WO2004095617A1 - 燃料電池を搭載した移動体 - Google Patents

燃料電池を搭載した移動体 Download PDF

Info

Publication number
WO2004095617A1
WO2004095617A1 PCT/JP2004/004934 JP2004004934W WO2004095617A1 WO 2004095617 A1 WO2004095617 A1 WO 2004095617A1 JP 2004004934 W JP2004004934 W JP 2004004934W WO 2004095617 A1 WO2004095617 A1 WO 2004095617A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
moving body
state
power
Prior art date
Application number
PCT/JP2004/004934
Other languages
English (en)
French (fr)
Inventor
Shuji Hirakata
Kenji Umayahara
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112004000689T priority Critical patent/DE112004000689B4/de
Publication of WO2004095617A1 publication Critical patent/WO2004095617A1/ja
Priority to US11/253,608 priority patent/US7438146B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a technology for keeping a fuel cell system warm in a fuel cell system in which an intermittent operation is performed.
  • a fuel cell system electric power is generated by a chemical reaction between hydrogen and oxygen, so that water is generated during power generation. Water remaining in the fuel cell system freezes when the operation of the fuel cell system is stopped and the temperature of the fuel cell system falls below the freezing temperature of water. As a result, the hydrogen supply path and the air supply path are blocked. The fuel cell may be blocked, and the electrolyte membrane of the fuel cell may freeze.
  • the fuel cell system operates intermittently.
  • the mobile unit performs a heat retention operation to maintain the temperature of the fuel cell system at a temperature higher than the freezing temperature of water.
  • the present invention has been made to solve the above-described problems, and has as its object to surely prevent the movement of a moving body during a warm operation of a fuel cell system.
  • a moving object is a fuel cell including the fuel cell A system, a moveability determining means for determining whether or not the moving body is in a state in which the moving body cannot move, and a state in which the fuel cell system is stopped and the moving body cannot be moved by the movement possibility determining means. And determining that the fuel cell system is maintained at a temperature equal to or higher than a predetermined temperature.
  • the fuel cell system when the fuel cell system is stopped and the moving possibility determining means determines that the moving object cannot be moved, the fuel cell system is activated. Since the fuel cell is operated to maintain the temperature at or above the predetermined temperature, it is possible to more appropriately prevent the movement of the moving body during the warm-up operation of the fuel cell system.
  • the moving body according to the first aspect of the present invention may further include a notifying means for notifying when the moving possibility determining means determines that the moving body is in a movable state when the fuel cell system is stopped. good. In such a case, it is possible to urge the user to place the moving object in a state where the moving object cannot be moved, thereby reducing the opportunity for the fuel cell system to be kept warm due to the state in which the moving object can be moved. It can be reduced or prevented.
  • the moving body is a power cutoff device that mechanically cuts off transmission of power to driving wheels, and the power generated by the fuel cell is transmitted to the driving wheels.
  • An electric motor that converts the electric power into electric power
  • an interruption circuit that electrically interrupts the supply of electric power to the electric motor
  • a parking brake wherein the movement availability determination unit is configured such that the transmission of the power is mechanically interrupted by the power interruption device.
  • the mobile object cannot move if the power supply is electrically interrupted by the shut-off circuit, or if the parking brake is on. May be determined.
  • the transmission of power from the motor to the drive wheels is mechanically interrupted, the movement of the moving body can be prevented even if the motor operates.
  • the power supply to the motor is electrically cut off. In such a case, the electric motor that generates power for the drive wheels does not operate, so that even if electric power is generated by the fuel cell, the moving body can be prevented from moving.
  • the heat retention operation control means includes a detection means for detecting a measurement value associated with an internal temperature of the fuel cell, and the measurement detected by the detection means
  • the internal temperature of the fuel cell may be maintained in a predetermined temperature range using the value.
  • the fuel cell system since the fuel cell is most affected by the freezing of water, by maintaining the temperature of the fuel cell in a predetermined temperature range, it is possible to execute a more appropriate heat retaining operation.
  • a second aspect of the present invention provides a method for controlling heat retention of a fuel cell system in a mobile body equipped with a fuel cell system including a fuel cell.
  • the heat retention control method includes: determining whether the moving body is in a state where it cannot move; determining whether the fuel cell system is in a stopped state; When the system is in a stopped state and it is determined that the moving body is in a state where it cannot move, the operating state of the fuel cell is controlled to maintain the fuel cell system at a predetermined temperature or higher. Prepare.
  • the heat retention control method according to the second aspect of the present invention it is possible to obtain the same operational effects as those of the moving object according to the first aspect of the present invention. Further, the heat retention control method according to the second aspect of the present invention can be realized in various aspects in the same manner as the moving object according to the first aspect of the present invention.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a moving body equipped with the fuel cell system according to the present embodiment.
  • FIG. 2 is a flowchart showing a processing routine of a heat retaining operation control process of the fuel cell system executed in the vehicle according to the present embodiment.
  • FIG. 3 is a diagram illustrating the warming operation control showing the relationship between the warming operation and the temperature of the fuel cell.
  • FIG. 1 is a schematic diagram showing a preferred embodiment of the present invention.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a moving object equipped with the fuel cell system according to the embodiment.
  • the fuel cell vehicle 10 is driven by a fuel cell system 20 as a power supply system, a driving motor (electric motor) 30 that converts electric power obtained from the fuel cell system into driving force and outputs the driving force, and a driving motor 30. And a control unit 50 for controlling the operation of the vehicle 10 and the vehicle 10. '
  • the fuel cell system 20 consumes hydrogen gas (hydrogen-containing gas) as fuel and generates electric power, the fuel cell 21 generates heat, the heat exchanger 22 cools the fuel cell 21 during operation, and the fuel cell.
  • a high-pressure hydrogen cylinder 23 for storing hydrogen to be supplied to the fuel cell 21 and an air pump 24 for supplying air to the fuel cell 21 are provided.
  • a secondary battery capable of storing and discharging may be provided.
  • the fuel cell 21 and the high-pressure hydrogen cylinder 23 are connected by a hydrogen supply pipe 231, and the hydrogen supply pipe 23 1 reduces the hydrogen pressure to the supply pressure to the fuel cell 21. 2 3 2 are arranged.
  • the fuel cell 21 and the air pump 24 are connected via an air supply pipe 241. Further, the air supplied to the fuel cell 21 is exhausted to the atmosphere via the exhaust pipe 242.
  • the heat exchanger 22 is provided in the fuel cell 21 to cool the fuel cell 21, and a coolant circulates inside the heat exchanger 22.
  • the coolant temperature is detected in the coolant external circulation pipe 221 at one or both of the coolant inlet and the coolant outlet of the heat exchanger 22 Coolant temperature sensors 51 and 52 are provided.
  • the drive motor 30 is, for example, a three-phase synchronous motor.
  • the drive motor 30 has a plurality of permanent magnets on its outer peripheral surface, and a three-phase coil for forming a rotating magnetic field. Prepare for one night.
  • the operation of the drive motor 30 is controlled by the inverter 31 which has received a control signal from the control unit 50.
  • Invar overnight 31 and the fuel cell 21 are connected by a power supply line 311.
  • the fuel cell 21 and the drive motor 30 are electrically connected.
  • a power supply relay for shutting off (disconnecting) is located.
  • the rotor of the driving motor 30 is connected to the wheels 40 via a gear mechanism 35 including a clutch mechanism 35 1.
  • the gear mechanism 35 is electrically or mechanically connected to a shift selector 36 for selecting a gear position (shift position SP).
  • shift position SP gear position SP
  • P parking
  • N neutral
  • the driving motor 30 rotates by the interaction between the magnetic field generated by the permanent magnets provided in the rotor and the magnetic field formed by the three-phase coil in the stay, and outputs necessary driving force to the wheels 40.
  • a vehicle speed deceleration request (braking request) occurs
  • the rotor is driven by an external force, and the driving motor 30 generates an electromotive force at both ends of the three-phase coil by the interaction of these magnetic fields. It can function as a brake.
  • the vehicle 10 also includes a parking brake 42 that prevents the vehicle 10 from moving by setting the brake 41 to a braking state when the vehicle is parked, and a switch for starting and stopping the vehicle 10 (identification). Switch) 43, speedometer ⁇ warning light 4 41 1 etc. Instrument panel 44 is provided.
  • the control unit 50 includes a central processing unit (CPU), a storage device (RAM, ROM) and the like (not shown), and controls the operation of the vehicle 10 according to the driving state of the vehicle 10.
  • the control unit 50 implements a moveability determination unit and a warming operation control unit.
  • the control unit 50 includes a shift position signal indicating the shift position SP selected by the shift selector 36, an ON / OFF signal of the parking brake indicating the state of the parking brake 42, and an idle position in the switch 43. And the detected temperature signals from the coolant temperature sensors 51 and 52 are input via signal lines.
  • the control unit 50 sends a control signal for controlling the drive motor to the inverter 31 and also shuts off and connects the power relay 3 12 and the warning light 4 41 to the alarm signal. Send out each signal.
  • FIG. 2 is a flowchart showing a processing routine of the heat-retention operation control processing of the fuel cell system executed in the vehicle 10 according to the present embodiment.
  • FIG. 3 is an explanatory diagram for explaining the warming operation control showing the relationship between the warming operation and the temperature of the fuel cell (F C) 21.
  • the control unit 50 determines whether a request to stop the fuel cell system 20 has been issued (step S100). Specifically, the determination is made based on whether or not the user (driver) has turned off the switch 43.
  • the thermal insulation operation control of the fuel cell system 20 is intended to keep the temperature of the fuel cell system 20, especially the fuel cell 21, at or above the freezing temperature of water when the operation of the fuel cell system 20 is stopped. A request to stop the battery system 20 is used as a trigger to start processing.
  • step S100 determines that the switch 43 has been turned off, that is, determines that a request to stop the operation of the fuel cell system 20 has occurred (step S100: Yes)
  • the fuel cell The operation of the system 20 is stopped, and the power supply relay 3 12 is turned off (step S 110) to cut off the electrical connection between the fuel cell 21 and the drive motor 30.
  • the electric power generated during the heat retention operation control is supplied to the drive motor 30. This is to avoid a situation in which the drive motor 30 is supplied to the drive motor. Note that, even after the switch 43 is turned off, the control unit 50 is in an operating state, and the fuel cell system 20 can be started and stopped as appropriate.
  • control unit 50 determines that the switch 43 is not turned off, that is, when it determines that the operation stop request of the fuel cell system 20 has not been generated (step S100: No), this processing routine ends. That is, the thermal insulation operation control of the fuel cell system 20 is not executed.
  • the control unit 50 determines whether or not it has received a shift position signal indicating that the shift position SP is P or N from the shift selector 36 (step S120). That is, it is determined whether or not the connection between the driving motor 30 and the wheels 40 is mechanically cut off (cut).
  • step S120: Yes the parking brake signal PB is turned on to determine whether or not the parking brake is applied. It is determined whether or not it has been performed (step S130). That is, it is determined whether or not the brake 41 is put in the braking state by the parking brake 42 and the movement of the vehicle 10 (wheel 40) is stopped.
  • step S130 Yes
  • 2 ° C is used as the determination temperature because the coolant temperature sensors 51 and 52 determine the temperature of the fuel cell system 20, especially the temperature of the fuel cell 21, This is because temperature variations were considered.
  • the determination temperature is, for example, 0 ° C when a temperature sensor for directly detecting the internal temperature of the fuel cell 21 is provided for the fuel cell 21. Any temperature of about 0 to 5 ° C. may be used. In any case, it is sufficient that the temperature of any part of the fuel cell 21 does not become lower than 0 degrees.
  • step S140 When the control unit 50 determines that the detected coolant temperature Tfc is equal to or lower than 2 ° C (step S140: Yes), the control unit 50 starts the warming operation process (S150). ), End this processing routine.
  • the heat retention operation process of the fuel cell system 20 will be briefly described with reference to FIG.
  • the heat retention operation processing is executed so as to maintain the temperature of the fuel cell system 20, more specifically, the temperature of the fuel cell 21 in a predetermined temperature range.
  • the control unit 50 starts the warming operation (ON), that is, starts the fuel cell system 20, Power generation by fuel cell 21 is started.
  • the fuel cell 21 starts power generation, the fuel cell 21 generates heat due to an electromotive reaction accompanying the power generation.
  • the temperature of the fuel cell system 20 rises, and freezing of water in the fuel cell system 20 (fuel cell 21) can be prevented.
  • the temperature of the fuel cell system 20 may be at least o ° c. However, when the temperature reaches an upper limit temperature of, for example, 10 ° C., the operation of the fuel cell system 20 is stopped. Thereafter, the start and stop of the fuel cell system 20 are repeatedly executed with the temperature of the fuel cell system 20 as a parameter.
  • the electric power generated during the heat-retaining operation is consumed as electric power for driving auxiliary equipment such as the air pump 24, or when an electric heater for heating the fuel cell system 20 is provided. May be used to heat (keep heat) the fuel cell system 20 by electric power.
  • the control unit 50 determines whether or not a predetermined time has elapsed from the start of the notification (step S170), and if it determines that the predetermined time has not elapsed (step S170) : No), the processing shifts to step S120. On the other hand, if the control unit 50 determines that the predetermined time has elapsed (step S170: Yes), it ends this processing routine. That is, the heat retention operation processing of the fuel cell system 20 is not executed.
  • the connection between the driving motor 30 and the wheels 40 is controlled. Only when the fuel cell 21 is mechanically cut off and the connection between the fuel cell 21 and the drive motor 30 is electrically cut off, the warming operation process of the fuel cell system 20 is started. Therefore, even if power is generated by the fuel cell 21 during the warm-up operation processing, the vehicle 10 cannot electrically (mechanically) move (run), and the vehicle 10 is reliably prevented from moving during the warm-up operation processing. be able to.
  • the user is prompted to change the shift position SP to the P or N position and to operate the parking brake 42. Is changed from a movable state to a non-movable state at a higher ratio, and the opportunity of executing the warming operation process of the fuel cell system 20 can be increased. As a result, freezing of the fuel cell system 20 can be more appropriately prevented.
  • the selected shift position SP, parking brake 4 2 Although it is determined whether or not the vehicle 1o is in a movable state based on both of the operation states, it is also possible to determine only one of them. Further, the method may include a step of checking whether or not the power supply relay 312 is turned off.
  • the temperature of the fuel cell 21 is detected by the coolant temperature sensors 51 and 52.
  • a temperature sensor may be directly disposed on the fuel cell 21.
  • a plurality of temperature sensors for detecting the temperature of the fuel cell 21 may be provided, and when any one of the temperature sensors becomes equal to or lower than the determination temperature, the heat retaining operation process may be started. In such a case, the freezing of the fuel cell system 20 can be prevented more appropriately.
  • the temperature of the fuel cell 21 may be associated with the temperature of the fuel cell 21 in advance, so that an outside air temperature, a surface temperature, or the like may be used.
  • the hydrogen charged in the high-pressure hydrogen tank 23 was used as the fuel for the fuel cell 21.
  • a hydrogen-containing gas (reformed gas) obtained by a reformer may be used.
  • the apparatus and method according to the above-described embodiments can be realized as a recording medium (electric, magnetic, optical recording medium) recording a computer program or a combination program.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 制御ユニット50は、燃料電池システム20の運転停止要求が発生しすると、燃料電池システム20の運転を停止し、電源リレー312をオフして燃料電池21と駆動用モータ30との電気的な接続を遮断する。制御ユニット50は、シフトセレクタ36からシフトポジションSPがPまたはNであることを示すシフトポジション信号を受け取り、また、パーキングブレーキ42が引かれている場合には、冷却液温度センサ51、52によって検出された冷却液温度Tfcが2℃以下であるか否かを判定する。制御ユニット50は、検出された冷却液温度Tfcが2℃以下であると判定した場合には保温運転処理を開始する。

Description

明細書
燃料電池を搭載した移動体
技術分野
本発明は、 間欠運転が実行される燃料電池システムにおける燃料電池システム の保温技術に関する。 背景技術
燃料電池システムでは、 水素と酸素との化学反応により電力が発電されるため 、 発電時には水が生成される。 燃料電池システム中に残留している水分は、 燃料 電池システムの運転が停止され、 燃料電池システムの温度が水の凍結温度を下回 ると凍結し、 この結果、 水素供給路、 空気供給路が閉塞され、 さらには燃料電池 の電解膜が凍結してしまうおそれがある。
ここで、 燃料電池システムを搭載する車両を始めとする移動体では、 燃料電池 システムは間欠的に運転されるため、 燃料電池システムの運転停止時には、 燃料 電池システムの温度が水の凍結温度以下になるおそれがある。 そこで、 移動体で は、 燃料電池システムの運転停止時に、 燃料電池システムの温度を水の凍結温度 より高い温度に維持するために保温運転が実行される。
しかしながら、 たとえ保温運転中であっても燃料電池は発電しているため、 移 動体の駆動力を出力する電動機に対して電力を供給可能な状態にあり、 移動体が 動き出す可能性がある。 発明の開示
本発明は、 上記課題を解決するためになされたものであり、 燃料電池システム の保温運転時における移動体の移動を確実に防止することを目的とする。
上記課題を解決するために本発明の第 1の態様は、 燃料電池を搭載した移動体 を提供する。 本発明の第 1の態様に係る移動体は、 前記燃料電池を含む燃料電池 システムと、 前記移動体が移動できない状態にあるか否かを判定する移動可否判 定手段と、 前記燃料電池システム停止時であって、 前記移動可否判定手段によつ て移動体が移動できない状態にあると判定された場合には、 前記燃料電池システ ムが所定温度以上に維持されるように前記燃料電池の作動状態を制御する保温運 転制御手段とを備えることを特徴とする。
本実施例に係る第 1の態様に係る移動体によれば、 燃料電池システム停止時で あって、 移動可否判定手段によって移動体が移動できない状態にあると判定され た場合に、 燃料電池システムを所定温度以上に維持するために燃料電池を運転さ せるので、 燃料電池システムの保温運転時における移動体の移動をより適切に防 止することができる。
本発明の第 1の態様に係る移動体はさらに、 前記燃料電池システム停止時に、 前記移動可否判定手段により移動体が移動できる状態にあると判定された場合に は報知する報知手段を備えても良い。 かかる場合には、 使用者に対して移動体を 移動できない状態に置くよう注意を促すことができるので、 移動体が移動できる 状態にあることに起因する燃料電池システムの保温運転の機会の減少を低減また は防止することができる。
本発明の第 1の態様に係る移動体において、 前記移動体は、 駆動輪への動力の 伝達を機械的に遮断する動力遮断装置、 前記燃料電池により生成された電力を前 記駆動輪への動力に変換する電動機、 前記電動機への電力の供給を電気的に遮断 する遮断回路、 パーキングブレーキを有し、 前記移動可否判定手段は、 前記動力 遮断装置によって前記動力の伝達が機械的に遮断されている場合、 前記遮断回路 によって前記電力の供給が電気的に遮断されている場合、 および前記パーキング ブレーキがオンされている場合のいずれか 1つに該当する場合に前記移動体は移 動できない状態にあると判定しても良い。 電動機から駆動輪への動力の伝達が機 械的に遮断されている場合には、 たとえ電動機が作動しても移動体の移動を防止 することができる。 また、 電動機に対する電力の供給が電気的に遮断されている 場合には駆動輪に対する動力を生み出す電動機は作動しないので、 燃料電池によ つて電力が生成されても移動体の移動を防止することができる。
本発明の第 1の態様に係る移動体において、 前記保温運転制御手段は、 前記燃 料電池の内部温度に対応付けられた計測値を検出する検出手段を備え、 前記検出 手段により検出された計測値を用いて前記燃料電池の内部温度を所定温度範囲に 維持しても良い。 燃料電池システムにおいて、 水分の凍結による影響を最も受け るのは燃料電池であるから、 燃料電池の温度を所定温度範囲に維持することによ り、 より適切な保温運転を実行することができる。
本発明の第 2の態様は、 燃料電池を含む燃料電池システムを搭載した移動体に おける燃料電池システムの保温制御方法を提供する。 本発明の第 2の態様に係る 保温制御方法は、 前記移動体が移動できない状態にあるか否かを判定し、 前記燃 料電池システムが停止状態にあるか否かを判定し、 前記燃料電池システムが停止 状態にあると共に、 前記移動体が移動できない状態にあると判定した場合には、 前記燃料電池システムを所定温度以上に維持するために前記燃料電池の作動状態 を制御することを特徴として備える。
本発明の第 2の態様に係る保温制御方法によれば、 本発明の第 1の態様に係る 移動体と同様の作用効果を得ることができる。 また、 本発明の第 2の態様に係る 保温制御方法は、 本発明の第 1の態様に係る移動体と同様にして種々の態様にて 実現され得る。 図面の簡単な説明
図 1は、 本実施例に係る燃料電池システムを搭載した移動体の概略構成を示す 説明図である。
図 2は、 本実施例に係る車両において実行される燃料電池システムの保温運転 制御処理の処理ルーチンを示すフローチヤ一トである。
図 3は、 保温運転と燃料電池の温度との関係を示す保温運転制御を説明する説 明図である 発明を実施するための最良の形態
以下、 図面を参照しつつ実施例に基づいて、 本発明に係る燃料電池を搭載した 移動体および燃料電池システムを搭載した移動体における燃料電池システムの保 温制御方法について説明する。
図 1を参照して実施例に係る燃料電池システムを搭載した移動体 (車両) の概 略構成について説明する。 図 1は実施例に係る燃料電池システムを搭載した移動 体の概略構成を示す説明図である。
燃料電池搭載車両 1 0は、 電源システムとしての燃料電池システム 2 0、 燃料 電池システムから得た電力を駆動力に変換して出力する駆動用モータ (電動機) 3 0、 駆動用モータ 3 0によって駆動される車輪 4 0、 車両 1 0の動作を制御す る制御ユニット 5 0を備えている。 '
燃料電池システム 2 0は、 水素ガス (水素含有ガス) を燃料として消費し、 電 力を発生する燃料電池 2 1、 運転時に燃料電池 2 1を冷却する熱交換器 2 2、 燃 料電'池 2 1に供給する水素を蓄える高圧水素ボンべ 2 3、 燃料電池 2 1に対して 空気を供給する空気ポンプ 2 4を備えている。 なお、 図示しないが蓄放電可能な 二次電池が備えられていても良い。
燃料電池 2 1と高圧水素ボンべ 2 3とは水素供給管 2 3 1によって接続されて おり、 水素供給管 2 3 1には水素圧力を燃料電池 2 1への供給圧力へと減圧する 減圧弁 2 3 2が配置されている。 燃料電池 2 1と空気ポンプ 2 4とは空気供給管 2 4 1を介して接続されている。 また、 燃料電池 2 1に供給された空気は排気管 2 4 2を介して大気中へと排出される。
熱交換器 2 2は、 燃料電池 2 1を冷却するために燃料電池 2 1に備えられてお り、 内部を冷却液が循環する。 熱交換器 2 2の冷却液入り口と冷却液出口のいず れか一方または双方における冷却液外部循環管 2 2 1には冷却液温度を検出する 冷却液温度センサ 5 1、 5 2が備えられている。
駆動用モータ 3 0は、 例えば、 三相の同期モータであり、 外周面に複数個の永 久磁石を有する口一夕と、 回転磁界を形成するための三相コイルが巻回されたス テ一夕とを備える。 駆動用モータ 3 0の動作は、 制御ユニット 5 0からの制御信 号を受けたインバー夕 3 1によって制御される。 インバ一夕 3 1と燃料電池 2 1 とは電力供給線 3 1 1によって接続されており、 電力供給線 3 1 1の途中には、 燃料電池 2 1と駆動用モータ 3 0とを電気的に遮断 (切断) するための電源リレ —3 1 2が配置されている。
駆動用モー夕 3 0のロータは、 クラッチ機構 3 5 1を備えるギヤ機構 3 5を介 して車輪 4 0と接続されている。 ギヤ機構 3 5は、 ギヤ位置 (シフトポジション S P ) を選択するためのシフトセレクタ 3 6と電気的または機械的に接続されて いる。 クラッチ機構 3 5 1は、 シフトセレクタ 3 6のシフトポジション S Pとし て P (パーキング) または N (ニュートラル) が選択された場合に、 駆動用モー 夕 3 0と車輪 4 0との機械的な接続を遮断 (切断) する。
駆動用モータ 3 0は、 ロー夕に備えられた永久磁石による磁界とステ一夕の三 相コイルによって形成される磁界との相互作用によって回転して必要な駆動力を 車輪 4 0に出力する。 車速の減速要求 (制動要求) が発生した塲合には、 ロータ を外力によって駆動させることにより、 駆動用モータ 3 0は、 これら磁界の相互 作用により三相コイルの両端に起電力を生成させる発電ブレーキとして機能させ られる。
車両 1 0には、 この他に、 車両駐車時に、 ブレーキ 4 1を制動状態として車両 1 0の移動を防止するパーキングブレーキ 4 2、 車両 1 0を始動 ·停止させるた めのスィッチ (イダニシヨンスィッチ) 4 3、 速度計 ·警告灯 4 4 1等を備える 計器パネル 4 4を備える。
制御ユニット 5 0は、 図示しない中央処理装置 (C P U) 、 記憶装置 (R AM 、 R O M) 等を備え、 車両 1 0の運転状態に応じて車両 1 0の動作を制御する。 制御ユニット 5 0は、 移動可否判定手段、 保温運転制御手段を実現する。 制御ュ ニット 5 0には、 シフトセレクタ 3 6において選択されたシフトポジション S P を示すシフトポジション信号、 パーキングブレーキ 4 2の状態を示すパーキング ブレーキのオン ·オフ信号、 スィツチ 4 3におけるイダニッシヨンポジションを 示すイダニシヨンポジション信号、 冷却液温度センサ 5 1、 5 2からの検出温度 信号が信号線を介して入力される。
制御ュニット 5 0は、 ィンバ一タ 3 1に対して駆動用モータを制御するための 制御信号を送出すると共に、 電源リレー 3 1 2、 警告灯 4 4 1に対して遮断 ·接 続信号、 報知信号をそれぞれ送出する。
図 2および図 3を参照して本実施例に係る車両 1 0において実行される燃料電 池システムの保温運転制御について説明する。 図 2は本実施例に係る車両 1 0に おいて実行される燃料電池システムの保温運転制御処理の処理ルーチンを示すフ ローチャートである。 図 3は保温運転と燃料電池 (F C ) 2 1の温度との関係を 示す保温運転制御を説明する説明図である。
本処理ルーチンは所定時間間隔にて繰り返し実行される。 制御ュニット 5 0は 、 燃料電池システム 2 0の停止要求が発生したか否かを判定する (ステップ S 1 0 0 ) 。 具体的には、 使用者 (運転者) がスィッチ 4 3をオフしたか否かによつ て判定される。 燃料電池システム 2 0の保温運転制御は、 燃料電池システム 2 0 の運転停止時に燃料電池システム 2 0、 特に燃料電池 2 1の温度を水分の凍結温 度以上に保つことが目的であるから、 燃料電池システム 2 0の停止要求を処理開 始のトリガとする。
制御ユニット 5 0は、 スィッチ 4 3がオフされたと判定した場合、 すなわち燃 料電池システム 2 0の運転停止要求が発生したと判定した場合には (ステップ S 1 0 0 : Y e s ) 、 燃料電池システム 2 0の運転を停止すると共に、 電源リレー 3 1 2をオフして (ステップ S 1 1 0 ) 、 燃料電池 2 1と駆動用モータ 3 0との 電気的な接続を遮断する。 保温運転制御時に発生する電力が駆動用モータ 3 0に 対して供給され、 駆動用モータ 3 0が作動する事態を回避するためである。 なお 、 スィッチ 4 3がオフされた後も、 制御ユニット 5 0は作動状態にあり、 適宜、 燃料電池システム 2 0を起動、 停止することができる。
制御ユニット 5 0は、 スィッチ 4 3がオフされていないと判定した場合、 すな わち燃料電池システム 2 0の運転停止要求が発生していないと判定した場合には (ステップ S 1 0 0 : N o ) 、 本処理ルーチンを終了する。 すなわち、 燃料電池 システム 2 0の保温運転制御を実行しない。
制御ュニット 5 0は、 シフトセレクタ 3 6からシフトポジション S Pが Pまた は Nであることを示すシフトポジション信号を受け取つたか否かを判定する (ス テツプ S 1 2 0 ) 。 すなわち、 駆動用モータ 3 0と車輪 4 0との接続が機械的に 遮断 (切断) されているか否かを判定する。
制御ュニット 5 0はシフトポジション S P = P又は Nであると判定した場合に は (ステップ S 1 2 0 : Y e s ) 、 パ一キングブレーキが引かれているか否か、 パーキングブレーキ信号 P Bがオンされているか否かを判定する (ステップ S 1 3 0 ) 。 すなわち、 パーキングブレーキ 4 2によってブレーキ 4 1が制動状態に 置かれ、 車両 1 0 (車輪 4 0 ) の移動が止められている状態であるか否かを判定 する。
制御ュニット 5 0はパーキングブレーキ 4 2が引かれている、 すなわち P B = オンであると判定した場合には (ステップ S 1 3 0 : Y e s ) 、 冷却液温度セン サ 5 1または 5 2によって検出された冷却液温度 T fcが 2 °C以下であるか否か を判定する (ステップ S 1 4 0 ) 。 すなわち、 燃料電池システム 2 0が凍結のお それのある温度条件下にあるか否かを判定する。 ここで、 判定温度として 2 °Cを 用いているのは、 冷却液温度センサ 5 1、 5 2によって燃料電池システム 2 0、 特に、 燃料電池 2 1の温度を判定しているため、 局所的な温度のばらつきを考慮 したためである。 また、 判定温度としては、 例えば、 燃料電池 2 1に対して燃料 電池 2 1の内部温度を直接検出する温度センサを配置した場合には、 0 °Cであつ ても良く、 0〜 5 °C程度の任意の温度を用いて構わない。 いずれの場合にも、 燃 料電池 2 1のいずれかの場所の温度が 0度未満にならなければ良い。
制御ュニット 5 0は、 検出された冷却液温度 T fcが 2 °C以下であると判定し た場合には (ステップ S 1 4 0 : Y e s ) 、 保温運転処理を開始じ ( S 1 5 0 ) 、 本処理ル一チンを終了する。
燃料電池システム 2 0の保温運転処理について図 3を参照して簡単に説明する 。 保温運転処理では、 燃料電池システム 2 0、 より具体的には燃料電池 2 1の温 度を所定の温度範囲に維持するように保温運転処理が実行される。 図 3に示すよ うに、 燃料電池 2 1の温度である F C温度が 0 °C近傍温度になると、 制御ュニッ ト 5 0は保温運転を開始 (O N) 、 すなわち燃料電池システム 2 0を起動し、 燃 料電池 2 1による発電を開始する。 燃料電池 2 1が発電を開始すると、 燃料電池 2 1は発電に伴う起電反応により発熱する。 この結果、 燃料電池システム 2 0の 温度は上昇し、 燃料電池システム 2 0 (燃料電池 2 1 ) における水分の凍結を防 止することができる。
燃料電池システム 2 0の凍結防止の観点からは、 燃料電池システム 2 0の温度 は o °c以上であればよいが、 保温運転処理における燃料消費を抑制するために、 燃料電池システム 2 0の温度が、 例えば、 1 0 °Cといった上限温度に到達すると 燃料電池システム 2 0の運転が停止される。 この後、 燃料電池システム 2 0の温 度をパラメ一夕として、 燃料電池システム 2 0の起動 ·停止が繰り返し実行され る。
保温運転時に発電された電力は、 空気ポンプ 2 4を始めとする補機を駆動する ための電力として消費され、 あるいは、 燃料電池システム 2 0を加熱するための 電気ヒータが備えられている場合には、 電気ヒー夕によって燃料電池システム 2 0を加熱 (保温) するために用いられても良い。
一方、 制御ユニット 5 0は、 シフトポジション S P - P又は Nでないと判定し た場合 (ステップ S 1 2 0 : N o ) 、 およびパーキングブレーキ 4 2が引かれて いない、 すなわち P B =オンでないと判定した場合には (ステップ S 1 3 0 : N o ) 、 警告を報知する (ステップ S 1 6 0 ) 。 具体的には、 制御ュニット 5 0は 、 計器パネル 4 4上の警告灯 4 4 1を点灯、 点滅させることによって、 あるいは 、 音声によって、 シフトポジション S P = Pまたは Nとすること、 パーキングブ レーキ 4 2を引くことを促す。
制御ュニッ卜 5 0は、 報知開始から所定時間が経過したか否かを判定し (ステ ップ S 1 7 0 ) 、 所定時間が経過していないと判定した場合には (ステップ S 1 7 0 : N o ) 、 ステップ S 1 2 0へと処理を移行する。 一方、 制御ュニッ卜 5 0 は、 所定時間が経過したと判定した場合には (ステップ S 1 7 0 : Y e s ) 、 本 処理ルーチンを終了する。 すなわち、 燃料電池システム 2 0の保温運転処理は実 行されない。
以上説明したように、 本実施例に係る車両 1 0および車両 1 0に搭載された燃 料電池システム 2 0の保温蓮転制御方法によれば、 駆動用モータ 3 0と車輪 4 0 との接続が機械的に遮断され、 また、 燃料電池 2 1と駆動用モータ 3 0との接続 が電気的に遮断された場合にのみ燃料電池システム 2 0の保温運転処理を開始す る。 したがって、 保温運転処理時に燃料電池 2 1によって発電されても、 車両 1 0は電気的および機械的に移動 (走行) できない状態にあり、 保温運転処理時に おける車両 1 0の移動を確実に防止することができる。
また、 車両 1 0が移動可能な状態にある場合には、 使用者 (運転者) に対して シフトポジション S Pの Pまたは Nポジションへの変更、 パーキングブレーキ 4 2の作動を促すので、 車両 1 0は、 より多くの割合にて移動可能な状態から移動 不可能な状態に変更され、 燃料電池システム 2 0の保温運転処理実行の機会を増 犬させることができる。 この結果、 燃料電池システム 2 0の凍結をより適切に防 止することができる。
·その他の実施例:
上記実施例では、 選択されたシフトポジション S P、 パーキングブレーキ 4 2 の作動状況の双方に基づいて車両 1 oが移動可能な状態にあるか否かを判定して いるが、 いずれか一方のみを判定しても良い。 また、 電源リレー 3 1 2がオフさ れているか否かを確認するステップを備えても良い。
上記実施例では、 冷却液温度センサ 5 1 、 5 2によって燃料電池 2 1の温度を 検出しているが、 燃料電池 2 1に対して直接温度センサを配置しても良い。 また 、 燃料電池 2 1の温度を検出する複数の温度センサを備え、 いずれか 1つの温度 センサの検出値が判定温度以下となった場合に、 保温運転処理を開始してもよい 。 かかる場合には、 より適切に燃料電池システム 2 0の凍結を防止することがで きる。 さらに、 燃料電池 2 1の温度は、 燃料電池 2 1の温度と予め対応付けてお くことにより外気温、 表面温度等を用いても良い
上記実施例では燃料電池 2 1の燃料として高圧水素タンク 2 3に充填されてい る水素を用いたが、 改質器によって得られる水素含有ガス (改質ガス) を用いて も良い。
また、 上記実施例に係る装置、 方法は、 コンピュータプログラムまたはコンビ ユー夕プログラムを記録した記録媒体 (電気的、 磁気的、 光学的記録媒体) とし ても実現され得る。
以上、 いくつかの実施例に基づき本発明に係る移動体、 燃料電池システムを搭 載した移動体における燃料電池システムの保温運転制御方法について説明してき たが、 上記した発明の実施の形態は、 本発明の理解を容易にするためのものであ り、 本発明を限定するものではない。 本発明は、 その趣旨並びに特許請求の範囲 を逸脱することなく、 変更、 改良され得ると共に、 本発明にはその等価物が含ま れることはもちろんである。

Claims

請求の範囲
1 . 燃料電池を搭載した移動体であって、
前記燃料電池を含む燃料電池システムと、
前記移動体が移動できない状態にあるか否かを判定する移動可否判定手段と、 前記燃料電池システム停止時であって、 前記移動可否判定手段'により移動体が 移動できない状態にあると判定された場合には、 前記燃料電池システムが所定温 度以上に維持されるように前記燃料電池の作動状態を制御する保温運転制御手段 とを備える移動体。
2 . 請求の範囲 1に記載の移動体はさらに、
前記燃料電池システム停止時に、 前記移動可否判定手段により移動体が移動で きる状態にあると判定された場合には報知する報知手段を備える移動体。
3 . 請求の範囲 1または 2に記載の移動体において、
前記保温運転制御手段は、 前記燃料電池の内部温度に対応付けられた計測値を 検出する検出手段を備え、 前記検出手段により検出された計測値を用いて前記燃 料電池の内部温度を所定温度範囲に維持する移動体。
4 . 請求の範囲 1または 2に記載の移動体において、
前記移動体は、 駆動輪への動力の伝達を機械的に遮断する動力遮断装置、 前記 燃料電池により生成された電力を前記駆動輪への動力に変換する電動機、 前記電 動機への電力の供給を電気的に遮断する遮断回路、 パーキングブレーキを有し、 前記移動可否判定手段は、 前記動力遮断装置によって前記動力の伝達が機械的 に遮新されている場合、 前記遮断回路によって前記電力の供給が電気的に遮断さ れている場合、 および前記パ一キングブレーキがオンされている場合のいずれか 1つに該当する場合に前記移動体は移動できない状態にあると判定する移動体。
5 . 燃料電池を含む燃料電池システムを搭載した移動体における燃料電池シス テムの保温制御方法であって、 前記移動体が移動できない状態にあるか否かを判定し、
前記燃料電池システムが停止状態にあるか否かを判定し、
前記燃料電池システムが停止状態にあると共に、 前記移動体が移動できない状 態にあると判定した場合には、 前記燃料電池システムを所定温度以上に維持する ために前記燃料電池の作動状態を制御することを備える保温制御方法。
6 . 請求の範囲 5に記載の燃料電池システムの保温制御方法はさらに、 前記燃料電池システム停止時に、 前記移動体が移動できる状態にあると判定し た場合には報知することを備える燃料電池システムの保温制御方法。
7 . 請求の範囲 5または 6に記載の燃料電池システムの保温制御方法において 、
前記燃料電池システムを少なくとも所定温度以上に維持するための前記燃料電 池の運転は、
前記燃料電池の内部温度に対応付けられた計測値を検出し、
前記検出した計測値を用いて前記燃料電池の内部温度を所定温度範囲に維持す ることによって実行される燃料電池システムの保温制御方法。
8 . 請求の範囲 5または 6に記載の燃料電池システムの保温制御方法において 駆動輪への動力の伝達を機械的に遮断する動力遮断装置によって前記動力の伝 達が機械的に遮断されている場合、 前記燃料電池により生成された電力を前記駆 動輪への動力に変換する電動機に対する電力の供給を電気的に遮断する遮断回路 によって前記電力の供給が電気的に遮断されている場合、 パーキングブレーキが オンされている場合のいずれか 1つに該当する場合に前記移動体は移動できない 状態にあると判定する燃料電池システムの保温制御方法。
PCT/JP2004/004934 2003-04-22 2004-04-05 燃料電池を搭載した移動体 WO2004095617A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112004000689T DE112004000689B4 (de) 2003-04-22 2004-04-05 Bei beweglichem Gegenstand angebrachte Brennstoffzelle und Temperatursteuerverfahren
US11/253,608 US7438146B2 (en) 2003-04-22 2005-10-20 Moving object mounting fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003116524A JP4461701B2 (ja) 2003-04-22 2003-04-22 燃料電池を搭載した移動体
JP2003-116524 2003-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/253,608 Continuation US7438146B2 (en) 2003-04-22 2005-10-20 Moving object mounting fuel cell

Publications (1)

Publication Number Publication Date
WO2004095617A1 true WO2004095617A1 (ja) 2004-11-04

Family

ID=33307993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004934 WO2004095617A1 (ja) 2003-04-22 2004-04-05 燃料電池を搭載した移動体

Country Status (5)

Country Link
US (1) US7438146B2 (ja)
JP (1) JP4461701B2 (ja)
CN (1) CN100544094C (ja)
DE (1) DE112004000689B4 (ja)
WO (1) WO2004095617A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069503A1 (ja) * 2005-12-13 2007-06-21 Toyota Jidosha Kabushiki Kaisha 燃料電池システムとその運転停止方法
US8091664B2 (en) 2005-08-04 2012-01-10 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152614B2 (ja) * 2006-05-23 2013-02-27 トヨタ自動車株式会社 燃料電池システム
JP5093555B2 (ja) * 2006-08-22 2012-12-12 トヨタ自動車株式会社 燃料電池システム及び移動体
JP4306776B2 (ja) * 2007-09-06 2009-08-05 トヨタ自動車株式会社 ハイブリッド車両
JP2009199751A (ja) 2008-02-19 2009-09-03 Toyota Motor Corp 燃料電池システム、および、燃料電池システムの制御方法
JP5786594B2 (ja) * 2011-09-26 2015-09-30 トヨタ自動車株式会社 電気自動車
US20140170514A1 (en) * 2012-12-17 2014-06-19 GM Global Technology Operations LLC Variable pem fuel cell system start time to optimize system efficiency and performance
US20140216403A1 (en) * 2013-02-07 2014-08-07 Caterpillar Inc. Gas fuel system
JP6237690B2 (ja) * 2015-04-22 2017-11-29 トヨタ自動車株式会社 燃料電池システム
KR20160131439A (ko) * 2015-05-07 2016-11-16 이래오토모티브시스템 주식회사 전기자동차의 주차 브레이크 시스템
CN106882072B (zh) * 2017-03-23 2019-07-19 北京新能源汽车股份有限公司 一种燃料电池系统下电保护的控制方法及控制装置
TWI709278B (zh) * 2019-08-20 2020-11-01 元智大學 氣體降壓裝置、燃料電池系統及電動車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595607A (ja) * 1991-05-16 1993-04-16 Honda Motor Co Ltd 電気走行車
JPH11214025A (ja) * 1998-01-21 1999-08-06 Sanyo Electric Co Ltd 燃料電池装置
JP2000303836A (ja) * 1999-02-18 2000-10-31 Toyota Motor Corp 燃料電池と内燃機関のハイブリッドシステムおよびこれを備える自動車
JP2001224105A (ja) * 1999-05-26 2001-08-17 Toyota Motor Corp 燃料電池を備える車両およびその制御方法
JP2001231108A (ja) * 2000-02-14 2001-08-24 Yamaha Motor Co Ltd 電動車両の充電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169476A (ja) 1993-12-17 1995-07-04 Toshiba Corp 燃料電池の保温方法
JP2000292195A (ja) 1999-04-01 2000-10-20 Isuzu Motors Ltd 水素燃料駆動自動車の水素燃料補給スタンド案内システム
EP1055545B1 (en) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
US6727013B2 (en) * 2001-09-07 2004-04-27 General Motors Corporation Fuel cell energy management system for cold environments
JP3879635B2 (ja) * 2002-09-06 2007-02-14 日産自動車株式会社 移動体用燃料電池パワープラントシステム
JP4831925B2 (ja) 2002-09-26 2011-12-07 トヨタ自動車株式会社 燃料電池システムの燃料残量に関する警告
JP2004342430A (ja) 2003-05-15 2004-12-02 Toyota Motor Corp 燃料電池システムおよびその運転方法
US20070015016A1 (en) * 2003-11-04 2007-01-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595607A (ja) * 1991-05-16 1993-04-16 Honda Motor Co Ltd 電気走行車
JPH11214025A (ja) * 1998-01-21 1999-08-06 Sanyo Electric Co Ltd 燃料電池装置
JP2000303836A (ja) * 1999-02-18 2000-10-31 Toyota Motor Corp 燃料電池と内燃機関のハイブリッドシステムおよびこれを備える自動車
JP2001224105A (ja) * 1999-05-26 2001-08-17 Toyota Motor Corp 燃料電池を備える車両およびその制御方法
JP2001231108A (ja) * 2000-02-14 2001-08-24 Yamaha Motor Co Ltd 電動車両の充電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091664B2 (en) 2005-08-04 2012-01-10 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
WO2007069503A1 (ja) * 2005-12-13 2007-06-21 Toyota Jidosha Kabushiki Kaisha 燃料電池システムとその運転停止方法
US8067125B2 (en) 2005-12-13 2011-11-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method

Also Published As

Publication number Publication date
CN1778008A (zh) 2006-05-24
US20060042845A1 (en) 2006-03-02
JP4461701B2 (ja) 2010-05-12
US7438146B2 (en) 2008-10-21
DE112004000689B4 (de) 2013-11-07
CN100544094C (zh) 2009-09-23
DE112004000689T5 (de) 2006-02-16
JP2004327101A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
US7438146B2 (en) Moving object mounting fuel cell
JP4151384B2 (ja) 燃料電池システム
EP2466677B1 (en) Fuel cell system
US9428182B2 (en) Vehicle with fuel cells mounted thereon and control method of the vehicle
US7715957B2 (en) Control device of vehicle
JP2004342430A (ja) 燃料電池システムおよびその運転方法
JP2006179198A (ja) 燃料電池システム
WO2006085674A1 (ja) 燃料電池システム
JP2001266917A (ja) 動力装置およびその制御方法
JP2007018992A (ja) 燃料電池システム及び燃料電池システムの稼動制御方法
JPH08273689A (ja) 燃料電池システム
KR100872649B1 (ko) 연료전지 차량의 비상 셧다운 제어방법
JP2007305412A (ja) 燃料電池システムのアイドル制御装置及び制御方法
EP2479826B1 (en) Fuel cell system
JP5152614B2 (ja) 燃料電池システム
JP5728763B2 (ja) 燃料電池発電装置作動システムおよび氷点下周囲条件での使用方法
JP5315661B2 (ja) 燃料電池搭載車両、燃料電池の制御装置、制御方法
JP2004327099A (ja) 燃料電池システム
JP6772455B2 (ja) 進行状況情報報知方法及び燃料電池システム
JP4267759B2 (ja) 改質型燃料電池電源システムにおける余剰水素の処理方法
JP5060105B2 (ja) 燃料電池システム
KR101610405B1 (ko) 연료전지 차량의 비상 운전 제어 방법
JP4591062B2 (ja) 車両用燃料電池システム
KR101048118B1 (ko) 연료전지 하이브리드 차량의 리젠 과부하 제어장치 및 방법
JP2006291754A (ja) エンジン始動補助装置、エンジンの始動方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11253608

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048106782

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112004000689

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004000689

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11253608

Country of ref document: US

122 Ep: pct application non-entry in european phase