JP2010257865A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010257865A
JP2010257865A JP2009108882A JP2009108882A JP2010257865A JP 2010257865 A JP2010257865 A JP 2010257865A JP 2009108882 A JP2009108882 A JP 2009108882A JP 2009108882 A JP2009108882 A JP 2009108882A JP 2010257865 A JP2010257865 A JP 2010257865A
Authority
JP
Japan
Prior art keywords
fuel cell
flow path
cell system
gas flow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009108882A
Other languages
English (en)
Inventor
Hiroki Tanaka
浩己 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009108882A priority Critical patent/JP2010257865A/ja
Publication of JP2010257865A publication Critical patent/JP2010257865A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】氷点下であっても良好な始動性を確保することが可能な燃料電池システムを提供する。
【解決手段】燃料電池20に反応ガスを供給し、反応ガスの電気化学反応により発電する燃料電池システム1であって、燃料電池20内のガス流路に存在する流体に刺激を与える刺激付与部と、ガス流路内における過冷却水の有無を判定する判定部5と、を備え、システム始動時にガス流路内に過冷却水が存在すると判定された場合には、刺激付与部によって過冷却水に刺激を付与する。刺激付与部は、燃料電池20に冷媒を給排する冷媒給排部73,C1,C2,C13からなり、燃料電池20に冷媒を供給することによって、過冷却水に刺激を付与する。
【選択図】図1

Description

本発明は、燃料電池を備えた燃料電池システムに関する。
近年、反応ガス(燃料ガス及び酸化ガス)の電気化学反応によって発電する燃料電池をエネルギ源とする燃料電池システムが注目されている。この種の燃料電池システムには、燃料電池内の水分が凍結することを予測すると、ラジエータもしくは強制冷却器を用いて燃料電池を−10℃程度まで急速に冷却するものがある。
この燃料電池システムによれば、氷の成長がもっとも促進される最大氷結晶生成温度帯を短時間で通過させ得て、MEAを構成する触媒層やガス拡散層、電解質膜あるいはこれらの界面構造が氷の成長によって劣化、損傷することを抑制することができる(例えば、特許文献1参照)。
特開2006−147452号公報
ところで、燃料電池システムのガス流路内の水分は、たとえ氷点下になったとしても−10℃程度では、液体の状態である過冷却水として残留している可能性がある。このような場合にシステムを始動させると、流れ出した過冷却水がコモンレール等の狭隘な流路部分に達してそこで凍結し、ガスの流れを閉塞あるいは低下させて始動性の低下を引き起こすおそれがある。
本発明は、上記事情に鑑みてなされたもので、氷点下であっても良好な始動性を確保することが可能な燃料電池システムを提供することを目的としている。
上記目的を達成するために、本発明の燃料電池システムは、燃料電池に反応ガスを供給し、反応ガスの電気化学反応により発電する燃料電池システムであって、前記燃料電池内のガス流路に存在する流体に刺激を与える刺激付与部と、前記ガス流路内における過冷却水の有無を判定する判定部と、を備え、システム始動時に前記ガス流路内に過冷却水が存在すると判定された場合に、前記刺激付与部によって前記ガス流路に刺激が付与されるように構成されたものである。
かかる構成の燃料電池システムにおいては、ガス流路内に過冷却水が残留している場合には、ガス流路に刺激を与えて過冷却水を積極的に凍結させることになる。
これにより、システム始動時に燃料電池に供給された反応ガスによって過冷却水が流れ出して狭隘なガス流路において凍結してしまうといった不具合が解消されるので、氷点下始動時における反応ガスの通流を確保でき、始動性の悪化が抑制される。
本発明の燃料電池システムにおいて、前記刺激付与部は、前記燃料電池に冷媒を給排する冷媒給排部からなり、前記燃料電池に冷媒が供給されることによって、前記ガス流路内の過冷却水が冷却されて当該過冷却水に刺激が付与される構成であっても良い。
かかる構成の燃料電池システムにおいては、ガス流路内に過冷却水が残留している場合には、燃料電池に冷媒を供給することにより、燃料電池内のガス流路に存在する過冷却水に対して冷却という刺激を与えて当該過冷却水を積極的に凍結させることになる。
なお、前記刺激付与部は、ガス流路に振動を加えることによって過冷却水に刺激を付与するものでも良い。
また、本発明の燃料電池システムにおいて、前記判定部は、システム停止後の前記ガス流路内の氷点下での温度変化に不連続部分を検出した際に、前記ガス流路内に存在する過冷却水が凍結したと判定するものであっても良い。
ここで、前記不連続部分は、単位時間あたりの温度変化がそれまでと比較して小さくなる部分でも良いし、一時的に温度が上昇する部分あるいは一時的に温度変化が生じない部分であっても良い。
本発明の燃料電池システムによれば、氷点下であっても良好な始動性を確保することができる。
本発明の実施形態に係る燃料電池システムの概略構成図である。 制御部による燃料電池システムの制御を説明するフローチャートである。 燃料電池のガス流路内の温度変化を示す図であって、(a)は過冷却水が存在しない場合の温度変化を示すグラフ図であり、(b)は過冷却水が存在する場合の温度変化を示すグラフ図である。
まず、燃料電池システム1の全体構成を説明する。この燃料電池システム1は燃料電池車両の車載発電システムであるが、車載用の燃料電池システム以外にも、船舶,航空機,電車、歩行ロボット等のあらゆる移動体用の燃料電池システムや、例えば燃料電池が建物(住宅、ビル等)用の発電設備として用いられる定置用の燃料電池システムへの適用も可能である。
図1に示すように、酸化ガス(反応ガス)としての空気は、空気供給路71を介して燃料電池20の空気供給口に供給される。空気供給路71には、空気から微粒子を除去するエアフィルタA1、空気を加圧するコンプレッサA3、供給空気圧を検出する圧力センサP4、及び空気に所要の水分を加える加湿装置A21が設けられている。コンプレッサA3は、モータMによって駆動される。このモータMは、制御部50によって駆動制御される。
燃料電池20から排出される空気オフガスは、排気路72を経て外部に放出される。排気路72には、排気圧を検出する圧力センサP1、及び圧力調整弁A4が設けられている。圧力センサP1は、燃料電池20の空気排気口近傍に設けられている。圧力調整弁A4は、燃料電池20への供給空気圧を設定する調圧器として機能する。
圧力センサP4,P1の検出信号は、制御部50に送られる。制御部50は、コンプレッサA3のモータ回転数及び圧力調整弁A4の開度面積を調整することによって、燃料電池20への供給空気圧や供給空気流量を設定する。
燃料ガス(反応ガス)としての水素ガスは、水素供給源30から燃料供給路74を介して燃料電池20の水素供給口に供給される。燃料供給路74には、水素供給源30から水素を供給しあるいは供給を停止する遮断弁H100、水素供給源30からの水素ガスの供給圧力を検出する圧力センサP6、燃料電池20への水素ガスの供給圧力を減圧して調整する水素調圧弁H9、水素調圧弁H9の下流の水素ガス圧力を検出する圧力センサP9、燃料電池20の水素供給口と燃料供給路74間を開閉する遮断弁H21、及び水素ガスの燃料電池20の入口圧力を検出する圧力センサP5が設けられている。圧力センサP5,P6,P9の検出信号も制御部50に供給される。
燃料電池20で消費されなかった水素ガスは、水素オフガスとして水素循環路75に排出され、燃料供給路74の水素調圧弁H9の下流側に戻される。水素循環路75には、水素オフガスの温度を検出する温度センサT31、燃料電池20と水素循環路75を連通/遮断する遮断弁H22、水素オフガスから水分を回収する気液分離器H42、回収した生成水を水素循環路75外の図示しないタンク等に回収する排水弁H41、及び水素オフガスを加圧する水素ポンプH50が設けられている。
遮断弁H21,H22は、燃料電池20のアノード側を閉鎖する。温度センサT31の図示しない検出信号は、制御部50に供給される。水素ポンプH50は、制御部50によって動作が制御される。
水素オフガスは、燃料供給路74で水素ガスと合流し、燃料電池20に供給されて再利用される。遮断弁H100,H21,H22は、制御部50からの信号で駆動される。
水素循環路75は、排出制御弁H51を介して、パージ流路76によって排気路72に接続されている。排出制御弁H51は、電磁式の遮断弁であり、制御部50からの指令によって作動することにより、水素オフガスを外部に排出(パージ)する。このパージ動作を間欠的に行うことによって、水素オフガスの循環が繰り返されて燃料極側の水素ガスの不純物濃度が増すことによるセル電圧の低下を防止することができる。
燃料電池20内に形成されている冷却水流路の冷却水出入口には、冷却水(冷媒)を循環させる冷却路73が接続されている。冷却路73には、燃料電池20から排水される冷却水の温度を検出する温度センサT1、冷却水の保有熱を外部に放熱するラジエータ(熱交換器)C2、冷却水を加圧して循環させるポンプC1、及び燃料電池20に供給される冷却水の温度を検出する温度センサT2が設けられている。ラジエータC2には、モータによって回転駆動される冷却ファンC13が設けられている。
本発明の刺激付与部および冷媒給排部は、本実施形態においては、これら冷却路73、温度センサT1,T2、ポンプC1、ラジエータC2、及び冷却ファンC13を備えた構成とされている。
燃料電池20は、燃料ガスと酸化ガスの供給を受けてそれらガスの電気化学反応により発電する単セルを所要数積層してなる燃料電池スタックとして構成されている。
この燃料電池20には、単セルの積層方向の中央位置に、燃料電池20のガス流路内温度を測定する温度センサT3が設けられている。なお、温度センサT3で測温される燃料電池スタックの積層方向中央部(以下、測温部ということがある。)は、外気温低下時における温度低下の度合いが積層方向両端部よりも小さい部分である。
燃料電池20が発生した電力は、図示しないパワーコントロールユニットに供給される。パワーコントロールユニットは、車両の駆動モータを駆動するインバータと、コンプレッサモータや水素ポンプ用モータなどの各種の補機類を駆動するインバータと、二次電池等の蓄電手段への充電や該蓄電手段からのモータ類への電力供給を行うDC−DCコンバータなどが備えられている。
制御部50は、図示しない車両のアクセル信号などの要求負荷や燃料電池システム1の各部のセンサ(圧力センサ、温度センサ、流量センサ、出力電流計、出力電圧計等)から制御情報を受け取り、システム各部の弁類やモータ類の運転を制御する。
制御部50には、図示しない記憶部が設けられており、システム停止後からの燃料電池20のガス流路内温度を検出する温度センサT3から送信された温度変化データが記憶される。この記憶部には、燃料電池システム1の前回の停止状況が記憶される。例えば、燃料ガスのガス流路内をパージする掃気運転あるいは含水量を減少させる含水量制御運転を行ったか否かが記憶される。
ここで、制御部50は、記憶部に記憶されている前回のシステムの停止状況に基づいて、燃料電池20内の燃料ガスのガス流路内に水が残留している状態か否かを推定する。例えば、前回のシステム停止時に、掃気運転あるいは含水量制御運転が行われていた場合は、燃料電池20内のガス流路内に水が残留していないと推定し、前回のシステム停止時に、掃気運転あるいは含水量制御が行われていない場合は、燃料電池20内のガス流路に水が残留していると推定する。
次に、燃料電池20内のガス流路内に水が残留していると推定された場合における制御部50による燃料電池システム1の始動制御について、図2及び図3を参照しながら説明する。
図2は、制御部5による燃料電池システム1の始動制御の内容を示すフローチャートである。
イグニッションスイッチがONされてシステムが起動されると、制御部5は、温度センサT3の検出結果に基づいて、燃料電池20内のガス流路内温度が0℃以下の氷点下となっているか否かを判定する(ステップS01)。
この判定の結果、燃料電池20のガス流路内温度が氷点下でなければ(ステップS01で「NO」)、制御部5は、通常の始動条件にて燃料電池システム1を始動させる(ステップS02)。つまり、ガス流路内温度が氷点下でなければ、ガス流路内の水分が凍結していることもなく、また、過冷却水として存在することもない。よって、この場合は、通常の運転条件で始動する。
一方、上記判定の結果、燃料電池20のガス流路内温度が氷点下であれば(ステップS01で「YES」)、制御部5は、さらに温度センサT3の検出結果に基づいて、燃料電池20の内部温度が−15℃よりも高いか否かを判定する(ステップS03)。この判定の結果、ガス流路内温度が−15℃以下であれば(ステップS03で「NO」)、制御部5は、氷点下始動用の運転条件で燃料電池システム1を始動させる(ステップS07)。
つまり、ガス流路内温度が−15℃以下であれば、ガス流路内の水分が過冷却水として存在することなく完全に凍結していると判定し、例えば燃料電池20の発電効率を低下させる代わりに熱変換率を増大させ、より多くの熱を発生させて燃料電池20の温度を上昇させながら始動させる氷点下始動時用の運転を行う。なお、本実施形態では、過冷却水の有無の判定閾値を「−15℃」に設定したが、この閾値は適宜の値に設定することが可能である。
一方、上記判定の結果、燃料電池20のガス流路内温度が−15℃よりも高ければ(ステップS03で「YES」)、制御部5は、ガス流路中の水分が過冷却水として存在しているか否か、言い換えれば、ガス流路中の過冷却水が凍結しているか否かを判定する(ステップS04)。つまり、このような氷点下において−15℃よりも高い温度状態では、水分が凍結せずに過冷却水として液体の状態で存在する可能性があるからである。
そこで、制御部5は、記憶部に記憶されている前回の運転停止後の温度変化データに基づいて、過冷却水の有無を判定する。
図3は、運転停止後に温度センサT3で継続的に測温された、燃料電池20の積層方向中央部におけるガス流路内の温度変化データを示すグラフ図である。
図3(a)に示すように、システム停止(IG−off)後、連続して低下していた燃料電池20のガス流路内温度が氷点下となり、ガス流路内の水が凍結すると、この凍結時にて温度変化に不連続部分Xが生じる。具体的には、温度低下の度合い(単位時間あたりの温度低下率)が、過冷却水が凍結した際に発生する凝固熱によって一時的に小さくなることによって不連続部分Xが生じる。そして、過冷却水の凍結が完了した後は、再び連続的に温度が低下する。
したがって、制御部5は、燃料電池20の測温部におけるガス流路内の温度変化中に、不連続部分Xが存在している場合には、ガス流路内の水は完全に凍結していて既に過冷却水としては存在していないと判定する(ステップS04で「NO」)。なお、不連続部分Xの有無は、例えば温度が一時的に上昇する部分や、一時的に温度変化が生じなくなる部分の存否により判断することが可能である。
これに対して、図3(b)に示すように、システム停止(IG−off)後、連続して低下していた燃料電池20のガス流路内温度が氷点下以降も連続して低下している場合、つまり、温度変化に不連続部分Xが存在しない場合には、ガス流路中の水は凍結することなく過冷却水として液体の状態で存在している可能性が高い。
したがって、制御部5は、燃料電池20の測温部における温度変化中に連続部分Xが存在しない場合は、ガス流路内の水が過冷却水として液体の状態で存在している、言い換えれば、ガス流路内の過冷却水が凍結していないと判定する(ステップS04で「YES」)。すなわち、本実施形態の制御部5は、本発明の判定部に相当する。
上記の過冷却水の有無判定(ステップS04)の結果、過冷却水が存在しない(過冷却水が凍結している)と判定した場合(ステップS04で「NO」)は、上記ステップS03の判定の結果が「NO」の場合と同様に、氷点下始動時用の運転を行う(ステップS07)。
これに対し、上記の過冷却水の有無判定(ステップS04)の結果、過冷却水が存在する(過冷却水が凍結していない)と判定した場合(ステップS04で「YES」)は、冷却水循環用のポンプC1を作動させ(ステップS05)、外気温で低温化している冷却水を例えば燃料電池20内の冷却水流路と冷却路73とからなる冷却水の循環総流路長の1周分に相当する分だけ循環させる(ステップS06)。
このようにすると、燃料電池20内のガス流路が循環冷却水によって冷却されて刺激を受けるので、燃料電池20内のガス流路に液体状態で存在している過冷却水は、その場あるいはその場付近で凍結する。なお、冷却水の循環量を上記循環総流路長の1周分相当量に抑えて設定しているので、燃料電池20を過剰に冷却することによって始動に支障を来すようなことにはならない。
そして、制御部5は、冷却水を1周分循環させた後、氷点下始動時用の運転を行う(ステップS07)。このとき、燃料電池20内のガス流路内に存在していた過冷却水は既に凍結させられているため、過冷却水が狭隘なガス流路へ流れ込んで凍結してガス流路を閉塞させてしまうような不具合を生じることはない。したがって、氷点下においても、燃料電池20内への燃料ガス及び酸化ガスの通流を確保することが可能になり、確実な氷点下始動を行うことができる。
以上、説明したように、上記実施形態にかかる燃料電池システム1によれば、燃料電池20内のガス流路内に過冷却水が残留している場合には、ガス流路を積極的に冷却して過冷却水を凍結させるようにしているので、始動時に燃料電池2に供給される燃料ガスや酸化ガスによって過冷却水が狭隘なガス流路に達して凍結してしまうといった不具合の発生が抑制される。したがって、氷点下始動時における反応ガスの通流を確保し、より確実な氷点下始動を実現することができる。
また、図2のステップS04の判定を行なうことなく、測温部の温度のみをもって過冷却水の有無を判定することも可能ではあるが、始動時における測温部の温度のみでは、元々ガス流路内に水が残存していない場合も過冷却水が存在しているものと誤判定してしまう場合があり、かかる場合には、燃料電池20に冷却水を循環させる必要がないにもかかわらず、図2のステップS05,S06を実施してしまう。
そうすると、氷点下始動時に燃料電池20を不必要に冷却することになり、氷点下始動時における始動性の悪化を招いてしまう。
しかしながら、本実施形態では、図2のステップS04の判定を行ない、ガス流路内に過冷却水が存在していると判定した場合にのみ冷却水を循環させているので、始動時に燃料電池20を不必要に冷却することがなく、氷点下始動時における始動性の悪化が効果的に抑制されている。
なお、上記実施形態では、燃料電池20のガス流路内での過冷却水の有無による起動制御を説明したが、水素ポンプH50などの各種補機や気液分離器H42、排水弁H41などの各種弁等における狭隘なガス流路での凍結を抑制する場合にも、本発明を適用することができる。
1…燃料電池システム、5…制御部(判定部)、20…燃料電池、73…冷却路(刺激付与部、冷媒給排部)、C1…ポンプ(刺激付与部、冷媒給排部)、C2…ラジエータ(刺激付与部、冷媒給排部)、C13…冷却ファン(刺激付与部、冷媒給排部)、X…不連続部分。

Claims (6)

  1. 燃料電池に反応ガスを供給し、反応ガスの電気化学反応により発電する燃料電池システムであって、
    前記燃料電池内のガス流路に存在する流体に刺激を与える刺激付与部と、
    前記ガス流路内における過冷却水の有無を判定する判定部と、を備え、
    システム始動時に前記ガス流路内に過冷却水が存在すると判定された場合に、前記刺激付与部によって前記過冷却水に刺激が付与される燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記刺激付与部は、前記燃料電池に冷媒を給排する冷媒給排部からなり、
    前記燃料電池に冷媒が供給されることによって、前記ガス流路内の過冷却水が冷却されて当該過冷却水に刺激が付与される燃料電池システム。
  3. 請求項1又は2に記載の燃料電池システムであって、
    前記判定部は、システム停止後の前記ガス流路内の氷点下での温度変化に不連続部分を検出した際に、前記ガス流路内に存在する過冷却水が凍結したと判定する燃料電池システム。
  4. 請求項3に記載の燃料電池システムであって、
    前記不連続部分は、単位時間あたりの温度変化がそれまでと比較して小さくなる部分である燃料電池システム。
  5. 請求項3に記載の燃料電池システムであって、
    前記不連続部分は、一時的に温度が上昇する部分である燃料電池システム。
  6. 請求項3に記載の燃料電池システムであって、
    前記不連続部分は、一時的に温度変化が生じない部分である燃料電池システム。
JP2009108882A 2009-04-28 2009-04-28 燃料電池システム Pending JP2010257865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108882A JP2010257865A (ja) 2009-04-28 2009-04-28 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108882A JP2010257865A (ja) 2009-04-28 2009-04-28 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2010257865A true JP2010257865A (ja) 2010-11-11

Family

ID=43318549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108882A Pending JP2010257865A (ja) 2009-04-28 2009-04-28 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2010257865A (ja)

Similar Documents

Publication Publication Date Title
US9190679B2 (en) Fuel cell system
US6893758B2 (en) Fuel cell system and method of stopping the system
JP4831417B2 (ja) 燃料電池システム
US9786935B2 (en) Fuel cell system and fuel cell system control method
JP5038646B2 (ja) 燃料電池自動車
JP2004185968A (ja) 燃料電池システム
JP2005267961A (ja) 制御装置
KR101082080B1 (ko) 연료 전지 시스템 및 연료 전지 시스템이 탑재된 차량
US20100035095A1 (en) Fuel cell system
JP5002955B2 (ja) 燃料電池システムとその運転停止方法
JP2007305334A (ja) 燃料電池システム
JP2005158553A (ja) 燃料電池システム
JP2007042566A (ja) 燃料電池システムとその起動方法
JP2008123930A (ja) 燃料電池システム
JP6972920B2 (ja) 燃料電池システム
JP2006278209A (ja) 燃料電池システム
JP2010257865A (ja) 燃料電池システム
JP2005327501A (ja) 燃料電池システム
JP2009016282A (ja) 燃料電池システム
JP2010262937A (ja) 燃料電池システム
JP4814508B2 (ja) 燃料電池システム
WO2010090091A1 (ja) 燃料電池システム
JP2007179784A (ja) 燃料電池システム及び燃料電池システムの停止方法
JP2008277075A (ja) 燃料電池システム
JP2009170220A (ja) 燃料電池搭載車両