WO2007069670A1 - コンデンサチップ及びその製造方法 - Google Patents

コンデンサチップ及びその製造方法 Download PDF

Info

Publication number
WO2007069670A1
WO2007069670A1 PCT/JP2006/324901 JP2006324901W WO2007069670A1 WO 2007069670 A1 WO2007069670 A1 WO 2007069670A1 JP 2006324901 W JP2006324901 W JP 2006324901W WO 2007069670 A1 WO2007069670 A1 WO 2007069670A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
resin
thickness
chip
lead frame
Prior art date
Application number
PCT/JP2006/324901
Other languages
English (en)
French (fr)
Inventor
Kenki Kobayashi
Eiji Komazawa
Tomoya Utashiro
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Priority to US12/097,338 priority Critical patent/US7957120B2/en
Priority to CN200680044275.9A priority patent/CN101317241B/zh
Priority to JP2007550214A priority patent/JP4953091B2/ja
Publication of WO2007069670A1 publication Critical patent/WO2007069670A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors

Definitions

  • the present invention relates to a capacitor chip and a manufacturing method thereof, and more particularly to a multilayer solid electrolytic capacitor and a manufacturing method thereof.
  • JP 2002-319522 A (Patent Document 1) (EP 1160809 specification) aims to achieve a small-sized and large-capacity capacitor by reducing the space required for the electrical integration of the anode body,
  • a solid electrolytic capacitor capable of obtaining a low resistance and highly reliable connection state, particularly regarding electrical connection between anode bodies, is described.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional multilayer solid electrolytic capacitor.
  • a metal foil having a large specific surface area that has been etched is formed on a surface of an anode substrate (1) having a thin plate strength, and a dielectric oxide film layer (2) is formed on the surface.
  • a masking layer (5) is further provided.
  • a capacitor layer (6) is formed by sequentially forming a solid semiconductor layer (hereinafter referred to as a solid electrolyte) or a conductive layer (3) such as a conductive paste on the outside of the oxide film layer (2) and serving as a cathode portion. Make it.
  • a plurality of capacitor elements (6) formed in this way are laminated in the same direction, and a conductor layer (4) is provided as appropriate, and electrode lead portions (7, 8) are further added, and the entire structure is made of resin ( Sealed in 9) to obtain a multilayer solid electrolytic capacitor.
  • the capacitance of the capacitor can be increased by increasing the thickness and number of capacitor elements (6) to be stacked.
  • the total thickness of the stacked capacitor elements becomes large, the exposure from the sealing grease of the capacitor elements and the appearance of pinholes, weld lines, etc. are likely to occur in the sealing grease that encloses the capacitor chip.
  • the problem was that the total thickness of the stacked capacitor elements was limited.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-319522
  • An object of the present invention is to provide a technique for widening the allowable range of the total thickness of the stacked capacitor elements and causing the capacitance to increase without causing the appearance defect of the multilayer solid electrolytic capacitor. is there.
  • the present inventor has found that a capacitor chip in which one or more capacitor elements are stacked on a metal lead frame for taking electricity out of the capacitor chip and sealed with resin is used. As a result, the present inventors have found that it is difficult to cause poor appearance even when the thickness of the laminate is increased by arranging the laminate within a certain range.
  • the present invention relates to a capacitor chip and a manufacturing method thereof as shown below, and more particularly to a multilayer solid electrolytic capacitor and a manufacturing method thereof.
  • the thickness of the capacitor chip is He
  • the minimum distance from the top of the stack to the top surface of the sealing resin is Dt
  • the minimum distance from the bottom of the stack to the bottom surface of the sealing resin is Db Hc—Hs is 0.1 mm or more
  • the ratio of Dt and Db is DtZDb is 0.1 to 9
  • both Dt and Db are 0.02 mm or more.
  • a solid body in which the capacitor element includes an anode base made of a valve metal, and an oxide film layer as a dielectric layer and a solid electrolyte layer as a cathode layer are formed on a part of the surface of the valve metal. 7.
  • the solid electrolytic capacitor as described in any one of 1 to 6 above, which is an electrolytic capacitor element.
  • valve action metal is selected from a metal mainly containing any of magnesium, silicon, aluminum, zirconium, titanium, tantalum, niobium, and hafnium, and alloys thereof.
  • the thickness of the multilayer body in the chip is Hs
  • the thickness of the chip is He
  • the minimum distance from the top of the stack to the top surface of the sealing resin is Dt
  • the minimum distance from the bottom of the stack to the bottom surface of the sealing resin is Db
  • the present invention it is possible to manufacture a multilayer solid electrolytic capacitor having a high electrostatic capacity and having no appearance defect.
  • the present invention is applicable to general capacitor chips.
  • the capacitor chip of the present invention particularly a multilayer solid electrolytic capacitor which is a preferred embodiment thereof will be described more specifically with reference to the drawings.
  • FIG. 2 is a cross-sectional view of a capacitor chip (multilayer solid electrolytic capacitor) in a preferred embodiment of the present invention.
  • the capacitor chip of the present invention is made of a metal lead for applying a voltage to the capacitor chip.
  • the total thickness of the capacitor element (6) and the lead frame (11) after stacking The thickness of the capacitor chip after sealing that does not include protrusions such as glue pads (10) is He, and the minimum distance from the top of the stack to the top surface of the sealing resin is Dt.
  • the minimum distance from the bottom of the layer to the bottom surface of the sealing resin that does not include a protrusion such as a glue pad is Db
  • 13 ⁇ 4 11 ⁇ 2 is 0.1 mm or more
  • the ratio DtZDb of Dt and Db is 0. 1 to 9, and both Dt and Db are 0.02 mm or more.
  • the appearance defect is eliminated by positioning the layered body including the capacitor element and the lead frame within a specific range within the sealed body.
  • the upper limit of He—Hs is not limited, but He—Hs is a thickness that does not contribute to the capacitance of the capacitor, and since it is necessary to secure a larger capacitance per unit volume, it is usually 5 mm or less, preferably 2 mm or less. Or less than lmm.
  • DtZDb is within the range of 0.1 to 9 as described above. DtZDb may be within the above range when He—Hs is relatively large (eg, 0.6 mm or more), but when Hc—Hs is relatively small (eg, less than 0.6 mm) For example, a value closer to 1 is preferably 0.2 to 6, and more preferably 0.3 to 3.
  • the DtZDb ratio exceeds a certain range, it is considered that the balance of the inflow rate of the resin between the upper surface of the laminate and the lower surface of the laminate is lost during the resin sealing.
  • Dt> Db the distance between the bottom surface of the laminate and the sealing mold is narrow, and the inflow rate of the resin during sealing becomes faster than the top surface of the laminate, and stress due to the inflow rate is applied to the element.
  • the DtZ Db ratio is small, it does not affect the leakage current, but if it exceeds a certain value, it is considered that the leakage current is affected by the stress. The same applies to Dt and Db.
  • Dt and Db are the thickness of the resin layer.
  • the above-mentioned glue pad and other mounting auxiliary members (10 in FIG. 2) and mounting electrodes (anode in the figure) Lead part 7 and cathode lead part 8) are not included.
  • the capacitor element (6) is not particularly limited as long as it can be laminated.
  • the capacitor element (6) is a plate-like, rod-like, linear, or preferably substantially flat-like element, for example, an element such as a foil or a thin plate.
  • valve action metal used as the anode substrate of the solid electrolytic capacitor metals mainly composed of any one of magnesium, silicon, aluminum, zirconium, titanium, tantalum, niobium, platinum, and fum and theirs An alloy is mentioned. These may be porous bodies of each metal. As for the porous form, it is possible to use a porous molded body such as an etched product of rolled foil or a fine powder sintered body.
  • Examples of the shape of the anode substrate (1) include flat foil plates and rods.
  • the thickness depends on the purpose of use. For example, a range of about 40 to 300 m is used. In order to make a thin solid electrolytic capacitor, it is preferable to use a metal (eg, aluminum) foil of 80 to 250 ⁇ m! /.
  • a metal eg, aluminum
  • a rectangular element having a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferred as a flat element unit, more preferably about 2 to 15 mm in width and length. It is about 2-25mm.
  • the oxide film layer (2) can be obtained by chemical conversion of the anode substrate (1).
  • the dielectric coating layer provided on the surface of the anode substrate may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or may be provided on the surface of the valve action metal foil. Although it may be another dielectric layer formed, it is particularly desirable to be a layer that also provides the acidity of the valve metal itself.
  • a solid electrolyte layer (3) is formed on the dielectric coating layer of the cathode part.
  • the type of solid electrolyte layer and conventionally known solid electrolytes can be used.
  • solid electrolyte capacitors that use high-conductivity conductive polymers as solid electrolytes use conventional electrolytes. Compared to wet electrolytic capacitors and solid electrolytic capacitors using manganese dioxide, this is preferable because the equivalent series resistance component is low, large capacity and small, and high frequency performance is good.
  • a conductor layer (not shown) may be provided on the solid electrolyte (3) as necessary.
  • the conductor layer is formed by, for example, a conductive paste, plating, vapor deposition, or applying a conductive resin film.
  • Masking (5) may be provided to further ensure insulation between the solid electrolyte (3) as the cathode part and the metal substrate (1) as the anode part!
  • the multilayer solid electrolytic capacitor according to a preferred embodiment of the present invention includes a solid electrolytic capacitor element (6) laminated on a lead frame (11) (a step may be provided on the lower surface of the cathode and the anode), or a solid electrolytic capacitor. After the capacitor element (6) laminate is fixed on the lead frame (11), at least a part of each of the cathode lead portion (8) and the anode lead portion (7) of the lead frame (11) is exposed. And can be manufactured by a method including a step of sealing with a resin.
  • a plurality of cathode lead portions (8) and a plurality of anode lead portions (7) are respectively disposed on a lead frame (11) provided facing each other with a gap therebetween.
  • the solid electrolytic capacitor element (6) is laminated so that the anode lead portion (7) is positioned, and the previously formed multilayer structure of the solid electrolytic capacitor element is fixed.
  • the anode laminate portion is electrically connected to the anode lead portion (7)
  • the cathode laminate portion is electrically connected to the cathode lead portion (8).
  • a conductor layer Z member (4) may be provided on the anode end face.
  • the capacitor element (6) usually has a cathode portion positioned on the cathode portion of another capacitor element. Are stacked so that the anode portion is positioned on the anode portion of another capacitor element.
  • the lead portion is formed by using a lead frame (11), and a laminated body of the capacitor element (6) is provided thereon. However, as shown in FIG. You can pull it out from the side.
  • a cathode lead portion is provided between the laminates.
  • Each of the cathode and anode has a lead portion on or below the laminate (that is, one or more solid electrolytes on one side of the lead portion, respectively). It is also possible to provide a capacitor element (6).
  • the capacitor element laminated structure (lead frame having the capacitor element laminate) is sealed with grease leaving the cathode lead portion and the anode lead portion to be exposed, and formed after the resin is hardened. Separate the capacitor from the outer frame of the lead frame (not shown) at the side edge.
  • the resin sealing is performed by any method conventionally used in this field for the purpose of protecting the capacitor element from the environment of use.
  • any method conventionally used in this field for the purpose of protecting the capacitor element from the environment of use.
  • cast molding, compression molding, injection molding, and the like may be used, but transfer molding having a multi-plunger using a plurality of pots is preferable among cast molding.
  • the resin to be used is preferably a resin having heat resistance that can withstand soldering heat when mounted on the substrate and capable of obtaining a liquid state in an appropriate caloric heat state or room temperature.
  • Epoxy resin that is frequently used from the viewpoint of moisture resistance, insulation, etc. is preferably used.
  • the epoxy resin is a liquid and can be used without limitation as long as it is used for sealing applications.
  • a liquid o-cresol novolac type epoxy resin biphenol- Type epoxy resin, dicyclopentagen type epoxy resin, bisphenol Type epoxy resin, bromine-containing epoxy resin, epoxy resin having naphthalene skeleton, and the like.
  • Cut aluminum conversion foil (thickness 100 ⁇ m) into 3 mm in the short axis direction and 10 mm in the long axis direction, and apply a polyimide solution with a width of 1 mm on both sides to divide the long axis direction into 4 mm and 5 mm parts. , Dried to create a masking.
  • a 3 mm x 4 mm portion of this conversion foil was formed into a cut portion by applying a voltage of 4 V with 10% by mass of adipic acid ammonium solution to form a dielectric oxide film.
  • the final poly (3,4-ethylenedioxythiophene) was washed with pure water and then dried at 100 ° C for 30 minutes to form a solid electrolyte layer.
  • Two of the produced capacitor elements were laminated on the top surface of a 0.1 mm thick metal lead frame and one sheet on the bottom surface to produce a multilayer capacitor element having a thickness of 0.85 mm including the lead frame.
  • Seal with epoxy resin so that the distance from the upper surface of the laminated resin to the upper surface of the sealing resin is 0.35 mm, and the force on the lower surface of the laminated resin is 0.5 mm from the lower surface of the sealing resin excluding the glue pad!
  • 100 capacitor chips with a height of 1.7 mm excluding the glue pad were produced.
  • the rated voltage (2V) was applied at 105 ° C and aged for 2 hours to produce a total of 100 capacitors.
  • Example 2 Three capacitor elements with a thickness of 0.25 mm produced in Example 1 were laminated on the top surface of a 0.1 mm thick metal lead frame and two on the bottom surface, and the thickness including the lead frame was 1.35 mm. A multilayer capacitor element was produced.
  • Example 1 Except that the distance from the upper surface of the laminated resin to the upper surface of the sealing resin is 0.15 mm and the force from the lower surface of the laminated resin excluding the glue pad is 0.2 mm, it is the same as in Example 1. Using the same method, 100 capacitor chips with a height of 1.7 mm excluding the glue pads were produced. In addition, visual inspection and measurement of capacitor characteristics were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 2 Two 0.25 mm thick capacitor elements fabricated in Example 1 were stacked on the top surface of a 0.1 mm thick metal lead frame and two on the bottom surface, and the thickness including the lead frame was 1.1 mm. A multilayer capacitor element was produced.
  • the distance from the upper surface of the sealing resin to the upper surface of the sealing resin is 0.3 mm, and the distance from the lower surface of the sealing resin excluding the glue pad is 0.3 mm.
  • 100 capacitor chips with a height of 1.7 mm excluding the group pad Produced were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 2 Three capacitor elements with a thickness of 0.25 mm produced in Example 1 were stacked on the top surface of a 0.1 mm thick metal lead frame and one on the bottom surface, and the thickness including the lead frame was 1.1 mm. A multilayer capacitor element was produced.
  • the distance from the upper surface of the sealing resin to the upper surface of the sealing resin is 0. lmm, and the force from the lower surface of the laminated resin to the lower surface of the sealing resin excluding the glue pad is 0.5 mm.
  • 100 capacitor chips with a height of 1.7 mm excluding the glue pads were produced.
  • visual inspection and measurement of capacitor characteristics were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 2 Three capacitor elements with a thickness of 0.25 mm produced in Example 1 were laminated on the top surface of a 0.1 mm thick metal lead frame and two on the bottom surface, and the thickness including the lead frame was 1.35 mm. A multilayer capacitor element was produced.
  • the distance from the top surface of the laminated resin to the top surface of the sealing resin is 0.1 mm, and the bottom surface force of the laminated resin except for the glue pad is 0.25 mm.
  • 100 capacitor chips with a height of 1.7 mm excluding the glue pads were produced.
  • visual inspection and measurement of capacitor characteristics were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 2 Three capacitor elements with a thickness of 0.25 mm produced in Example 1 were stacked on the top surface of a 0.1 mm thick metal lead frame and one on the bottom surface, and the thickness including the lead frame was 1.1 mm. A multilayer capacitor element was produced.
  • Example 1 Except that the distance from the top surface of the laminated resin to the top surface of the sealing resin is 0.12 mm, and the distance from the bottom surface of the sealing resin excluding the glue pad is 0.48 mm, as in Example 1. Using the same method, 100 capacitor chips with a height of 1.7 mm excluding the glue pads were produced. In addition, visual inspection and measurement of capacitor characteristics were performed in the same manner as in Example 1. It was. The results are shown in Tables 1 and 2.
  • the capacitor element with a thickness of 0.25 mm produced in Example 1 was laminated on the top surface of the 0.1 mm thick metal lead frame and three on the bottom surface, and the thickness including the lead frame was 1.1 mm. A multilayer capacitor element was produced.
  • Three capacitor elements with a thickness of 0.29 mm are stacked on the top and two undersides of a 0.1 mm thick metal lead frame to produce a multilayer capacitor element with a thickness of 1.55 mm including the lead frame. did.
  • Example 2 Three capacitor elements with a thickness of 0.25 mm produced in Example 1 were laminated on the top surface of a 0.1 mm thick metal lead frame and two on the bottom surface, and the thickness including the lead frame was 1.35 mm. A multilayer capacitor element was produced.
  • Three capacitor elements with a thickness of 0.30 mm are laminated on the top and two undersides of a 0.1 mm thick metal lead frame to produce a multilayer capacitor element with a thickness of 1.60 mm including the lead frame. did.
  • Three capacitor elements with a thickness of 0.26 mm are laminated on the top and three undersides of a 0.1 mm thick metal lead frame to produce a multilayer capacitor element with a thickness of 1.66 mm including the lead frame. did.
  • Example 1 0. 85mm 0. 35mm 0. 50mm 0. 70 0
  • Example 3 0. 60mm 0. 30mm 0. 30mm 1. 00 0 pieces
  • Example 4 0. 60mm 0. 10mm 0. 50mm 0. 20 0
  • Example 7 0.60mm 0.52mm 0.08mm 6.50 0
  • the multilayer solid electrolytic capacitor of the present invention produced in the example clearly has fewer appearance defects than the product produced in the comparative example.
  • the capacitor of the present invention it is possible to produce a multilayer solid electrolytic capacitor having a high electrostatic capacity with few appearance defects. Therefore, the capacitor of the present invention and the manufacturing method thereof are useful in the manufacture of multilayer capacitors in a wide range of fields.
  • FIG. 1 is a cross-sectional view showing a conventional general structure of a multilayer solid electrolytic capacitor element.
  • FIG. 2 is a cross-sectional view showing the structure of the multilayer solid electrolytic capacitor element of the present invention.

Abstract

 本発明は、電気をコンデンサチップの外に取り出すための金属製リードフレームにコンデンサ素子を1つ以上積層し、樹脂で封止したコンデンサチップ内において、積層体の配置を一定範囲内の配置とするコンデンサチップ、固体電解コンデンサに関する。本発明によると積層型固体電解コンデンサの外観不良を生じさせることなく、積層したコンデンサ素子の厚さの合計の許容範囲を広げ、静電容量を高くすることができる。

Description

明 細 書
コンデンサチップ及びその製造方法
関連出願との関係
[0001] この出願は、米国法典第 35卷第 111条 (b)項の規定に従い、 2005年 12月 21日 に提出した米国仮出願第 60Z752, 045の出願日の利益を同第 119条 (e)項(1) により主張する同第 111条 (a)項の規定に基づく出願である。
技術分野
[0002] 本発明はコンデンサチップ及びその製造方法、特に積層型固体電解コンデンサ及 びその製造方法に関する。
背景技術
[0003] 近年、電気機器のデジタル化、パーソナルコンピュータ等の電子機器の小型化'高 速化に伴い、小型で大容量のコンデンサ、高周波領域において低インピーダンスの コンデンサが要求されている。最近では、電子伝導性を有する導電性重合体を固体 電解質として用いた固体電解コンデンサが提案されている。特に、より大きな容量を 有する製品が求められており、複数のコンデンサ素子を積層し、封止することからな る積層型固体電解コンデンサとして製造されている。
[0004] 例えば、特開 2002-319522号公報(特許文献 1) (EP 1160809明細書)には、陽極体 の電気的一体ィ匕に要する空間を小さくすることで小型大容量ィ匕を図り、なおかつ、特 に陽極体同士の電気的接続に関して、低抵抗で信頼性の高い接続状態を得ること が可能な固体電解コンデンサにつ 、て記載されて 、る。
[0005] 図 1は従来の積層型固体電解コンデンサの構造を表す断面図である。
一般に、エッチング処理された比表面積の大きな金属箔ゃ薄板力 なる陽極基体( 1)表面に誘電体の酸化皮膜層(2)を形成し、通常はさらにマスキング層(5)を設け た後、前記酸化皮膜層 (2)の外側に陰極部として機能する固体の半導体層(以下、 固体電解質と 、う。 )や導電ペーストなどの導電体層 (3)を順次形成してコンデンサ 素子 (6)を作製する。こうして形成した複数個のコンデンサ素子 (6)を方向を揃えて 積層し、適宜、導体層 (4)を設け、さらに電極リード部(7, 8)を付加し、全体を榭脂( 9)で封止して積層型固体電解コンデンサとする。
[0006] 積層型固体電解コンデンサにおいては、積層するコンデンサ素子(6)の厚さや数 を増やすことによりコンデンサの静電容量を高くすることができる。しかし、積層したコ ンデンサ素子の厚みの合計が大きくなると、コンデンサ素子の封止榭脂からの露出 やコンデンサチップを包む封止榭脂にピンホールやウエルドライン等の外観不良が 生じやすくなるため、積層したコンデンサ素子の厚さの合計が制限されることが問題 であった。
[0007] 特許文献 1 :特開 2002— 319522号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、積層型固体電解コンデンサの外観不良を生じさせることなぐ積 層したコンデンサ素子の厚さの合計の許容範囲を広げ、静電容量を高くする技術を 提供することにある。
課題を解決するための手段
[0009] 本発明者は、上記課題について鋭意検討した結果、電気をコンデンサチップの外 に取り出すための金属製リードフレームにコンデンサ素子を 1つ以上積層し、榭脂で 封止したコンデンサチップ内において、積層体の配置を一定範囲内の配置とするこ とによって積層体の厚さが厚くなつても外観不良ができにくいことを見出し、本発明を 兀成し 7こ。
[0010] すなわち、本発明は以下に示すコンデンサチップ及びその製造方法、特に積層型 固体電解コンデンサ及びその製造方法に関する。
[ 1 ]リードフレームの一方または両面にコンデンサ素子を積層し、得られた積層体を 榭脂封止してなるコンデンサチップにおいて、チップ内における前記積層体の厚さを
Hs、コンデンサチップの厚さを Heとし、積層体上部から封止榭脂上面までの距離の 最小距離を Dtとし、積層体下部力ゝら封止榭脂下面までの距離の最小距離を Dbとし た場合に、 Hc—Hsが 0. 1mm以上であり、かつ Dt及び Dbの比 DtZDbが 0. 1から 9であり、かつ Dt及び Dbのいずれも 0. 02mm以上であるコンデンサチップ。
[2]Hc— Hsが 0. 3mm以上である前記 1に記載のコンデンサチップ。 [3]Hc— Hsが 0. 6mm以上である前記 2に記載のコンデンサチップ。
[4]DtZDbが 0. 2〜6である前記 1〜3のいずれかに記載のコンデンサチップ。
[5]DtZDbが 0. 2〜0. 7または 1. 5〜5である前記 1〜3のいずれかに記載のコン デンサチップ。
[6]少なくともリードフレームの一方の面に 2以上のコンデンサ素子が積層された前 記 1〜5のいずれかに記載の積層型コンデンサチップ。
[7]コンデンサ素子が弁作用金属からなる陽極基体を含み、前記弁作用金属表面の 一部に誘電体層である酸ィ匕皮膜層と陰極層である固体電解質層を形成してなる固 体電解コンデンサ素子である前記 1〜6のいずれかに記載の固体電解コンデンサ。
[8]弁作用金属がマグネシウム、シリコン、アルミニウム、ジルコニウム、チタン、タンタ ル、ニオブ、ハフニウムのいずれかを主成分とする金属及びそれらの合金から選択さ れる前記 7に記載の固体電解コンデンサ。
[9]リードフレームの一方または両面にコンデンサ素子を積層し、得られた積層体を 榭脂封止する工程を含むコンデンサチップの製造方法において、チップ内における 前記積層体の厚さを Hs、コンデンサチップの厚さを Heとし、積層体上部から封止榭 脂上面までの距離の最小距離を Dtとし、積層体下部から封止榭脂下面までの距離 の最小距離を Dbとした場合に、 He— Hsが 0. 1mm以上であり、かつ Dt及び Dbの 比 DtZDbが 0. 1から 9であり、かつ Dt及び Dbのいずれも 0. 02mm以上とするコン デンサチップの製造方法。
発明の効果
[0011] 本発明によれば、外観不良がなぐ静電容量の高い積層型固体電解コンデンサを 製造することができる。なお、本発明はコンデンサチップ一般に適用可能である。 発明を実施するための最良の形態
[0012] 以下、図面を参照して本発明のコンデンサチップ、特にその好適態様である積層 型固体電解コンデンサを例としてより具体的に説明する。
[0013] 図 2は本発明の好ましい実施態様におけるコンデンサチップ (積層型固体電解コン デンサ)の断面図である。
本発明のコンデンサチップは、電圧をコンデンサチップに印可するための金属製リ ードフレーム(11)にコンデンサ素子 (6)を 1つ以上積層し、封止榭脂 (9)で封止した コンデンサチップにおいて、積層後のコンデンサ素子(6)とリードフレーム(11)の合 計厚さを Hsとし、グルーパッド(10)等の突起部を含まない封止後のコンデンサチッ プの厚さを Heとし、積層上部から封止榭脂上面までの距離の最小距離を Dtとし、積 層下部からグルーパッドなどの突起部を含まない封止榭脂下面までの距離の最小距 離を Dbとした場合に、 1¾ 1½が0. 1mm以上であり、かつ Dt及び Dbの比 DtZDb が 0. 1から 9であり、かつ Dt及び Dbのいずれも 0. 02mm以上とすることを特徴とす る。
[0014] すなわち、本発明は、封止体内においてコンデンサ素子とリードフレームを含む積 層体の位置を特定の範囲に位置づけることにより外観不良を解消したものである。
He— Hs ( = Dt+Db)は上記のように 0. 1mm以上とする。 0. 1mm未満では外観 不良を生じる。目的や用途にもよるが、ある程度、厚みが許容される場合には、好ま しくは 0. 3mm以上、より好ましくは 0. 6mm以上とする。 He— Hsの上限は限定され ないが、 He— Hsはコンデンサ容量には寄与しない厚みであり、単位体積当たりより 大きな容量を確保する必要から、通常、 5mm以下、好ましくは 2mm以下、より好まし くは lmm以下である。
[0015] DtZDbは上記のように 0. 1〜9の範囲内とする。 DtZDbは He— Hsが比較的大 きい場合(例えば、 0. 6mm以上の場合)は上記範囲内であればよいが、 Hc—Hsが 比較的小さい場合 (例えば、 0. 6mm未満の場合)は、より 1に近い値が好ましぐ例 えば、 0. 2〜6、より好ましくは 0. 3〜3である。
[0016] なお、 DtZDb比がある範囲を超えると、榭脂封止時に積層体上面と積層体下面 における榭脂の流入速度のバランスが崩れると考えられる。例えば Dt>Dbの場合、 積層体下面と封止金型の距離が狭ぐ封止時の樹脂の流入速度が積層体上面より 速くなり、その流入速度に起因する応力が素子に加わると考えられる。このとき DtZ Db比が小さいうちは漏れ電流に影響を与えないが、ある値を超えると、その応力によ り漏れ電流に影響を与えると考えられる。 Dtく Dbの場合も同様である。なお、上記 の機構は本発明の結果を基に考察したものであり、本発明以前に予想されたもので はない。また、本発明は上記機構を介するか否かによって限定されるものではない。 [0017] また、 Dt、 Dbはいずれも 0. 02mm以上とすることが耐湿性の観点力も好ましぐ単 位体積当たりの容量を確保するという観点からは 5mm以下、好ましくは 2mm以下、 より好ましくは 1 mm以下である。
なお、 Dt、 Dbはいずれも榭脂層の厚さであり、コンデンサチップの厚みのうち、上 記のグルーパッドその他の実装補助部材(図 2中 10)や実装用電極(同図中の陽極 リード部 7、陰極リード部 8)は含まない。
[0018] (固体電解コンデンサ素子)
コンデンサ素子(6)は、積層可能であれば特に限定されず、板状、棒状、線状、好 ましくは概ね平板状の素子、例えば、箔ないし薄板等の素子である。典型的には、図 1及び 2に示すように、陽極基体(1)上に酸ィ匕皮膜層(2)を有し、さらにその上に固 体電解質層 (3)を有するコンデンサ素子である。
[0019] (弁作用金属)
本発明において、固体電解コンデンサの陽極基体として用いられる弁作用金属とし ては、マグネシウム、シリコン、アルミニウム、ジルコニウム、チタン、タンタル、ニオブ、 ノ、フニゥムの ヽずれかを主成分とする金属及びそれらの合金が挙げられる。これらは 各金属の多孔体でもよい。多孔質の形態については、圧延箔のエッチング物、微粉 焼結体など、多孔質成形体の!、ずれの形態でもよ ヽ。
[0020] 陽極基体(1)の形状としては、平板状の箔ゃ板や棒状等が挙げられる。
厚さは使用目的によって異なる力 例えば、約 40〜300 mの範囲が使用される。 薄型の固体電解コンデンサとするためには、金属(例えば、アルミニウム)箔では 80 〜250 μ mのものを使用することが好まし!/、。
金属箔の大きさ及び形状も用途により異なるが、平板状素子単位として幅約 1〜50 mm、長さ約 l〜50mmの矩形のものが好ましぐより好ましくは幅約 2〜15mm、長さ 約 2〜 25mmである。
[0021] (酸化被膜層)
酸化皮膜層(2)は、上記陽極基体(1)を化成処理して得ることができる。 陽極基体の表面に設ける誘電体皮膜層は、弁作用金属の表面部分に設けられた 弁作用金属自体の酸ィ匕物層であってもよぐあるいは、弁作用金属箔の表面上に設 けられた他の誘電体層であってもよいが、特に弁作用金属自体の酸ィ匕物力もなる層 であることが望ましい。
[0022] (固体電解質)
次に、陰極部の誘電体皮膜層上に固体電解質層(3)を形成させる。固体電解質層 の種類には特に制限は無ぐ従来公知の固体電解質が使用できるが、とりわけ高導 電率の導電性高分子を固体電解質として作製する固体電解コンデンサは、従来の 電解液を用いた湿式電解コンデンサや二酸化マンガンを用いた固体電解コンデンサ に比べて、等価直列抵抗成分が低ぐ大容量でかつ小形となり、高周波性能が良好 なために好ましい。
[0023] また、必要に応じて固体電解質 (3)上に導電体層(図示していない。)を設けてもよ い。導電体層は、例えば、導電ペースト、メツキや蒸着、導電榭脂フィルムの貼付等 により形成される。陰極部分である固体電解質 (3)と陽極部分である金属基体(1)と の絶縁をより確実にするためにマスキング(5)を設けてもよ!、。
[0024] (積層型固体電解コンデンサの製造方法)
本発明の好ましい実施態様における積層型固体電解コンデンサは、リードフレーム (11) (陰極部及び陽極部下面に段差を設けてもよい)上に固体電解コンデンサ素子 (6)を積層するか、固体電解コンデンサ素子(6)の積層体をリードフレーム(11)上に 固定した後、前記リードフレーム(11)の陰極リード部(8)及び陽極リード部(7)のそ れぞれ少なくとも一部を露出させて榭脂封止する工程を含む方法によって製造でき る。
[0025] 通常は、複数の陰極リード部(8)と複数の陽極リード部(7)が空隙を隔てて対向し て設けられたリードフレーム(11)上に、それぞれ陰極リード部(8)と陽極リード部(7) が位置するように固体電解コンデンサ素子 (6)を積層する力、予め形成した固体電 解コンデンサ素子の積層体を固定する。
この場合、陽極積層部は陽極リード部(7)と電気的に接続され、陰極積層部は陰極 リード部(8)と電気的に接続される。図 2に示すように、陽極端面に導体層 Z部材 (4) を設けてもよい。
[0026] コンデンサ素子(6)は、通常は陰極部分が他のコンデンサ素子の陰極部分上に位 置するように積層され、陽極部分が他のコンデンサ素子の陽極部分上に位置するよ うに積層される。
陰極部分を他のコンデンサ素子の陰極部分に積層するにはそれぞれを電気的に 接続する任意の方法が用いられるが、例えば、導電性ペーストを用いた積層法、ハ ンダ付け、溶接等が挙げられる。また、固体電解コンデンサ素子積層体のリードフレ ーム(11)への固定もこれに準じて行うことができる。
[0027] なお、図 2ではリード部をリードフレーム(11)を用いて形成し、この上にコンデンサ 素子(6)の積層体を設けているが、図 1のように陽極リード部をコンデンサの側面から 引き出してもよい。
さらに、図 2では積層体の間に陰極リード部を設けている力 陰極、陽極のいずれも リード部分を積層体の上もしくは下に設ける(すなわち、リード部分の片側にそれぞれ 1または複数の固体電解コンデンサ素子 (6)を設ける)ことも可能である。
[0028] 次いで、コンデンサ素子積層構造体 (コンデンサ素子積層体を有するリードフレー ム)を、露出させるべき陰極リード部及び陽極リード部を残して榭脂封止し、榭脂の硬 化後、形成されたコンデンサをその側端部でリードフレームの外枠部分(図示して ヽ ない)から切り離す。
[0029] (封止榭脂)
榭脂封止は、コンデンサ素子を使用環境カゝら保護する目的で当分野で慣用されて いる任意の方法で行われる。例えば、注型成形、圧縮成形、射出成形などでよいが、 注型成形の中でも複数のポットを用いるマルチプランジャーを有したトランスファ一成 形が好ましい。
[0030] 使用される榭脂は、基板実装時のハンダ熱に耐えられる耐熱性を有し、適宜なカロ 熱状態或いは常温にぉ 、て液体状態を得ることができる榭脂であれば好適に使用 することができるが、耐湿性、絶縁性等の観点から多用されているエポキシ系榭脂が 好ましく使用される。
[0031] エポキシ榭脂は、液状であり、かつ封止用途に使用されるものであれば制限される ことなく用いることができる力 例えば、液状の o—クレゾ一ルノボラック型エポキシ榭 脂、ビフエ-ル型エポキシ榭脂、ジシクロペンタジェン型エポキシ榭脂、ビスフエノー ル型エポキシ榭脂、ブロム含有エポキシ榭脂、ナフタレン骨格を有するエポキシ榭脂 等を挙げることができる。
実施例
[0032] 以下に本発明の実施例を示すが、これらは説明のための単なる例示であって、本 発明はこれらに何等制限されるものでない。
[0033] 実施例 1
アルミニウム化成箔(厚み 100 μ m)を短軸方向 3mm X長軸方向 10mmに切り出 し、長軸方向を 4mmと 5mmの部分に区切るように、両面に幅 lmmのポリイミド溶液 を周状に塗布、乾燥させマスキングを作成した。この化成箔の 3mm X 4mmの部分 を、 10質量%のアジピン酸アンモ-ゥム水溶液で 4Vの電圧を印加して切り口部分に 化成し、誘電体酸化皮膜を形成した。次に、このアルミニウム箔の 3mm X 4mmの部 分を、 3, 4—エチレンジォキシチォフェンを 25質量0 /0含むイソプロピルアルコール(I PA)溶液に 10秒間含浸し、これを室温で 10分間乾燥し、 2—アントラキノンスルホン 酸ナトリウムが 0. 05質量0 /0となるように調整した ImolZLの過硫酸アンモ-ゥム水 溶液に 10秒間浸漬した。続、てこのアルミニウム箔を温度 40°Cで 30分間放置して 酸ィ匕重合を行った。さらにこの浸漬工程および重合工程を 12回繰り返し導電性重合 体の固体電解質層をアルミニウム箔の外表面に形成した。
最終的に生成したポリ(3, 4—エチレンジォキシチォフェン)を純水で洗浄し、その 後 100°Cで 30分間乾燥を行い、固体電解質層を形成した。
次に、固体電解質層を形成した 3mm X 4mmの部分を、 15質量%アジピン酸アン モ -ゥム溶液中に浸漬し、固体電解質層を形成していない部分の弁作用金属箔に 陽極の接点を設けて 3. 8Vの電圧を印加し、再化成を行った。
次に、力—ボンペーストと銀ペーストを被覆し、膜厚計 (Peacock社製:デジタルダイ ャルゲージ DG— 205,精度 3 /z m)を用いて、素子を膜厚計の測定部にゆっくりと挟 んで厚みを測定した。平均膜厚は 0. 25mmであった。
作製したコンデンサ素子を厚さ 0. lmmの金属製リードフレームの上面に 2枚、下 面に 1枚積層し、リードフレームを含む厚さが 0. 85mmとなる積層コンデンサ素子を 作製した。 積層上面から封止榭脂の上面までの距離が 0. 35mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 5mmとなるようにエポキシ榭脂で封止を行!ヽ 、グルーパッドを除く高さが 1. 7mmであるコンデンサチップを 100個作製した。さら に、 105°Cで定格電圧(2V)を印加して 2時間エージングを行い、合計 100個のコン デンサを作製した。
封止後に外観検査を行い、 0. 05mm以上の穴、積層素子の露出、あるいは封止 榭脂に 0. 05mm以上のひび割れが生じたものは外観不良とした。結果を表 1に示す 。またこれら 100個のコンデンサについて、初期特性として 120Hzにおける容量と損 失係数 (tan δ X 100 (%) )、等価直列抵抗 (ESR)、それに漏れ電流を測定した。な お、漏れ電流は定格電圧を印加して 1分後に測定した。表 2にこれらの測定値の平 均値と、 0. 002CV以上の漏れ電流を不良品としたときの不良率を示した。ここで、 漏れ電流の平均値は不良品を除いて計算した値である。
[0034] 実施例 2
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 3枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 35mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 15mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 2mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0035] 実施例 3
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 2枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 1mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 3mm,積層下面力 グルーパッド を除く封止榭脂の下面までの距離が 0. 3mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0036] 実施例 4
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 3枚、下面に 1枚積層し、リードフレームを含む厚さが 1. 1mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. lmm,積層下面力 グルーパッド を除く封止榭脂の下面までの距離が 0. 5mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0037] 実施例 5
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 3枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 35mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. lmm,積層下面力 グルーパッド を除く封止榭脂の下面までの距離が 0. 25mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0038] 実施例 6
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 3枚、下面に 1枚積層し、リードフレームを含む厚さが 1. 1mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 12mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 48mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0039] 実施例 7
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 1枚、下面に 3枚積層し、リードフレームを含む厚さが 1. 1mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 52mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 08mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0040] 実施例 8
厚さ 0. 29mmのコンデンサ素子を、厚さ 0. 1mmの金属製リードフレームの上面に 3枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 55mmとなる積層コンデンサ 素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 10mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 05mmとなるようにした点を除いて実施例 1と 同様の方法で、グルーパットを除く高さが 1. 7mmであるコンデンサチップを 100個 作製した。また、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施し た。結果を表 1、 2に示す。
[0041] 比較例 1
実施例 1で作製した厚さ 0. 25mmのコンデンサ素子を、厚さ 0. 1mmの金属製リー ドフレームの上面に 3枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 35mmと なる積層コンデンサ素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 32mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 03mmとなるようにエポキシ榭脂で封止を行 い、グルーパッドを除く高さが 1. 7mmであるコンデンサチップを 100個作製した。ま た、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施した。結果を 表 1、 2に示す。 [0042] 比較例 2
厚さ 0. 30mmのコンデンサ素子を、厚さ 0. 1mmの金属製リードフレームの上面に 3枚、下面に 2枚積層し、リードフレームを含む厚さが 1. 60mmとなる積層コンデンサ 素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 09mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. Olmmとなるようにエポキシ榭脂で封止を行 い、グルーパッドを除く高さが 1. 7mmであるコンデンサチップを 100個作製した。ま た、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施した。結果を 表 1、 2に示す。
[0043] 比較例 3
厚さ 0. 26mmのコンデンサ素子を、厚さ 0. 1mmの金属製リードフレームの上面に 3枚、下面に 3枚積層し、リードフレームを含む厚さが 1. 66mmとなる積層コンデンサ 素子を作製した。
積層上面から封止榭脂の上面までの距離が 0. 02mm,積層下面力もグルーパッド を除く封止榭脂の下面までの距離が 0. 02mmとなるようにエポキシ榭脂で封止を行 い、グルーパッドを除く高さが 1. 7mmであるコンデンサチップを 100個作製た。また 、実施例 1と同じ方法で外観検査及びコンデンサ特性の測定を実施した。結果を表 1 、 2に示す。
[0044] [表 1]
Dt Db Dt/Db 外観不良
実施例 1 0. 85mm 0. 35mm 0. 50mm 0. 70 0個
実施例 2 0. 35mm 0. 15mm 0. 20mm 0. 75 0個
実施例 3 0. 60mm 0. 30mm 0. 30mm 1. 00 0個
実施例 4 0. 60mm 0. 10mm 0. 50mm 0. 20 0個
実施例 5 0. 35mm 0. 10mm 0. 25mm 0. 40 0個
実施例 6 0. 60mm 0. 12mm 0. 48mm 0. 25 0個
実施例 7 0. 60mm 0. 52mm 0. 08mm 6. 50 0個
実施例 8 0. 15mm 0. 10mm 0. 05mm 2. 00 3個
比較例 1 0. 35mm 0. 32mm 0. 03mm 10. 70 45個
比較例 2 0. 10mm 0. 09mm 0. Olmm 9. 00 69個
比較例 3 0. 04mm 0. 02mm 0. 02mm 1. 00 87個 [0045] [表 2]
Figure imgf000015_0001
結果より、実施例で作製した本発明の積層型固体電解コンデンサは、比較例で作 製した製品と比較して外観不良が明らかに少ないことがわかる。
産業上の利用可能性
[0046] 本発明によれば、外観不良が少なぐ静電容量の高い積層型固体電解コンデンサ を製造することができる。このため、本発明のコンデンサ及びその製造方法は、広い 分野の積層コンデンサの製造において有用である。
図面の簡単な説明
[0047] [図 1]積層型固体電解コンデンサ素子の従来の一般的構造を示す断面図。
[図 2]本発明の積層型固体電解コンデンサ素子の構造を示す断面図。
符号の説明
[0048] 1 陽極基体
2 酸化被膜層
3 固体電解質層
4 導電層
5 マスキング
6 コンデンサ素子 陽極リード部 陰極リード部 封止樹脂 グルーパッド 金属リードフレ

Claims

請求の範囲
[1] リードフレームの一方または両面にコンデンサ素子を積層し、得られた積層体を榭 脂封止してなるコンデンサチップにおいて、チップ内における前記積層体の厚さを H s、コンデンサチップの厚さを Heとし、積層体上部から封止榭脂上面までの距離の最 小距離を Dtとし、積層体下部力ゝら封止榭脂下面までの距離の最小距離を Dbとした 場合に、 He— Hsが 0. 1mm以上であり、かつ Dt及び Dbの比 DtZDbが 0. 1から 9 であり、かつ Dt及び Dbのいずれも 0. 02mm以上であるコンデンサチップ。
[2] 1¾ 1½が0. 3mm以上である請求項 1に記載のコンデンサチップ。
[3] 1¾ 1½が0. 6mm以上である請求項 2に記載のコンデンサチップ。
[4] DtZDbが 0. 2〜6である請求項 1〜3のいずれかに記載のコンデンサチップ。
[5] DtZDbが 0. 2〜0. 7または 1. 5〜5である請求項 1〜3のいずれかに記載のコン デンサチップ。
[6] 少なくともリードフレームの一方の面に 2以上のコンデンサ素子が積層された請求 項 1〜5のいずれかに記載の積層型コンデンサチップ。
[7] コンデンサ素子が弁作用金属力 なる陽極基体を含み、前記弁作用金属表面の一 部に誘電体層である酸化皮膜層と陰極層である固体電解質層を形成してなる固体 電解コンデンサ素子である請求項 1〜6のいずれかに記載の固体電解コンデンサ。
[8] 弁作用金属がマグネシウム、シリコン、アルミニウム、ジルコニウム、チタン、タンタル 、ニオブ、ハフニウムのいずれかを主成分とする金属及びそれらの合金から選択され る請求項 7に記載の固体電解コンデンサ。
[9] リードフレームの一方または両面にコンデンサ素子を積層し、得られた積層体を榭 脂封止する工程を含むコンデンサチップの製造方法において、チップ内における前 記積層体の厚さを Hs、コンデンサチップの厚さを Heとし、積層体上部から封止榭脂 上面までの距離の最小距離を Dtとし、積層体下部から封止榭脂下面までの距離の 最小距離を Dbとした場合に、 He— Hsが 0. 1mm以上であり、かつ Dt及び Dbの比 DtZDbが 0. 1から 9であり、かつ Dt及び Dbのいずれも 0. 02mm以上とするコンデ ンサチップの製造方法。
PCT/JP2006/324901 2005-12-15 2006-12-14 コンデンサチップ及びその製造方法 WO2007069670A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/097,338 US7957120B2 (en) 2005-12-15 2006-12-14 Capacitor chip and method for manufacturing same
CN200680044275.9A CN101317241B (zh) 2005-12-15 2006-12-14 电容器芯片及其制造方法
JP2007550214A JP4953091B2 (ja) 2005-12-15 2006-12-14 コンデンサチップ及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-361966 2005-12-15
JP2005361966 2005-12-15
US75204505P 2005-12-21 2005-12-21
US60/752,045 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007069670A1 true WO2007069670A1 (ja) 2007-06-21

Family

ID=38162972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324901 WO2007069670A1 (ja) 2005-12-15 2006-12-14 コンデンサチップ及びその製造方法

Country Status (2)

Country Link
US (1) US7957120B2 (ja)
WO (1) WO2007069670A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064022A (zh) * 2009-11-17 2011-05-18 钰邦电子(无锡)有限公司 固态电解电容器阳极端的应力吸收装置
WO2013046870A1 (ja) * 2011-09-26 2013-04-04 株式会社村田製作所 固体電解コンデンサおよびその製造方法
WO2013046869A1 (ja) * 2011-09-26 2013-04-04 株式会社村田製作所 固体電解コンデンサおよびその製造方法
WO2021132220A1 (ja) * 2019-12-25 2021-07-01 パナソニックIpマネジメント株式会社 コンデンサ素子および電解コンデンサ、ならびにこれらの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088954A1 (ja) * 2011-12-14 2013-06-20 株式会社村田製作所 固体電解コンデンサ及びその製造方法
KR20150095426A (ko) * 2014-02-13 2015-08-21 삼성전기주식회사 탄탈 커패시터
ES2554648B1 (es) * 2014-06-20 2016-09-08 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-55, procedimiento de preparación y uso

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697009A (ja) * 1992-09-09 1994-04-08 Showa Denko Kk 固体電解コンデンサ
JP2002319522A (ja) * 2000-05-26 2002-10-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638253A (en) * 1994-04-28 1997-06-10 Rohm Co. Ltd. Package-type solid electrolytic capacitor
JP3235475B2 (ja) * 1996-07-16 2001-12-04 日本電気株式会社 固体電解コンデンサ及びその製造方法
US6836401B2 (en) * 2001-09-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Capacitor, laminated capacitor, and capacitor built-in-board
JP4454916B2 (ja) * 2002-07-22 2010-04-21 Necトーキン株式会社 固体電解コンデンサ
US7388741B2 (en) * 2002-11-21 2008-06-17 Show A Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2004247594A (ja) * 2003-02-14 2004-09-02 Nec Tokin Corp チップ型コンデンサ及びその製造方法並びにモールド金型
JP4439848B2 (ja) * 2003-06-30 2010-03-24 パナソニック株式会社 固体電解コンデンサおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697009A (ja) * 1992-09-09 1994-04-08 Showa Denko Kk 固体電解コンデンサ
JP2002319522A (ja) * 2000-05-26 2002-10-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064022A (zh) * 2009-11-17 2011-05-18 钰邦电子(无锡)有限公司 固态电解电容器阳极端的应力吸收装置
WO2013046870A1 (ja) * 2011-09-26 2013-04-04 株式会社村田製作所 固体電解コンデンサおよびその製造方法
WO2013046869A1 (ja) * 2011-09-26 2013-04-04 株式会社村田製作所 固体電解コンデンサおよびその製造方法
JP5641151B2 (ja) * 2011-09-26 2014-12-17 株式会社村田製作所 固体電解コンデンサおよびその製造方法
JP5641150B2 (ja) * 2011-09-26 2014-12-17 株式会社村田製作所 固体電解コンデンサおよびその製造方法
JPWO2013046870A1 (ja) * 2011-09-26 2015-03-26 株式会社村田製作所 固体電解コンデンサおよびその製造方法
WO2021132220A1 (ja) * 2019-12-25 2021-07-01 パナソニックIpマネジメント株式会社 コンデンサ素子および電解コンデンサ、ならびにこれらの製造方法

Also Published As

Publication number Publication date
US7957120B2 (en) 2011-06-07
US20090290292A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
CN109791844B (zh) 固体电解电容器
US11295900B2 (en) Electrolytic capacitor having external electrodes with a resin electrode layer
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
CN109698072A (zh) 固体电解电容器的制造方法以及固体电解电容器
JP6710085B2 (ja) 固体電解コンデンサ
US11170941B2 (en) Solid electrolytic capacitor
WO2007069670A1 (ja) コンデンサチップ及びその製造方法
JP4953091B2 (ja) コンデンサチップ及びその製造方法
JP6856076B2 (ja) 固体電解コンデンサ
CN110249400B (zh) 固体电解电容器及其制造方法
WO2012017618A1 (ja) 固体電解コンデンサ
WO2022168769A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
WO2019176723A1 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
CN107785172B (zh) 固体电解电容器
JP2004088073A (ja) 固体電解コンデンサ
WO2021066091A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
JP7200912B2 (ja) 電解コンデンサ
JP2007180160A (ja) コンデンサチップ及びその製造方法
JP6925577B2 (ja) 固体電解コンデンサ
WO2018084243A1 (ja) 固体電解コンデンサ
JP6476410B2 (ja) 電解コンデンサ
JP2007235101A (ja) 固体電解コンデンサ
US20210074485A1 (en) Solid electrolytic capacitor and method of producing solid electrolytic capacitor
JP2018026379A (ja) 固体電解コンデンサ
WO2006118156A1 (ja) 固体電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044275.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550214

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12097338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834655

Country of ref document: EP

Kind code of ref document: A1