)
CN (1) CN101346635A (ja)
TW (1) TW200730844A (ja)
WO (1) WO2007074509A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489807A (zh) * 2012-06-13 2014-01-01 台湾积体电路制造股份有限公司 测试探针对准控制的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517344B2 (ja) * 2010-02-12 2014-06-11 東京エレクトロン株式会社 プローブカードの搬送機構、プローブカードの搬送方法及びプローブ装置
CN105334446B (zh) * 2015-09-23 2018-07-20 南京泊纳莱电子科技有限公司 一种工件与治具之间的电测对位方法及系统
CN108828425A (zh) * 2018-07-16 2018-11-16 苏州肯美特设备集成有限公司 一种半导体测试装置
CN109270087A (zh) * 2018-09-18 2019-01-25 广州思林杰网络科技有限公司 蓝膜视觉检测系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280931A (ja) * 1992-03-31 1993-10-29 Omron Corp 画像処理装置
JPH06342035A (ja) * 1993-04-05 1994-12-13 Mitsubishi Electric Corp 半導体検査装置
JPH07231018A (ja) * 1993-08-25 1995-08-29 Tokyo Electron Ltd プローブ装置
JPH07235584A (ja) * 1994-02-23 1995-09-05 Fujitsu Ltd チップicの位置決め装置
JP2002181889A (ja) * 2000-12-13 2002-06-26 Ando Electric Co Ltd プローブカードとtabの位置決め装置
WO2004068154A1 (ja) * 2003-01-31 2004-08-12 Japan Engineering Co.,Ltd. Tcpハンドリング装置および当該装置における位置ずれ補正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140349B2 (ja) * 2002-11-11 2008-08-27 愛知製鋼株式会社 圧延機の芯だし方法及び芯だし装置
JP2005026872A (ja) * 2003-06-30 2005-01-27 Casio Comput Co Ltd 撮影方法、撮像装置、及びプログラム
JP2005250554A (ja) * 2004-03-01 2005-09-15 Mitsubishi Electric Corp コード読取装置及びコード読取プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280931A (ja) * 1992-03-31 1993-10-29 Omron Corp 画像処理装置
JPH06342035A (ja) * 1993-04-05 1994-12-13 Mitsubishi Electric Corp 半導体検査装置
JPH07231018A (ja) * 1993-08-25 1995-08-29 Tokyo Electron Ltd プローブ装置
JPH07235584A (ja) * 1994-02-23 1995-09-05 Fujitsu Ltd チップicの位置決め装置
JP2002181889A (ja) * 2000-12-13 2002-06-26 Ando Electric Co Ltd プローブカードとtabの位置決め装置
WO2004068154A1 (ja) * 2003-01-31 2004-08-12 Japan Engineering Co.,Ltd. Tcpハンドリング装置および当該装置における位置ずれ補正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489807A (zh) * 2012-06-13 2014-01-01 台湾积体电路制造股份有限公司 测试探针对准控制的方法

Also Published As

Publication number Publication date
TWI312870B (ja) 2009-08-01
JPWO2007074509A1 (ja) 2009-06-04
JP4926075B2 (ja) 2012-05-09
TW200730844A (en) 2007-08-16
CN101346635A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
WO2008056418A1 (en) Tcp handling device, and method for positional alignment of connecting terminals in the device
TWI485628B (zh) A re-registration method for locating a target object, and a recording medium for recording the method
JP4908138B2 (ja) プローブ検査装置
TW201631678A (zh) 位置精度檢查方法、位置精度檢查裝置及位置檢查單元
GB2359515A (en) Fabricating printed circuits
WO2007074509A1 (ja) Tcpハンドリング装置およびtcpハンドリング装置における接続端子の位置合わせ方法
JP2010245508A (ja) ウェハアライメント装置及びウェハアライメント方法
JP6571116B2 (ja) 検査支援装置
JP2010045099A (ja) アライメントマーク画像の表示方法およびアライメント装置
JP2002264294A (ja) スクリーン印刷装置及びスクリーン製版セット方法
JP4098306B2 (ja) Tcpハンドリング装置および当該装置における位置ずれ補正方法
JPWO2008120518A1 (ja) Tcpハンドリング装置
JP4480437B2 (ja) レンズ調芯装置及び方法
KR20080082999A (ko) Tcp 핸들링 장치 및 tcp 핸들링 장치에서의접속단자의 위치맞춤 방법
JP4533602B2 (ja) レンズ調芯装置及び方法
WO2019047005A1 (zh) 对位装置和测试设备
JPWO2008126173A1 (ja) Tcpハンドリング装置
JP5646288B2 (ja) スクリーンマスクの観察装置および印刷装置
JP2011250366A (ja) 撮像素子の位置調整装置
JP2002149347A (ja) タッチパネル搭載機器調整装置およびタッチパネル搭載機器調整方法
JP7249012B2 (ja) 導電性ボール検査リペア装置
JP2011237387A (ja) Tcpハンドリング装置
CN113624209B (zh) 模组排线校准设备及校准方法
JPWO2007032077A1 (ja) Tcpハンドリング装置
KR100737281B1 (ko) Tcp 핸들링 장치 및 해당 장치에서의 위치 어긋남 보정방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580052439.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551823

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05822526

Country of ref document: EP

Kind code of ref document: A1