WO2007072797A1 - 動力出力装置及びその制御方法並びに車両 - Google Patents

動力出力装置及びその制御方法並びに車両 Download PDF

Info

Publication number
WO2007072797A1
WO2007072797A1 PCT/JP2006/325228 JP2006325228W WO2007072797A1 WO 2007072797 A1 WO2007072797 A1 WO 2007072797A1 JP 2006325228 W JP2006325228 W JP 2006325228W WO 2007072797 A1 WO2007072797 A1 WO 2007072797A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
internal combustion
combustion engine
output
drive shaft
Prior art date
Application number
PCT/JP2006/325228
Other languages
English (en)
French (fr)
Inventor
Daigo Ando
Tsukasa Abe
Mamoru Tomatsuri
Toshio Inoue
Shunsuke Fushiki
Keiko Hasegawa
Keita Fukui
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/991,479 priority Critical patent/US20080309093A1/en
Priority to EP06834938A priority patent/EP1964709A1/en
Publication of WO2007072797A1 publication Critical patent/WO2007072797A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power output device, a control method therefor, and a vehicle.
  • Patent Document 1 As a power output device that outputs power to a drive shaft, for example, as shown in Patent Document 1, an engine and a motor are provided as power sources, and a generator is used when power is output using the engine as a power source. There has been proposed a battery that is rotationally driven to charge a battery.
  • the power output device disclosed in Patent Document 1 when the driver's required power is increased, the engine torque is increased by means of an output increasing means that is more responsive than the throttle valve while maintaining the engine speed. By increasing the power quickly, sufficient power can be obtained. Examples of output increasing means include a variable valve timing mechanism, D4 lean burn, power increase, and turbo charger.
  • Patent Document 1 it is originally preferable to set an operating point that can output the power required by the engine based on a reference operation line with emphasis on fuel efficiency, and operate the engine at that operating point.
  • priority is given to responding quickly to the request, and the engine is operated at an operating point that temporarily deviates from the reference operating line.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-112115
  • Patent Document 1 special consideration is given to controlling the engine when the engine speed is determined by some regulations and reaches the upper limit engine speed V! / ⁇ . For this reason, after the engine speed reaches the upper limit speed, for example, when the required engine power gradually increases due to an increase in charging power, the engine operating point is set to a higher speed based on the reference operating line. Although it will be changed, the engine speed cannot exceed the upper limit speed, so the operating point cannot be changed after all, and the power corresponding to the required engine power cannot be output.
  • the power output apparatus, the control method therefor, and the vehicle according to the present invention are capable of handling even if the power required for the internal combustion engine gradually increases after the rotational speed of the internal combustion engine reaches the upper limit rotational speed.
  • One of the purposes is to carry out such measures while preventing overcharging of the storage means.
  • the power output apparatus, the control method thereof, and the vehicle of the present invention employ the following means in order to achieve at least one of the above objects.
  • the power output apparatus of the present invention comprises:
  • a power output device that outputs power to a drive shaft
  • Power power input / output means connected to the output shaft of the internal combustion engine and the drive shaft, and capable of outputting at least part of the power of the internal combustion engine power to the drive shaft with input and output of electric power and power;
  • An electric motor capable of inputting and outputting power to the drive shaft
  • the power drive input / output means and the power storage means capable of exchanging power with the electric motor, the drive shaft required power setting means for setting the drive shaft required power required for the drive shaft, the state of the power storage means and the set An internal combustion engine required power setting means for setting the internal combustion engine required power required for the internal combustion engine based on the drive shaft required power; and a case where the rotational speed of the internal combustion engine reaches a predetermined upper limit rotational speed and An upper limit power that can be output by the internal combustion engine calculated based on a reference operation line obtained when air-fuel ratio control is executed at or near the fuel ratio and the upper limit rotational speed is the set internal combustion engine required power Is exceeded, the fuel increase parameter is set based on the set internal combustion engine required power while maintaining the rotational speed of the internal combustion engine, and the set fuel increase parameter is set.
  • the internal combustion engine, the electric power drive input / output means, and the electric motor are controlled so that fuel corresponding to the motor is injected and power based on the set drive shaft required power is output to the drive shaft
  • the reference operation line and the upper limit rotation obtained when the rotation speed of the internal combustion engine reaches a predetermined upper limit rotation speed and the air-fuel ratio control is executed at or near the theoretical air-fuel ratio.
  • the set internal combustion engine required power exceeds the upper limit power that can be output based on the internal combustion engine
  • the set internal combustion engine is maintained while maintaining the rotational speed of the internal combustion engine.
  • a fuel increase parameter is set based on the engine required power, and an amount of fuel corresponding to the set fuel increase parameter is injected, and power based on the set drive shaft required power is output to the drive shaft.
  • the internal combustion engine, the power drive input / output means, and the motor are controlled.
  • the upper limit rotational speed may be determined based on a level of noise generated by the operation of the internal combustion engine! /. In this way, the power output from the internal combustion engine can be increased while appropriately preventing noise generated by the operation of the internal combustion engine.
  • the upper limit number of revolutions of the internal combustion engine may be determined by other factors, such as the performance and life of the internal combustion engine, as well as the circumstances such as the power input / output means, the electric motor, and the power storage means. Well, okay.
  • the control means is set based on an input limit of the power storage means when increasing the amount of fuel when the rotational speed of the internal combustion engine reaches the upper limit rotational speed.
  • the amount of fuel may be increased within a range that does not exceed the maximum required power of the internal combustion engine. In this way, it is possible to take measures when the power required for the internal combustion engine increases after the rotational speed of the internal combustion engine reaches the upper limit rotational speed while preventing overcharging of the power storage means.
  • the control means is a case where the current rotational speed of the internal combustion engine has reached a predetermined upper limit rotational speed, and the upper limit power is set within the set upper limit power. Even when the required power of the combustion engine is exceeded, fuel increase may not be performed when a predetermined fuel increase prohibition condition is satisfied. In this way, when the fuel increase prohibition condition is satisfied, the internal combustion engine is operated at the operation point on the reference operation line, so that the exhaust gas component (emission) and fuel consumption are improved.
  • the predetermined fuel increase prohibition condition is that the fuel efficiency priority mode is set, the vehicle is operating in a predetermined region, and the remaining fuel amount is in a predetermined small amount region.
  • the exhaust gas purification catalyst disposed in the exhaust path of the internal combustion engine may be at least one selected from the group of conditional forces that have not reached a predetermined activation temperature.
  • the fuel consumption priority mode it is preferable to prohibit the fuel increase because the driver prioritizes the fuel consumption over the power performance.
  • a predetermined area for example, a certain city area or a residential area
  • the remaining amount of fuel is in a certain small area (for example, the area where the fuel lamp is lit), it is preferable to prohibit fuel increase from the viewpoint of increasing the distance that can be traveled with the remaining fuel.
  • the exhaust gas purification catalyst does not reach the predetermined activation temperature, it is prohibited to increase the amount of fuel because the exhaust gas may not be sufficiently purified if the exhaust gas contains rich fuel-derived components. Is preferred.
  • the power power input / output means is connected to three axes of the output shaft, the drive shaft, and the rotary shaft of the internal combustion engine, and any one of the three shafts has a force of two Based on the input / output power, it is a means equipped with a 3-axis power input / output means for inputting / outputting power to the remaining shaft and a generator capable of inputting / outputting power to / from the rotary shaft. Also good.
  • the gist of the vehicle of the present invention is that the power output device of the present invention according to any one of the above aspects is mounted, and the axle is connected to the drive shaft. Since this vehicle is equipped with the power output device of the present invention according to any one of the aspects described above, the effect of the power output device of the present invention, for example, the rotational speed of the internal combustion engine has reached the upper limit rotational speed. In addition, there is an effect that even if the power required for the internal combustion engine increases gradually, it can be dealt with.
  • a method for controlling a power output apparatus of the present invention includes: An internal combustion engine, connected to the output shaft of the internal combustion engine and the drive shaft, and capable of outputting at least part of the power of the internal combustion engine power to the drive shaft with input and output of electric power and power.
  • a control method for a power output device comprising: an output means; an electric motor capable of inputting / outputting power to / from the drive shaft; and an electric power power input / output means and an electric storage means capable of exchanging electric power with the electric motor.
  • the set internal combustion engine required power exceeds the upper limit power that can be output from the internal combustion engine calculated based on the rotational speed
  • the set internal combustion engine is maintained while maintaining the rotational speed of the internal combustion engine.
  • a fuel increase parameter is set based on the engine required power, and an amount of fuel corresponding to the set fuel increase parameter is injected, and power based on the set drive shaft required power is output to the drive shaft.
  • the internal combustion engine, the power drive input / output means and the motor are controlled.
  • this power output device control method may include operations and steps for realizing the various functions of the power output device of the present invention in any of the above-described modes.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of an engine 22.
  • FIG. 3 is a flowchart showing an example of a drive control routine executed by the electronic control unit 70 for the hybrid.
  • FIG. 4 is an explanatory diagram showing an example of the relationship between the battery temperature Tb and the input / output restrictions Win, Wout in the battery 50.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between the remaining capacity (SOC) of the battery 50 and the input / output restriction Win and Wout correction coefficients.
  • FIG. 6 is an explanatory diagram showing an example of a required torque setting map.
  • FIG. 7 is an explanatory diagram showing an example of a reference operation line of the engine 22 and how the target rotational speed Ne * and the target torque Te * are set.
  • FIG. 8 is an explanatory diagram showing an example of a target air / fuel ratio setting map used when the engine required power Pe * exceeds the upper limit power Pemax.
  • FIG. 9 is an explanatory diagram showing an example of a collinear diagram showing a dynamic relationship between the rotational speed and torque in the rotating element of the planetary gear 30.
  • FIG. 10 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 of a modified example.
  • FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 1 is a schematic diagram of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an outline of the configuration
  • FIG. 2 is a configuration diagram showing an outline of the configuration of the engine 22 of the hybrid vehicle 20.
  • the hybrid vehicle 20 of the embodiment includes an engine 22 and a planetary gear 30 in which a carrier 34 for rotating a pinion gear 33 via a damper 28 is connected to a crankshaft 26 as an output shaft of the engine 22.
  • the navigation system 90 includes a navigation system 90 that searches the route from the current position to the destination and provides route guidance, and the hybrid electronic control unit 70 that controls the entire hybrid vehicle 20.
  • the ring gear shaft 32a as the drive shaft is connected to the axle 64 to which the drive wheels 63a and 63b are attached via the power transmission gear 60 and the differential gear 62, and is output to the ring gear shaft 32a.
  • the power is used as driving power.
  • the engine 22 is configured as an internal combustion engine capable of outputting power using a hydrocarbon fuel such as gasoline or light oil, for example, and as shown in FIG.
  • a hydrocarbon fuel such as gasoline or light oil
  • Gas is sucked through the fuel injection valve 126 and gasoline is mixed with the sucked air and gasoline, and this mixture is sucked into the fuel chamber through the intake valve 128 and is supplied by the spark plug 130.
  • the reciprocating motion of the piston 132 which is explosively burned by sparks and pushed down by the energy, is converted into the rotational motion of the crankshaft 26.
  • the exhaust from the engine 22 is discharged to the outside air through a purification device (three-way catalyst) 134 that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). .
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • the engine 22 is controlled by an engine electronic control unit (hereinafter referred to as an engine ECU) 24.
  • the engine ECU 24 is configured as a microprocessor centered on the CPU 24a.
  • the ROM 24b that stores processing programs
  • the RAM 24c that temporarily stores data
  • input / output ports and communication ports (not shown) are provided. Equipped. Signals from various sensors that detect the state of the engine 22 are input to the engine ECU 24 via an input port (not shown).
  • the engine ECU 24 has a clutch from a crank position sensor 140 that detects the rotational position of the crankshaft 26.
  • a control signal to the variable valve timing mechanism 150 that can change the opening / closing timing of the valve 128 is output.
  • the engine ECU 24 is in communication with the hybrid electronic control unit 70, and controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70. Output data.
  • Both the motor MG1 and the motor MG2 are configured as well-known synchronous generator motors that can be driven as a generator as well as being driven as a generator. Communicate.
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40.
  • the motor ECU 40 receives signals necessary for driving and controlling the motors MG1 and MG2, such as rotational position detection sensors 43 and 44 for detecting the rotational position of the rotor of the motors MG1 and MG2, and a current sensor (not shown).
  • the detected phase current applied to the motors MG1 and MG2 is input, and the switching control signal to the inverters 41 and 42 is output from the motor ECU40.
  • the motor ECU 40 communicates with the hybrid electronic control unit 70.
  • the motor ECU 40 drives and controls the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and also controls the motors MG1 and MG2 as necessary. Data on the operating status is output to the hybrid electronic control unit 70.
  • the notch 50 is controlled by a notch electronic control unit (hereinafter referred to as a notch ECU) 52. It is managed.
  • the notch ECU 52 is connected to a signal necessary for managing the notch 50, for example, a voltage between terminals of a voltage sensor (not shown) installed between the notch 50 terminals, and an output terminal of the notch 50.
  • the charging / discharging current from a current sensor (not shown) attached to the power line 54, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input, and the state of the battery 50 is Is output to the hybrid electronic control unit 70 by communication.
  • the battery ECU 52 also calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
  • SOC remaining capacity
  • the navigation system 90 includes an azimuth sensor 92 including a geomagnetic sensor and a gyroscope (not shown), a GPS antenna 94 that receives data such as information on the current position of the vehicle based on radio waves from the satellite, and the current vehicle
  • the touch panel type display 96 that can display various information including the destination setting operation by the operator as well as the location information, and the DVD nano disk with the map information recorded are not shown.
  • a system main body 98 incorporating a recording medium and a communication port, and is configured as a system for searching for a route to the destination based on the map information, the current position, and the destination.
  • the navigation system 90 transmits information such as the current position of the vehicle and the application area corresponding to the current position to the hybrid electronic control unit 70 via the communication port as necessary, It receives commands from the control unit 70 and displays various information on the display 96.
  • the restricted areas are classified into residential, commercial and industrial categories as defined by the City Planning Act.
  • the hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, and an input (not shown). An output port and a communication port are provided.
  • the hybrid electronic control unit 70 detects the idling signal from the idling switch 80, the shift position sensor 82 that detects the operating position of the shift lever 81, and the depression amount of the accelerator pedal 83 from the shift position sensor 82.
  • the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, the battery ECU 52, and the navigation system 90 via the communication port.
  • the hybrid vehicle 20 of the embodiment configured as described above is a request to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver.
  • Torque is calculated, and the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a.
  • Operation control of the engine 22 and motor MG1 and motor MG2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is transmitted to the planetary gear 30 and the motor.
  • Torque conversion is performed by MG1 and motor MG2 and output to ring gear shaft 32a.
  • Torque conversion operation mode for driving and controlling motor MG1 and motor MG2 and the required power and the power required for charging / discharging battery 50 are met.
  • the engine 22 is operated and controlled so that power is output from the engine 22, and all or part of the power output from the engine 22 with charging and discharging of the battery 50 is transmitted to the planetary gear 30, the motor MG1, and the motor MG2.
  • Motor MG1 and motor MG2 are driven and controlled so that the required power is output to ring gear shaft 32a with torque conversion by Charge-discharge drive mode, there is a motor operation mode in which operation control to output a power to meet the power demand from the motors MG2 to stop the operation of the engine 22 to the ring gear shaft 32a.
  • FIG. 3 is a flowchart showing an example of a drive control routine that is repeatedly executed by the electronic control unit 70 for no-bleeds at predetermined timings (for example, every several milliseconds).
  • the CPU 72 of the hybrid electronic control unit 70 first starts with the accelerator opening Acc and the vehicle speed sensor 88 from the accelerator pedal position sensor 84.
  • Power vehicle speed V, mode signal M from fuel economy priority mode switch 56, fuel remaining amount RF from fuel level sensor 58, motor MG1, MG2 speed Nml, Nm2, engine speed 22 Ne, catalyst bed temperature Teat , Input / output restriction for notch 50 Win, Wout, vehicle current location information NAV and other data required for control are executed (step S100).
  • the rotational speeds Nml and Nm2 of the motors MG1 and MG2 are communicated from the motor ECU 40 based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. It was supposed to be entered by The speed Ne of the engine 22 is calculated based on the signal from the crank position sensor 140 attached to the crankshaft 26, and the catalyst bed temperature Teat is calculated based on the signal from the catalyst bed temperature sensor 135. It was assumed that the input was input from the engine ECU 24 via communication.
  • Battery 50 Input / output limit Win, Wout sets the basic value of input / output limit Win, Wout based on the battery temperature Tb of battery 50 detected by temperature sensor 51, and the remaining capacity of battery 50 (SOC )
  • SOC remaining capacity of battery 50
  • Fig. 4 shows an example of the relationship between the battery temperature Tb and the input / output limits Win and Wout
  • Fig. 5 shows an example of the relationship between the remaining capacity of the battery 50 (SOC) and the input and output limits Win and Wout correction factors.
  • Information on the current location of the vehicle The NAV inputs information including the current location of the vehicle and the corresponding use area from the navigation system 90 via communication.
  • the required travel torque Tr to be output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b as the torque required for the vehicle based on the input accelerator opening Acc and the vehicle speed V. * And engine request capacity Pe * required for engine 22 are set (step S110).
  • the required travel torque Tr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required travel torque Tr * in the ROM 74 as a required torque setting map. It is assumed that the vehicle speed V is given! /, And the required map driving force Tr * is derived and set.
  • Figure 6 shows an example of the required torque setting map.
  • the required engine power Pe * is calculated by multiplying the set required travel torque Tr * by the rotational speed Nr of the ring gear shaft 32a. It can be calculated by a formula (see step S110 in FIG. 3) represented by one Pr * and the required charge / discharge power Pb * required by the battery 50 (positive during discharge, negative during charge) and loss Loss.
  • the rotational speed Nr of the ring gear shaft 32a can be obtained by multiplying the vehicle speed V by a conversion factor k, or by dividing the rotational speed Nm2 of the motor MG2 by the gear ratio Gr of the reduction gear 35.
  • the charge / discharge required power Pb * can be set based on the accelerator opening Acc and the remaining capacity SOC.
  • the engine speed Ne and the torque Te that give the best fuel consumption are selected in the same way for each value, and these are connected by a line.
  • the reference operation line was used. Note that the operating points on the reference operation line are the speed Ne and torque Ne that give the best fuel efficiency, so air-fuel ratio control is performed with the theoretical air-fuel ratio (about 14.7) as the target air-fuel ratio.
  • the rotation speed Ne and torque Ne when executed can be seen.
  • the upper limit power Pemax is a power that can be output when the rotational speed Ne of the engine 22 is the upper limit rotational speed Nemax as shown in FIG.
  • the upper limit engine speed Nemax is set in advance with a reference noise level in consideration of the laws and regulations of the Basic Environment Law, and the relationship between the engine speed Ne and the external noise level of the hybrid vehicle 20 is obtained through experiments. Therefore, the rotational speed Ne corresponding to the reference noise level was also derived, and the derived rotational speed Ne was used.
  • the upper limit speed Nemax may be a different value based on the application area (residential, commercial, industrial) included in the current vehicle location information NAV input from the navigation system 90. For example, in a residential area, it may have a lower rotational speed than a commercial or industrial area.
  • step S125 When the engine required power Pe * is less than or equal to the upper limit power Pemax, A target rotational speed Ne * and a target torque Te * of the engine 22 are set using the quasi-operation line (step S125). On the other hand, when the engine required power Pe * exceeds the upper limit power Pemax, it is determined whether or not the predetermined fuel increase prohibition condition is satisfied (step S130).
  • the fuel increase prohibition condition is that the mode signal M indicates the ON state of the fuel efficiency priority mode switch 56, or the vehicle current location information NAV input from the navigation system 90 indicates the residential use area.
  • the catalyst bed temperature Teat falls below a predetermined activation temperature (for example, 300 ° C and force 350 ° C). This is true in either case.
  • a predetermined activation temperature for example, 300 ° C and force 350 ° C.
  • the target speed Ne * of the engine 22 is set to the upper limit speed Nemax and the target torque Te * is set to the upper limit torque Temax using the reference operation line of FIG. Step S135).
  • the target air-fuel ratio used for air-fuel ratio control to increase the amount of fuel is not changed to a rich air-fuel ratio.
  • the target engine speed Ne * of the engine 22 is set to the upper limit engine speed Nemax (step S140), and the air / fuel ratio of the engine 22 is determined based on the engine required power Pe *.
  • the target air-fuel ratio (fuel increase parameter) used for control is set to a rich air-fuel ratio (step S 150).
  • the air-fuel ratio is the stoichiometric air-fuel ratio, so the fuel efficiency is good.
  • Engine output power Pe tends to be higher in the rich air-fuel ratio than in the theoretical air-fuel ratio. .
  • the engine output power Pe is increased while the engine speed Ne is kept at the upper limit engine speed Nemax.
  • the rich air-fuel ratio at this time may be set based on the power set based on the engine required power Pe *, for example, based on the ratio of the engine required power Pe * to the upper limit power Pmax! / ⁇ .
  • FIG. 8 shows an example of the relationship between the ratio of the engine required power Pe * to the upper limit power Pemax and the target air-fuel ratio.
  • the target rotational speed Ne * and the target torque Te * of the engine 22 are set in step S125 or step S135, the target rotational speed Ne * of the engine 22 is set in steps S140 and S150, and the engine 22
  • the target rotational speed Ne *, the rotational speed Nr (Nm2ZGr) of the ring gear shaft 32a, and the planetary gear 30 After setting the rich air-fuel ratio to be used for air-fuel ratio control, the target rotational speed Ne *, the rotational speed Nr (Nm2ZGr) of the ring gear shaft 32a, and the planetary gear 30 Using the gear ratio p and the following formula (1) to calculate the target speed Nml * of the motor MG1, the motor is calculated by formula (2) based on the calculated target speed Nml * and the current speed Nml.
  • MG1 torque command Tml * is calculated (step S160).
  • Expression (1) is a dynamic relational expression for the rotating element of the planetary gear 30.
  • a collinear chart showing the dynamic relationship between the rotational speed and torque in the rotational element of the planetary gear 30 is shown in FIG.
  • the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nml of the motor MG1
  • the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22
  • the R-axis indicates the rotation speed of the motor MG2.
  • the rotational speed Nr of the ring gear 32 obtained by multiplying the rotational speed N m2 by the gear ratio Gr of the reduction gear 35 is shown. Equation (1) can be easily derived using this alignment chart.
  • Equation (2) is a relational expression in feedback control for rotating motor MG1 at the target rotation speed Nml *.
  • “k 1” in the second term on the right side is the gain of the proportional term.
  • the third term “k2” on the right side is the gain of the integral term.
  • Nml * Ne *-(l + p) / p— Nm2 / (Gr ⁇ p) (1)
  • Tml * previous Tml * + kl (Nml * — Nml) + k2 J (Nml * — Nml) dt (2)
  • the output limit Wout of the battery 50 and the calculated torque command Tml * of the motor MG1 are multiplied by the current rotational speed Nml of the motor MG1.
  • the torque limit Tmin, Tmax as the upper and lower limits of the torque that may be output from the motor MG2 by dividing the deviation from the power consumption (generated power) of the motor MG1 obtained by the number of rotations Nm2 of the motor MG2 ) And Eq.
  • step S 170 the temporary motor torque Tm2t mp as the torque to be output from the motor MG2 using the travel request torque Tr *, torque command Tml * and the gear ratio p of the planetary gear 30 Is calculated by equation (5) (step S180), and the torque command Tm2 * of the motor MG2 is set as a value obtained by limiting the temporary motor torque Tm2tmp with the calculated torque limits Tmin and Tmax (step S190).
  • the torque command Tm2 * of the motor MG2 By setting the torque command Tm2 * of the motor MG2 in this way, the travel required torque Tr * output to the ring gear shaft 32a as the drive shaft is changed to the input / output of the notch 50.
  • Tmin (Win-Tml * ⁇ Nml) / Nm2 (3)
  • Tmax (Wout-Tml * Nml) / Nm2 (4)
  • Tm2tmp (Tr * + Tm 1 * / p) / Gr (5)
  • air-fuel ratio control is performed in which the fuel injection valve 126 is driven so that a fuel injection amount calculated from the air amount and the theoretical air-fuel ratio is injected.
  • the engine ECU 24 drives the throttle valve motor 136 so that the air amount corresponding to the target rotational speed Ne * is sucked.
  • Air-fuel ratio control is performed in which the fuel injection valve 126 is driven so that the fuel injection amount calculated from the air amount and the target air-fuel ratio (rich air-fuel ratio) is injected while adjusting the valve 124.
  • the motor ECU 40 that has received the torque commands Tml * and Tm2 * is connected to the inverter 41 and 42 so that the motor MG1 is driven by the torque command Tml * and the motor MG2 is driven by the torque command Tm2 *. Perform switching control.
  • the engine required power Pe * increases slowly after the engine speed Ne reaches the upper limit Nemax, the reference operating line is reached. Based on the engine demand power Pe *, the engine can be increased by increasing the amount of fuel. The output power Pe from 22 is increased. Therefore, the engine speed Ne is the upper limit. Even if the engine required power Pe * increases after reaching Nemax, the output power Pe from the engine 22 can be increased. Further, since the upper limit rotational speed Nemax is determined based on the level of noise generated by the operation of the engine 22, it is possible to increase the output power Pe from the engine 22 while appropriately preventing powerful noise. .
  • the engine 22 is operated at the operation point on the reference operation line, so that emission and fuel consumption are improved.
  • the fuel economy priority mode switch 56 when the fuel economy priority mode switch 56 is turned on, the driver prioritizes fuel consumption over power performance and prohibits fuel increase and is driving in residential land areas. In order to avoid an increase in the environmental load due to exhaust gas, fuel increase is prohibited, and when the remaining amount of fuel RF is small, fuel increase is prohibited from the viewpoint of increasing the distance that can be traveled with the remaining fuel, and the catalyst bed If the temperature of the teat has reached the activation temperature and the exhaust gas contains rich components derived from fuel, it may be impossible to purify the fuel.
  • the target air-fuel ratio of the air-fuel ratio control is set to the rich air-fuel ratio in order to increase the output power Pe from the engine 22 while keeping the rotational speed Ne of the engine 22 at the upper limit rotational speed Nemax.
  • the engine required power Pe * is not particularly limited, but the engine required power Pe * may be limited. That is, in such a case, it is necessary to keep the rotational speed Ne constant even though the output power Pe from the engine 22 is increased, so that the rotation of the engine 22 is suppressed by the torque Tml of the motor MG1.
  • the engine required power Pe * may be limited so that the charge amount to the battery 50 does not exceed the input limit Win. Specifically, if the engine required power Pe * exceeds the value (Pr * —Win) obtained by subtracting the input limit Win (negative value, see Fig. 3) from the travel required power Pr *, the engine required power Pe * A guard may be applied so that becomes the value (Pr * -Win). In this way, overcharging of the battery 50 can be prevented appropriately.
  • the engine required power Pe * is the upper limit value. ⁇ ⁇ When it is less than Pemax, the engine 22 is operated at the operating point on the reference operation line, but even in such a case, the accelerator opening 83 of the accelerator pedal 83 by the driver suddenly increases In order to increase the output power Pe from the engine 22, the target air-fuel ratio is set to a rich air-fuel ratio.
  • the power that the power of the motor MG2 is shifted by the reduction gear 35 and is output to the ring gear shaft 32a as illustrated in the hybrid vehicle 120 of the modified example of FIG.
  • the power of motor MG2 may be connected to an axle (an axle connected to wheels 64a and 64b in FIG. 10) different from an axle to which ring gear shaft 32a is connected (an axle to which driving wheels 63a and 63b are connected). Good.
  • the power that is used to output the power of the engine 22 to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the planetary gear 30 As illustrated in the hybrid vehicle 220 of the modified example of the above, it has an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. It is also possible to provide a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power! /.
  • the force described as the hybrid vehicle 20 is a power output device that executes such air-fuel ratio control, and may be mounted on a moving body such as a vehicle other than an automobile, a ship, an aircraft, etc. It may be built into non-moving equipment such as construction equipment. Further, it does not work as a form of a control method for such a power output apparatus.
  • the present invention includes, for example, industries related to automobiles such as passenger cars, buses, and trucks, industries related to transportation vehicles such as trains, ships, and aircraft, industries related to heavy machinery such as construction equipment, and agriculture. It can be used in industries related to machinery.

Abstract

 エンジン要求パワーPe*が上限パワーPemax以下のときには、理論空燃比で空燃比制御したときに得られる基準動作ラインを用いてエンジンの目標回転数Ne*と目標トルクTe*とを設定する(S125)。一方、エンジン要求パワーPe*が上限パワーPemaxを超えるときには、所定の燃料増量禁止条件が成立していないときには目標回転数Ne*を上限回転数Nemaxに設定し(ステップS140)、エンジン要求パワーPe*に基づいてエンジン22の空燃比制御に使用する目標空燃比をリッチ空燃比に設定する(S150)。

Description

明 細 書
動力出力装置及びその制御方法並びに車両
技術分野
[0001] 本発明は、動力出力装置及びその制御方法並びに車両に関する。
背景技術
[0002] 従来、駆動軸に動力を出力する動力出力装置としては、例えば特許文献 1に示す ように、動力源としてエンジンとモータとを備え、エンジンを動力源として動力を出力 するときにジェネレータを回転駆動してバッテリを充電するものが提案されている。こ の特許文献 1に開示されて!、る動力出力装置では、運転者の要求パワーの増大時 には、エンジン回転数を維持したままスロットルバルブよりも応答性の優れる出力増 大手段によってエンジントルクを速やかに増大させることにより、十分な動力が得られ るようにしている。なお、出力増大手段として、可変バルブタイミング機構や D4リーン バーン、パワー増量、ターボチャージヤーなどが例示されている。
[0003] この特許文献 1では、本来、燃費重視の基準動作ラインに基づいてエンジンに要求 されて 、るパワーを出力可能な運転ポイントを設定し、その運転ポイントでエンジンを 運転するのが好ま 、が、運転者の要求パワーの増大時にはその要求に迅速に応 えることを優先して一時的に基準動作ライン力 外れた運転ポイントでエンジンを運 転するようにしている。
特許文献 1:特開 2001— 112115号公報
発明の開示
[0004] し力しながら、特許文献 1では、エンジン回転数が何らかの規制によって定められて V、る上限回転数に達する場合のエンジンの制御にっ 、ては、特に考慮されて!、な!/ヽ 。このため、エンジン回転数が上限回転数に達したあと例えば充電パワーの増加な どによってエンジン要求パワーが緩やかに増加するときには、基準動作ラインに基づ いてエンジンの運転ポイントを回転数の高い側に変更することになるものの、ェンジ ン回転数は上限回転数を超えることができないため、結局運転ポイントを変更できず 、エンジン要求パワーに見合ったパワーを出力することができないことになる。 [0005] 本発明の動力出力装置及びその制御方法並びに車両は、内燃機関の回転数が 上限回転数に達したあと内燃機関に要求される動力が緩やかに増加したとしても対 処できるようにすることを目的の一つとする。また、このような対処を蓄電手段への過 充電を防止しつつ実行することを目的の一つとする。
[0006] 本発明の動力出力装置及びその制御方法並びに車両は、上述の目的の少なくと も一つを達成するために以下の手段を採った。
[0007] 本発明の動力出力装置は、
駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
該内燃機関の出力軸と前記駆動軸とに接続され、電力と動力の入出力を伴なつて 前記内燃機関力 の動力の少なくとも一部を前記駆動軸に出力可能な電力動力入 出力手段と、
前記駆動軸に動力を入出力可能な電動機と、
前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と 前記駆動軸に要求される駆動軸要求動力を設定する駆動軸要求動力設定手段と 前記蓄電手段の状態と前記設定された駆動軸要求動力とに基づいて前記内燃機 関に要求される内燃機関要求動力を設定する内燃機関要求動力設定手段と、 前記内燃機関の回転数が所定の上限回転数に達する場合であって理論空燃比又 はその近傍でもって空燃比制御を実行したときに得られる基準動作ラインと前記上限 回転数とに基づいて算出される該内燃機関が出力可能な上限動力を前記設定され た内燃機関要求動力が超えている場合には、該内燃機関の回転数を維持したまま 前記設定された内燃機関要求動力に基づいて燃料増量パラメータを設定し該設定 された燃料増量パラメータに対応する量の燃料が噴射されると共に前記設定された 駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう前記内燃機関と前記 電力動力入出力手段と前記電動機とを制御する制御手段と、
を備えることを要旨とする。 [0008] この動力出力装置では、内燃機関の回転数が所定の上限回転数に達する場合で あって理論空燃比又はその近傍でもって空燃比制御を実行したときに得られる基準 動作ラインと上限回転数とに基づいて算出される該内燃機関が出力可能な上限動 力を前記設定された内燃機関要求動力が超えている場合には、該内燃機関の回転 数を維持したまま、設定された内燃機関要求動力に基づ ヽて燃料増量パラメータを 設定し該設定された燃料増量パラメータに対応する量の燃料が噴射されると共に前 記設定された駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう内燃機 関と電力動力入出力手段と電動機とを制御する。ここで、内燃機関の回転数が上限 回転数に達したあと内燃機関要求動力が緩やかに増加するときなどには、基準動作 ラインに基づいて内燃機関の運転ポイントを回転数の高い側に変更しょうとしても上 限回転数に達して!/、るため変更できな 、ことから、その内燃機関要求動力に基づ ヽ て燃料増量を行なうことにより内燃機関力 出力される動力を増加するようにしている 。したがって、内燃機関の回転数が上限回転数に達したあと内燃機関に要求される 動力が緩やかに増加したとしても対処することができる。
[0009] 本発明の動力出力装置において、前記上限回転数は、前記内燃機関の運転によ つて発生する騒音のレベルに基づ 、て定められて!/、るものとしてもよ 、。こうすれば、 内燃機関の運転によって発生する騒音を適切に防止しつつ、内燃機関から出力され る動力を増加することができる。なお、内燃機関の上限回転数は、他の要因によって 定められていてもよぐ例えば内燃機関の性能や寿命のほか、電力動力入出力手段 や電動機、蓄電手段などの事情を考慮して定められて 、てもよ 、。
[0010] 本発明の動力出力装置において、前記制御手段は、前記内燃機関の回転数が前 記上限回転数に達する場合に燃料を増量するにあたり、前記蓄電手段の入力制限 に基づいて設定される内燃機関要求動力の最大値を超えない範囲で燃料を増量す るものとしてもよい。こうすれば、内燃機関の回転数が上限回転数に達したあと内燃 機関に要求される動力が増加したときの対処を、蓄電手段への過充電を防止しつつ 実行することができる。
[0011] 本発明の動力出力装置において、前記制御手段は、前記内燃機関の現回転数が 所定の上限回転数に達している場合であって、前記上限動力を前記設定された内 燃機関要求動力が超えているときであっても、所定の燃料増量禁止条件が成立して いるときには燃料の増量を行なわないものとしてもよい。こうすれば、燃料増量禁止条 件が成立しているときには、内燃機関は基準動作ライン上の運転ポイントで運転され ることになるため排ガス成分 (ェミッション)や燃費が良好となる。
[0012] ここで、所定の燃料増量禁止条件は、燃費優先モードに設定されているという条件 、所定の地域で運転を行なっているという条件、燃料残量が所定の少量領域にある と ヽぅ条件、及び前記内燃機関の排気経路に配置された排ガス浄化触媒が所定の 活性ィ匕温度に達していないという条件力 なる群より選ばれる少なくとも一つとしても よい。燃費優先モードに設定されている場合には、運転者が動力性能よりも燃費を優 先していることから燃料増量を禁止することが好ましい。また、所定の地域 (例えば巿 街地や住居専用地域など)で運転を行なって ヽる場合には、排ガスによる環境負荷 の増加を回避する観点から燃料増量を禁止することが好ましい。また、燃料残量が所 定の少量領域 (例えばフューエルランプが点灯する領域)にある場合には、残ってい る燃料で走行可能な距離を稼ぐ観点から燃料増量を禁止することが好まし ヽ。また、 排ガス浄ィ匕触媒が所定の活性ィ匕温度に達していない場合には、排ガスに燃料由来 成分がリッチに含まれると十分浄ィ匕できないおそれがあることから燃料増量を禁止す ることが好ましい。
[0013] 本発明の動力出力装置において、前記電力動力入出力手段は、前記内燃機関の 出力軸と前記駆動軸と回転軸との 3軸に接続され該 3軸のうちのいずれ力 2軸に入出 力される動力に基づ!、て残余の軸に動力を入出力する 3軸式動力入出力手段と、前 記回転軸に動力を入出力可能な発電機と、を備える手段であるとしてもよい。
[0014] 本発明の車両は、上述のいずれかの態様の本発明の動力出力装置を搭載し、車 軸が前記駆動軸に連結されてなることを要旨とする。この車両では、上述のいずれか の態様の本発明の動力出力装置を搭載するものであるから、本発明の動力出力装 置が奏する効果、例えば、内燃機関の回転数が上限回転数に達したあと内燃機関 に要求される動力が緩やかに増加したとしても対処することができるという効果を奏 する。
[0015] 本発明の動力出力装置の制御方法は、 内燃機関と、該内燃機関の出力軸と前記駆動軸とに接続され、電力と動力の入出 力を伴なつて前記内燃機関力 の動力の少なくとも一部を前記駆動軸に出力可能な 電力動力入出力手段と、前記駆動軸に動力を入出力可能な電動機と、前記電力動 力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備える動 力出力装置の制御方法であって、
(a)前記駆動軸に要求される駆動軸要求動力を設定し、
(b)前記蓄電手段の状態と前記設定された駆動軸要求動力とに基づいて前記内燃 機関に要求される内燃機関要求動力を設定し、
(c)前記内燃機関の回転数が所定の上限回転数に達する場合であって理論空燃比 又はその近傍でもって空燃比制御を実行したときに得られる基準動作ラインと前記上 限回転数とに基づいて算出される該内燃機関が出力可能な上限動力を前記設定さ れた内燃機関要求動力が超えている場合には、該内燃機関の回転数を維持したま ま前記設定された内燃機関要求動力に基づ!ヽて燃料増量パラメータを設定し該設 定された燃料増量パラメータに対応する量の燃料が噴射されると共に前記設定され た駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう前記内燃機関と前 記電力動力入出力手段と前記電動機とを制御する
ことを要旨とする。
この動力出力装置の制御方法では、内燃機関の回転数が所定の上限回転数に達 する場合であって理論空燃比又はその近傍でもって空燃比制御を実行したときに得 られる基準動作ラインと上限回転数とに基づいて算出される該内燃機関が出力可能 な上限動力を前記設定された内燃機関要求動力が超えている場合には、該内燃機 関の回転数を維持したまま、設定された内燃機関要求動力に基づいて燃料増量パ ラメータを設定し該設定された燃料増量パラメータに対応する量の燃料が噴射される と共に前記設定された駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう 内燃機関と電力動力入出力手段と電動機とを制御する。ここで、内燃機関の回転数 が上限回転数に達したあと内燃機関要求動力が緩やかに増加するときなどには、基 準動作ラインに基づいて内燃機関の運転ポイントを回転数の高い側に変更しようとし ても上限回転数に達して 、るため変更できな 、ことから、その内燃機関要求動力に 基づいて燃料増量を行なうことにより内燃機関カゝら出力される動力を増加するように している。したがって、内燃機関の回転数が上限回転数に達したあと内燃機関に要 求される動力が緩やかに増加したとしても対処することができる。なお、この動力出力 装置の制御方法にお!、て、上述の ヽずれかの態様の本発明の動力出力装置の各 種機能を実現するための動作やステップをカ卩えてもよい。
図面の簡単な説明
[0017] [図 1]本発明の一実施例である動力出力装置を搭載したハイブリッド自動車 20の構 成の概略を示す構成図である。
[図 2]エンジン 22の構成の概略を示す構成図である。
[図 3]ノ、イブリツド用電子制御ユニット 70により実行される駆動制御ルーチンの一例を 示すフローチャートである。
[図 4]バッテリ 50における電池温度 Tbと入出力制限 Win, Woutとの関係の一例を示 す説明図である。
[図 5]バッテリ 50の残容量(SOC)と入出力制限 Win, Woutの補正係数との関係の 一例を示す説明図である。
[図 6]要求トルク設定用マップの一例を示す説明図である。
[図 7]エンジン 22の基準動作ラインの一例と目標回転数 Ne *および目標トルク Te * を設定する様子を示す説明図である。
[図 8]エンジン要求パワー Pe *が上限パワー Pemaxを超えるときに用いる目標空燃 比設定用マップの一例を示す説明図である。
[図 9]プラネタリギヤ 30の回転要素における回転数とトルクとの力学的な関係を示す 共線図の一例を示す説明図である。
[図 10]変形例のハイブリッド自動車 120の構成の概略を示す構成図である。
[図 11]変形例のハイブリッド自動車 220の構成の概略を示す構成図である。
発明を実施するための最良の形態
[0018] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。
実施例
[0019] 図 1は、本発明の一実施例である動力出力装置を搭載したノ、イブリツド自動車 20の 構成の概略を示す構成図、図 2はこのノ、イブリツド自動車 20のエンジン 22の構成の 概略を示す構成図である。実施例のハイブリッド自動車 20は、図示するように、ェン ジン 22と、エンジン 22の出力軸としてのクランクシャフト 26にダンバ 28を介してピ- オンギヤ 33を回転させるキャリア 34が接続されたプラネタリギヤ 30と、プラネタリギヤ 30のサンギヤ 31に接続された発電可能なモータ MG 1と、プラネタリギヤ 30のリング ギヤ 32に接続された駆動軸としてのリングギヤ軸 32aに減速ギヤ 35を介して接続さ れたモータ MG2と、現在位置から目的地までの経路を検索して経路案内を行なうナ ピゲーシヨンシステム 90と、ハイブリッド自動車 20全体をコントロールするハイブリッド 用電子制御ユニット 70とを備える。なお、駆動軸としてのリングギヤ軸 32aは動力伝 達ギヤ 60とデフアレンシャルギヤ 62とを介して駆動輪 63a, 63bが取り付けられた車 軸 64に接続されており、リングギヤ軸 32aに出力された動力は走行用の動力として 用いられる。
[0020] エンジン 22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出 力可能な内燃機関として構成されており、図 2に示すように、エアクリーナ 122により 清浄された空気をスロットルバルブ 124を介して吸入する共に燃料噴射弁 126からガ ソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ 128 を介して燃料室に吸入し、点火プラグ 130による電気火花によって爆発燃焼させて、 そのエネルギにより押し下げられるピストン 132の往復運動をクランクシャフト 26の回 転運動に変換する。エンジン 22からの排気は、一酸ィ匕炭素 (CO)や炭化水素 (HC) ,窒素酸化物 (NOx)の有害成分を浄化する浄化装置 (三元触媒) 134を介して外気 へ排出される。
[0021] エンジン 22は、エンジン用電子制御ユニット(以下、エンジン ECUという) 24により 制御されている。エンジン ECU24は、 CPU24aを中心とするマイクロプロセッサとし て構成されており、 CPU24aの他に処理プログラムを記憶する ROM24bと、データ を一時的に記憶する RAM24cと、図示しない入出力ポートおよび通信ポートとを備 えている。エンジン ECU24には、エンジン 22の状態を検出する種々のセンサからの 信号が図示しない入力ポートを介して入力されている。例えば、エンジン ECU24に は、クランクシャフト 26の回転位置を検出するクランクポジションセンサ 140からのクラ ンクポジションやエンジン 22の冷却水の温度を検出する水温センサ 142からの冷却 水温,燃焼室へ吸排気を行なう吸気バルブ 128や排気バルブを開閉するカムシャフ トの回転位置を検出するカムポジションセンサ 144からのカムポジション,スロットルバ ルブ 124のポジションを検出するスロットルバルブポジションセンサ 146からのスロット ルポジション,浄化装置 134に取り付けられた触媒床温センサ 135からの触媒床温 T catなどが入力ポートを介して入力されている。また、エンジン ECU24からは、ェンジ ン 22を駆動するための種々の制御信号が図示しない出力ポートを介して出力されて いる。例えば、エンジン ECU24からは、燃料噴射弁 126への駆動信号や、スロットル バルブ 124のポジションを調節するスロットルモータ 136への駆動信号、ィグナイタと 一体ィ匕されたイダ-ッシヨンコイル 138への制御信号、吸気バルブ 128の開閉タイミ ングの変更可能な可変バルブタイミング機構 150への制御信号などが出
力ポートを介して出力されている。なお、エンジン ECU24は、ハイブリッド用電子制 御ユニット 70と通信しており、ハイブリッド用電子制御ユニット 70からの制御信号によ りエンジン 22を運転制御すると共に必要に応じてエンジン 22の運転状態に関するデ ータを出力する。
[0022] モータ MG1およびモータ MG2は、いずれも発電機として駆動することができると共 に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ 41, 42を介してバッテリ 50と電力のやりとりを行なう。モータ MG1, MG2は、いずれ もモータ用電子制御ユニット(以下、モータ ECUと、う) 40により駆動制御されて ヽる 。モータ ECU40には、モータ MG1, MG2を駆動制御するために必要な信号、例え ばモータ MG1, MG2の回転子の回転位置を検出する回転位置検出センサ 43, 44 力 の信号や図示しない電流センサにより検出されるモータ MG1, MG2に印加され る相電流などが入力されており、モータ ECU40からは、インバータ 41, 42へのスイツ チング制御信号が出力されている。モータ ECU40は、ハイブリッド用電子制御ュ- ット 70と通信しており、ハイブリッド用電子制御ユニット 70からの制御信号によってモ ータ MG1, MG2を駆動制御すると共に必要に応じてモータ MG1, MG2の運転状 態に関するデータをハイブリッド用電子制御ユニット 70に出力する。
[0023] ノ ッテリ 50は、ノ ッテリ用電子制御ユニット(以下、ノ ッテリ ECUという) 52によって 管理されている。ノ ッテリ ECU52には、ノ ッテリ 50を管理するのに必要な信号、例え ば、ノ ッテリ 50の端子間に設置された図示しない電圧センサからの端子間電圧,ノ ッテリ 50の出力端子に接続された電力ライン 54に取り付けられた図示しない電流セ ンサからの充放電電流,ノ ッテリ 50に取り付けられた温度センサ 51からの電池温度 Tbなどが入力されており、必要に応じてノ ッテリ 50の状態に関するデータを通信に よりハイブリッド用電子制御ユニット 70に出力する。なお、ノ ッテリ ECU52では、バッ テリ 50を管理するために電流センサにより検出された充放電電流の積算値に基づい て残容量 (SOC)も演算して 、る。
[0024] ナビゲーシヨンシステム 90は、図示しない地磁気センサやジャイロスコープからなる 方位センサ 92と、衛星からの電波に基づいて車両の現在位置に関する情報などの データを受信する GPSアンテナ 94と、車両の現在位置に関する情報を表示すると共 に操作者力ゝらの目的地設定操作を含む各種操作を入力可能なタツチパネル式のデ イスプレイ 96と、地図情報が記録された DVDゃノヽードディスクなどの図示しな 、記録 媒体や通信ポートを内蔵するシステム本体 98とを備え、地図情報と現在位置と目的 地とに基づいて目的地までの経路を探索するシステムとして構成されている。このナ ピゲーシヨンシステム 90は、必要に応じて車両の現在位置とその現在位置に対応す る用途地域などの情報を通信ポートを介してハイブリッド用電子制御ユニット 70に送 信したりハイブリッド用電子制御ユニット 70からの指令を受信してディスプレイ 96に種 々の情報を表示したりする。用途地域とは、ここでは都市計画法によって定められて いる住居系、商業系、工業系といった区分とした。
[0025] ハイブリッド用電子制御ユニット 70は、 CPU72を中心とするマイクロプロセッサとし て構成されており、 CPU72の他に処理プログラムを記憶する ROM74と、データを 一時的に記憶する RAM76と、図示しない入出力ポートおよび通信ポートとを備える 。ハイブリッド用電子制御ユニット 70には、イダ-ッシヨンスィッチ 80からのイダ-ッシ ヨン信号,シフトレバー 81の操作位置を検出するシフトポジションセンサ 82からのシ フトポジション SP,アクセルペダル 83の踏み込み量を検出するアクセルペダルポジ シヨンセンサ 84からのアクセル開度 Acc,ブレーキペダル 85の踏み込み量を検出す るブレーキペダルポジションセンサ 86からのブレーキペダルポジション BP,車速セン サ 88からの車速 V,運転者が動力性能よりも燃費を優先したいときにオンされる燃費 優先モードスィッチ 56からのモード信号 M,図示しな 、燃料タンクの燃料の残量を検 出する燃料残量センサ 58からの燃料残量 RFなどが入力ポートを介して入力されて いる。ハイブリッド用電子制御ユニット 70は、前述したように、エンジン ECU24ゃモ ータ ECU40,バッテリ ECU52、ナビゲーシヨンシステム 90と通信ポートを介して接 続されており、エンジン ECU24やモータ ECU40, ノ ッテリ ECU52、ナビゲーシヨン システム 90と各種制御信号やデータのやりとりを行なっている。
[0026] こうして構成された実施例のハイブリッド自動車 20は、運転者によるアクセルペダル 83の踏み込み量に対応するアクセル開度 Accと車速 Vとに基づいて駆動軸としての リングギヤ軸 32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求 動力がリングギヤ軸 32aに出力されるように、エンジン 22とモータ MG1とモータ MG2 とが運転制御される。エンジン 22とモータ MG1とモータ MG2の運転制御としては、 要求動力に見合う動力がエンジン 22から出力されるようにエンジン 22を運転制御す ると共にエンジン 22から出力される動力のすべてがプラネタリギヤ 30とモータ MG1と モータ MG2とによってトルク変換されてリングギヤ軸 32aに出力されるようモータ MG 1およびモータ MG2を駆動制御するトルク変換運転モードや要求動力とバッテリ 50 の充放電に必要な電力との和に見合う動力がエンジン 22から出力されるようにェン ジン 22を運転制御すると共にバッテリ 50の充放電を伴ってエンジン 22から出力され る動力の全部またはその一部がプラネタリギヤ 30とモータ MG1とモータ MG2とによ るトルク変換を伴って要求動力がリングギヤ軸 32aに出力されるようモータ MG1およ びモータ MG2を駆動制御する充放電運転モード、エンジン 22の運転を停止してモ ータ MG2からの要求動力に見合う動力をリングギヤ軸 32aに出力するよう運転制御 するモータ運転モードなどがある。
[0027] 次に、本実施例のハイブリッド自動車 20の動作について説明する。図 3は、ノ、イブ リツド用電子制御ユニット 70により所定タイミングごと (例えば数 msecごと)に繰り返し 実行される駆動制御ルーチンの一例を示すフローチャートである。
[0028] 駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット 70の CPU72は 、まず、アクセルペダルポジションセンサ 84からのアクセル開度 Accや車速センサ 88 力もの車速 V,燃費優先モードスィッチ 56からのモード信号 M,燃料残量センサ 58 からの燃料残量 RF,モータ MG1, MG2の回転数 Nml, Nm2,エンジン 22の回転 数 Ne,触媒床温 Teat, ノ ッテリ 50の入出力制限 Win, Wout,車両現在地に関する 情報 NAVなど制御に必要なデータを入力する処理を実行する (ステップ S 100)。こ こで、モータ MG1, MG2の回転数 Nml, Nm2は、回転位置検出センサ 43, 44に より検出されるモータ MG1, MG2の回転子の回転位置に基づいて計算されたもの をモータ ECU40から通信により入力するものとした。エンジン 22の回転数 Neはクラ ンクシャフト 26に取り付けられたクランクポジションセンサ 140からの信号に基づいて 計算されたものを、また、触媒床温 Teatは触媒床温センサ 135からの信号に基づい て算出されたものを、エンジン ECU24から通信により入力するものとした。バッテリ 5 0の入出力制限 Win, Woutは、温度センサ 51により検出されたバッテリ 50の電池温 度 Tbに基づいて入出力制限 Win, Woutの基本値を設定し、ノ ッテリ 50の残容量( SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定し た入出力制限 Win, Woutの基本値に補正係数を乗じて入出力制限 Win, Woutを 設定したものをバッテリ ECU52から通信により入力するものとした。図 4に電池温度 Tbと入出力制限 Win, Woutとの関係の一例を示し、図 5にバッテリ 50の残容量(S OC)と入出力制限 Win, Woutの補正係数との関係の一例を示す。車両現在地に関 する情報 NAVは、車両の現在位置とそれに対応する用途地域とを含む情報をナビ ゲーシヨンシステム 90から通信により入力するものとした。
こうしてデータを入力すると、入力したアクセル開度 Accと車速 Vとに基づいて車両 に要求されるトルクとして駆動輪 63a, 63bに連結された駆動軸としてのリングギヤ軸 32aに出力すべき走行要求トルク Tr *とエンジン 22に要求されるエンジン要求パヮ 一 Pe *とを設定する (ステップ S 110)。走行要求トルク Tr*は、実施例では、ァクセ ル開度 Accと車速 Vと走行要求トルク Tr *との関係を予め定めて要求トルク設定用 マップとして ROM74に記憶しておき、アクセル開度 Accと車速 Vとが与えられると記 憶して!/、るマップ力も対応する走行要求トルク Tr *を導出して設定するものとした。 図 6に要求トルク設定用マップの一例を示す。エンジン要求パワー Pe *は、設定した 走行要求トルク Tr *にリングギヤ軸 32aの回転数 Nrを乗じて得られる走行要求パヮ 一 Pr *とバッテリ 50が要求する充放電要求パワー Pb * (放電時に正、充電時に負) とロス Lossとで表される式(図 3のステップ S110参照)により計算することができる。な お、リングギヤ軸 32aの回転数 Nrは、車速 Vに換算係数 kを乗じることによって求め たり、モータ MG2の回転数 Nm2を減速ギヤ 35のギヤ比 Grで割ることによって求め ることができる。また、充放電要求パワー Pb *は、アクセル開度 Accや残容量 SOC に基づ!/、て設定することができる。
[0030] 続!、て、設定されたエンジン要求パワー Pe *がエンジン 22の運転ポイント(回転数 とトルクとによって決定される)を基準動作ライン上で動作させる場合に得られる上限 パワー Pemaxを超えるか否かを判定する(ステップ S120)。図 7に基準動作ラインの 一例を示す。この基準動作ラインは次のようにして設定した。即ち、エンジン要求パヮ 一 Pe *がある一定の値となるようなエンジン 22の運転ポイントは回転数 Neとトルク T eとの積がエンジン要求パワー Pe *と等しくなるように定めればょ 、から無数に存在 することになる力 それらのうち最も燃費ゃェミッションが良好となる回転数 Neとトルク Teとを選定する。そして、エンジン要求パワー Pe *を種々の値にしたときに各値ごと に同様にして最も燃費ゃェミッションが良好となる回転数 Neとトルク Teとを選定し、そ れらを線で結んだものを基準動作ラインとした。なお、基準動作ライン上の運転ポイン トは、最も燃費ゃェミッションが良好となる回転数 Neとトルク Neであるから、理論空燃 比 (約 14. 7)を目標空燃比として空燃比制御を実行したときの回転数 Neとトルク Ne とみることができる。また、上限パワー Pemaxは、図 7に示すようにエンジン 22の回転 数 Neが上限回転数 Nemaxのときに出力可能なパワーである。上限回転数 Nemax は、予め環境基本法の法令などを考慮して基準騒音レベルを設定しておき、ェンジ ン 22の回転数 Neとハイブリッド自動車 20の車外騒音レベルとの関係を実験などによ り求め、その関係力も基準騒音レベルに対応する回転数 Neを導出し、その導出した 回転数 Neとした。なお、上限回転数 Nemaxは、ナビゲーシヨンシステム 90から入力 される車両の現在地情報 NAVに含まれる用途地域 (住居系、商業系、工業系)に基 づいて異なる値となるようにしてもよぐ例えば住居専用地域では商業地域や工業地 域よりも低回転数になるようにしてもょ 、。
[0031] そして、エンジン要求パワー Pe *が上限パワー Pemax以下のときには、図 7の基 準動作ラインを用いてエンジン 22の目標回転数 Ne *と目標トルク Te *とを設定する (ステップ S125)。一方、エンジン要求パワー Pe *が上限パワー Pemaxを超えるとき には、所定の燃料増量禁止条件が成立している力否かを判定する (ステップ S 130) 。燃料増量禁止条件としては、モード信号 Mが燃費優先モードスィッチ 56のオン状 態を表している場合やナビゲーシヨンシステム 90から入力される車両の現在地情報 NAVが住居系の用途地域を表して 、る場合、燃料残量 RFが図示しな 、フューエル ランプを点灯させるときの閾値を下回っている場合、触媒床温 Teatが所定の活性ィ匕 温度(例えば 300°Cと力 350°C)を下回っている場合のいずれかの場合に成立する。 そして、燃料増量禁止条件が成立しているときには、図 7の基準動作ラインを用いて エンジン 22の目標回転数 Ne *を上限回転数 Nemaxに、 目標トルク Te *を上限ト ルク Temaxに設定する (ステップ S135)。つまり、燃料を増量するために空燃比制御 に使用する目標空燃比をリッチ空燃比にすることはない。一方、燃料増量禁止条件 が成立して ヽな 、ときには、エンジン 22の目標回転数 Ne *を上限回転数 Nemaxに 設定し (ステップ S 140)、エンジン要求パワー Pe *に基づいてエンジン 22の空燃比 制御に使用する目標空燃比 (燃料増量パラメータ)をリッチ空燃比に設定する (ステツ プ S 150)。図 7に示す基準動作ライン上では空燃比は理論空燃比であるため燃費 ゃェミッションは良好となる力 エンジン出力パワー Peは理餘空燃比よりもリッチな空 燃比の方が高くなる傾向にある。したがって、空燃比制御の目標空燃比をリッチ空燃 比にして吸入空気量に対する燃料噴射量を増量することにより、エンジン 22の回転 数 Neを上限回転数 Nemaxとしたままエンジン出力パワー Peを高くしている。このと きのリッチ空燃比は、エンジン要求パワー Pe *に基づいて設定される力 例えば上 限パワー Pmaxに対するエンジン要求パワー Pe *の割合に基づ!/、て設定してもよ!/ヽ 。図 8に、上限パワー Pemaxに対するエンジン要求パワー Pe *の割合と目標空燃比 との関係の一例を示す。
このようにステップ S 125又はステップ S135でエンジン 22の目標回転数 Ne *や目 標トルク Te *を設定したり、ステップ S140, S 150でエンジン 22の目標回転数 Ne * を設定すると共にエンジン 22の空燃比制御で使用するリッチ空燃比を設定したあと、 目標回転数 Ne *とリングギヤ軸 32aの回転数 Nr (Nm2ZGr)とプラネタリギヤ 30の ギヤ比 pとを用いて次式(1)によりモータ MG1の目標回転数 Nml *を計算すると 共に計算した目標回転数 Nml *と現在の回転数 Nmlとに基づいて式(2)によりモ ータ MG1のトルク指令 Tml *を計算する(ステップ S160)。ここで、式(1)は、プラネ タリギヤ 30の回転要素に対する力学的な関係式である。プラネタリギヤ 30の回転要 素における回転数とトルクとの力学的な関係を示す共線図を図 9に示す。図中、左の S軸はモータ MG1の回転数 Nmlであるサンギヤ 31の回転数を示し、 C軸はェンジ ン 22の回転数 Neであるキャリア 34の回転数を示し、 R軸はモータ MG2の回転数 N m2に減速ギヤ 35のギヤ比 Grを乗じたリングギヤ 32の回転数 Nrを示す。式(1)は、 この共線図を用いれば容易に導くことができる。なお、 R軸上の 2つの太線矢印は、 エンジン 22を目標回転数 Ne *および目標トルク Te *の運転ポイントで定常運転し たときにエンジン 22から出力されるトルク Te *カ^ングギヤ軸 32aに伝達されるトルク と、モータ MG2から出力されるトルク Tm2 *が減速ギヤ 35を介してリングギヤ軸 32a に作用するトルクとを示す。また、式(2)は、モータ MG1を目標回転数 Nml *で回 転させるためのフィードバック制御における関係式であり、式(2)中、右辺第 2項の「k 1」は比例項のゲインであり、右辺第 3項の「k2」は積分項のゲインである。
[0033] Nml*=Ne* -(l+ p )/ p— Nm2/(Gr · p ) (1)
Tml*=前回 Tml*+kl(Nml*— Nml)+k2 J (Nml*— Nml)dt (2)
[0034] こうしてモータ MG1の目標回転数 Nml *とトルク指令 Tml *とを計算すると、バッ テリ 50の出力制限 Woutと計算したモータ MG1のトルク指令 Tml *に現在のモータ MG1の回転数 Nmlを乗じて得られるモータ MG1の消費電力(発電電力)との偏差 をモータ MG2の回転数 Nm2で割ることによりモータ MG2から出力してもよいトルク の上下限としてのトルク制限 Tmin, Tmaxを次式(3)および式 (4)により計算すると 共に(ステップ S 170)、走行要求トルク Tr*とトルク指令 Tml *とプラネタリギヤ 30 のギヤ比 pを用いてモータ MG2から出力すべきトルクとしての仮モータトルク Tm2t mpを式(5)により計算し (ステップ S180)、計算したトルク制限 Tmin, Tmaxで仮モ ータトルク Tm2tmpを制限した値としてモータ MG2のトルク指令 Tm2 *を設定する( ステップ S190)。このようにモータ MG2のトルク指令 Tm2 *を設定することにより、駆 動軸としてのリングギヤ軸 32aに出力する走行要求トルク Tr*を、ノ ッテリ 50の入出 力制限 Win, Woutの範囲内で制限したトルクとして設定することができる。なお、式( 5)は、前述した図 9の共線図から容易に導き出すことができる。
[0035] Tmin=(Win-Tml* · Nml)/Nm2 (3)
Tmax=(Wout-Tml* · Nml)/Nm2 (4)
Tm2tmp=(Tr*+Tm 1 */ p )/Gr (5)
[0036] こうしてエンジン 22の目標回転数 Ne *や目標トルク Te * (又は目標空燃比として のリッチ空燃比),モータ MG1, MG2のトルク指令 Tml * , Tm2 *を設定すると、 エンジン 22の目標回転数 Ne *と目標トルク Te *につ!/ヽてはエンジン ECU24に、モ ータ MG1, MG2のトルク指令 Tml * , Tm2 *についてはモータ ECU40にそれぞ れ送信して(ステップ S200)、駆動制御ルーチンを終了する。エンジン ECU24は、 目標回転数 Ne *と目標トルク Te *とを受信したときには目標回転数 Ne *に見合つ た空気量が吸入されるようスロットルバルブモータ 136を駆動してスロットルバルブ 12 4を調整すると共にその空気量と理論空燃比とから算出される燃料噴射量が噴射さ れるよう燃料噴射弁 126を駆動するという空燃比制御を実行する。一方、エンジン E CU24は、 目標回転数 Ne *と目標空燃比としてのリッチ空燃比とを受信したときには 目標回転数 Ne *に見合った空気量が吸入されるようスロットルバルブモータ 136を 駆動してスロットルバルブ 124を調整すると共にその空気量と目標空燃比(リッチ空 燃比)とから算出される燃料噴射量が噴射されるよう燃料噴射弁 126を駆動するとい う空燃比制御を実行する。また、トルク指令 Tml * , Tm2 *を受信したモータ ECU4 0は、トルク指令 Tml *でモータ MG1が駆動されると共にトルク指令 Tm2 *でモー タ MG2が駆動されるようインバータ 41, 42のスイッチング素子のスイッチング制御を 行なう。
[0037] 以上詳述したノ、イブリツド自動車 20によれば、エンジン 22の回転数 Neが上限回転 数 Nemaxに達したあとエンジン要求パワー Pe *が緩やかに増加するときなどには、 基準動作ラインに基づいてエンジン 22の運転ポイントを回転数 Neの高い側に変更 しょうとしても上限回転数 Nemaxに達しているため変更できないことから、そのェンジ ン要求パワー Pe *に基づいて燃料増量を行なうことによりエンジン 22からの出力パ ヮー Peを増加するようにしている。したがって、エンジン 22の回転数 Neが上限回転 数 Nemaxに達したあとエンジン要求パワー Pe *が増加したとしてもエンジン 22から の出力パワー Peを増加することができる。また、上限回転数 Nemaxは、エンジン 22 の運転によって発生する騒音のレベルに基づいて定められているため、力かる騒音 を適切に防止しつつ、エンジン 22からの出力パワー Peを増加することができる。更に 、燃料増量禁止条件が成立しているときには、エンジン 22は基準動作ライン上の運 転ポイントで運転されることになるためェミッションや燃費が良好となる。具体的には、 燃費優先モードスィッチ 56がオンされている場合には運転者が動力性能よりも燃費 を優先していることから燃料増量を禁止し、住居系の用地地域を走行している場合に は排ガスによる環境負荷の増加を回避する観点から燃料増量を禁止し、燃料残量 R Fが僅かな場合には残っている燃料で走行可能な距離を稼ぐ観点から燃料増量を 禁止し、触媒床温 Teatが活性化温度に達して ヽな 、場合には排ガスに燃料由来成 分がリッチに含まれると十分浄ィ匕できないおそれがあることから燃料増量を禁止する
[0038] なお、本発明は上述した実施例に何ら限定されることはなぐ本発明の技術的範囲 に属する限り種々の態様で実施し得ることは 、うまでもな!/、。
[0039] 上述した実施例のハイブリッド自動車 20では、エンジン 22の回転数 Neを上限回転 数 Nemaxとしたままエンジン 22からの出力パワー Peを増加するために空燃比制御 の目標空燃比をリッチ空燃比に設定して燃料を増量する場合、特にエンジン要求パ ヮー Pe *を制限しなかったが、エンジン要求パワー Pe *を制限するようにしてもよい 。即ち、このような場合には、エンジン 22からの出力パワー Peが増加するにもかかわ らず回転数 Neを一定に保つ必要があるからモータ MG1のトルク Tmlでエンジン 22 の回転を抑え込むことになり、ノ ッテリ 50への充電量が大きくなる傾向となるため、バ ッテリ 50への充電量が入力制限 Winを超えることのないようにエンジン要求パワー P e *を制限してもよい。具体的には、エンジン要求パワー Pe *が走行要求パワー Pr *から入力制限 Win (負の値、図 3参照)を差し引いた値 (Pr *—Win)を超える場合 には、エンジン要求パワー Pe *が値(Pr* -Win)となるようにガードを掛けてもよい 。こうすれば、ノ ッテリ 50への過充電を適切に防止することができる。
[0040] 上述した実施例のハイブリッド自動車 20では、エンジン要求パワー Pe *が上限パ ヮー Pemax以下のときには基準動作ライン上の運転ポイントでエンジン 22を運転す ることとしたが、このようなときであっても運転者によるアクセルペダル 83のアクセル開 度 Accが急に大きくなつた場合には目標空燃比をリッチ空燃比にしてエンジン 22か らの出力パワー Peが増加するようにしてもょ 、。
[0041] 上述した実施例のハイブリッド自動車 20では、モータ MG2の動力を減速ギヤ 35に より変速してリングギヤ軸 32aに出力するものとした力 図 10の変形例のハイブリッド 自動車 120に例示するように、モータ MG2の動力をリングギヤ軸 32aが接続された 車軸 (駆動輪 63a, 63bが接続された車軸)とは異なる車軸(図 10における車輪 64a , 64bに接続された車軸)に接続するものとしてもよい。
[0042] 上述した実施例のハイブリッド自動車 20では、エンジン 22の動力をプラネタリギヤ 3 0を介して駆動輪 63a, 63bに接続された駆動軸としてのリングギヤ軸 32aに出力す るものとした力 図 11の変形例のハイブリッド自動車 220に例示するように、エンジン 22のクランクシャフト 26に接続されたインナーロータ 232と駆動輪 63a, 63bに動力 を出力する駆動軸に接続されたアウターロータ 234とを有し、エンジン 22の動力の一 部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機 230を 備えるものとしてもよ!/、。
[0043] 上述した実施例では、ノ、イブリツド自動車 20として説明した力 こうした空燃比制御 を実行する動力出力装置であれば、自動車以外の車両や船舶,航空機などの移動 体に搭載するものとしてもよぐ建設設備などの移動しない設備に組み込むものとし てもよい。また、こうした動力出力装置の制御方法の形態としても力まわない。
[0044] 本出願は、 2005年 12月 19日に出願した日本国特許出願第 2005— 365433号 を優先権主張の基礎としており、その内容の全てが引用により本明細書に含まれる。 産業上の利用可能性
[0045] 本発明は、例えば乗用車やバス、トラックなどの自動車に関連する産業のほか、列 車や船舶、航空機などの輸送車両に関連する産業や建設設備などの重機に関連す る産業、農業機械に関連する産業に利用可能である。

Claims

請求の範囲
[1] 駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
該内燃機関の出力軸と前記駆動軸とに接続され、電力と動力の入出力を伴なつて 前記内燃機関力 の動力の少なくとも一部を前記駆動軸に出力可能な電力動力入 出力手段と、
前記駆動軸に動力を入出力可能な電動機と、
前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と 前記駆動軸に要求される駆動軸要求動力を設定する駆動軸要求動力設定手段と 前記蓄電手段の状態と前記設定された駆動軸要求動力とに基づいて前記内燃機 関に要求される内燃機関要求動力を設定する内燃機関要求動力設定手段と、 前記内燃機関の回転数が所定の上限回転数に達する場合であって理論空燃比又 はその近傍でもって空燃比制御を実行したときに得られる基準動作ラインと前記上限 回転数とに基づいて算出される該内燃機関が出力可能な上限動力を前記設定され た内燃機関要求動力が超えている場合には、該内燃機関の回転数を維持したまま 前記設定された内燃機関要求動力に基づいて燃料増量パラメータを設定し該設定 された燃料増量パラメータに対応する量の燃料が噴射されると共に前記設定された 駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう前記内燃機関と前記 電力動力入出力手段と前記電動機とを制御する制御手段と、
を備える動力出力装置。
[2] 前記上限回転数は、前記内燃機関の運転によって発生する騒音のレベルに基づ いて定められている、
請求項 1に記載の動力出力装置。
[3] 前記制御手段は、前記内燃機関の回転数が前記上限回転数に達する場合に燃料 を増量するにあたり、前記蓄電手段の入力制限に基づいて設定される内燃機関要 求動力の最大値を超えない範囲で燃料を増量する、 請求項 1又は 2に記載の動力出力装置。
[4] 前記制御手段は、前記内燃機関の現回転数が所定の上限回転数に達している場 合であって前記上限動力を前記設定された内燃機関要求動力が超えているときであ つても、所定の燃料増量禁止条件が成立しているときには燃料の増量を行なわない 請求項 1〜3の!ヽずれかに記載の動力出力装置。
[5] 前記所定の燃料増量禁止条件は、燃費優先モードに設定されているという条件、 所定の地域で運転を行なって 、ると!/、う条件、燃料残量が所定の少量領域にあると Vヽぅ条件、及び前記内燃機関の排気経路に配置された排ガス浄化触媒が所定の活 性ィ匕温度に達していないという条件力 なる群より選ばれる少なくとも一つである、 請求項 4に記載の動力出力装置。
[6] 前記電力動力入出力手段は、前記内燃機関の出力軸と前記駆動軸と回転軸との 3 軸に接続され該 3軸のうちの 、ずれ力 2軸に入出力される動力に基づ 、て残余の軸 に動力を入出力する 3軸式動力入出力手段と、前記回転軸に動力を入出力可能な 発電機と、を備える手段である、
請求項 1〜5の!ヽずれかに記載の動力出力装置。
[7] 請求項 1〜6のいずれか記載の動力出力装置を搭載し、前記駆動軸に車軸が連結 されてなる車両。
[8] 内燃機関と、該内燃機関の出力軸と前記駆動軸とに接続され、電力と動力の入出 力を伴なつて前記内燃機関力 の動力の少なくとも一部を前記駆動軸に出力可能な 電力動力入出力手段と、前記駆動軸に動力を入出力可能な電動機と、前記電力動 力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備える動 力出力装置の制御方法であって、
(a)前記駆動軸に要求される駆動軸要求動力を設定し、
(b)前記蓄電手段の状態と前記設定された駆動軸要求動力とに基づいて前記内燃 機関に要求される内燃機関要求動力を設定し、
(c)前記内燃機関の回転数が所定の上限回転数に達する場合であって理論空燃比 又はその近傍でもって空燃比制御を実行したときに得られる基準動作ラインと前記上 限回転数とに基づいて算出される該内燃機関が出力可能な上限動力を前記設定さ れた内燃機関要求動力が超えている場合には、該内燃機関の回転数を維持したま ま前記設定された内燃機関要求動力に基づ!ヽて燃料増量パラメータを設定し該設 定された燃料増量パラメータに対応する量の燃料が噴射されると共に前記設定され た駆動軸要求動力に基づく動力が前記駆動軸に出力されるよう前記内燃機関と前 記電力動力入出力手段と前記電動機とを制御する、
動力出力装置の制御方法。
PCT/JP2006/325228 2005-12-19 2006-12-19 動力出力装置及びその制御方法並びに車両 WO2007072797A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/991,479 US20080309093A1 (en) 2005-12-19 2006-12-19 Power Output Apparatus, Control Method of Power Output Apparatus, and Vehicle Equipped with Power Output Apparatus
EP06834938A EP1964709A1 (en) 2005-12-19 2006-12-19 Power output device and its control method and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005365433A JP2007168495A (ja) 2005-12-19 2005-12-19 動力出力装置及びその制御方法並びに車両
JP2005-365433 2005-12-19

Publications (1)

Publication Number Publication Date
WO2007072797A1 true WO2007072797A1 (ja) 2007-06-28

Family

ID=38188574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325228 WO2007072797A1 (ja) 2005-12-19 2006-12-19 動力出力装置及びその制御方法並びに車両

Country Status (6)

Country Link
US (1) US20080309093A1 (ja)
EP (1) EP1964709A1 (ja)
JP (1) JP2007168495A (ja)
KR (1) KR20080073756A (ja)
CN (1) CN101331030A (ja)
WO (1) WO2007072797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220194356A1 (en) * 2020-12-23 2022-06-23 Kawasaki Motors, Ltd. Control device of hybrid vehicle, hybrid vehicle, and control method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054738A1 (de) * 2007-11-16 2009-05-20 Continental Teves Ag & Co. Ohg Kraftfahrzeugenergiesparassistenzsystem
JP5198147B2 (ja) * 2008-05-26 2013-05-15 トヨタ自動車株式会社 車両およびその制御方法並びに駆動装置
US20100106350A1 (en) * 2008-10-28 2010-04-29 Glacier Bay, Inc. Real-time efficiency monitoring for marine vessel
KR20120018310A (ko) * 2009-06-23 2012-03-02 닛뽕 유센 가부시키가이샤 선박용 기관의 제어 방법 및 그 제어 장치
FR2962096B1 (fr) * 2010-07-02 2012-08-17 Peugeot Citroen Automobiles Sa Procede et appareil de controle/commande d'un groupe motopropulseur hybride
US8812224B1 (en) * 2010-07-31 2014-08-19 Comverge, Inc. Method and system for tracking alternative fueled based travel in alternative fueled vehicles
JP2012052468A (ja) * 2010-09-01 2012-03-15 Denso Corp エンジン制御装置
JP5483019B2 (ja) * 2010-09-21 2014-05-07 スズキ株式会社 内燃機関の出力制御装置
US9002561B2 (en) * 2011-01-31 2015-04-07 Suzuki Motor Corporation Drive control apparatus and drive control method for hybrid vehicles and hybrid vehicle
US20140309832A1 (en) * 2011-12-02 2014-10-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US9929688B2 (en) * 2012-09-07 2018-03-27 Ford Global Technologies, Llc Electric machine torque capability determination
JP5742984B1 (ja) * 2014-02-26 2015-07-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102014211625A1 (de) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Leistungssteuervorrichtung für eine Motorsteuervorrichtung, Motorsteuervorrichtung und Motorsystem
KR101694023B1 (ko) 2015-06-30 2017-01-09 현대자동차주식회사 하이브리드 차량의 엔진 제어 장치 및 방법
KR102537877B1 (ko) * 2018-11-01 2023-05-30 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898319A (ja) * 1994-09-28 1996-04-12 Toyota Motor Corp ハイブリッド型電気自動車
JPH1098805A (ja) * 1996-09-24 1998-04-14 Toyota Motor Corp 動力出力装置およびその制御方法
JPH11117782A (ja) * 1997-10-09 1999-04-27 Toyota Motor Corp 動力出力装置およびその制御方法
JP2001112115A (ja) * 1999-10-08 2001-04-20 Toyota Motor Corp ハイブリッド車両の制御装置
JP2001238306A (ja) * 2000-02-25 2001-08-31 Toyota Motor Corp 動力出力装置およびその制御方法
JP2005180331A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 自動車および自動車の制御装置
JP2005323481A (ja) * 2004-05-11 2005-11-17 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915809B2 (ja) * 2004-09-21 2007-05-16 トヨタ自動車株式会社 リーンリミットを低電力消費にて達成するハイブリッド車
JP4513751B2 (ja) * 2006-01-13 2010-07-28 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US7792628B2 (en) * 2007-09-27 2010-09-07 Ford Global Technologies, Llc Electrical assist for reducing emissions and torsion response delay in a hybrid electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898319A (ja) * 1994-09-28 1996-04-12 Toyota Motor Corp ハイブリッド型電気自動車
JPH1098805A (ja) * 1996-09-24 1998-04-14 Toyota Motor Corp 動力出力装置およびその制御方法
JPH11117782A (ja) * 1997-10-09 1999-04-27 Toyota Motor Corp 動力出力装置およびその制御方法
JP2001112115A (ja) * 1999-10-08 2001-04-20 Toyota Motor Corp ハイブリッド車両の制御装置
JP2001238306A (ja) * 2000-02-25 2001-08-31 Toyota Motor Corp 動力出力装置およびその制御方法
JP2005180331A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 自動車および自動車の制御装置
JP2005323481A (ja) * 2004-05-11 2005-11-17 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220194356A1 (en) * 2020-12-23 2022-06-23 Kawasaki Motors, Ltd. Control device of hybrid vehicle, hybrid vehicle, and control method
US11866030B2 (en) * 2020-12-23 2024-01-09 Kawasaki Motors, Ltd. Control device of hybrid vehicle, hybrid vehicle, and control method

Also Published As

Publication number Publication date
US20080309093A1 (en) 2008-12-18
JP2007168495A (ja) 2007-07-05
KR20080073756A (ko) 2008-08-11
CN101331030A (zh) 2008-12-24
EP1964709A1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2007072797A1 (ja) 動力出力装置及びその制御方法並びに車両
JP4254762B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4297913B2 (ja) 動力出力装置およびその制御方法並びに車両
JP4207966B2 (ja) 動力出力装置およびその制御方法並びに車両
JP4850801B2 (ja) 内燃機関装置およびこれを搭載する車両、内燃機関装置の制御方法
JP4175371B2 (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP4306719B2 (ja) 内燃機関装置およびこれを備える動力出力装置並びにこれを搭載する車両、内燃機関装置の制御方法
KR20080068126A (ko) 하이브리드자동차 및 그 제어방법
JP4086042B2 (ja) 自動車およびその制御方法
JP4085996B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4241674B2 (ja) ハイブリッド車およびその制御方法
JP2007313948A (ja) 自動車およびその制御方法
JP4293184B2 (ja) ハイブリッド車両およびその制御方法
JP4254786B2 (ja) 車両及びその制御方法
JP2010083319A (ja) ハイブリッド車およびその制御方法
JP6981262B2 (ja) ハイブリッド車両
JP3956944B2 (ja) 動力出力装置およびこれを搭載する自動車並びにその制御方法
JP2010274739A (ja) 内燃機関装置およびハイブリッド車
JP2008247098A (ja) 動力出力装置およびその制御方法並びに車両
JP5751185B2 (ja) ハイブリッド車
JP2007283899A (ja) 内燃機関装置およびその制御方法並びに車両
JP2009248682A (ja) ハイブリッド車およびその制御方法
JP4539675B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2007118755A (ja) 動力出力装置およびその制御方法並びに車両
JP2013067297A (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046857.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11991479

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006834938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087014691

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE