WO2007069503A1 - 燃料電池システムとその運転停止方法 - Google Patents

燃料電池システムとその運転停止方法 Download PDF

Info

Publication number
WO2007069503A1
WO2007069503A1 PCT/JP2006/324311 JP2006324311W WO2007069503A1 WO 2007069503 A1 WO2007069503 A1 WO 2007069503A1 JP 2006324311 W JP2006324311 W JP 2006324311W WO 2007069503 A1 WO2007069503 A1 WO 2007069503A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
refrigerant
supply
stopped
Prior art date
Application number
PCT/JP2006/324311
Other languages
English (en)
French (fr)
Inventor
Naohiro Yoshida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/085,387 priority Critical patent/US8067125B2/en
Priority to CN2006800468602A priority patent/CN101331635B/zh
Priority to DE112006003301T priority patent/DE112006003301B8/de
Publication of WO2007069503A1 publication Critical patent/WO2007069503A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell that has a catalyst layer therein and generates power by receiving supply of a reaction gas, and a method for stopping the fuel cell system.
  • a fuel cell system using a fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidizing gas (hereinafter referred to as a reactive gas) has attracted attention.
  • a reactive gas an oxidizing gas
  • the progress of the electrochemical reaction is hindered by freezing inside the fuel cell, especially the catalyst layer.
  • the power generation efficiency will be significantly impaired.
  • Japanese Patent Laid-Open No. 2003-151601 when the fuel cell system is stopped, the coolant flow is reduced by reducing the coolant flow rate to the fuel cell, and the operation of the fuel cell is continued.
  • a technique for increasing the temperature of a fuel cell using heat generation is disclosed.
  • Japanese Patent Laid-Open No. 2005-322527 discloses that after the fuel cell power generation is stopped, the temperature difference between the temperature detected by the stack internal temperature sensor and the temperature detected by the stack ambient temperature sensor exceeds a predetermined value. Discloses a technique for introducing the fuel cell stack after cooling the coolant. Disclosure of the invention
  • an object of the present invention is to provide a fuel cell system and a method for stopping operation thereof that can suppress waste of refrigerant control when the system is stopped.
  • a fuel cell system includes: a fuel cell having a catalyst layer therein and generating power by receiving supply of a reaction gas; and supplying a refrigerant to the fuel cell, A refrigerant system that controls a temperature, wherein the refrigerant system has a temperature that is correlated with the temperature of the fuel cell or the temperature of the fuel cell at the next system start-up. It is estimated that there is a case where the supply of the refrigerant is stopped when the system is stopped and the supply of the refrigerant is resumed after a predetermined time. , ',
  • 'stop and restart of refrigerant supply are controlled according to the temperature estimation result of the fuel cell at the next system startup.
  • An example of the temperature having a correlation with the temperature of the fuel cell is the outside air temperature.
  • the fuel cell when the system is stopped, the fuel cell may generate electric power while the supply of the reaction gas to the fuel cell is shut off.
  • the refrigerant system includes, for example, intermittent supply of refrigerant to the fuel cell, so that a temperature difference between the fuel cell and the refrigerant supplied to the fuel cell is a predetermined value or less.
  • the refrigerant supply to the fuel cell may be controlled so that
  • the fuel cell may be damaged such as cracking due to thermal shock due to the temperature difference.
  • the thermal shock to the fuel cell can be reduced by suppressing the temperature difference to a predetermined value or less by, for example, intermittently supplying a refrigerant to the fuel cell.
  • the temperature of the fuel cell may be the temperature of the refrigerant discharged from the fuel cell.
  • the fuel cell system of the present invention may include an abnormality determination unit that determines abnormality of the refrigerant system based on a temperature of the refrigerant discharged from the fuel cell.
  • the temperature of the refrigerant discharged from the fuel cell should be higher than the temperature of the refrigerant supplied to the fuel cell. It is. Therefore, according to this configuration, the temperature of the refrigerant discharged from the fuel cell is monitored, and if the temperature does not rise, it can be considered that there is some abnormality in the refrigerant system such as clogging in the refrigerant path. it can.
  • the case where the temperature of the refrigerant does not rise includes not only the case where the temperature of the refrigerant does not rise at all, but also the case where the temperature rise per unit time and the temperature rise rate are below a predetermined value.
  • a fuel cell system shutdown method includes a fuel cell that has a catalyst layer therein and generates power by receiving a supply of a reaction gas, and supplies a refrigerant to the fuel cell to control the temperature of the fuel cell.
  • a fuel cell system comprising: a refrigerant system, and a temperature that correlates with the temperature of the fuel cell or the temperature of the fuel cell at the next system startup is estimated to be equal to or lower than a predetermined temperature. In such a case, the supply of the refrigerant is stopped when the system is stopped, and the supply of the refrigerant is resumed after a predetermined time has elapsed.
  • stop and restart of refrigerant supply are controlled according to the temperature estimation result of the fuel cell at the next system startup.
  • stoppage and restart of refrigerant supply are controlled in accordance with the temperature estimation result of the fuel cell at the next system start, so that waste of refrigerant control at the time of system stop is suppressed. Can do.
  • FIG. 1 is a system configuration diagram schematically showing one embodiment of a fuel cell system according to the present invention.
  • FIG. 2 is a flowchart for explaining the stopping operation of the fuel cell system by the control unit shown in FIG.
  • the present invention is not limited to such an application example, and is applicable to all moving bodies such as ships, aircrafts, trains, and walking robots. Besides being applicable, for example, it can also be applied to stationary power generation systems where fuel cells are used as power generation equipment for buildings (housing, buildings, etc.).
  • the air supply path 7 1 includes an air filter A 1 that removes particulates from the air, a compressor A 3 that pressurizes the air, a pressure sensor P 4 that detects the supply air pressure, and a humidifier A that adds the required water to the air. 2 1 is provided.
  • the compressor A 3 is driven by a motor (auxiliary machine). This motor is driven and controlled by a control unit 50 described later.
  • the air filter A 1 is provided with an air flow meter (flow meter) (not shown) that detects air flow.
  • the air off gas discharged from the fuel cell 20 is discharged to the outside through the exhaust path 72.
  • the exhaust path 7 2 is provided with a heat sensor P 1 for detecting the exhaust pressure, a pressure regulating valve A 4, and a humidifier A 21.
  • the pressure sensor P 1 is provided in the vicinity of the air exhaust port of the fuel cell 20.
  • Pressure regulating valve A4 is fuel Functions as a pressure regulator to set the air pressure supplied to battery 20.
  • Detection signals (not shown) of the pressure sensors P 4 and P 1 are sent to the control unit 50.
  • the control unit 50 sets the supply air pressure and the supply air flow rate to the fuel cell 20 by adjusting the motor rotation speed of the compressor A 3 and the opening area of the pressure adjustment valve A 4.
  • Hydrogen gas as a fuel gas is supplied from a hydrogen supply source 0 to a hydrogen supply port of the fuel cell 20 through a fuel supply path 74.
  • the hydrogen supply source 30 corresponds to, for example, a high-pressure hydrogen tank, but may be a so-called fuel reformer or a hydrogen storage alloy.
  • the hydrogen pressure regulating valve H 9 may be, for example, a force S capable of using a mechanical pressure regulating valve, a valve whose valve opening is linearly or continuously adjusted by a pulse motor. Detection signals (not shown) of the pressure sensors P 5, P 6 and P 9 are supplied to the control unit 50.
  • the hydrogen gas that has not been consumed in the fuel cell 20 is discharged as a hydrogen off-gas to the hydrogen circulation path 75 and returned to the downstream side of the hydrogen pressure regulating valve H 9 in the fuel supply path 74.
  • the hydrogen circuit 7 5 has a temperature sensor T 3 1 for detecting the temperature of the hydrogen off-gas, a shutoff valve H 2 2 for shutting off the communication between the fuel cell 20 and the hydrogen circuit 7 5, and an air for recovering moisture from the hydrogen off-gas.
  • Liquid separator H 4 2, drain valve H 4 1 for collecting collected water in a tank (not shown) outside hydrogen circulation path 7 5, water for pressurizing hydrogen off-gas
  • An elementary pump H 50 and a backflow check valve H 52 are provided.
  • the shutoff valves H 2 1 and H 2 2 close the anode side of the fuel cell 20.
  • a detection signal (not shown) of the temperature sensor T 3 1 is supplied to the control unit 50.
  • the operation of the hydrogen pump H 50 is controlled by the control unit 50.
  • the hydrogen off gas merges with the hydrogen gas in the fuel supply path 74, and is supplied to the fuel cell 20 for reuse.
  • the backflow prevention valve H 5 2 prevents the hydrogen gas in the fuel supply path .74 from flowing back to the hydrogen circulation path 75 side.
  • the shut-off valves H I 0 0, H 2 1, H 2 2 are driven by a signal from the control unit 50.
  • the hydrogen circulation path 75 is connected to the exhaust path 72 by a purge flow path 76 via a discharge control valve H51.
  • the discharge control valve H 51 is an electromagnetic shut-off valve, and discharges (purges) hydrogen off-gas to the outside by operating according to a command from the control unit 50. By performing this purge operation intermittently, it is possible to prevent the cell voltage from decreasing due to repeated hydrogen gas circulation and increasing the impurity concentration of the hydrogen gas on the fuel electrode side.
  • a cooling passage 73 for circulating cooling water (refrigerant) is provided at the cooling water inlet / outlet of the fuel cell 20.
  • the cooling path 73 includes a temperature sensor T 1 that detects the temperature of the cooling water drained from the fuel cell 20, a Raje evening that dissipates the cooling water heat (heat exchanger) C 2, and the cooling water
  • a pump C 1 that is pressurized and circulated, and a temperature sensor T 2 that detects the temperature of the cooling water supplied to the fuel cell 20 are provided.
  • the radiator C 2 is provided with a cooling fan C 1 3 that is rotationally driven by a motor.
  • the detection signals of the temperature sensors T1, ⁇ 2 are supplied to the control unit 50, and the drive of the pump C1 and the cooling fan C13 is controlled by the control unit 50. That is, in the present embodiment, the present invention includes the cooling path 7 3, the temperature sensor ⁇ 1, the radiator C 2, the pump C 1, the temperature sensor ⁇ 2, the cooling fan C 1 3, and the control unit 50.
  • the refrigerant system is configured.
  • the fuel cell 20 is configured as a fuel cell stack in which a required number of unit cells that generate power upon receipt of fuel gas and oxidant gas are stacked.
  • a single cell consists of a fluid flow channel (reactive gas flow channel, refrigerant channel) and a gas impervious conductive material—a pair of separators and a MEA (Membrane Electrode Assembly) sandwiched between the pair of separators. It is composed of
  • the MEA is composed of an electrolyte membrane and a pair of electrodes disposed on both sides thereof, and the electrode has a structure in which a catalyst layer and a diffusion layer are laminated from the electrolyte membrane side.
  • the catalyst layer is disposed adjacent to the electrolyte membrane, and includes, for example, a solid electrolyte, carbon particles (catalyst-supported carbon), and a catalyst supported on the carbon particles.
  • a catalyst supported on the carbon particles.
  • platinum or a platinum alloy is preferably used as the catalyst.
  • the diffusion layer is a conductor having a function of passing a fluid (fuel gas, oxidizing gas, generated water) and a function of conducting the catalyst layer and the separator.
  • gas flow paths defined by a diffusion layer and a fluid flow path groove of the separator are formed on both sides through the MEA, and hydrogen gas that is a fuel gas is formed in the gas flow path.
  • air is flowed as an oxidizing gas, and 'hydrogen gas and oxygen in the air generate electricity through an electrochemical reaction via the MEA.
  • the electric power generated by the fuel cell 20 is supplied to a power control unit (not shown).
  • the power control unit consists of an inverter that supplies power to the vehicle drive motor, an inverter that supplies power to various types of auxiliary equipment such as compressor motors and hydrogen pump motors, and charging power storage means such as secondary batteries.
  • a DC-DC converter or the like for supplying power from the power storage means to the motors is provided.
  • the control unit 50 receives control information from a requested load such as an accelerator signal of a vehicle (not shown) and sensors (pressure sensor, temperature sensor, flow sensor, output ampere meter, output voltmeter, etc.) of each part of the fuel cell system 1. Control the operation of valves and motors in each part of the system. In addition, the control unit 50 predicts the temperature of the fuel cell 20 at the next system start after the user (driver) receives a system stop command, for example, by turning off the ignition, and the prediction result. Based on the above, intermittent operation of the pump C 1 and the like provided in the cooling path 73 is performed in order to reduce the moisture in the fuel cell 20.
  • a requested load such as an accelerator signal of a vehicle (not shown) and sensors (pressure sensor, temperature sensor, flow sensor, output ampere meter, output voltmeter, etc.) of each part of the fuel cell system 1. Control the operation of valves and motors in each part of the system. In addition, the control unit 50 predicts the temperature of the fuel cell 20 at the next
  • the necessity of the moisture reduction process (hereinafter simply referred to as “moisture reduction process”) by performing such intermittent operation of the pump C 1 or the like is determined by the control unit 5. Regardless of the predicted result of 0, the user can arbitrarily select it. For example, when the user sets the select switch to “ON”, the control city 50 performs the moisture reduction process even if the predicted temperature exceeds a predetermined threshold.
  • the control unit 50 when the user sets the select switch to “ ⁇ , F F”, the control unit 50 does not perform the moisture reduction process even if the predicted temperature is equal to or lower than the predetermined threshold. In addition, when the user sets the select switch to “AU TO”, the control unit 50 performs moisture reduction processing based on the predicted temperature.
  • the temperature of the fuel cell 20 at the next system start-up can be obtained from the location coordinates of the vehicle measured using, for example, GPS, and the land obtained from outside such as ITS (Intelligent Transport Systems).
  • ITS Intelligent Transport Systems
  • the predictive control unit 5 uses the past temperature change information and predicted temperature change information, calendar information (months, days, etc.) and time information in Japan to estimate changes in the outside temperature that the vehicle is expected to receive in the future, the predictive control unit 5
  • the control unit 50 predicts, for example, by referring to a map showing the relationship between the outside air temperature stored in the storage device in 0 and the internal temperature of the fuel cell 20 (hereinafter, cell internal temperature).
  • the moisture reduction process is performed, for example, when the temperature inside the cell is predicted to be 0 degrees or less.
  • the cooling water is supplied to the fuel cell 20.
  • the fuel cell 20 is caused to generate power in a state where both the supply of the reaction gas and the reaction gas are stopped. More specifically, the fuel cell 20 is caused to generate power with the pump C 1 and the cooling fan C 13 of the radiator C 2 provided in the cooling path 73 stopped.
  • the control unit 50 is configured by a control computer system (not shown).
  • This control computer system has a known configuration such as a CPU, ROM, RAM, HDD, input / output interface and display, and is configured by a commercially available control computer system.
  • the control unit 50 receives (acquires) the position coordinates of the vehicle on which the fuel cell system 1 according to the present embodiment is mounted from the in-vehicle GP S (step S1).
  • the position coordinates received in step S1 are transmitted to ITS, and the past temperature transition information and the predicted temperature transition information on the land are received (acquired) from the ITS '(step S3).
  • the temperature change expected to be received by the vehicle in the future is estimated.
  • the temperature in the cell at the next system startup is predicted by referring to a map showing the relationship between the temperature in the cell and the temperature in the cell (step S5).
  • step S 7 it is determined whether there is a possibility that the predicted temperature in the cell is not more than a predetermined threshold (for example, 0 ° C), in other words, there is a risk of freezing in the cell, particularly freezing of the catalyst layer at the next system start (step S 7). If the determination result is “YES”, the process proceeds to step S 9 to determine whether the user has selected the select switch “ON”, “OF F”, or “AUTO”, that is, the user setting. Size Make a decision. '
  • step S11 performed as an example of the moisture reduction process, that is, the intermittent operation of the pump C1, etc. is skipped.
  • the determination result “YES” in step S 7 is followed. If the user setting is “ON”, the processing in step S 11 is performed according to the intention of the user. To implement.
  • step SI 1 first, the operation of the compressor A 1 is stopped to shut off the oxidizing gas supply to the fuel cell 20 and the shut-off valve HI 0 0 is closed to supply fuel to the fuel cell 20 Shut off the gas supply, and let the fuel cell 2 ° generate power in such a state where the reaction gas supply is cut off.
  • the catalyst layer may be oxidized.
  • the operation of pump C 1 and cooling fan C 13 will be resumed after a predetermined time has elapsed.
  • the oxidation of the catalyst-supporting carbon used in the catalyst layer can be suppressed, and the durability of the fuel cell 20 can be improved.
  • the operation of the pump C 1 and the cooling fan C 13 is resumed during the intermittent operation, there is a temperature difference ⁇ ⁇ between the fuel cell 20 and the cooling water supplied to the fuel cell 20.
  • the pump C 1 and the cooling fan C 13 are operated intermittently so that the temperature difference ⁇ ⁇ does not exceed a predetermined value so that the temperature of the fuel cell 20 does not rise excessively.
  • the pump C 1 and the cooling fan C 13 may be intermittently operated according to the temperature of the fuel cell 20 or the catalyst layer, or may be intermittently operated at regular intervals. As described above, by suppressing the temperature difference ⁇ T generated when the operation of the pump C 1 and the cooling fan C 1 3 is restarted during the intermittent operation to a predetermined value or less, the heat given to the fuel cell 20 during the intermittent operation is reduced. Impact can be mitigated.
  • the temperature of the fuel cell 20 or the catalyst layer may be substituted with the temperature of the cooling water measured by the temperature sensor T 1.
  • control unit 50 functions as an abnormality determination unit that determines, for example, clogging of the cooling path 73 as an abnormality in the cooling water system (refrigerant system). If the cooling water is circulating normally through the cooling path 7 3 while cooling the fuel cell 20, the temperature of the cooling water discharged from the fuel cell 20 is equal to the cooling water supplied to the fuel cell 20. Should have risen relative to temperature.
  • the temperature of the cooling water discharged from the fuel cell 20 is monitored by the temperature sensor T1, and if the temperature does not increase, the cooling path 73 is clogged. It is judged that there is some abnormality in the cooling water system.
  • the case where the temperature of the cooling water does not increase includes not only the case where the temperature of the cooling water does not increase at all, but also the case where the temperature increase rate per unit time and the temperature increase rate are below a predetermined value.
  • Step S7 If the judgment result in Step S7 is “NO” ⁇ ⁇ In other words, if there is no risk of freezing in the cell at the next system start-up, go to Step S 21 and the user turns the Select switch to “O Nj,“ OFF ”, And“ AUTO ”are selected, that is, the user setting is determined.
  • This user preference Since the fixed process is the same as the process of step S9, its description is omitted. If the user setting is “ON” as a result of the determination in step S 2 1, even if the determination result in step S 7 is “NO”, in other words, even if the system is frozen next time Even if there is no fear, the process of step S 1 1 is performed according to the user's intention.
  • step S and 7 the judgment result “N 0” in step S and 7 is followed. If the user setting is “OFF”, the user's intention is followed. 1 Skip the process of 1.
  • the fuel cell that has generated heat due to power generation by stopping the cooling water supply to the fuel cell 20 when the system is stopped Since the evaporation of water in the fuel cell 20 is promoted by the retained heat of 20, freezing of the catalyst layer in the fuel cell 20 at the next start of the stem can be suppressed.
  • the cooling water supply to the fuel cell 20 is stopped, the cooling water supply to the fuel cell 20 is restarted after a predetermined time has elapsed, that is, by intermittently operating the pump C 1 etc.
  • the oxidation of the catalyst layer during the system shutdown can be suppressed.
  • the stop and restart of refrigerant supply are controlled in accordance with the temperature estimation result of the fuel cell 20 at the next system startup. It is possible to suppress the waste of refrigerant control when the system is stopped.
  • step S7 determines that moisture reduction processing is necessary
  • step S 7 determines that moisture reduction processing is unnecessary
  • step S 7 determines that moisture reduction processing is unnecessary
  • stoppage and restart of refrigerant supply are controlled in accordance with the temperature estimation result of the fuel cell at the next system start, so that waste of refrigerant control at the time of system stop is suppressed. Can do. Therefore, it can be widely used for the fuel cell system having such a demand and its operation stop method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

明細書 燃料電池システムとその運転停止方法 技術分野
本発明は、 内部に触媒層を有し反応ガスの供給を受けて発電する燃料電池 を備えた燃料電池システムとその運転停止方法に関する。 , 背景技術
近年、 燃料ガスと酸化ガス (以下、 これらを反応ガスという。) との電気 化学反応によって発電する燃料電池をエネルギ源とした燃料電池システム が注目されている。 例えば固体高分子型の燃料電池は、 o°c以下の低温環境 下におかれると、 燃料電池内の凍結、 とりわけ触媒層の凍結により、 電気化 学反応の進行が阻害される。 かかる場合には、 燃料電池の運転停止後に再始 動不能となったり、 たとえ始動できたとしても、 発電効率が著しく損なわれ ることになる。
例えば特開 2003 - 151601号公報には、 燃料電池システムを停止 する際、 燃料電池への冷却剤流量を絞って冷却性能を低下させるとどもに燃 料電池の運転を継続させ、 電気化学反応による発熱を利用して燃料電池の温 度を上昇させる技術が開示されている。 また、 特開 2005 - 322527 号公報には、 燃料電池の発電停止後、 スタック内部温度センサが検出した温 度とスタック周囲温度センサが検出した温度との温度差が所定値を超えて いる場合には、 クーラントを冷却した後、 燃料電池スタックへ導入する技術 が開示されている。 発明の開示
しかしながら、 上記公報に開示されている技術では、 次回システム始動時 の状況を何ら考慮することなく、 システム停止時に上記'の冷媒制御をそれぞ れ行うため、 無駄な冷媒制御を実施してしまう可能性がある。
そこで、 本発明は、 システム停止時における冷媒制御の無駄を抑制するこ とができる燃料電池システムとその運転停止方法を提供することを目的と する。
上記目的を達成するため、 本発明の燃料電池システムは、, 内部に触媒層を 有し反応ガスの供給を受けて発電する燃料電池と、 この燃料電池に冷媒を供 給して該燃料電池の温度を制御する冷媒系と、 を備えた燃料電池システムで あって、 前記冷媒系は、 次回システム始動時における前記燃料電池の温度又 は該燃料電池の温度と相関を有する温度が所定温度以下であると推定され る^ #合には、 システム停止時に前記冷媒の供給を停止し、 所定時間経過後に 該冷媒の供給を再開するものである。 , ' 、
本構成によれば、 次回システム始動時における燃料電池の温度推定結果に 応じて、 '冷媒供給の停止および再開 (冷媒制御) が制御される。 なお、、 燃料 電池の温度と相関を有する温度の例としては、 外気温がある。 '
本発明の燃料電池システムにおいては、 前記システム停止時に、 前記燃料 電池への反応ガス供給を遮断した状態で当該燃料電池に発電をさせてもよ い。
本構成によれば、 冷媒供給停止後も燃料電池の発電を継続させることによ り、 発電に伴う発熱によって燃料電池内の水分蒸発が促進される。
本発明の燃料電池システムにおいて、 前記冷媒系は、 例えば前記燃料電池 への冷媒供給を間欠的に行う等して、 前記燃料電池と該燃料電池に供給され る冷媒との温度差が所定値以下となるように、 前記燃料電池への冷媒供給を 制御してもよレ、。
燃料電池と該燃料電池に供給される冷媒との温度差が所定値以上になる と、 かかる温度差による熱衝撃で燃料電池に割れ等の破損が発生する可能性 があるところ、 本構成によれば、 例えば冷媒を燃料電池に間欠的に供給する 等して、 前記温度差を所定値以下に抑えることにより、 燃料電池への熱衝撃 を緩和することができる。 なお、 燃料電池の温度は、 当該燃料電池から排出 された冷媒の温度としてもよい。
本発明の燃料電池システムは、 前記燃料電池から排出される冷媒の温度に 基づいて、 前記冷媒系の異常を判定する異常判定部を備えてもよい。
冷媒が燃料電池を冷却しながら冷媒系を正常に流通していれば、 燃料電¾ から排出された冷媒の温度は、 燃料電池に供給される冷媒の温度に比して上 昇しているはずである。 したがって、 本構成によれば、 燃料電池から排出さ れる冷媒の温度を監視し、 該温度が上昇しない場合は、 冷媒経路に詰まりが 生じている等、 冷媒系に何らかの異常があるとみなすことができる。
なお、 冷媒の温度が上昇しない場合とは、, 冷媒の温度が全く上昇しない場 合だけでなく、 単位時間当たりの温度上昇幅や、 温度上昇率が所定値以下の 場合を含むものとする。
本発明に係る燃料電池システムの運転停止方法は、 内部に触媒層を有し反 応ガスの供給を受けて発電する燃料電池と、 この燃料電池に冷媒を供給して 該燃料電池の温度を制御する冷媒系と、 を備えた燃料電池システムの運転停 止方法であって、 次回システム始動時における前記燃料電池の温度又は該燃 料電池の温度と相関を有する温度が所定温度以下であると推定される場合 には、 システム停止時に前記冷媒の供給を停止し、 所定時間経過後に該冷媒 の供給を再開するものである。
本構成によれば、 次回システム始動時における燃料電池の温度推定結果に 応じて、 冷媒供給の停止および再開 (冷媒制御) が制御される。
本発明によれば、 次回システム始動時における燃料電池の温度推定結果に 応じて、 冷媒供給の停止および再開 (冷媒制御) が制御されるので、 システ ム停止時における冷媒制御の無駄を抑制することができる。 図面の簡単な説明 :
図 1は、 本発明に係る燃料電池システムの一実施形態を概略的に示したシ ステム構成図である。
図 2は、 図 1に示した制御部による燃料電池システムの停止動作を説明す るフローチャートである。
発明を実施するための最良の形態
次に、 本発明に係る燃料電池システムの一実施の形態を説明する。 以下、 この燃料電池システムを燃料電池車両の車載発電システムに適用した場合 について説明するが、 本発明はこのような適用例に限らず、 船舶, 航空機, 電車等のあらゆる移動体や歩行ロボットへ < 適用が可能である他、 例えば燃 料電池が建物 (住宅、 ビル等) 用の発電設備として用いられる定置用発電シ ステムへの適用も可能である。
図 1に示すように、 酸化ガス (反応ガス) としての空気 (外気) は、 空気 供給路 7 1を介して燃料電池 2 0の空気供給口に供給される。 空気供給路 7 1には、 空気から微粒子を除去するエアフィルタ A 1、 空気を加圧するコン プレッサ A 3、 供給空気圧を検出する圧力センサ P 4、 及び空気に所要の水 分を加える加湿器 A 2 1が設けられている。コンプレッサ A 3は、モータ(補 機) によって駆動される。 このモータは、 後述の制御部 5 0によって駆動制 御される。 なお、 エアフィルタ A 1には、 空気流用を検出する図示省略のェ アフロ一メータ (流量計) が設けられている。
燃料電池 2 0から排出される空気オフガスは、 排気路 7 2を経て外部に放 出される。 排気路 7 2には、 排気圧を検出する圧力センサ P 1、 圧力調整弁 A 4、 及ぴ加湿器 A 2 1の熱交換器が設けられている。 圧力センサ P 1は、 燃料電池 2 0の空気排気口近傍に設けられている。 圧力調整弁 A 4は、 燃料 電池 2 0への供給空気圧を設定する調圧 (減圧)器として機能する。
圧力センサ P 4, P 1の図示しない検出信号は、 制御部 5 0に送られる。 制御部 5 0は、 コンプレッサ A 3のモータ回転数及び圧力調整弁 A 4の開度 面積を調整することによって、 燃料電池 2 0への供給空気圧や供給空気流量 を設定する。
燃料ガス (反応ガス) としての水素ガスは、 水素供給源 0から燃料供給 路 7 4を介して燃料電池 2 0の水素供給口に供給される。 水素供給源 3 0は、 例えば高圧水素タンクが該当するが、 いわゆる燃料改質器や水素吸蔵合金等 であっても良い。
燃料供給路 7 4には、 水素供給源 3 0から水素を供給しあるいは供給を停 止する遮断弁 H I 0 0、 水素供給源 3 0からの水素ガスの供給圧力を検出す る圧力センサ P 6、 燃料電池 2 0への水素'ガスの供給圧力を減圧して調整す る水素調圧弁 H 9、 水素調圧弁 H 9の下流の水素ガス圧ガを検出する圧力セ ンサ P 9、 燃料電池 2 0の水素供給口と燃料供給路 7 4間を開閉する遮断弁 H 2 1、 及び水素ガスの燃料電池 2 0の入口圧力を検出する圧力センサ P 5 が設けられている。
水素調圧弁 H 9としては、 例えば機械式の減圧を行う調圧弁を使用できる 力 S、 パルスモータで弁の開度がリニアあるいは連続的に調整される弁であつ ても良い。 圧力センサ P 5 , P 6 , P 9の図示しない検出信号は、 制御部 5 0に供給される。
燃料電池 2 0で消費されなかった水素ガスは、 水素オフガスとして水素循 環路 7 5に排出され、 燃料供給路 7 4の水素調圧弁 H 9の下流側に戻される。 水素循環路 7 5には、 水素オフガスの温度を検出する温度センサ T 3 1、 燃 料電池 2 0と水素循環路 7 5を連通 遮断する遮断弁 H 2 2、 水素オフガス から水分を回収する気液分離器 H 4 2、 回収した生成水を水素循環路 7 5外 の図示しないタンク等に回収する排水弁 H 4 1、 水素オフガスを加圧する水 素ポンプ H 5 0、 及び逆流阻止弁 H 5 2が設けられている。
遮断弁 H 2 1 , H 2 2は、 燃料電池 2 0のアノード側を閉鎖する。 温度セ ンサ T 3 1の図示しない検出信号は、 制御部 5 0に供給される。 水素ポンプ H 5 0は、 制御部 5 0によって動作が制御される。
水素オフガスは、 燃料供給路 7 4で水素ガスと合流し、 燃料電池 2 0に供 給されて再利用される。 逆流阻止弁 H 5 2は、 燃料供給路.7 4の水素ガスが 水素循環路 7 5側に逆流することを防止する。 遮断弁 H I 0 0, H 2 1 , H 2 2は、 制御部 5 0からの信号で駆動される。
水素循環路 7 5は、 排出制御弁 H 5 1を介して、 パージ流路 7 6によって 排気路 7 2に接続されている。排出制御弁 H 5 1は、電磁式の遮断弁であり、 制御部 5 0からの指令によって作動することにより、 水素オフガスを外部に 排出 (パージ) する。 このパージ動作を間欠的に行うことによって、 水素ォ フガスの循環が繰り返されて燃料極側の水素ガスの不純物濃度が増すこと によるセル電圧の低下を防止することができる。
燃料電池 2 0の冷却水出入口には、 冷却水 (冷媒) を循環させる冷却路 7 3が設けられている。 冷却路 7 3には、 燃料電池 2 0から排水される冷却水 の温度を検出する温度センサ T 1、 冷却水の熱を外部に放熱するラジェ一夕 (熱交換器) C 2、 冷却水を加圧して循環させるポンプ C 1、 及び燃料電池 2 0に供給される冷却水の温度を検出する温度センサ T 2が設けられてい る。 ラジェータ C 2には、 モータによって回転駆動される冷却ファン C 1 3 が設けられている。
温度センサ T l, Τ 2の検出信号は制御部 5 0に供給され、 ポンプ C 1及 び冷却ファン C 1 3の駆動は制御部 5 0によって制御される。 すなわち、 本 実施形態においては、これら冷却路 7 3 ,温度センサ Τ 1 , ラジェータ C 2 , ポンプ C 1 , 温度センサ Τ 2 , 冷却ファン C 1 3 , 及び制御部 5 0を備える ことによって、 本発明の冷媒系が構成されている。 燃料電池 2 0は、 燃料ガスと酸化ガスの供給を受けて発電する単セルを所 要数積層してなる燃料電池スタックとして構成されている。 単セルは、 流体 流路 (反応ガス流路、 冷媒镩路) 溝を有しガス不透過の導電性材料からなる —対のセパレータと、 一対のセパレータで挟み込まれた M E A (Membrane Electrode Assembly) とから構成されている。 M E Aは、 電解質膜及びその 両面に配置した一対の電極からなり、 電極は、 電解質膜側から触媒層及び拡 散層を積層した構造とされている。
触媒層は、電解質膜に隣接配置され、例えば、 固体電解質と、炭素粒子 (触 媒担持カーボン) と、 その炭素粒子に担持された触媒とを備えている。 触媒 としては、 例えば、 白金又は白金合金等が好適に用いられる。 一方、 拡散層 は、 流体 (燃料ガス、 酸化ガス、 生成水) を通過させる機能と、 触媒層及び セパレータを導通させる機能とを有する導電体である。
この燃料電池 2 0には、 M E Aを介した両面側に、 拡散層とセパレータの 流体流路溝とによって区画されたガス流路が形成されており、 このガス流路 に燃料ガスである水素ガス及び酸化ガスとして空気が流され、'水素ガスと空 気中の酸素とが M E Aを介して電気化学反応することにより発電する。
燃料電池 2 0が発生した電力は、 図示しないパワーコントロール ニット に供給される。 パワーコントロールユニットは、 車両の駆動モータに電力を 供給するィンバータと、 コンプレッサモータや水素ポンプ用モータなどの各 種の補機類に電力を供給するインバータと、 二次電池等の蓄電手段への充電 ゃ該蓄電手段からのモータ類への電力供給を行う D C— D Cコンバータな どが備えられている。
制御部 5 0は、 図示しない車両のアクセル信号などの要求負荷や燃料電池 システム 1の各部のセンサ (圧力センサ、 温度センサ、 流量センサ、 出力電 流計、 出力電圧計等) から制御情報を受け取り、 システム各部の弁類やモー タ類の運転を制御する。 加えて、 制御部 5 0は、 例えばユーザ (運転者) がィグニッシヨンを O F Fにすること等によってシステム停止指令を受けた後に、 次回システム始動 時の燃料電池 2 0の温度を予測し、 その予測結果に基づいて燃料電池 2 0内 の水分を低減すべく、 冷却路 7 3に設けられたポンプ C 1等の間欠運転を実 施する。
また、 本実施形態においては、 このようなポンプ C 1等の間欠運転を実施 することによる水分低減処理 (以下、 単に 「水分低減処理」 ということがあ る。) の要否は、 制御部 5 0の予測結果にかかわらず、 ユーザが任意に選択 できるようになつている。 例えば、 ユーザがセレク トスィッチを 「O N」 に 設定している場合には、 制御都 5 0は、 だとえ予測した温度が所定の閾値を 超えていても、 水分低減処理を実施する。
一方、 ユーザがセレク トスィッチを 「〇,F F」 に設定している場合には、 制御部 5 0は、 たとえ予測した温度が所定の閾値以下であっても、 水分低減 処理を実施しない。 また、 ユーザがセレク トスィッチを 「AU T O」 に設定 した場合には、 制御部 5 0は、 予測した温度に基づき水分低減処理を実施す る。
次回システム始動時の燃料電池 2 0の温度は、 例えば G P S等を用いて測 位された車両の位置座標から、 例えば I T S (高度道路交通システム : Intelligent Transport Systems) 等の外部から取得されるその土地における 過去の気温推移情報及び予想気温推移情報と、 暦情報 (月、 日等) 及び時間 情報とを用いて、 今後車両が受けると予想される外気温の変化を推測し、 予 め制御部 5 0内の記憶装置等に保存されている外気温と燃料電池 2 0の内 部温度 (以下、 セル内温度) との関係を示すマップを参照する等して、 制御 部 5 0が予測する。
水分低減処理は、 例えばセル内温度が 0度以下と予測された場合に実施す る。 この水分低減処理では、 後述するように、 燃料電池 2 0への冷却水供給 及び反応ガス供給をいずれも停止した状態で燃料電池 20に発電を行わせ る。 より具体的には、 冷却路 73に設けられたポンプ C 1及びラジェータ C 2の冷却ファン C 1 3を停止させた状態で、 燃料電池 20に発電を行わせる。 なお、 制御部 50は、 図示しない制御コンピュータシステムによって構成 される。 この制御コンピュータシステムは、 CPU、 ROM, RAM, HD D、 入出力インタフェース及びディスプレイなどの公知構成から成り、 市販 されている制御用コンピュータシステムによって構成される。
次に、 制御部 50による燃料電池システム 1の停止動作について説明する。 ■ 制御部 50は、 図示しない主制御プログラムにおいて、 運転停止動作 (例え ば、 イダニッシヨン OF F) を指令する命令の発令あるいはフラグが設定さ れた (イベント発生) こ-とを判別すると、 図 2のフローチャートに示される 処理を実行する。 , ·
まず、 制御部 50は、 本実施形態に係る燃料電池システム 1が搭載された 車両の位置座標を車載 GP Sより受信 (取得) する (ステップ S l)。 次に、 ステップ S 1で受信した位置座標を I T Sに送信し、 該 I TS'からその土地 における過去の気温推移情報と予想気温推移情報を受信 (取得) する (ステ ップ S 3)。 次いで、 これらステップ S 3で受信した気温推移情報及び予想 気温推移情報と、 暦情報 (月、 日等) 及び時間情報とに基づき、 今後車両が 受けると予想される温度変化を推測し、 外気温とセル内温度との関係を示す マップを参照して次回システム始動時のセル内温度を予測する (ステップ S 5)。
しかる後、 予測したセル内温度が所定の閾値 (例えば、 0°C) 以下である 力、 言い換えれば、 次回システム始動時にセル内凍結、 特に触媒層凍結の虞 があるかを判定する (ステップ S 7)。 この判定結果が 「YES」 の場合は、 ステップ S 9に進み、 ユーザがセレク トスィッチを 「ON」, 「OF F」, 及 び 「AUTO」 のいずれを選択しているかの判定、 つまり、 ユーザ設定の判 定を行う。 '
ユーザ設定が「O F F」の場合には、たとえステップ S 7の判定結果が「Y E S」 であっても、 言い換えれば、 だとえ次回システム始動時にセル内凍結 の虞がない場合であっても、 ユーザの意思に従い、 水分低減処理の一例とし て実施されるステップ S 1 1の処理、 すなわち、 ポンプ C 1等の間欠運転を スキップする。 一方、 ユーザ設定が 「A U T O」 の場合には、 ステップ S 7 の判定結果 「Y E S」 に従い、 また、 ユーザ設定が 「O N」 の場合には、 ュ 一ザの意思に従い、 ステップ S 1 1の処理を実施する。
ステップ S I 1の水分低減処理では、 まず、 コンプレッサ A 1の運転を停 止して燃料電池 2 0へ酸化ガス供給を遮断すると共に、 遮断弁 H I 0 0を閉 じて燃料電池 2 0への燃料ガス供給を遮断し、 このような反応ガス供給遮断 状態で燃料電池 2◦に発電を行わせておく。
そして、 冷却路 7 3に設けられたポンプ C 1の運転と、 ラジェータ C 2に おける冷却ファン C 1 3の運転を停止させる。 これにより、 冷却水の循環を 停止した状態で燃料電池 2 0に発電を行わせることになるため、 燃料電池 2 0の温度が速やかに上昇し、 燃料電池 1 0の内部に滞留している水分の蒸発 が促進される結果、 次回システム始動時のセル内凍結、 特に触媒層凍結は効 果的に抑制される。
ただし、 燃料電池 2 0への冷却水供給を停止して燃料電池 2 0の温度が所 定の触媒酸化温度にまで上昇してしまうと、 触媒層が酸化してしまう虞が生 じるため、 間欠運転中におけるポンプ C 1及び冷却ファン C 1 3の運転停止 後は、 所定時間の経過を待ってポンプ C 1及び冷却ファン C 1 3の運転を再 開するものとする。 これにより、 触媒層に用いられている触媒担持カーボン の酸化が抑制可能となり、 燃料電池 2 0の耐久性向上を図ることができる。 一方、 間欠運転中にポンプ C 1及ぴ冷却ファン C 1 3の運転を再開したと きに、 燃料電池 2 0と該燃料電池 2 0に供給される冷却水の温度差 Δ Τが所 定値以上であると、 この温度差 Δ Tによる熱衝撃で燃料電池 2 0に割れ等の 破損が発生する可能性がある。 このため、 温度差 Δ Τが所定値を上回らない ように、 ポンプ C 1及び冷却ファン C 1 3を間欠的に作動させて、 燃料電池 2 0の温度が過度に上昇しないようにする。
このとき、 ポンプ C 1及ぴ冷却ファン C 1 3は、 燃料電池 2 0あるいは触 媒層の温度に応じて間欠運転させてもよいし、 一定時間おきに間欠運転させ てもよい。 以上のように、 間欠運転中にポンプ C 1及び冷却ファン C 1 3の 運転を再開させた時に生じる温度差 Δ Tを所定値以下に抑えることにより、 間欠運転中に燃料電池 2 0に与える熱衝撃を緩和することができる。 なお、 燃料電池 2 0あるいは触媒層の温度は、 温度センサ T 1で計測される冷却水 の温度で代用してもよい。
また、 ポンプ。 1及び冷却ファン C 1 3 間欠運転中、 制御部 5 0は冷却 水系 (冷媒系) の異常として例えば冷却路 7 3の詰まりを判定する異常判定 部としても機能する。 冷却水が燃料電池 2 0を冷却しながら冷却路 7 3を正 常に循環していれば、 燃料電池 2 0から排出された冷却水の温度は、 燃料電 池 2 0に供給される冷却水の温度に比して上昇しているはずである。
したがって、 本実施形態の燃料電池システム 1では、 燃料電池 2 0から排 出される冷却水の温度を温度センサ T 1にて監視し、 該温度が上昇しない場 合は、 冷却路 7 3に詰まりが生じている等、 冷却水系に何らかの異常がある と判断する。 なお、 冷却水の温度が上昇しない場合とは、 冷却水の温度が全 く上昇しない場合だけでなく、 単位時間当たりの温度上昇幅や、 温度上昇率 が所定値以下の場合を含むものとする。
ステップ S 7の判定結果が 「N O」 の場^ \ 言い換えれば、 次回システム 始動時にセル内凍結の虞がない場合には、 ステップ S 2 1に進み、 ユーザが セレク トスィッチを 「O Nj, 「O F F」, 及び 「A U T O」 のいずれを選択 しているかの判定、 つまり、 ユーザ設定の判定を行う。 このユーザ設定の判 定処理は、 ステップ S 9の処理と同様であるため、 その'説明は省略する。 ステップ S 2 1の判定の結果、 ュ一ザ設定が 「O N」 の場合には、 たとえ. ステップ S 7の判定結果が 「N O」 であっても、 言い換えれば、 たとえ次回 システム始動時にセル内凍結の虞がない場合であっても、 ユーザの意思に従 レ、、 ステップ S 1 1の処理を実施する。
一方、ユーザ設定が 「A U T O」 の場合には、 ステップ S , 7.の判定結果「N 0」 に従い、 また、 ユーザ設定が 「O F F」 の場合には、 ユーザの意思に従 レ、、 ステップ S 1 1の処理をスキップする。
以上説明したように、 本実施形態に係る燃料電池システム 1とその運転停 止方法によれば、 システム停止時に燃料電池 2 0への冷却水供給を停止する ことにより、 発電に伴い発熱した燃料電池 2 0の保有熱によって該燃料電池 2 0内の水分蒸発が促進されるので、 次回、 ステム起動時における燃料電池 2 0内の触媒層の凍結を抑制することができる。
また、 燃料電池 2 0への冷却水供給停止後、 所定時間経過後に燃料電池 2 0への冷却水供給を再開することにより、 すなわち、 ポンプ C 1等を間欠運 転することにより、 システム停止時及びシステム停止中の触媒層の酸化を抑 制することができる。以上のことから明らかなように、本実施形態によれば、 次回システム始動時における燃料電池 2 0の温度推定結果に応じて、 冷媒供 給の停止および再開 (冷媒制御) が制御されるので、 システム停止時におけ る冷媒制御の無駄を抑制することができる。
また、 例えばユーザが予定している又は予想した次回システム始動時の状 況 (例えば、 月, 日, 時刻, 日向, 日陰, 山間部, 平野部等) 等に応じて、 ステップ S 1 1の水分低減処理の要否を ーザが任意に選択することがで きるので、 制御部 5 0が水分低減処理を必要と判定した場合 (ステップ S 7 : 「Y E S」) であっても、 かかる処理を強制的に禁止することが可能であ る一方、 逆に制御部 5 0が水分低減処理を不要と判定した場合 (ステップ S 7:「N O」)であっても、かかる処理を強制的に実施することも可能であり、 使い勝手が向上する。 :
なお、 上記各実施形態は本発明を説明するための例示であり、 本発明をこ れに限定するものではない。 例えば、 毎朝ほぼ定刻に自動車通勤する等の比 較的短期的なものから月単位または年単位の中長期的なユーザの行動パタ —ンを学習し、 運転時または運転停止時に、 次に始動するタイミング (月、 日、 時刻等) を取得し、 当該タイミングと、 燃料電池の温度または該温度と 相関を有する温度とタイミングとが対応付けられた気候 (温度) マップとに 応じて、 次回システム始動時の温度を予測するようにしもてよい。 この気候 マップは、 燃料電池システム 1あるいは車両の外部から与えてもよいし、 学 習してよい。 ,- 産業上の利用可能性
本発明によれば、 次回システム始動時における燃料電池の温度推定結果に 応じて、 冷媒供給の停止および再開 (冷媒制御) が制御されるので、 システ ム停止時における冷媒制御の無駄を抑制することができる。 よって、 そのよ うな要求のある燃料電池システムとその運転停止方法に広く利用することが できる。

Claims

請求の範囲
1 . 内部に触媒層を有し反応ガスの供給を受けて発電する燃料電池と、 こ の燃料電池に冷媒を供給して該燃料電池の温度を制御する冷媒系と、 を備え た燃料電池システムであって、
前記冷媒.系は、 次回システム始動時における前記燃料電池の温度又は該燃 料電池の温度と相関を有する温度が所定温度以下であると推定される場合 には、 システム停止時に前記冷媒の供給を停止し、 所定時間経過後に該冷媒 の供給を再開する燃料電池システム。
2 . 請求項 1において、
前記システム停止時に、 前記燃料電池^ ^の反応ガス供給を遮断した状態で 当該燃料電池に発電をざせる燃料電池システム。 '. ,
3 . 請求項 1又は 2において、
前記冷媒系は、 前記燃料電池と該燃料電池に供給される冷媒との温度差が 所定値以下となるように、 前記燃料電池への冷媒供給を制御する燃料電池シ ステム。
4 . 請求項 3において、
前記冷媒系は、 前記燃料電池への冷媒供給を間欠的に行う燃料電池システ ム。
5 . 請求項 1から 4のいずれかにおいて、
前記燃料電池から排出される冷媒の温度に基づいて、 前記冷媒系の異常を 判定する異常判定部を備えた燃料電池システム。
6 . 内部に触媒層を有し反応ガスの供給を受けて発電する燃料電池と、 こ の燃料電池に冷媒を供給して該燃料電池の温度を制御する冷媒系と、 を備え た燃料電池システムの運転停止方法であって、
次回システム始動時における前記燃料電池の温度又は該燃料電池の温度 と相関を有する温度が所定温度以下であると推定される場合には、 システム 停止時に前記冷媒の供給を停止し、 所定時間経過後に該冷媒の供給を再開す る、 燃料電池システムの運転停止方法。
PCT/JP2006/324311 2005-12-13 2006-11-29 燃料電池システムとその運転停止方法 WO2007069503A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/085,387 US8067125B2 (en) 2005-12-13 2006-11-29 Fuel cell system and its operation stop method
CN2006800468602A CN101331635B (zh) 2005-12-13 2006-11-29 燃料电池系统及其运行停止方法
DE112006003301T DE112006003301B8 (de) 2005-12-13 2006-11-29 Brennstoffzellensystem und Verfahren zum Stoppen des Betriebs desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-358845 2005-12-13
JP2005358845A JP5002955B2 (ja) 2005-12-13 2005-12-13 燃料電池システムとその運転停止方法

Publications (1)

Publication Number Publication Date
WO2007069503A1 true WO2007069503A1 (ja) 2007-06-21

Family

ID=38162812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324311 WO2007069503A1 (ja) 2005-12-13 2006-11-29 燃料電池システムとその運転停止方法

Country Status (6)

Country Link
US (1) US8067125B2 (ja)
JP (1) JP5002955B2 (ja)
KR (1) KR100967217B1 (ja)
CN (1) CN101331635B (ja)
DE (1) DE112006003301B8 (ja)
WO (1) WO2007069503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104090A1 (en) * 2008-02-22 2009-08-27 Nissan Motor Co., Ltd. Fuel cell system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757230B2 (ja) * 2011-12-26 2015-07-29 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
KR101822245B1 (ko) * 2015-12-14 2018-01-26 현대자동차주식회사 연료전지 차량의 냉각수펌프 제어방법
JP6315715B2 (ja) * 2016-02-29 2018-04-25 本田技研工業株式会社 燃料電池システムの発電停止方法
KR101905951B1 (ko) * 2016-04-18 2018-10-08 현대자동차주식회사 연료전지차량의 시동 제어 방법
US10439238B2 (en) * 2016-07-15 2019-10-08 Ford Global Technologies, Llc Control of fuel cell cooling system in a vehicle
CN114068987B (zh) * 2021-11-17 2023-09-15 四川荣创新能动力系统有限公司 燃料电池低温判断方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352835A (ja) * 2001-05-28 2002-12-06 Nissan Motor Co Ltd 燃料電池冷却系の凍結防止装置
WO2003081704A2 (en) * 2002-03-27 2003-10-02 Nissan Motor Co., Ltd. Freeze protection fuel cell system
US20030232226A1 (en) * 2002-06-12 2003-12-18 Denso Corporation Fuel cell system
JP2004207093A (ja) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd 燃料電池システムおよびその運転方法
WO2004095617A1 (ja) * 2003-04-22 2004-11-04 Toyota Jidosha Kabushiki Kaisha 燃料電池を搭載した移動体
US20040229097A1 (en) * 2003-05-15 2004-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and associated operation method
JP2005310552A (ja) * 2004-04-21 2005-11-04 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999498B2 (ja) * 2001-11-13 2007-10-31 日産自動車株式会社 燃料電池システム及びその停止方法
JP2003297404A (ja) * 2002-04-03 2003-10-17 Nissan Motor Co Ltd 燃料電池システム
JP2004111060A (ja) 2002-09-13 2004-04-08 Nissan Motor Co Ltd 燃料電池システム
JP2005322527A (ja) 2004-05-10 2005-11-17 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352835A (ja) * 2001-05-28 2002-12-06 Nissan Motor Co Ltd 燃料電池冷却系の凍結防止装置
WO2003081704A2 (en) * 2002-03-27 2003-10-02 Nissan Motor Co., Ltd. Freeze protection fuel cell system
US20030232226A1 (en) * 2002-06-12 2003-12-18 Denso Corporation Fuel cell system
JP2004207093A (ja) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd 燃料電池システムおよびその運転方法
WO2004095617A1 (ja) * 2003-04-22 2004-11-04 Toyota Jidosha Kabushiki Kaisha 燃料電池を搭載した移動体
US20040229097A1 (en) * 2003-05-15 2004-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and associated operation method
JP2005310552A (ja) * 2004-04-21 2005-11-04 Honda Motor Co Ltd 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104090A1 (en) * 2008-02-22 2009-08-27 Nissan Motor Co., Ltd. Fuel cell system

Also Published As

Publication number Publication date
DE112006003301B4 (de) 2013-01-17
US20090286110A1 (en) 2009-11-19
CN101331635A (zh) 2008-12-24
US8067125B2 (en) 2011-11-29
DE112006003301T5 (de) 2008-10-23
JP2007165080A (ja) 2007-06-28
JP5002955B2 (ja) 2012-08-15
CN101331635B (zh) 2010-06-16
KR20080067381A (ko) 2008-07-18
DE112006003301B8 (de) 2013-05-02
KR100967217B1 (ko) 2010-07-05

Similar Documents

Publication Publication Date Title
JP5083587B2 (ja) 燃料電池システム及びその温度調整方法
EP1992035B1 (en) Fuel cell system with regeneration of electrode activity during start or stop
US20080145714A1 (en) Fuel Cell System and Related Method
CA2911892C (en) Fuel cell system, fuel cell vehicle, and control method for fuel cell system
US8394517B2 (en) Fuel cell system and control method of the system
WO2006109756A1 (ja) 燃料電池システム
JP5002955B2 (ja) 燃料電池システムとその運転停止方法
JP5013305B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
EP2012385B1 (en) Fuel cell system and vehicle mounted with fuel cell system
JP2005158553A (ja) 燃料電池システム
JP2007026843A (ja) 燃料電池自動車およびその制御方法
KR101851830B1 (ko) 연료 전지 시스템 및 그 제어 방법
JP2008130358A (ja) 燃料電池システム
JP2007184199A (ja) 燃料電池システム
JP5266626B2 (ja) 燃料電池システム
JP4742495B2 (ja) 燃料電池システム
JP2007149511A (ja) 燃料電池システム及びその起動方法
JP5170529B2 (ja) 燃料電池システム及びその制御方法
JP5138872B2 (ja) 燃料電池システム
JP2009151992A (ja) 燃料電池システム
JP5141893B2 (ja) 燃料電池システム
JP2005011577A (ja) 燃料電池システムにおける制御弁の状態判定方法
JP2007179784A (ja) 燃料電池システム及び燃料電池システムの停止方法
JP2010257865A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046860.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12085387

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087014168

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006003301

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003301

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834066

Country of ref document: EP

Kind code of ref document: A1