WO2007069417A1 - Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板 - Google Patents

Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板 Download PDF

Info

Publication number
WO2007069417A1
WO2007069417A1 PCT/JP2006/322589 JP2006322589W WO2007069417A1 WO 2007069417 A1 WO2007069417 A1 WO 2007069417A1 JP 2006322589 W JP2006322589 W JP 2006322589W WO 2007069417 A1 WO2007069417 A1 WO 2007069417A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
film
substrate
multilayer reflective
mask blank
Prior art date
Application number
PCT/JP2006/322589
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Hayashi
Takashi Sugiyama
Masaki Mikami
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to KR1020087007826A priority Critical patent/KR101308838B1/ko
Priority to EP06823363A priority patent/EP1962326B1/en
Priority to JP2007550102A priority patent/JP5082857B2/ja
Publication of WO2007069417A1 publication Critical patent/WO2007069417A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]

Definitions

  • the present invention relates to a reflective mask blank (hereinafter referred to as “EUV mask blank”) for EUV (Extreme Ultra Violet) lithography used in semiconductor manufacturing and the like, and the mask. It is related with the board
  • EUV lithography which is an exposure technology using EUV light with a shorter wavelength than ArF laser, is promising as an exposure technology for 45 nm and beyond.
  • EUV light refers to light having a wavelength in the soft X-ray region or vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • EUV light is readily absorbed by all substances and has a refractive index close to 1, so that a conventional refractive optical system such as photolithography using visible light or ultraviolet light should be used. I can't. For this reason, reflective optical systems, that is, reflective photomasks and mirrors, are used in EUV optical lithography.
  • a mask blank is a laminated body before patterning for manufacturing a photomask.
  • a mask blank for a reflective photomask has a structure in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order on a glass substrate or the like.
  • the reflective layer by alternately laminating high refractive layers and low refractive layers, the light reflectivity when irradiating the layer surface with light rays, more specifically, when irradiating the layer surface with EUV light is used.
  • High light reflectance A multilayer reflective film is usually used.
  • the absorption layer is made of a material having a high absorption coefficient for EUV light, specifically, for example, a material mainly containing Cr or Ta.
  • the multilayer reflective film and the absorption layer are formed using an ion beam sputtering method or a magnetron sputtering method.
  • the substrate is supported by a support means.
  • a mechanical chuck and an electrostatic chuck as means for supporting the substrate, but an electrostatic chuck is preferably used from the viewpoint of dust generation.
  • an electrostatic chuck is used as a substrate support means during the mask patterning process or during mask handling during exposure.
  • a substrate having a low dielectric constant and conductivity such as a glass substrate
  • Patent Document 1 describes a material other than ordinary Cr, such as Si, Mo, chromium oxynitride (CrON), or TaSi, as a layer for promoting electrostatic chucking of the substrate.
  • a mask substrate having a backside coating (conductive film) of a material having a higher, dielectric constant and higher conductivity than a glass substrate is described.
  • the mask substrate described in Patent Document 1 has a conductive film formed on the entire surface of one side including the chamfered surface and the side surface of the substrate. Therefore, the chamfered surface and the side surface of the substrate are particularly conductive on the chamfered surface and the side surface. In a situation where the film adhesion due to the film being formed obliquely is particularly weak, film peeling is likely to occur due to warpage of the substrate during electrostatic chucking.
  • Patent Document 2 discloses a substrate with a multilayer reflective film that suppresses generation of particles due to film peeling or abnormal discharge of the conductive film during electrostatic chucking of the substrate provided with the conductive film.
  • a high-quality reflective mask blank for exposure with few surface defects due to particles and a high-quality reflective mask for exposure without pattern defects due to particles are provided.
  • the conductive film is formed at least in a region excluding the periphery.
  • the surface of the conductive film in contact with the electrostatic chuck is substantially reduced.
  • the substrate with a multilayer reflective film described in Patent Document 2 improves both the adhesion force of the conductive film to the substrate and the adhesion force between the electrostatic chuck and the substrate, and improves the adhesion of the particles due to film peeling of the conductive film.
  • the material for forming the conductive film is changed in the film thickness direction of the conductive film. The composition is different. That is, the conductive film contains nitrogen (N) on the substrate side and the surface side of the conductive film contains at least one of oxygen (O) and carbon (C).
  • the substrate with a multilayer reflective film described in Patent Document 2 prevents the generation of particles during film formation according to the following (1) to (4).
  • Patent Document 1 Special Table 2003—501823
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-210093
  • the present invention has been made on the basis of the above findings, and an object of the present invention is to provide a substrate with a conductive film for EUV mask blank having an increased surface hardness without impairing the properties as a conductive film.
  • Another object of the present invention is to provide a substrate with a conductive film in which both adhesion to the substrate and surface hardness are enhanced.
  • Another object of the present invention is to provide a substrate with a multilayer reflective film of EUV mask blank using the substrate with conductive film, and an EUV mask blank.
  • the present invention is a substrate with a conductive film used for manufacturing a reflective mask blank for EUV lithography, wherein the main material of the conductive film is Cr, Ti, Zr, Nb
  • a conductive film substrate (hereinafter referred to as the present specification), characterized by comprising at least one selected from the group forces that are also Ni and V forces, wherein the conductive film contains (boron) at an average concentration of 1 to 70 ⁇ %.
  • the conductive film substrate it is referred to as “substrate with conductive film of the present invention”.
  • substrate with conductive film of the present invention will provide a.
  • the conductive film has a B concentration in the conductive film such that the B average concentration on the substrate side is low and the B average concentration on the surface side is high.
  • U which is preferably a graded composition film that varies along the thickness direction.
  • the gradient composition film has a B average concentration of 15 at% or less in a portion from the substrate side surface to a film thickness of 5 nm, and at least the film thickness from the surface. It is preferable that the B average concentration of the portion up to 5 nm is 1 to 70 at%.
  • the conductive film may further contain an average concentration of 1 to 60 at ° / c ⁇ N.
  • the conductive film when the conductive film contains N, the conductive film preferably has an N average concentration of 10 at% or less at least up to 5 nm in thickness on the surface.
  • the conductive film has a sheet resistance value of 0.1 to: ⁇ ⁇ / mouth.
  • the present invention provides a substrate with a multilayer reflective film of an EUV mask blank in which a multilayer reflective film is formed on the opposite side of the surface provided with the conductive film of the substrate with a conductive film of the present invention. Less than
  • a substrate with a multilayer reflective film of the present invention In the present specification, it is referred to as “a substrate with a multilayer reflective film of the present invention”. )I will provide a.
  • the present invention also relates to an EUV mask blank (hereinafter referred to as "the EUV mask blank of the present invention") in which an absorption layer is formed on the multilayer reflective film of the multilayer reflective film-coated substrate of the present invention. ).
  • the substrate with a conductive film of the present invention has characteristics required as a conductive film, specifically, a characteristic that the surface hardness of the conductive film is high while the sheet resistance is 100 ⁇ or less. For this reason, when the substrate with a conductive film is fixed to an electrostatic chuck and used for manufacturing an EUV mask blank, generation of particles due to friction between the electrostatic chuck and the conductive film is prevented. .
  • the conductive film substrate of the present invention has excellent smoothness on the surface of the conductive film due to the amorphous structure of the conductive film. This also contributes to prevention of generation of particles due to friction between the electrostatic chuck and the conductive film. Furthermore, this excellent smoothness improves the adhesion to the electrostatic chuck and improves the chucking force by the electrostatic chuck.
  • the conductive film is hardly oxidized due to the amorphization, the change in stress in the conductive film with time is small. As a result, no turn accuracy becomes worse, and it is expected that the lifetime as a mask will be extended.
  • the substrate with a conductive film of the present invention in which the conductive film is a gradient composition film is provided on the surface side of the conductive film.
  • the B average concentration is high, the surface of the conductive film having a high surface hardness is excellent in smoothness. For this reason, when the substrate with a conductive film is fixed to an electrostatic chuck and used for manufacturing an EUV mask blank, particles are prevented from being generated due to friction between the electrostatic chuck and the conductive film. On the other hand, since the average B concentration on the substrate side of the conductive film is low, the adhesion of the conductive film to the substrate is expected to improve.
  • the conductive film-containing substrate of the present invention containing N in the conductive film is used, a film formed by using a sputtering method at the time of manufacturing an EUV mask blank, specifically, a multilayer reflective film, a cap The deformation of the substrate due to the stress generated in the layer, the buffer layer, or the absorption layer can be prevented.
  • FIG. 1 is a schematic view of a substrate with a conductive film of the present invention.
  • FIG. 2 is a schematic view of a substrate with a multilayer reflective film of the present invention.
  • FIG. 3 is a schematic diagram of an EUV mask blank of the present invention.
  • FIG. 1 is a schematic view of a substrate with a conductive film of the present invention.
  • a conductive film 2 is formed on one surface of a substrate 1 for film formation.
  • the substrate 1 is fixed to the electrostatic chuck via the conductive film 2.
  • the multilayer reflective film and the absorption layer are formed on the opposite side (film formation surface) of the surface of the substrate 1 on which the conductive film 2 is formed.
  • the conductive film 2 is formed on the back side with respect to the film formation surface of the substrate 1.
  • the conductive film 2 is mainly composed of at least one selected from the group force consisting of Cr, Ti, Zr, Nb, Ni and V.
  • the constituent material of the conductive film 2 refers to Cr, Ti, Zr, Nb, Ni and V.
  • Cr, Ti, Zr, Nb, Ni, and V are suitable as the constituent material of the conductive film 2 because of their high electrical conductivity.
  • the conductive film 2 may include two or more of Cr, Ti, Zr, Nb, Ni, and V as a constituent material. However, usually one of Cr, Ti, Zr, Nb, Ni and V is used as the constituent material.
  • the conductive film 2 contains (boron) at an average concentration of 1 to 70%. Therefore, the conductive film 2 is a film that also has the constituent material of the conductive film 2, B, and force.
  • B forms a compound (CrB, TiB, ZrB, NbB, NiB or VB) with Cr, Ti, Zr, Nb, Ni, or V, which is a constituent material of the conductive film 2.
  • Conductive film 2 is a mixture of constituent materials (Cr, Ti, Zr, Nb, N or V) and compounds of constituent materials and B (CrB, TiB, ZrB, NbB, NiB or VB) It may be in a state
  • a mixed state is preferable.
  • the B concentration in the conductive film 2 means the atomic concentration of B present in the conductive film 2.
  • the concentration of B in the conductive film 2 can be measured by, for example, an X-ray photoelectron spectrometer.
  • the conductive film 2 When the conductive film 2 contains at an average concentration of 1 to 70 ⁇ %, the conductive film 2 only needs to contain at an average concentration of 1 to 70 ⁇ % when viewed as a whole of the conductive film 2. All parts of B may not be contained at a concentration of 1 to 70 at%. For example, when the conductive film 2 as a whole is contained, the conductive film 2 may contain a portion where the B concentration is less than lat% as long as it contains at an average concentration of 1 to 70 ⁇ %. There may be a part in B that does not contain B.
  • the average B concentration of the conductive film 2 can be estimated by sputtering the film from the surface and measuring the profile in the depth direction using an X-ray photoelectron spectrometer.
  • the conductive film 2 By forming a constituent material of the conductive film 2 (Cr, Ti, Zr, Nb, M or V) and B and a compound having high hardness (CrB, TiB, ZrB, NbB, NiB or VB), the conductive film 2 hard
  • the substrate with the conductive film is fixed to the electrostatic chuck.
  • the crystalline structure of the conductive film 2 becomes amorphous. Due to the amorphization of the crystal structure, the smoothness of the surface of the conductive film 2 is increased. This also contributes to prevention of generation of particles due to friction between the electrostatic chuck and the conductive film.
  • the adhesion with the electrostatic chuck is improved.
  • the chucking force due to the electrostatic chuck is improved.
  • the adhesiveness with the electrostatic chuck is improved, the thermal conductivity from the conductive film 2 to the electrostatic chuck, and thus the thermal conductivity from the substrate 1 to the electrostatic chuck is improved. This improves the substrate cooling performance during the mask patterning process or during exposure.
  • the conductive film 2 is hardly oxidized due to the amorphization, the change in the stress in the conductive film 2 with time is small. As a result, a bad turn accuracy is likely to occur, and the lifetime of the mask is expected to be extended.
  • the B average concentration of the conductive film 2 is less than lat% or more than 70 at%, the above effect, that is, the effect of increasing the hardness of the conductive film 2 (particularly the surface hardness of the conductive film 2), and The effect of improving the smoothness of the surface of the conductive film 2 cannot be sufficiently exhibited.
  • the B average concentration in the conductive film 2 is more preferably 30 to 70 at%, and more preferably 50 to 68 at%.
  • the conductive film 2 is composed of Cr among Cr, Ti, Zr, Nb, Ni, and V. Since the electrical resistivity is low, the sheet resistance of the conductive film 2 is 100 ⁇ or less. In particular, it is suitable for 50 ⁇ or less, it is inexpensive, has excellent adhesion to the substrate 1, and is widely used as a mask material, so there is considerable knowledge about film formation. It is preferable because it is accumulated. As B is added to the conductive film, the resistance value increases. However, when used as an EUV electrostatic chuck, the resistance value is higher than the resistance value in terms of precision. It is important to prevent the generation of particles.
  • the conductive film 2 when the conductive film 2 is viewed as a whole, as long as it contains at an average concentration of 1 to 70 ⁇ %, the conductive film 2 has a portion where the B concentration is less than lat%. There may be a part that does not contain Mogoku B. That is, in the conductive film 2, B may be unevenly distributed at a specific site. For example, B may be unevenly distributed on the substrate 1 side of the conductive film 2. In this case, the B average concentration on the substrate side of the conductive film 2 is increasing, and the B average concentration on the surface side is decreasing. On the contrary, B may be unevenly distributed on the surface side of the conductive film 2.
  • the B average concentration on the substrate 1 side of the conductive film 2 is low, and the B average concentration on the surface side is high.
  • the surface of the conductive film 2 is the surface of the conductive film 2 in FIG. 1, that is, the surface of the conductive film 2 on the side in contact with the substrate 1 (the surface on the substrate 1 side) is on the back side. This refers to the surface that comes into contact with the electrostatic chuck when the substrate with film is fixed with an electrostatic chuck.
  • the effect caused by containing B in the conductive film 2 that is, the effect of increasing the surface hardness of the conductive film 2, and the smoothness of the surface of the conductive film 2 are increased.
  • the conductive film 2 has a B concentration in the conductive film 2 such that the B average concentration on the surface side is low while the B average concentration on the substrate 1 side is low.
  • a gradient composition film hereinafter referred to as “gradient composition film” in the present specification
  • the concentration of B in the conductive film 2 is such that the average B concentration on the substrate 1 side is low and the B average concentration on the surface side is high.
  • a wide range of conductive films having a structure in which B is unevenly distributed on the surface side is not limited to the conductive film having a structure continuously changed along the thickness direction of the film 2 (hereinafter, also referred to as a “gradient composition film in a narrow sense”). Therefore, it may be a conductive film having a structure in which a plurality of layers having different B average concentrations are stacked (hereinafter also referred to as a “conductive film having a stacked structure”).
  • the layers are laminated so that the substrate side layer is a layer having a low B average concentration and the surface side layer is a layer having a high B average concentration.
  • the number of layers in the stacked conductive film is not particularly limited. Therefore, it may be two layers or three or more layers.
  • the gradient composition film may have a portion not containing B on the substrate 1 side as long as the conductive film 2 as a whole contains at an average concentration of 1 to 70 ⁇ %. Good.
  • the narrowly-defined gradient composition film has the following structure.
  • the portion of conductive film 2 other than the vicinity of substrate 1 contains B.
  • the conductive film 2 When the conductive film 2 is viewed as a whole, it contains at an average concentration of 1 to 70%.
  • the conductive film 2 has a laminated structure (two layers), the following structure is obtained.
  • the layer on the substrate 1 side of conductive film 2 does not contain B.
  • the surface layer of the conductive film 2 contains B.
  • the conductive film 2 When the conductive film 2 is viewed as a whole, it contains at an average concentration of 1 to 70%.
  • the conductive film 2 has a laminated structure of three or more layers, the following structure is obtained.
  • the layer on the most substrate 1 side of conductive film 2 does not contain B.
  • the layer containing B is laminated from the substrate 1 side to the surface side so that the average B concentration increases.
  • the conductive film 2 When the conductive film 2 is viewed as a whole, it contains at an average concentration of 1 to 70%.
  • the conductive film 2 contains B, thereby increasing the hardness (particularly the surface hardness) of the conductive film 2 and the smoothness of the surface of the conductive film 2.
  • the effect of increasing In the gradient composition film since the B average concentration on the surface side of the conductive film 2 is high, these effects are more effectively exhibited. Furthermore, the average B concentration on the substrate side of conductive film 2 Has low Cr concentration and high adhesion to the substrate 1.
  • the average concentration of the portion up to the surface force film thickness of 5 nm on the substrate 1 side is 15 at% or less. If the average B concentration in the vicinity of the substrate is 15 at% or less, the adhesion to the substrate 1 is excellent. It is more preferable that the average B concentration in the vicinity of the substrate is 10 at% or less, and it is particularly preferable that the vicinity of the substrate is substantially free of B.
  • the above-mentioned substrate vicinity portion is preferably 0.05 L from the surface on the substrate 1 side.
  • the average concentration of the portion having a surface force of at least a film thickness of 5 nm is 1 to 70 at%.
  • the conductive film 2 has excellent surface hardness and the surface of the conductive film 2 has excellent smoothness. More preferably, the B average concentration in the vicinity of the surface is 10 to 70 at%, more preferably 30 to 68 at%.
  • the portion in the vicinity of the surface is a portion having a surface force of at least a film thickness of 50 nm, preferably a portion having a film thickness of at least 90 nm.
  • the total film thickness of the conductive film 2 is L (nm)
  • the portion near the surface is at least 0.05 L from the surface, and the surface force is preferably at least 0.1 L. Is more preferable.
  • the oxygen concentration contained in the conductive film of the present invention is preferably 5 at% or less. If the oxygen content is too large, abnormal discharge may occur when a reflective multilayer film or an absorption layer is formed, which is not preferable. Note that the surface of the conductive film is at a level that is not affected by the electrostatic chuck, and the film surface force is naturally oxidized by about 5 nm, so that the oxygen concentration increases. Therefore, the oxygen concentration in the present application is a value measured excluding a portion of about 5 nm from the film surface.
  • the film thickness L of the conductive film 2 is preferably 10 to 500 nm. If the film thickness L of the conductive film 2 is less than lOnm, the film thickness of the conductive film 2 is so small that the chucking force may be insufficient when the substrate with the conductive film is fixed to the electrostatic chuck. Ma In addition, when the substrate with the conductive film is fixed to the electrostatic chuck and a high voltage is applied, the substrate 1 may break down.
  • the film thickness L of the conductive film 2 exceeds 500 nm, it no longer contributes to the improvement of the chucking force, the time required to form the conductive film 2 increases, and the cost required to form the conductive film 2 increases. Moreover, since the film thickness of the conductive film 2 becomes larger than necessary, the possibility of film peeling increases.
  • the film thickness of the conductive film 2 is more preferably 50 to 400 nm, more preferably 50 to 200 nm.
  • Force S Further preferably 50 to: LOOnm is particularly preferable.
  • the conductive film 2 preferably has a surface hardness of 12 GPa or more. If the surface hardness of the conductive film 2 is 12 GPa or more, the conductive film 2 is excellent in surface hardness, and when the substrate with the conductive film is fixed to the electrostatic chuck and used for manufacturing the EUV mask blank, It is excellent in preventing particles from being generated by rubbing between the chuck and the conductive film.
  • the method for measuring the surface hardness of the conductive film 2 is not particularly limited, and is a known method, specifically, for example, a Vickers hardness test, a Rockwell hardness test, a Brinell hardness test, a nanoindentation. A test or the like can be used. Among these, the nanoindentation test is widely used to measure the surface hardness of thin films. In the examples described later, the surface hardness of the conductive film 2 was measured by a nanoindentation test.
  • the surface hardness of the conductive film 2 is more preferably 20 GPa or more.
  • the surface of the conductive film 2 is preferably excellent in smoothness.
  • the smoothness of the surface of the conductive film 2 is preferably 0.5 nm or less in terms of Rms (square root roughness). If the smoothness of the surface of the conductive film 2 is 0.5 nm or less in Rms, the electrostatic chuck and the conductive film 2 can be used when the substrate with the conductive film is fixed to the electrostatic chuck and used for manufacturing the EUV mask blank. It is excellent in preventing the generation of particles due to rubbing.
  • the stress (specifically, compressive stress) generated in the conductive film 2 can be increased by containing N in the conductive film 2.
  • the constituent material of the conductive film 2 (Cr, Ti, Zr, Nb, N or V) and B are compounds (CrB, TiB, ZrB, NbB, NiB or VB).
  • the crystal structure becomes amorphous.
  • the conductive film The stress generated in 2 is reduced.
  • a decrease in stress generated in the conductive film 2 is generally a preferable characteristic because it improves the adhesion of the conductive film 2 to the substrate 1.
  • Constituent material (Cr, Ti, Zr, Nb, M or V) of conductive film 2 and B are compounds (CrB, TiB
  • a multilayer reflective film is formed on the substrate.
  • An absorption layer is formed on the multilayer reflective film.
  • a buffer layer may be formed between the multilayer reflective film and the absorption layer.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method is usually used. In a film formed by sputtering, stress (usually compressive stress) may be generated.
  • Si films low refractive index layer, film thickness 4.5 nm
  • Mo films high refractive index layer, film thickness 2.3 nm
  • the substrate is fixed by the electrostatic chuck. Even if a stress is generated in the formed film, the stress is generated in the state of being fixed to the electrostatic chuck. The substrate does not deform. However, if the substrate is removed from the electrostatic chuck, the substrate may be deformed by the stress generated in the film. As described above, when a large compressive stress of 400 to 500 MPa is generated in the multilayer reflective film, even a quartz glass substrate having high rigidity is deformed to some extent. For example, as a substrate for EUV mask blanks, a commonly used SiO 2 -TiO glass substrate (outer diameter 6 inches (152.4 m
  • the substrate is deformed to be warped in a convex shape by about 2 m toward the film formation surface.
  • the allowable flatness limit is less than lOOnm up to the edge of the mask blank. If the substrate is deformed in a convexly curved state about 2 m on the film formation surface (multilayer surface), the flatness of the substrate is at least about the above, so the above tolerance limit value can be satisfied. Nah ...
  • the compressive stress generated in the conductive film 2 formed on the back surface side with respect to the film formation surface of the substrate 1 is increased, the film formed on the film formation surface of the substrate 1 by sputtering is used. It is possible to prevent the substrate 1 from being deformed by the generated stress. That is, the stress generated in the film formed on the surface of the substrate 1 by using the sputtering method, that is, the multilayer reflective film and the absorbing layer, and the arbitrarily formed noffer layer is usually a compressive stress. is there. For this reason, if the compressive stress generated in the conductive film 2 formed on the back side of the substrate 1 is increased, the compressive stress generated in the multilayer reflective film is canceled by the compressive stress generated in the conductive film 2. It is possible to reduce the amount of deformation of the substrate 1.
  • the conductive film 2 can contain an average concentration of 1 to 60 at% N.
  • the N concentration of the conductive film 2 means the atomic concentration of N present in the conductive film 2.
  • the average concentration of N in the conductive film 2 can be estimated by sputtering the film from the surface and measuring the profile in the depth direction using an X-ray photoelectron spectrometer. When the N average concentration of the conductive film 2 is less than lat%, the compressive stress generated in the conductive film 2 cannot be sufficiently increased.
  • the compressive stress generated in the conductive film 2 increases accordingly.
  • the hardness of the conductive film decreases accordingly.
  • the hardness (particularly the surface hardness) of the conductive film 2 becomes insufficient.
  • the compressive stress generated in the conductive film 2 cancels the compressive stress generated in the multilayer reflective film and the absorption layer, thereby The amount of deformation is reduced, and the amount of deformation of the substrate 1 can be made zero.
  • a compressive stress of 200 to 400 GPa is generated in a conductive film having a B average concentration of 30 to 66 at%, an N average concentration of 5 to 20 at%, and a film thickness of 100 to 150 nm.
  • a compressive stress of 400 to 500 MPa may occur. If a compressive stress of 200 to 4 OOGPa is generated in the conductive film, it is considered that the amount of deformation of the substrate 1 can be made zero by canceling the compressive stress generated in the multilayer reflective film.
  • the conductive film 2 contains an average concentration of 1 to 60 at% N. When the conductive film 2 is viewed as a whole, it is sufficient that the conductive film 2 contains the average concentration of 1 to 60 at% N. N may not be contained at a concentration of 1 to 60 at%. For example, when the conductive film 2 is viewed as a whole, with an average concentration of 1 to 60%? As long as ⁇ is contained, the conductive film 2 may have a portion where the concentration of N is less than lat%, or may contain a portion that does not contain N! /.
  • the compressive stress generated in the conductive film 2 increases, but on the other hand, the hardness (particularly the surface hardness) of the conductive film 2 decreases. .
  • the N average concentration of the portion near the surface of the conductive film 2 is 10 at% or less.
  • the N average concentration in the vicinity of the surface of the conductive film 2 is less than or equal to lOat%, the decrease in the surface hardness of the conductive film 2 can be reduced. It is preferable that the vicinity of the surface of the conductive film 2 does not substantially contain N.
  • the conductive film 2 may be formed by a known film formation method, such as a magnetron notching method, a beam-nottering method, a CVD method, a vacuum deposition method, an electrolytic method, or the like. It can be formed using a method. For example, in the case where the constituent material is Cr and a conductive film containing B is formed, the target is a CrB target, and the sputtering is performed.
  • a conductive film may be formed by using magnetron sputtering with tagas Ar gas. Further, when forming a conductive film having the constituent material strength Cr and containing B and N, the target is CrB target, the sputtering gas is Ar gas and N gas, and the magnetron is used.
  • the conductive film may be formed by 2 2 sputtering.
  • the target is a Cr target and the sputtering gas is Ar.
  • the target is the CrB target,
  • the upper layer may be formed by magnetron sputtering using Ar gas as the notta gas.
  • the target is a Cr target and a CrB target
  • the sputtering gas is Ar gas
  • the Cr target and CrB target are
  • a conductive film may be formed by performing a magnetron sputtering method while adjusting input power and the like.
  • the shape and range of the conductive film 2 formed on the substrate 1 are not particularly limited. However, as described in JP-A-2005-210093, it is preferable not to form a conductive film on the periphery of the substrate because it is possible to suppress film peeling on the conductive film.
  • a pattern is formed on an EUV mask blank, that is, in a mask patterning process, in order to form a fine pattern, a pattern is usually formed using an electron beam drawing technique.
  • a resist for electron beam lithography is applied to the surface of the absorption layer of the EUV master blank, followed by baking, for example, baking at 200 ° C. I do.
  • a resist pattern is formed by irradiating the resist surface with an electron beam using an electron beam drawing apparatus and then developing.
  • the mask patterned by the above procedure is subjected to an exposure process using EUV light. These procedures are performed with the EUV mask blank (or patterned mask) secured to the electrostatic chuck.
  • the substrate temperature rises during the pattern formation and exposure with EUV light.
  • An increase in the temperature of the substrate is not preferable because it may adversely affect pattern accuracy.
  • Various methods for cooling the substrate are conceivable. For example, a method of cooling the substrate by flowing a liquid or gas inside the electrostatic chuck, or a method of flowing a gas through the gap between the pin chuck and the substrate. There is a way to cool the board.
  • it is preferable that the adhesion between the conductive film 2 and the electrostatic chuck is high and the thermal conductivity at the contact portion between the two is high in terms of the cooling efficiency of the substrate.
  • the substrate 1 for film formation is required to satisfy the characteristics as a substrate for EUV mask blank. Therefore, the substrate 1, a low thermal expansion coefficient (0 mechanic 1. 0 X 10- 7 Z ° more preferably it is preferred instrument is a C 0 ⁇ 0. 3 X 10- 7 Z ° c, is further preferable properly 0 ⁇ 0. 2 X 10- 7 Z ° C, more preferably 0 ⁇ 0. 1 X 10- 7 Z ° C, particularly preferably 0 mechanic Has 0. 05 X 10- 7 / ° C ), smoothness, flatness, flatness and resistance to a cleaning liquid to be used like a photomask mask blank or pattern-shaped Narugo.
  • the substrate 1 is a glass having a low thermal expansion coefficient, for example, a SiO-TiO-based glass.
  • the substrate 1 preferably has a smooth surface with an Rms of 0.15 nm or less and a flatness of lOOnm or less because a high reflectivity and transfer accuracy can be obtained in a photomask after pattern formation.
  • the size and thickness of the substrate 1 are appropriately determined according to the design value of the mask.
  • an SiO TiO-based glass having an outer diameter of 6 inches (152.4 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
  • FIG. 2 is a schematic view of the multilayer reflective film-coated substrate of the present invention.
  • a multilayer reflective film 3 is formed on the opposite side of the surface of the substrate 1 where the conductive film 2 is formed.
  • the substrate 1 and the conductive film 2 are those shown in FIG. 1 (the substrate with the conductive film of the present invention).
  • the substrate with a multilayer reflective film of the present invention is obtained by fixing a substrate with a conductive film of the present invention to an electrostatic chuck, and then using a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, It is obtained by depositing the spray film 3.
  • the multilayer reflective film 3 formed on the film-forming surface of the substrate 1 is not particularly limited as long as it has desired characteristics as a multilayer reflective film of the EUV mask blank.
  • the characteristic particularly required for the multilayer reflective film 3 is a film having a high EUV light reflectance. Specifically, it is preferable that the maximum value of the light reflectance near the wavelength of 13.5 nm is 60% or more when the surface of the multilayer reflective film is irradiated with light in the EUV light wavelength region 65% It is more preferable that
  • the multilayer reflective film 3 satisfying the above characteristics includes: a Si ZMo multilayer reflective film in which Si films and Mo films are alternately stacked; a BeZMo multilayer reflective film in which Be films and Mo films are alternately stacked; Si compound ZMo compound multilayer reflective film, Si film, Mo film, and Ru film laminated in this order, SiZMoZRu multilayer reflective film, Si film, R Examples include a SiZRuZMoZRu multilayer reflective film in which a u film, a Mo film, and a Ru film are laminated in this order.
  • the procedure for depositing the multilayer reflective film 3 on the deposition surface of the substrate 1 may be a procedure that is normally performed when the multilayer reflective film is deposited by sputtering.
  • Si targeting Tsu using preparative, Ar gas gas pressure as a sputtering gas 1.
  • 3 X 10- 2 Pa ⁇ 2 as a target. 7 X 10 — 2 Pa was used to form a Si film with an ion acceleration voltage of 300 to 1500 V, a deposition rate of 0.03 to 0.30 nm and a thickness of 4.5 nm, and then Mo as a target. using a target, using an Ar gas (gas pressure 1.
  • the uppermost layer of the multilayer reflective film 3 is preferably a layer made of a material that is not easily oxidized.
  • the layer of material that is not easily oxidized functions as a cap layer of the multilayer reflective film 3.
  • a Si layer can be exemplified as a specific example of a layer of a material that hardly functions to be oxidized and functions as a cap layer.
  • the multilayer reflective film is a SiZMo film
  • the uppermost layer can be made to function as a cap layer by forming the uppermost layer as a Si layer. In that case, the thickness of the cap layer is preferably 11.0 ⁇ 1.Onm.
  • the substrate with a multilayer reflective film of the present invention uses the substrate with a conductive film of the present invention, when the multilayer reflective film is formed by fixing the substrate with a conductive film to an electrostatic chuck, Particles are prevented from being generated by rubbing between the chuck and the conductive film. For this reason, the substrate with a multilayer reflective film of the present invention is an excellent substrate with a multilayer reflective film with very few surface defects due to particles.
  • FIG. 3 is a schematic diagram of the EUV mask blank of the present invention.
  • an absorption layer 4 is provided on the multilayer reflective film 3.
  • the substrate conductive film 2 and the multilayer reflective film 3 are those shown in FIG. 2 (the substrate with the multilayer reflective film of the present invention).
  • the absorbing layer 4 is formed on the multilayer reflective film 3 by using a sputtering method such as a magnetron sputtering method or an ion beam sputtering method. It can be obtained by forming a film.
  • the constituent material of the absorbing layer 4 formed on the multilayer reflective film 3 is a material having a high absorption coefficient for EUV light, specifically Cr, Ta and And nitrides thereof. Among them, TaN is preferable because it becomes amorphous and the surface shape is smooth immediately.
  • the thickness of the absorption layer 4 is preferably 50 to: LOOnm.
  • the method for forming the absorption layer 4 is not particularly limited as long as it is a sputtering method, and may be either a magnetron sputtering method or an ion beam sputtering method.
  • a TaN layer is formed as an absorption layer using an ion beam sputtering method
  • a Ta target is used as a target and N gas (gas pressure 1.3 X 10-2 Pa to 2 as a sputtering gas)
  • a buffer layer capacitor S may exist between the multilayer reflective film 3 and the absorption layer 4.
  • the buffer layer is 10-60nm thick
  • the EUV mask blank of the present invention uses the multilayer reflective film-coated substrate of the present invention, the multilayer reflective film has very few surface defects due to particles. Also, when the absorption layer is formed by fixing the multilayer reflective film-coated substrate to the electrostatic chuck, the generation of particles due to the friction between the electrostatic chuck and the conductive film is prevented. For this reason, the absorption layer also has very few surface defects due to particles. Furthermore, by patterning the EUV mask blank, it is possible to form an EUV mask with few surface defects. By reducing defects, exposure with fewer defects can be performed and semiconductor productivity is excellent.
  • a conductive film 2 (constituent materials: containing Cr and B) is formed on the surface of the substrate 1 by using a magnetron sputtering method. Specifically, using a CrB target, an argon gas atmosphere
  • Magnetron sputtering is performed in an atmosphere to form a conductive film 2 having a thickness of lOOnm.
  • the conditions for forming the conductive film 2 are as follows.
  • Sputtering gas Ar gas (gas pressure: 0.3 Pa)
  • the average B concentration of conductive film 2 is measured using an X-ray photoelectron spectrometer, it is confirmed to be 66 at%.
  • the sheet resistance of conductive film 2 is measured using a four-point probe measuring instrument, it is confirmed to be 20 ⁇ .
  • the smoothness of the surface of the conductive film 2 is measured using an AFM (atomic force microscope), it is confirmed to be 0.5 nm or less.
  • a multilayer reflective film (SiZMo multilayer reflective film) is formed on the opposite side (film formation surface) of the conductive film 2 of the substrate 1 by using an ion beam sputtering method.
  • a SiZMo multilayer reflective film with a total film thickness of 272 nm ((4.5 + 2.3) X 40) is formed by repeating 40 cycles of alternately forming Si and Mo films. To do.
  • a Si layer is deposited as a cap layer to a thickness of 11. Onm.
  • the deposition conditions for the Si film and the Mo film are as follows.
  • Si target (boron doped)
  • Sputtering gas Ar gas (gas pressure 0.02Pa)
  • Sputtering gas Ar gas (gas pressure 0.02Pa)
  • the number of particles in the multilayer reflective film formed by the above procedure is measured using a defect inspection apparatus. As a result, the number of particles was 1.5 Zcm 2 , and it was confirmed that almost no particles were generated when the multilayer reflective film was formed. The number of particles shall be measured with a size of 0.15 m or more.
  • a TaN layer is formed as an absorbing layer for EUV light on the multilayer reflective film (SiZMo multilayer reflective film) formed by the above-described procedure by using an ion beam sputtering method, and EUV
  • TaN layer Target Ta target
  • the number of particles on the surface of the absorption layer of the EUV mask blank obtained by the above procedure is 2.0 Zcm 2 when measured using the same procedure as above, and it is confirmed that the EUV mask blank has few surface defects due to particles. Is done.
  • the conductive film formed on the surface of the glass substrate is the same as Example 1 except that Cr is a constituent material and a conductive film containing B and N.
  • the conditions for forming the conductive film 2 are as follows.
  • Sputtering gas Ar gas, N gas (Ar: 99. 8 vol 0/0, N: 0. 2 vol 0/0, gas pressure: 0. 3 Pa)
  • the average B concentration and the average N concentration in the conductive film 2 were measured in the same procedure as in Example 1, it was confirmed that they were 45 at% and 10 at%, respectively.
  • the sheet resistance of conductive film 2 is measured, it is confirmed to be 80 ⁇ well.
  • the surface hardness of the conductive film 2 is measured, it is confirmed to be 13. OGPa.
  • the compressive stress generated in the conductive film 2 is obtained by measuring the deformation amount (deflection amount) of the substrate using a flatness measuring device. As a result, it is confirmed that the compressive stress generated in the conductive film 2 is 400 MPa.
  • the absorption layer (T aN layer) to form an EUV mask blank.
  • the number of particles on the surface of the absorption layer of the EUV mask blank obtained is measured in the same manner as above, it is 1.5 Zcm 2 , confirming that the EUV mask blank has few surface defects due to particles.
  • the conductive film formed on the glass substrate is a laminated structure (two layers) conductive film (the constituent material is the substrate layer (lower layer) does not contain B, and the surface side The layer (upper layer) contains B.)
  • the constituent material is the substrate layer (lower layer) does not contain B, and the surface side The layer (upper layer) contains B.
  • the film formation conditions for the lower layer and the upper layer are as follows.
  • Sputtering gas Ar gas (gas pressure: 0.3 Pa)
  • Sputtering gas Ar gas (gas pressure: 0.3 Pa)
  • the average B concentration in the upper and lower layers is measured, it is confirmed that the upper layer is 66 at% and the lower layer is Oat%.
  • the sheet resistance of conductive film 2 is measured, it is confirmed to be 20 ⁇ Z port.
  • the surface hardness of the conductive film 2 is measured, it is confirmed to be 22. OGPa.
  • a multilayer reflective film SiZMo multilayer reflective film
  • the number of particles in the multilayer reflective film is measured using a defect inspection apparatus
  • the number of particles is 0.5 Zcm 2 , confirming that almost no particles are generated when the multilayer reflective film is formed.
  • an absorption layer (TaN layer) is formed on the multilayer reflective film formed by the above procedure by the same procedure as in Example 1 to obtain an EUV mask blank.
  • the number of particles on the surface of the absorption layer of the obtained EUV mask blank is measured by the same procedure as above, it is 1.0 Zcm 2 , confirming that the EUV mask blank has few surface defects due to particles.
  • the conductive film 2 formed on the glass substrate is a narrowly-graded composition film (the constituent material is, the glass substrate side portion does not contain B, and the surface side portion has a B average concentration. Except for the conductive film having a structure in which the concentration of B in the conductive film 2 is continuously changed along the thickness direction of the conductive film 2 so as to be high).
  • the conditions for forming the conductive film are as follows. Note that the concentration of B in the conductive film 2 is changed by adjusting the input power of the Cr target and the B target.
  • Sputtering gas Ar gas (gas pressure: 0.3 Pa)
  • Input power 100 to 300W (Cr target), 0 to 300W (CrB target) Deposition rate: 0.
  • the B average concentration of conductive film 2 is 33 at%.
  • the average B concentration in the vicinity of the surface of conductive film 2 (5 nm from the surface) is measured, it is confirmed to be 66 at%.
  • the average B concentration of the conductive film 2 near the substrate (up to 5 nm from the substrate surface) is measured, it is confirmed to be Oat%.
  • the sheet resistance of the conductive film 2 is measured, it is confirmed to be 22 ⁇ Z port.
  • the surface hardness of the conductive film 2 is measured, it is confirmed to be 22. OGPa.
  • the number of particles in the multilayer reflective film is 0.5 / cm 2 , confirming that almost no particles are generated when the multilayer reflective film is formed.
  • an absorption layer (TaN layer) is formed on the multilayer reflective film formed by the above procedure by the same procedure as in Example 1 to obtain an EUV mask blank.
  • Absorption of the resulting EUV mask blank When the number of particles on the surface of the layer is measured in the same procedure as above, it is 1.0 Zcm, confirming that the EUV mask blank has few surface defects due to particles.
  • the comparative example is the same as the example 1 except that the conductive film formed on the glass substrate is a Cr film (containing no B).
  • the conditions for forming the Cr film are as follows.
  • Sputtering gas Ar gas (gas pressure: 0.3 Pa)
  • an absorption layer (TaN layer) is formed on the multilayer reflective film formed by the above procedure by the same procedure as in Example 1 to obtain an EUV mask blank.
  • the number of particles on the surface of the absorption layer of the resulting EUV mask blank is 100 particles / cm 2 or more when measured using the same procedure as above, confirming that the EUV mask blank has a large number of surface defects due to particles.
  • the conductive film contains B at an average concentration of 1 to 70 at%.
  • the surface hardness of the conductive film is higher than that of the comparative example.
  • the multilayer reflective film and EUV mask blank formed using the conductive film substrate of Examples 1 to 4 are the multilayer reflective film and EUV mask blank formed using the conductive film substrate of the comparative example. The generation of particles is greatly reduced compared to the ink.
  • the present invention is suitable as a reflective mask blank for EUV lithography used for semiconductor manufacturing and the like, and as a substrate with a conductive film used for manufacturing the mask blank. It should be noted that the entire contents of the specification, claims, drawings and abstract of the Japanese Patent Application No. 2005-357858, filed on December 12, 2005, are hereby incorporated herein by reference. As it is incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 表面硬度が高められたEUVマスクブランク用の導電膜付基板、ならびに該導電膜付基板を用いた多層反射膜付基板およびEUVマスクブランクを提供する。  EUVリソグラフィ用反射型マスクブランクの製造に使用される導電膜付基板であって、前記導電膜の材料は、Cr、Ti、Zr、Nb、NiおよびVからなる群から選択される少なくとも1つよりなり、前記導電膜は平均濃度1~70at%でB(ホウ素)を含有することを特徴とする導電膜付基板。

Description

EUVリソグラフィ用反射型マスクブランク、および該マスクブランク用の導 電膜付基板
技術分野
[0001] 本発明は、半導体製造等に使用される EUV(Extreme Ultra Violet:極端紫外 )リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブラン ク」という。)、および該マスクブランクの製造に使用される導電膜付基板に関する。 背景技術
[0002] 従来、半導体産業において、 Si基板等に微細なパターンからなる集積回路を形成 する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソ グラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方 で、従来の光露光が露光限界に近づいてきた。光露光の場合、パターンの解像限界 は露光波長の 1Z2程度であり、液浸法を用いても露光波長の 1Z4程度と言われて おり、 ArFレーザ(193nm)の液浸法を用いても 45nm程度が限界と予想される。そ こで 45nm以降の露光技術として、 ArFレーザよりさらに短波長の EUV光を用いた 露光技術である EUVリソグラフィが有望視されている。本明細書において、 EUV光 とは、軟 X線領域または真空紫外線領域の波長の光線をさし、具体的には波長 10〜 20nm程度、特に 13. 5nm±0. 3nm程度の光線を指す。
[0003] EUV光は、あらゆる物質に対して吸収されやすぐかつその時の屈折率が 1に近い ため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使 用することができない。このため、 EUV光リソグラフィでは、反射光学系、すなわち反 射型フォトマスクとミラーとが用いられる。
[0004] マスクブランクは、フォトマスク製造用のパターユング前の積層体である。反射型フ オトマスク用のマスクブランクの場合、ガラス製等の基板上に EUV光を反射する反射 層と、 EUV光を吸収する吸収層とがこの順で形成された構造を有している。反射層と しては、高屈折層と低屈折層とを交互に積層することで、光線を層表面に照射した際 の光線反射率、より具体的には EUV光を層表面に照射した際の光線反射率が高め られた多層反射膜が通常使用される。吸収層には、 EUV光に対する吸収係数の高 い材料、具体的にはたとえば、 Crや Taを主成分とする材料が用いられる。
[0005] 多層反射膜および吸収層は、イオンビームスパッタリング法やマグネトロンスパッタリ ング法を用いて成膜される。多層反射膜および吸収層を成膜する際、基板は支持手 段によって支持される。基板の支持手段として、機械的チャックおよび静電チャックが あるが、発塵性の問題から、静電チャックが好ましく用いられる。また、マスクパター二 ングプロセス時、あるいは露光時のマスクハンドリングの際にも、基板の支持手段とし て静電チャックが用いられる。しかし、ガラス基板のように、誘電率および導電率の低 い基板の場合、例えばシリコンウェハの場合と同程度のチャック力を得るには、高電 圧を印加する必要があるため、絶縁破壊を生じる危険性がある。
このような問題を解消するため、特許文献 1には、基板の静電チヤッキングを促進 する層として、通常の Cr以外の材料、例えば Si, Mo,ォキシ窒化クロム(CrON)、 又は TaSiのような、ガラス基板よりも高!、誘電率および高!、導電率の物質の裏面コ 一ティング (導電膜)を有するマスク基板が記載されて 、る。
[0006] し力しながら、特許文献 1に記載のマスク基板は、ガラス基板に対する CrON膜の 付着力が弱いので、多層反射膜や吸収層を成膜する際に、ガラス基板と CrON膜と の間で膜剥れが生じてパーティクルが発生するという問題を有している。特に、静電 チャックと CrON膜と、の境界近傍では、基板回転による静電チャックとの境界近傍 に加わる力が原因で、膜剥れが発生しやすい。
また特許文献 1に記載のマスク基板は、基板の面取面と側面を含む片面全面に導 電膜が形成されているので、とりわけ基板の面取面と側面は、面取面と側面に導電 膜が斜めに形成されることによる膜付着力が特に弱い状況において、静電チャック時 の基板の反りなどにより、膜剥れが発生しやすい。
また特許文献 1に記載のマスク基板では、 CrONの導電膜の表面には酸素(O)が 含まれているので、成膜条件によっては多層反射膜や吸収体膜の成膜時に異常放 電が起きることがある。
[0007] このような静電チャック時 (成膜時)に導電膜の膜剥れや、成膜時の異常放電による パーティクルが発生すると、製品(多層反射膜付き基板、露光用反射型マスクブラン ク、露光用反射型マスク)における欠陥が多ぐ高品質の製品が得られない。従来の 露光用透過型マスクを用いたパターン転写の場合には、露光光の波長が紫外域(1 57〜248nm程度)と比較的長いため、マスク面に凹凸欠陥が生じても、これが重大 な欠陥とまではなりにく 、。そのため従来では成膜時のパーティクルの発生は課題と しては格別認識されていなカゝつた。しカゝしながら、 EUV光のような短波長の光を露光 光として用いる場合には、マスク面上の微細な凹凸欠陥があっても、転写像への影 響が大きくなるため、パーティクルの発生は無視できない。
[0008] 上記の問題点を解決するため、特許文献 2は、導電膜を設けた基板の静電チャック 時の導電膜の膜剥れや異常放電によるパーティクルの発生を抑制した多層反射膜 付き基板、パーティクルによる表面欠陥の少な 、高品質の露光用反射型マスクブラ ンク、及びパーティクルによるパターン欠陥のない高品質の露光用反射型マスクを提 供する。
特許文献 2に記載の多層反射膜付き基板では、基板周縁部における導電膜の膜 剥れによるパーティクルの発生を防止するため、基板の少なくとも周縁部を除く領域 に導電膜が形成されている。また、特許文献 2に記載の多層反射膜付き基板では、 多層反射膜や吸収体膜の成膜の際、異常放電の発生を防止するため、静電チャック 時に接触する導電膜表面を実質的に酸素 (O)を含まなヽ金属窒化膜として 、る。ま た、特許文献 2に記載の多層反射膜付き基板では、基板に対する導電膜の密着力 並びに静電チャックと基板との密着力の双方を向上させ、導電膜の膜剥れによるパ 一ティクルの発生、或いは、静電チャックと基板との密着力不足により生じる静電チヤ ックと基板との擦れによるパーティクルの発生を防止するため、導電膜を形成する材 料を導電膜の膜厚方向で変えて組成が異なっている。すなわち、導電膜のうち基板 側には、窒素 (N)を含み、導電膜のうち表面側には、酸素(O)及び炭素(C)の少な くとも何れか一方を含む構成として 、る。
[0009] すなわち、特許文献 2に記載の多層反射膜付き基板は、下記(1)〜 (4)により成膜 時のパーティクルの発生を防止して 、る。
(1)基板周縁部に導電膜を形成しないことで、基板周縁部における導電膜の膜剥れ を防止する。 (2)成膜時の異常放電の発生を防止することにより、成膜時のパーティクルの発生を 防止する。
(3)基板に対する導電膜の密着力を向上させることにより、成膜時の導電膜の膜剥 れによるパーティクルの発生を防止する。
(4)静電チャックと基板との密着力を向上させることにより、静電チャックと基板との密 着力不足により生じる静電チャックと基板との擦れによるパーティクルの発生を防止 する。
[0010] 特許文献 1 :特表 2003— 501823号公報
特許文献 2:特開 2005— 210093号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明者らは、成膜時のパーティクルの発生、特に、静電チャックと基板との擦れ によるパーティクルの発生を防止するには、導電膜の表面硬度を高めることが有効で あることを見出した。本発明は、上記の知見に基づいてなされたものであり、導電膜と しての特性を損なうことなしに、表面硬度が高められた EUVマスクブランク用の導電 膜付基板を提供することを目的とする。
また、本発明は、基板との密着性、および表面硬度の双方が高められた導電膜付 基板を提供することを目的とする。
また、本発明は、 EUVマスクブランクの製造の際、スパッタリング法で成膜された膜 で発生する応力による基板の変形を防止できる導電膜付基板を提供することを目的 とする。
また、本発明は、該導電膜付基板を用いた EUVマスクブランクの多層反射膜付基 板、および EUVマスクブランクを提供することを目的とする。
課題を解決するための手段
[0012] 上記目的を達成するため、本発明は、 EUVリソグラフィ用反射型マスクブランクの 製造に使用される導電膜付基板であって、前記導電膜の主材料は、 Cr、 Ti、 Zr、 Nb 、 Niおよび V力もなる群力も選択される少なくとも 1つよりなり、前記導電膜は平均濃 度 1〜70^%で (ホウ素)を含有することを特徴とする導電膜付基板 (以下、本明細 書において、「本発明の導電膜付基板」という。)を提供する。
[0013] 本発明の導電膜付基板において、前記導電膜は、基板側における B平均濃度が 低ぐ表面側における B平均濃度が高くなるように、導電膜中の Bの濃度が該導電膜 の厚さ方向に沿って変化した傾斜組成膜であることが好ま U、。
[0014] 本発明の導電膜付基板にお!ヽて、前記傾斜組成膜は、前記基板側の面から膜厚 5nmまでの部分の B平均濃度が 15at%以下であり、表面から少なくとも膜厚 5nmま での部分の B平均濃度が l〜70at%であることが好ましい。
[0015] 本発明の導電膜付基板において、前記導電膜は、さらに平均濃度 l〜60at°/c^N を含有してもよい。
[0016] 導電膜が Nを含有する場合、前記導電膜は、表面カゝら少なくとも膜厚 5nmまでの部 分の N平均濃度が 10at%以下であることが好ましい。
[0017] 本発明の導電膜付基板において、前記導電膜は、シート抵抗値が 0. 1〜: ίΟΟ Ω / 口であることが好ましい。
[0018] また、本発明は、本発明の導電膜付基板の前記導電膜が設けられた面に対して、 反対側に多層反射膜を形成してなる EUVマスクブランクの多層反射膜付基板 (以下
、本明細書において、「本発明の多層反射膜付基板」という。)を提供する。
[0019] また、本発明は、本発明の多層反射膜付基板の多層反射膜上に吸収層を形成し てなる EUVマスクブランク(以下、本明細書において、「本発明の EUVマスクブラン ク」という。)を提供する。
発明の効果
[0020] 本発明の導電膜付基板は、導電膜として要求される特性、具体的には、シート抵抗 100 Ω以下でありながら、導電膜の表面硬度が高いという特性を有している。このた め、該導電膜付基板を静電チャックに固定して EUVマスクブランクの製造に使用し た際に、静電チャックと導電膜との擦れによってパーティクルが発生することが防止さ れている。
また、本発明の導電膜付基板は、導電膜の結晶構造のアモルファス化によって、導 電膜表面が平滑性に優れている。このこともまた、静電チャックと導電膜との擦れによ るパーティクルの発生防止に寄与する。 [0021] さらに、この優れた平滑性により、静電チャックとの密着性が良好となり、静電チヤッ クによるチャック力も向上する。
静電チャックとの密着性が良好であることにより、導電膜付基板力 静電チャックへ の熱伝導性が向上する。これにより、マスクパターユングプロセス時、あるいは露光時 の基板冷却性能が向上する。
また、アモルファス化によって、導電膜が酸化されにくくなるため、導電膜中の応力 の経時変化が小さい。その結果、ノターン精度の悪ィ匕が起こりに《なり、マスクとし ての寿命が長くなることが期待される。
[0022] 導電膜が傾斜組成膜である本発明の導電膜付基板は、導電膜の表面側における
B平均濃度が高いため、導電膜の表面硬度が高ぐ導電膜表面が平滑性に優れて いる。このため、該導電膜付基板を静電チャックに固定して EUVマスクブランクの製 造に使用した際に、静電チャックと導電膜との擦れによってパーティクルが発生する ことが防止されている。一方、導電膜の基板側における B平均濃度が低いため、導電 膜の基板との密着性が向上することが期待される。
[0023] 導電膜に Nを含有された本発明の導電膜付基板を用いれば、 EUVマスクブランク の製造時、スパッタリング法を用いて成膜された膜、具体的には多層反射膜、キヤッ プ層、バッファ層または吸収層で発生した応力による基板の変形を防止することがで きる。
図面の簡単な説明
[0024] [図 1]図 1は、本発明の導電膜付基板の模式図である。
[図 2]図 2は、本発明の多層反射膜付基板の模式図である。
[図 3]図 3は、本発明の EUVマスクブランクの模式図である。
符号の説明
[0025] 1 :基板
2 :導電膜
3 :多層反射膜
4 :吸収層
発明を実施するための最良の形態 [0026] 以下、図面を参照して本発明を説明する。図 1は、本発明の導電膜付基板の模式 図である。図 1において、成膜用の基板 1の一方の面には導電膜 2が形成されている 。基板 1に多層反射膜および吸収層を成膜する際、基板 1は導電膜 2を介して静電 チャックに固定される。後で述べるように、多層反射膜および吸収層は、基板 1の導 電膜 2が形成されている面に対して反対側 (成膜面)に成膜される。要するに、導電 膜 2は、基板 1の成膜面に対して裏面側に形成されている。
[0027] 本発明の導電膜付基板にお!、て、導電膜 2は Cr、 Ti、 Zr、 Nb、 Niおよび Vからな る群力 選択される少なくとも 1つを主たる構成材料とする。以下、本明細書において 、「導電膜 2の構成材料」といった場合、 Cr、 Ti、 Zr、 Nb、 Niおよび Vのことを指す。 Cr、 Ti、 Zr、 Nb、 Niおよび Vは電気伝導率が高いため、導電膜 2の構成材料として 好適である。
導電膜 2は、 Cr、 Ti、 Zr、 Nb、 Niおよび Vのうち、 2つ以上を構成材料としてもよい 。但し、通常は、 Cr、 Ti、 Zr、 Nb、 Niおよび Vのうち、いずれか 1つを構成材料とする
[0028] 本発明の導電膜付基板において、導電膜 2は平均濃度 1〜70^%で (ホウ素)を 含有する。よって、導電膜 2は、導電膜 2の構成材料と、 Bと、力もなる膜である。
導電膜 2において、 Bは導電膜 2の構成材料である Cr、 Ti、 Zr、 Nb、 Niまたは Vと 化合物(CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )を形成する。但し、本発明の導
2 2 2 2 2 2
電膜付基板において、導電膜 2の構成材料 (Cr、 Ti、 Zr、 Nb、 Nほたは V)が全て、 Bと化合物(CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )を形成していることもあるが
2 2 2 2 2 2
、導電膜 2が、構成材料 (Cr、 Ti、 Zr、 Nb、 Nほたは V)と、構成材料と Bとの化合物( CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )と、が混在した状態となっていることもあ
2 2 2 2 2 2
る。本発明においては、混在した状態であることが好ましい。
[0029] 本明細書において、導電膜 2の Bの濃度といった場合、導電膜 2中に存在する Bの 原子濃度を意味する。導電膜 2の Bの濃度は、例えば、 X線光電子分光装置 (X-my Photoelectron Spectrometer)によって測定することができる。
[0030] 導電膜 2が平均濃度 1〜70^%で を含有するといつた場合、導電膜 2全体として みた場合に、平均濃度 1〜70^%で を含有していればよぐ導電膜 2の全ての部 位で Bを l〜70at%の濃度で含有していなくてもよい。例えば、導電膜 2全体として みた場合に、平均濃度 1〜70^%で を含有している限り、導電膜 2には Bの濃度が lat%未満の部分が存在してもよぐさらに導電膜 2中には Bを含まな 、部分が存在 してちよい。
なお、導電膜 2の Bの平均濃度は X線光電子分光装置によって、膜を表面からスパ ッタし、深さ方向のプロファイルを測定することで見積もることができる。
[0031] 導電膜 2が上記濃度で Bを含有することで以下の効果を生じる。
導電膜 2の構成材料 (Cr、 Ti、 Zr、 Nb、 Mまたは V)と、 Bと、が硬度の高い化合物( CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )を形成することによって、導電膜 2の硬
2 2 2 2 2 2
度、特に表面硬度が高くなる。この結果、該導電膜付基板を静電チャックに固定して
EUVマスクブランクの製造に使用した際に、静電チャックと導電膜 2との擦れによつ てパーティクルが発生することが防止される。また、構成材料 (Cr、 Ti、 Zr、 Nb、 Mま たは V)と、 Bと、が化合物(CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )を形成するこ
2 2 2 2 2 2
とによって、導電膜 2の結晶構造がアモルファス化する。結晶構造のアモルファス化 によって、導電膜 2の表面の平滑性が高くなる。このこともまた、静電チャックと導電膜 との擦れによるパーティクルの発生防止に寄与する。
[0032] 導電膜 2の結晶構造のアモルファス化により、さらに以下の効果が期待される。
導電膜 2表面の平滑性が高くなることによって、静電チャックとの密着性が良好とな る。この結果、静電チャック〖こよるチャック力ち向上する。
また、静電チャックとの密着性が良好となることにより、導電膜 2から静電チャックへ の熱伝導性、ひいては基板 1から静電チャックへの熱伝導性が向上する。これにより 、マスクパター-ングプロセス時、あるいは露光時の基板冷却性能が向上する。
また、アモルファス化によって、導電膜 2が酸化されにくくなるため、導電膜 2中の応 力の経時変化が小さい。その結果、ノターン精度の悪ィ匕が起こりに《なり、マスクと しての寿命が長くなることが期待される。
[0033] 導電膜 2の B平均濃度が lat%未満もしくは 70at%超である場合、上記の効果、す なわち、導電膜 2の硬度 (特に、導電膜 2の表面硬度)を高める効果、および導電膜 2 表面の平滑性を高める効果を十分発揮することができない。 導電膜 2での B平均濃度は、 30〜70at%であることがより好ましぐ 50〜68at%で あることがさらに好ましい。
[0034] 導電膜 2は、 Cr、 Ti、 Zr、 Nb、 Niおよび Vの中でも、 Crで構成されていることが、電 気抵抗率が低いため、導電膜 2のシート抵抗を 100 ΩΖ口以下、特に 50 ΩΖロ以 下とするのに好適であること、安価であること、基板 1との密着性に優れていること、お よびマスク材料として広く使用されているため成膜に関する知見がかなり蓄積されて いることから好ましい。なお、導電膜に Bを添加していくと抵抗値は上昇している方向 となるが、 EUV用の静電チャックとして用いる場合においては、その精密性の点で、 抵抗値よりも成膜時のパーティクルの発生を防止することが重要である。
[0035] 上記したように、導電膜 2全体としてみた場合に、平均濃度 1〜70^%で を含有 している限り、導電膜 2には Bの濃度が lat%未満の部分が存在してもよぐ Bを含ま ない部分が存在してもよい。すなわち、導電膜 2において、 Bは特定の部位に偏在し ていてもよい。例えば、導電膜 2の基板 1側に Bが偏在していてもよい。この場合、導 電膜 2の基板側における B平均濃度が高くなつており、表面側における B平均濃度が 低くなつている。その反対に、導電膜 2の表面側に Bが偏在していてもよい。この場合 、導電膜 2の基板 1側における B平均濃度が低くなつており、表面側における B平均 濃度が高くなつている。ここで、導電膜 2の表面とは、図 1における導電膜 2の表面、 すなわち、導電膜 2の基板 1と接する側の面 (基板 1側の面)とは裏面側にあって、導 電膜付基板を静電チャックで固定する際に、静電チャックと接する側の面のことを指 す。
[0036] 但し、本発明の導電膜付基板において、導電膜 2に Bを含有させることによって生じ る効果、すなわち、導電膜 2の表面硬度を高める効果、および導電膜 2表面の平滑 性を高める効果、をより効果的に発揮させるためには、導電膜 2は、基板 1側におけ る B平均濃度が低ぐ表面側における B平均濃度が高くなるように、導電膜 2中の Bの 濃度が該導電膜 2の厚さ方向に沿って変化した傾斜組成膜 (以下、本明細書におい て、「傾斜組成膜」という。)であることが好ましい。
本明細書において、「傾斜組成膜」といった場合、基板 1側における B平均濃度が 低ぐ表面側における B平均濃度が高くなるように、導電膜 2中の Bの濃度が該導電 膜 2の厚さ方向に沿って連続的に変化した構造の導電膜 (以下、「狭義の傾斜組成 膜」ともいう。)だけではなぐ表面側に Bが偏在した構造の導電膜を広く含む。したが つて、 B平均濃度が異なる複数の層が積層した構造の導電膜 (以下、「積層構造の導 電膜」ともいう。)であってもよい。但し、この場合、基板側の層が B平均濃度の低い層 、表面側の層が B平均濃度の高い層となるように積層されている。なお、積層構造の 導電膜において、層数は特に限定されない。したがって、 2層であってもよぐ 3層以 上であってもよい。
[0037] なお、導電膜 2全体としてみた場合に、平均濃度 1〜70^%で を含有している限 り、傾斜組成膜は、基板 1側に Bを含まない部分を有していてもよい。この場合、狭義 の傾斜組成膜は、以下の構造となる。
•導電膜 2の基板 1付近の部分は Bを含有しない。
•導電膜 2の基板 1付近以外の部分は Bを含有する。
•導電膜 2中の Bの濃度は、導電膜 2の厚さ方向に沿って連続的に変化する。
•導電膜 2全体としてみた場合、平均濃度 1〜70 %で を含有する。
一方、導電膜 2が積層構造 (2層)である場合、以下の構造となる。
•導電膜 2の基板 1側の層は Bを含有しな 、。
•導電膜 2の表面側の層は Bを含有する。
•導電膜 2全体としてみた場合、平均濃度 1〜70 %で を含有する。
また、導電膜 2が 3層以上の積層構造である場合、以下の構造となる。
•導電膜 2の最も基板 1側の層は Bを含有しな 、。
•導電膜 2の最も基板 1側の層以外の層は Bを含有する。
•Bを含有する層は、基板 1側から表面側へと B平均濃度が高くなるように積層されて いる。
•導電膜 2全体としてみた場合、平均濃度 1〜70 %で を含有する。
[0038] 上記したように、本発明の導電膜付基板では、導電膜 2が Bを含有することにより、 導電膜 2の硬度 (特に、表面硬度)を高める効果および導電膜 2表面の平滑性を高め る効果が発揮される。傾斜組成膜では、導電膜 2の表面側の B平均濃度が高いため 、これらの効果がより効果的に発揮される。さらに、導電膜 2の基板側の B平均濃度 は低ぐ Cr濃度が高いため、基板 1との密着性も良好である。
[0039] 傾斜組成膜において、基板 1側の面力 膜厚 5nmまでの部分 (以下、本明細書に おいて、「基板近傍部分」という。)の 平均濃度が 15at%以下であることが好ましい 。基板近傍部分の B平均濃度が 15at%以下であれば、基板 1との密着性に優れて いる。基板近傍部分の B平均濃度が 10at%以下であることがより好ましぐ 5&%以 下であることがさらに好ましぐ基板近傍部分が実質的に Bを含有しないことが特に好 ましい。
また、導電膜2の全膜厚を L (nm)とした場合、上記した基板近傍部分は基板 1側の 面から 0. 05Lの部分であることが好ましい。
[0040] 傾斜組成膜において、表面力 少なくとも膜厚 5nmまでの部分 (以下、本明細書に おいて、「表面近傍部分」という。)の 平均濃度が l〜70at%であることが好ましい。 表面近傍部分の B平均濃度が l〜70at%であれば、導電膜 2が表面硬度に優れて おり、導電膜 2表面が平滑性に優れている。表面近傍部分の B平均濃度が 10〜70a t%であることがより好ましぐ 30〜68at%であることがさらに好ましい。
傾斜組成膜において、表面近傍部分は表面力も少なくとも膜厚 50nmまでの部分 であることが好ましぐ少なくとも膜厚 90nmまでの部分であることがさらに好ましい。 また、導電膜 2の全膜厚を L (nm)とした場合、上記した表面近傍部分は表面から 少なくとも 0. 05Lの部分であることが好ましぐ表面力も少なくとも 0. 1Lの部分である ことがさらに好ましい。
また、本発明の導電膜中に含まれる酸素濃度は、 5at%以下であることが好ましい 。酸素の含有量が多すぎると、反射多層膜や吸収層を成膜する場合に異常放電が 起こる可能性があり、好ましくない。なお、導電膜の表面は、静電チャックの影響がな いレベルで、膜表面力も 5nm程度は自然酸化されることにより酸素濃度が上昇する。 よって、本願における酸素濃度は、膜表面から 5nm程度の部分は除外して測定した 値である。
[0041] 本発明の導電膜付基板において、導電膜 2の膜厚 Lは、 10〜500nmであることが 好ましい。導電膜 2の膜厚 Lが lOnm未満であると、導電膜 2の膜厚が少ないため、 導電膜付基板を静電チャックに固定した際にチャック力が不足するおそれがある。ま た、導電膜付基板を静電チャックに固定し、高電圧を引加した際に基板 1が絶縁破 壊するおそれがある。
導電膜 2の膜厚 Lが 500nm超である場合、チャック力の向上にはもはや寄与せず 、導電膜 2の形成に要する時間が増加し、導電膜 2の形成に要するコストが増加する 。また、導電膜 2の膜厚が必要以上に大きくなるため、膜剥れが発生するおそれが増 加する。
導電膜 2の膜厚は、 50〜400nmであることがより好ましぐ 50〜200nmであること 力 Sさらに好ましぐ 50〜: LOOnmであることが特に好ましい。
[0042] 導電膜 2は、表面硬度が 12GPa以上であることが好ましい。導電膜 2の表面硬度が 12GPa以上であれば、導電膜 2が表面硬度に優れており、導電膜付基板を静電チ ャックに固定して EUVマスクブランクの製造に使用した際に、静電チャックと導電膜と の擦れによってパーティクルが発生することを防止する効果に優れている。ここで、導 電膜 2の表面硬度の測定方法は特に限定されず、公知の方法、具体的には例えば、 ビッカース硬さ試験、ロックウェル硬さ試験、ブリネル硬さ試験、ナノインデンテーショ ン試験等を用いることができる。これらの中でも、ナノインデンテーション試験は、薄膜 の表面硬度を測定する際に広く使用される。なお、後述する実施例では、ナノインデ ンテーシヨン試験により導電膜 2の表面硬度を測定した。
導電膜 2の表面硬度は、 20GPa以上であることがより好ま 、。
[0043] 導電膜 2表面は、平滑性に優れることが好ましい。具体的には、導電膜 2表面の平 滑性は、 Rms (二乗平方根粗さ)で 0. 5nm以下であることが好ましい。導電膜 2の表 面の平滑性が Rmsで 0. 5nm以下であれば、導電膜付基板を静電チャックに固定し て EUVマスクブランクの製造に使用した際に、静電チャックと導電膜 2との擦れによ つてパーティクルが発生することを防止する効果に優れている。
[0044] 本発明の導電膜付基板では、導電膜 2中に Nを含有させることによって、導電膜 2 で発生する応力(具体的には、圧縮応力)を高めることができる。
本発明の導電膜付基板では、導電膜 2の構成材料 (Cr、 Ti、 Zr、 Nb、 Nほたは V) と、 Bと、が化合物(CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )を形成することによ
2 2 2 2 2 2
つて、結晶構造がアモルファス化する。結晶構造がアモルファス化した場合、導電膜 2で発生する応力が低下する。導電膜 2で発生する応力の低下は、基板 1に対する 導電膜 2の密着性を向上させるため、一般的には好ましい特性である。但し、本発明 の導電膜付基板では、以下に述べるように、導電膜 2で発生する応力を高めることが 好ましい場合がある。
導電膜 2の構成材料(Cr、 Ti、 Zr、 Nb、 Mまたは V)と、 Bと、が化合物(CrB、 TiB
2 2
、 ZrB、 NbB、 NiBまたは VB )を形成することによって、結晶構造がアモルファス
2 2 2 2
化した導電膜 2に Nを含有させた場合、導電膜 2中に結晶相(BN相、 CrN相(導電
2 膜 2の構成材料が Crの場合))が生じ、導電膜 2の体積が増加するため、導電膜 2中 の圧縮応力が高まる。
[0045] EUVマスクブランクの製造時、基板上には多層反射膜が成膜される。該多層反射 膜上には吸収層が成膜される。多層反射膜と吸収層との間には、バッファ層が成膜 される場合もある。これらの成膜には、通常マグネトロンスパッタリング法やイオンビー ムスパッタリング法といったスパッタリング法が使用される。スパッタリング法を用いて 成膜された膜では、応力(通常は圧縮応力)が発生する場合がある。
例えば、基板上に多層反射膜として、 Si膜 (低屈折率層、膜厚 4. 5nm)と、 Mo膜( 高屈折率層、膜厚 2. 3nm)と、を交互に 40〜50層成膜して、 SiZMo多層反射膜 を成膜した場合、成膜後の多層反射膜では 400〜500MPaの圧縮応力が発生する
[0046] スパッタリング法を用いて成膜する際、基板は静電チャックによって固定されている 成膜された膜で応力が発生したとしても、静電チャックに固定されている状態ではこ の応力によって基板は変形しない。しカゝしながら、基板を静電チャックから取り外すと 、膜で発生している応力によって基板が変形するおそれがある。上記したように、多 層反射膜で 400〜500MPaという大きな圧縮応力が発生した場合、高い剛性を有す る石英ガラス基板であってもある程度変形する。例えば、 EUVマスクブランク用の基 板として、一般的に使用される SiO -TiO系のガラス基板 (外形 6インチ(152. 4m
2 2
m)角、厚さ 6. 3mm、熱膨張率 0. 2 X 10"V°C,ヤング率 67GPa、比剛性 3. 1 X 1 07mVs2)に、成膜後の多層反射膜で発生した 400〜500MPaの圧縮応力が加わ つた場合、基板は成膜面側に 2 m程度凸状に反った状態に変形する。
EUVマスクブランクにお 、て、平坦度の許容限界値はマスクブランクの端力 端ま でで lOOnm以下である。基板が成膜面 (多層膜面)側に 2 m程度凸状に反った状 態に変形した場合、基板の平坦度は少なくとも 程度になっているため、上記許 容限界値を満たすことができな 、。
[0047] 基板 1の成膜面に対して裏面側に形成される導電膜 2で発生する圧縮応力を高め ておけば、基板 1の成膜面にスパッタリング法を用いて成膜される膜で発生する応力 によって、基板 1が変形するのを防止することができる。すなわち、基板 1の成膜面に スパッタリング法を用いて成膜される膜、すなわち、多層反射膜および吸収層、なら びに任意に形成されるノ ッファ層、で発生する応力は、通常圧縮応力である。このた め、基板 1の裏面側に形成される導電膜 2で発生する圧縮応力を高めておけば、多 層反射膜等で発生する圧縮応力を、導電膜 2で発生する圧縮応力によって打ち消 すことが可能であり、基板 1の変形量を低減することが期待される。
[0048] 本発明の導電膜付基板において、導電膜 2には平均濃度 l〜60at% Nを含有さ せることができる。ここで、導電膜 2の Nの濃度といった場合、導電膜 2中に存在する Nの原子濃度を意味する。導電膜 2の Nの平均濃度は X線光電子分光装置によって 、膜を表面からスパッタし、深さ方向のプロファイルを測定することで見積もることがで きる。導電膜 2の N平均濃度が lat%未満である場合、導電膜 2で発生する圧縮応力 を十分高くすることができな 、。
導電膜 2での N平均濃度を高くすると、それに応じて導電膜 2で発生する圧縮応力 が増加する。し力しながら、導電膜 2の N平均濃度が高くなると、それに応じて導電膜 の硬度が低下する。導電膜 2の N平均濃度が 60at%超であると、導電膜 2の硬度 (特 に、表面硬度)が不十分となる。
[0049] 一方、導電膜 2が平均濃度 l〜60at% Nを含有する場合、導電膜 2で発生する 圧縮応力が多層反射膜や吸収層で発生する圧縮応力を打ち消すことによって、基 板 1の変形量が低減され、基板 1の変形量をゼロとすることも可能である。例えば、 B 平均濃度 30〜66at%、 N平均濃度 5〜20at%、膜厚 100〜150nmの導電膜では 200〜400GPaの圧縮応力が発生する。上記したように、基板上に成膜された多層 反射膜では、 400〜500MPaの圧縮応力が発生する場合がある。導電膜で 200〜4 OOGPaの圧縮応力を発生させれば、多層反射膜で発生した圧縮応力を打ち消して 、基板 1の変形量をゼロにすることができると考えられる。
[0050] 導電膜 2が平均濃度 l〜60at% Nを含有するとは、導電膜 2全体としてみた場合 に、平均濃度 l〜60at% Nを含有していればよぐ導電膜 2の全ての部位で Nを 1 〜60at%の濃度で含有していなくてもよい。例えば、導電膜 2全体としてみた場合に 、平均濃度 1〜60 %で?^を含有している限り、導電膜 2には Nの濃度が lat%未満 の部分が存在してもよく、 Nを含まな 、部分が存在してもよ!/、。
[0051] 上記したように、導電膜 2に Nを含有させた場合、導電膜 2で発生する圧縮応力が 高くなるが、その一方で、導電膜 2の硬度 (特に、表面硬度)が低下する。このため、 導電膜 2の表面近傍部分 (表面力 少なくとも膜厚 5nmまでの部分)は、 N平均濃度 が 10at%以下であることが好ま 、。導電膜 2の表面近傍部分の N平均濃度を lOat %以下とすることにより、導電膜 2の表面硬度の低下を軽減することができる。導電膜 2の表面近傍部分は、実質的に Nを含有しな 、ことが好ま 、。
[0052] 本発明の導電膜付基板において、導電膜 2は、公知の成膜方法、例えば、マグネト ロンスノッタリング法、ィ才ンビームスノ ッタリングと ヽつたスノッタリング法、 CVD法、 真空蒸着法、電解メツキ法を用いて形成することができる。例えば、構成材料が Crで あって、 Bを含有する導電膜を形成する場合、ターゲットを CrBターゲットとし、スパッ
2
タガスを Arガスとして、マグネトロンスパッタリング法を用いて導電膜を成膜すればよ い。また、構成材料力Crであって、 Bおよび Nを含有する導電膜を形成する場合、タ 一ゲットを CrBターゲットとし、スパッタガスを Arガスおよび Nガスとして、マグネトロ
2 2 ンスパッタリング法を実施して、導電膜を成膜すればよい。また、積層構造 (2層構造 、構成材料が であって、下層は Bを含有せず、上層は Bを含有する)の導電膜を形 成する場合、ターゲットを Crターゲットとし、スパッタガスを Arガスとして、マグネトロン スパッタリング法を実施して、下層を成膜した後、ターゲットを CrBターゲットとし、ス
2
ノッタガスを Arガスとして、マグネトロンスパッタリング法を実施して、上層を成膜すれ ばよい。また、狭義の傾斜組成膜を形成する場合、ターゲットを Crターゲットおよび C rBターゲットとし、スパッタガスを Arガスとして、 Crターゲットおよび CrBターゲットの 投入電力等を調節しながら、マグネトロンスパッタリング法を実施して、導電膜を成膜 すればよい。
[0053] 本発明の導電膜付基板において、基板 1上に形成する導電膜 2の形状および範囲 は特に限定されない。但し、特開 2005— 210093号公報に記載されているように、 基板の周縁部には導電膜を形成しないことが、導電膜での膜剥れを抑制できること 力 好ましい。
[0054] EUVマスクブランクにパターン形成する際、すなわち、マスクパターユングプロセス の際、微細なパターンを形成するために、通常は電子ビーム描画技術を用いてバタ ーン形成を行う。
電子ビーム描画技術を用いたパターン形成をするためには、まず初めに、 EUVマ スタブランクの吸収層表面に電子ビーム描画用のレジストを塗布し、ベーキング処理 、たとえば 200°Cでべ一キング処理を行う。次に、レジスト表面上に電子ビーム描画 装置を用いて電子ビームを照射し、その後現像することでレジストパターンを形成す る。上記手順でパターン形成されたマスクは、 EUV光を用いた露光プロセスに供さ れる。これらの手順は、 EUVマスクブランク (またはパターン形成されたマスク)を静 電チャックに固定した状態で実施される。
上記のパターン形成や EUV光による露光の際、基板の温度が上昇する。基板の 温度上昇はパターン精度に悪影響を及ぼすおそれがあることから好ましくない。この ため、ノターン形成の際に基板を冷却することが検討されている。基板の冷却方法と しては、様々な方法が考えられるが、例えば、静電チャック内部に液体や気体を流通 させて基板を冷却する方法、ピンチャックと基板との空隙部分に気体を流通させて基 板を冷却する方法がある。これらの方法において、基板の冷却効率という点から、導 電膜 2と静電チャックとの密着性が高く、両者の接触部での熱伝導性が高!ヽことが好 ましい。
[0055] 本発明の導電膜付基板において、成膜用の基板 1は、 EUVマスクブランク用の基 板としての特性を満たすことが要求される。そのため、基板 1は、低熱膨張係数 (0士 1. 0 X 10— 7Z°Cであることが好ましぐより好ましくは 0±0. 3 X 10— 7Z°c、さらに好ま しくは 0±0. 2 X 10— 7Z°C、さらに好ましくは 0±0. 1 X 10— 7Z°C、特に好ましくは 0士 0. 05 X 10—7/°C)を有し、平滑性、平坦度、およびマスクブランクまたはパターン形 成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基 板 1としては、具体的には低熱膨張係数を有するガラス、例えば SiO— TiO系ガラ
2 2 ス等を用いるが、これに限定されず、)8石英固溶体を析出した結晶化ガラスや石英 ガラスやシリコンや金属などの基板を用いることもできる。
基板 1は、 Rmsが 0. 15nm以下の平滑な表面と lOOnm以下の平坦度を有してい ることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られる ために好ましい。
基板 1の大きさや厚みなどはマスクの設計値等により適宜決定されるものである。後 で示す実施例では外形 6インチ(152. 4mm)角で、厚さ 0. 25インチ(6. 3mm)の S iO TiO系ガラスを用いた。
2 2
次に、本発明の多層反射膜付基板について説明する。図 2は、本発明の多層反射 膜付基板の模式図である。図 2において、基板 1の導電膜 2が形成された面に対して 反対側に多層反射膜 3が形成されている。ここで、基板 1および導電膜 2は、図 1に示 したもの (本発明の導電膜付基板)である。本発明の多層反射膜付基板は、本発明 の導電膜付基板を静電チャックに固定した後、マグネトロンスパッタリング法やイオン ビームスパッタリング法といったスパッタリング法を用いて、基板 1の成膜面に多層反 射膜 3を成膜することによって得られる。
基板 1の成膜面に成膜される多層反射膜 3は、 EUVマスクブランクの多層反射膜と して所望の特性を有するものである限り特に限定されない。ここで、多層反射膜 3に 特に要求される特性は、高 EUV光線反射率の膜であることである。具体的には、 EU V光の波長領域の光線を多層反射膜表面に照射した際に、波長 13. 5nm付近の光 線反射率の最大値が 60%以上であることが好ましぐ 65%以上であることがより好ま しい
上記の特性を満たす多層反射膜 3としては、 Si膜と Mo膜とを交互に積層させた Si ZMo多層反射膜、 Be膜と Mo膜とを交互に積層させた BeZMo多層反射膜、 Siィ匕 合物膜と Mo化合物膜とを交互に積層させた Si化合物 ZMo化合物多層反射膜、 Si 膜、 Mo膜および Ru膜をこの順番に積層させた SiZMoZRu多層反射膜、 Si膜、 R u膜、 Mo膜および Ru膜をこの順番に積層させた SiZRuZMoZRu多層反射膜が 挙げられる。
[0057] 基板 1の成膜面に多層反射膜 3を成膜する手順は、スパッタリング法を用いて多層 反射膜を成膜する際に通常実施される手順であってよい。例えば、イオンビームスパ ッタリング法を用いて SiZMo多層反射膜を形成する場合、ターゲットとして Siターゲ ットを用い、スパッタガスとして Arガス(ガス圧 1. 3 X 10— 2Pa〜2. 7 X 10— 2Pa)を使用 して、イオン加速電圧 300〜1500V、成膜速度 0. 03〜0. 30nmZsecで厚さ 4. 5 nmとなるように Si膜を成膜し、次に、ターゲットとして Moターゲットを用い、スパッタガ スとして Arガス(ガス圧 1. 3 X 10— 2Pa〜2. 7 X 10— 2Pa)を使用して、イオン加速電圧 300〜1500V、成膜速度 0. 03〜0. 30nm/secで厚さ 2. 3nmとなるように Mo膜 を成膜することが好ましい。これを 1周期として、 Si膜および Mo膜を 40〜50周期積 層させることにより SiZMo多層反射膜が成膜される。多層反射膜 3を成膜する際、 均一な成膜を得るために、回転体を用いて基板 1を回転させながら成膜を行うことが 好ましい。
[0058] 本発明の多層反射膜付基板は、多層反射膜 3の表面が酸化されるのを防止するた め、多層反射膜 3の最上層は酸化されにくい材料の層とすることが好ましい。酸化さ れにくい材料の層は多層反射膜 3のキャップ層として機能する。キャップ層として機能 する酸化されにくい材料の層の具体例としては、 Si層を例示することができる。多層 反射膜が SiZMo膜である場合、最上層を Si層とすることによって、該最上層をキヤ ップ層として機能させることができる。その場合キャップ層の膜厚は、 11. 0± 1. Onm であることが好ましい。
[0059] 本発明の多層反射膜付基板は、本発明の導電膜付基板を用いているため、導電 膜付基板を静電チャックに固定して多層反射膜を成膜する際に、静電チャックと導電 膜との擦れによってパーティクルが発生することが防止されている。このため、本発明 の多層反射膜付基板は、パーティクルによる表面欠陥が極めて少な 、優れた多層反 射膜付基板である。
[0060] 次に、本発明の EUVマスクブランクについて説明する。図 3は、本発明の EUVマス クブランクの模式図である。図 3において、多層反射膜 3上には吸収層 4が設けられ ている。ここで、基板 導電膜 2および多層反射膜 3は、図 2に示したもの (本発明の 多層反射膜付基板)である。本発明の EUVマスクブランクは、本発明の多層反射膜 付基板を静電チャックに固定した後、マグネトロンスパッタリング法やイオンビームス ノ ッタリング法といったスパッタリング法を用いて、多層反射膜 3上に吸収層 4を成膜 すること〖こよって得られる。
[0061] 本発明の EUVマスクブランクにおいて、多層反射膜 3上に成膜される吸収層 4の構 成材料としては、 EUV光に対する吸収係数の高い材料、具体的には、 Cr、 Taおよ びこれらの窒化物などが挙げられる。中でも、 TaNがアモルファスになりやすぐ表面 形状が平滑であるという理由で好ましい。吸収層 4の厚さは、 50〜: LOOnmであること が好ましい。吸収層 4の成膜方法は、スパッタリング法である限り特に限定されず、マ グネトロンスパッタリング法またはイオンビームスパッタリング法のいずれであってもよ い。
[0062] イオンビームスパッタリング法を用いて、吸収層として TaN層を成膜する場合、ター ゲットとして Taターゲットを用い、スパッタガスとして Nガス(ガス圧 1. 3 X 10— 2Pa〜2
2
. 7 X 10— 2Pa)を使用して、電圧 300〜1500V、成膜速度 0. 01〜0. lnm/secで 厚さ 50〜: LOOnmとなるように成膜することが好まし!/、。
スパッタリング法を用いて、吸収層 4を成膜する際、均一な成膜を得るために、回転 体を用いて基板 1を回転させながら成膜を行うことが好ましい。
[0063] 本発明の EUVマスクブランクにおいて、多層反射膜 3と、吸収層 4と、の間にバッフ ァ層カ S存在してもよ 、。
ノ ッファ層を構成する材料としては、たとえば、 Cr、 Al、 Ru、 Taおよびこれらの窒化 物、ならびに SiO、 Si N、 Al Oなどが挙げられる。バッファ層は厚さ 10〜60nmで
2 3 4 2 3
あることが好ましい。
[0064] 本発明の EUVマスクブランクは、本発明の多層反射膜付基板を用いているため、 多層反射膜にパーティクルによる表面欠陥が極めて少ない。し力も、該多層反射膜 付基板を静電チャックに固定して吸収層を成膜する際に、静電チャックと導電膜との 擦れによってパーティクルが発生することが防止されている。このため、吸収層もパー ティクルによる表面欠陥が極めて少な 、。 さらに、上記 EUVマスクブランクをパターユングすることで、表面欠陥の少ない EU Vマスクを形成することが可能である。欠陥を減少させることで、欠点の少ない露光を 行うことができ、半導体の生産性にも優れる。
実施例
[0065] 以下、実施例を用いて本発明をさらに説明する。
(実施例 1)
の开
本実施例では、成膜用の基板 1 (図 1参照)として、 SiO— TiO
2 2系のガラス基板 (外 形 6インチ(152. 4mm)角、厚さが 6. 3mm)を使用する。このガラス基板の熱膨張 率は 0. 2 X 10— 7/°C、ヤング率は 67GPaである。このガラス基板を研磨により、 Rms が 0. 15nm以下の平滑な表面と lOOnm以下の平坦度に形成する。
次に、基板 1の表面上に、マグネトロンスパッタリング法を用いて、導電膜 2 (構成材 料: Cr、 B含有)を成膜する。具体的には、 CrBターゲットを用いて、アルゴンガス雰
2
囲気中でマグネトロンスパッタリングを行い、厚さ lOOnmの導電膜 2を形成する。導 電膜 2の成膜条件は以下の通りである。
ターゲット: CrBターゲット
2
スパッタガス: Arガス(ガス圧: 0. 3Pa)
投入電力: 250W
成膜速度: 0. 45nm/sec
導電膜 2の B平均濃度を、 X線光電子分光装置を用いて測定すると 66at%である ことが確認される。導電膜 2のシート抵抗を四探針測定器を用いて測定すると 20 Ω であることが確認される。導電膜 2の表面の平滑度を AFM (原子間力顕微鏡)を 用いて測定すると 0. 5nm以下であることが確認される。
[0066] 表 rif硬度の評価
上記手順で成膜される導電膜 2の表面硬度をナノインデンテーション試験により測 定する。具体的には、ダイヤモンドチップ力もなる三角錐 (バーコピッチ型)の圧子を 導電膜 2の表面に押し込み、荷重 Pと圧子の下の射影面積 Aから表面硬度 H (H = P ZA)を算出する。その結果、表面硬度 Hは 22. 5GPaであることが確認される。 [0067] 多層反射膜の成膜
次に、基板 1の導電膜 2に対して反対側 (成膜面)に、イオンビームスパッタリング法 を用いて多層反射膜 (SiZMo多層反射膜)を成膜する。具体的には、 Si膜および M o膜を交互に成膜することを 40周期繰り返すことにより、合計膜厚 272nm ( (4. 5 + 2 . 3) X 40)の SiZMo多層反射膜を成膜する。最後にキャップ層として膜厚 11. On mになるように Si層を成膜する。
なお、 Si膜および Mo膜の成膜条件は以下の通りである。
Si膜の成膜条件
ターゲット: Siターゲット(ホウ素ドープ)
スパッタガス: Arガス(ガス圧 0. 02Pa)
電圧: 700V
成膜速度: 0. 077nm/sec
膜厚: 4. 5應
Moflfの成蹬条件
ターゲット: Moターゲット
スパッタガス: Arガス(ガス圧 0. 02Pa)
電圧: 700V
成膜速度: 0. 064nm/sec
膜厚: 2. 3應
[0068] 表 rif欠陥の評価
上記手順で成膜される多層反射膜のパーティクル個数を欠陥検査装置を用いて測 定する。その結果、パーティクル個数は 1. 5個 Zcm2であり、多層反射膜の成膜時に パーティクルがほとんど発生しないことが確認される。なお、パーティクル個数は、大 きさが 0. 15 m以上のものとして測定する。
[0069] 次に、上記手順で成膜される多層反射膜 (SiZMo多層反射膜)上に、 EUV光に 対する吸収層として、 TaN層をイオンビームスパッタリング法を用いて成膜して、 EU
Vマスクブランクを得る。成膜条件は以下の通りであった。
TaN層の成膜条件 ターゲット: Taターゲット
スパッタガス: Nガス(ガス圧 0. 02Pa)
2
電圧: 700V
成膜速度: 0. 015nm/sec
膜厚: 70應
上記手順で得られる EUVマスクブランクの吸収層表面のパーティクル個数につい ても上記と同様の手順で測定すると 2. 0個 Zcm2であり、パーティクルによる表面欠 陥が少ない EUVマスクブランクであることが確認される。
(実施例 2)
本実施例では、ガラス基板の表面上に形成される導電膜が、 Crが構成材料であつ て、 Bおよび Nを含有する導電膜であること以外は実施例 1と同様である。導電膜 2の 成膜条件は以下の通りである。
ターゲット: CrBターゲット
2
スパッタガス: Arガス、 Nガス(Ar: 99. 8体積0 /0、 N : 0. 2体積0 /0、ガス圧: 0. 3Pa)
2 2
投入電力: 250W
成膜速度: 0. 4nm/sec
膜厚: lOOnm
実施例 1と同様の手順で導電膜 2中の B平均濃度および N平均濃度を測定すると、 それぞれ 45at%、 10at%であることが確認される。導電膜 2のシート抵抗を測定する と 80 ΩΖ口であることが確認される。導電膜 2の表面硬度を測定すると 13. OGPaで あることが確認される。また、平坦度測定機を用いて基板の変形量 (たわみ量)を測 定することにより、導電膜 2で発生している圧縮応力を求める。その結果、導電膜 2で 発生して!/、る圧縮応力は 400MPaであることが確認される。
また、実施例 1と同様の手順で基板 1の成膜面に多層反射膜 (SiZMo多層反射膜 )を成膜し、多層反射膜のパーティクル個数を欠陥検査装置を用いて測定するとパ 一ティクル個数は 1. 0個/ cm2であり、多層反射膜の成膜時にパーティクルがほとん ど発生しな 、ことが確認される。
次に、上記手順で成膜した多層反射膜上に、実施例 1と同様の手順で、吸収層 (T aN層)を成膜して、 EUVマスクブランクを得る。得られる EUVマスクブランクの吸収 層表面のパーティクル個数について、上記と同様の手順で測定すると 1. 5個 Zcm2 であり、パーティクルによる表面欠陥が少ない EUVマスクブランクであることが確認さ れる。
(実施例 3)
本実施例では、ガラス基板上に形成される導電膜が積層構造 (2層)の導電膜 (構 成材料が であって、基板側の層(下層)は Bを含有せず、表面側の層(上層)は B を含有する。)であること以外は実施例 1と同様である。下層および上層の成膜条件 は以下の通りである。
下層の成蹲条件
ターケット: Crターグット
スパッタガス: Arガス(ガス圧: 0. 3Pa)
投入電力: 300W
成 ff¾¾度: 0. 5nm, sec
膜厚: 50nm
卜.層の成蹬条件
ターゲット: CrBターゲット
2
スパッタガス: Arガス(ガス圧: 0. 3Pa)
投入電力: 250W
成膜速度: 0. 45nm/sec
膜厚: 50應
上層中および下層中の B平均濃度を測定すると、上層は 66at%、下層は Oat%で あることが確認される。導電膜 2のシート抵抗を測定すると 20 Ω Z口であることが確認 される。導電膜 2の表面硬度を測定すると 22. OGPaであることが確認される。
また、実施例 1と同様の手順で基板 1の成膜面に多層反射膜 (SiZMo多層反射膜 )を形成し、多層反射膜のパーティクル個数を欠陥検査装置を用いて測定するとパ 一ティクル個数は 0. 5個 Zcm2であり、多層反射膜の成膜時にパーティクルがほとん ど発生しな 、ことが確認される。 次に、上記手順で成膜される多層反射膜上に、実施例 1と同様の手順で、吸収層( TaN層)を成膜して、 EUVマスクブランクを得る。得られる EUVマスクブランクの吸収 層表面のパーティクル個数について、上記と同様の手順で測定すると 1. 0個 Zcm2 であり、パーティクルによる表面欠陥が少ない EUVマスクブランクであることが確認さ れる。
(実施例 4)
本実施例では、ガラス基板上に形成される導電膜 2を狭義の傾斜組成膜 (構成材 料が であって、ガラス基板側の部分は Bを含まず、表面側の部分は B平均濃度が 高くなるように、導電膜 2中の Bの濃度が導電膜 2の厚さ方向に沿って連続的に変化 した構造の導電膜)であること以外は、実施例 1と同様である。導電膜の成膜条件は 以下の通りである。なお、導電膜 2中の Bの濃度は、 Crターゲットおよび Bターゲット の投入電力を調節することによって変化させる。
ターゲット: Crターゲット、 CrBターゲット
2
スパッタガス: Arガス(ガス圧: 0. 3Pa)
投入電力: 100〜300W(Crターゲット)、 0〜300W(CrBターゲット)成膜速度: 0.
2
4nm/ sec
膜厚: lOOnm
導電膜 2の B平均濃度は 33at%である。導電膜 2の表面近傍部分 (表面から 5nm) の部分の B平均濃度を測定すると 66at%であることが確認される。導電膜 2の基板近 傍部分 (基板の面から 5nmまで)の部分の B平均濃度を測定すると Oat%であること が確認される。導電膜 2のシート抵抗を測定すると 22 Ω Z口であることが確認される 。導電膜 2の表面硬度を測定すると 22. OGPaであることが確認される。
また、実施例 1と同様の手順で基板 1の成膜面に多層反射膜 (SiZMo多層反射膜 )を形成し、多層反射膜のパーティクル個数を欠陥検査装置を用いて測定するとパ 一ティクル個数は 0. 5個/ cm2であり、多層反射膜の成膜時にパーティクルがほとん ど発生しな 、ことが確認される。
次に、上記手順で成膜した多層反射膜上に、実施例 1と同様の手順で、吸収層 (T aN層)を成膜して、 EUVマスクブランクを得る。得られる EUVマスクブランクの吸収 層表面のパーティクル個数について、上記と同様の手順で測定すると 1. 0個 Zcm であり、パーティクルによる表面欠陥が少ない EUVマスクブランクであることが確認さ れる。
[0073] (比較例)
比較例では、ガラス基板上に形成される導電膜が Cr膜 (Bを含有しない)であること 以外は、実施例 1と同様である。 Cr膜の成膜条件は以下の通りである。
ターケット: Crターグット
スパッタガス: Arガス(ガス圧: 0. 3Pa)
投入電力: 300W
成 ff¾¾度: 0. 5nm, sec
膜厚: lOOnm
導電膜のシート抵抗を測定すると 5. 5 ΩΖ口であることが確認される。導電膜の表 面硬度を測定すると 11. OGPaであることが確認される。
また、実施例 1と同様の手順で基板の成膜面に多層反射膜 (SiZMo多層反射膜) を形成し、多層反射膜のパーティクル個数を欠陥検査装置を用いて測定するとパー ティクル個数は 50個 Zcm2であり、多層反射膜の成膜時に非常に多くのパーテイク ルが発生することが確認される。
次に、上記手順で成膜した多層反射膜上に、実施例 1と同様の手順で、吸収層 (T aN層)を成膜して、 EUVマスクブランクを得る。得られる EUVマスクブランクの吸収 層表面のパーティクル個数について、上記と同様の手順で測定すると 100個/ cm2 以上であり、パーティクルによる表面欠陥が非常に多い EUVマスクブランクであるこ とが確認される。
[0074] 上記の結果から明らかなように、導電膜中に Bを平均濃度 l〜70at%で含有する 実施例 1〜4の場合、導電膜の表面硬度が比較例に比べて高くなつている。また、実 施例 1〜4の導電膜付基板を用いて成膜される多層反射膜および EUVマスクブラン クは、比較例の導電膜付基板を用いて成膜される多層反射膜および EUVマスクブラ ンクに比べてパーティクルの発生が大幅に低減されている。
産業上の利用可能性 本発明は、半導体製造等に使用される EUVリソグラフィ用反射型マスクブランク、 および該マスクブランクの製造に使用される導電膜付基板として好適である。 なお、 2005年 12月 12曰に出願された曰本特許出願 2005— 357858号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] EUVリソグラフィ用反射型マスクブランクの製造に使用される導電膜付基板であつ て、前記導電膜の主材料は、 Cr、 Ti、 Zr、 Nb、 Niおよび Vからなる群力も選択される 少なくとも 1つよりなり、前記導電膜は平均濃度 1〜70^%で (ホウ素)を含有するこ とを特徴とする導電膜付基板。
[2] 前記導電膜は、基板側における B平均濃度が低ぐ表面側における B平均濃度が 高くなるように、導電膜中の Bの濃度が該導電膜の厚さ方向に沿って変化した傾斜 組成膜である請求項 1に記載の導電膜付基板。
[3] 前記傾斜組成膜は、前記基板側の面力も膜厚 5nmまでの部分の B平均濃度が 15 at%以下であり、
表面力 少なくとも膜厚 5nmまでの部分の B平均濃度が 1〜70at%である請求項 2 に記載の導電膜付基板。
[4] 前記導電膜は、さらに平均濃度 l〜60at% Nを含有する請求項 1ないし 3のいず れかに記載の導電膜付基板。
[5] 前記導電膜は、表面力も少なくとも膜厚 5nmまでの部分の N平均濃度が 10^%以 下である請求項 4に記載の導電膜付基板。
[6] 前記導電膜の酸素濃度が 5at%以下である請求項 1ないし 5のいずれかに記載の 導電膜付基板。
[7] 前記導電膜は、シート抵抗値が 0. 1〜: ίΟΟ Ω Ζ口である請求項 1ないし 6のいずれ かに記載の導電膜付基板。
[8] 前記導電膜が、 Cr、 Ti、 Zr、 Nb、 Niおよび V力もなる群力も選択される少なくとも 1 つと、 Cr、 Ti、 Zr、 Nb、 Niおよび Vからなる群から選択される少なくとも 1つと Bとの化 合物(CrB、 TiB、 ZrB、 NbB、 NiBまたは VB )と、が混在した状態となっている
2 2 2 2 2 2
請求項 1な!、し 7の 、ずれかに記載の導電膜付基板。
[9] 前記導電膜の結晶構造がアモルファスである請求項 1な 、し 8の 、ずれかに記載 の導電膜付基板。
[10] 前記導電膜の表面硬度が 12GPa以上である請求項 1ないし 9のいずれかに記載 の導電膜付基板。
[11] 前記導電膜表面の平滑性が、 Rms (二乗平方根粗さ)で 0. 5nm以下である請求 項 1な 、し 10の 、ずれかに記載の導電膜付基板。
[12] 前記導電膜の膜厚が 10〜500nmである請求項 1な ヽし 11の ヽずれかに記載の 導電膜付基板。
[13] 請求項 1ないし 12のいずれかに記載の導電膜付基板の前記導電膜が設けられた 面に対して、反対側に多層反射膜を形成してなる EUVリソグラフィ用反射型マスクブ ランクの多層反射膜付基板。
[14] 請求項 13に記載の多層反射膜付基板の多層反射膜上に吸収層を形成してなる E
UVリソグラフィ用反射型マスクブランク。
[15] 請求項 14に記載の EUVリソグラフィ用反射型マスクブランクをパターユングした E
UVリソグラフィ用反射型マスク。
PCT/JP2006/322589 2005-12-12 2006-11-13 Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板 WO2007069417A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087007826A KR101308838B1 (ko) 2005-12-12 2006-11-13 Euv 리소그래피용 반사형 마스크 블랭크, 및 그 마스크블랭크용 도전막 부착 기판
EP06823363A EP1962326B1 (en) 2005-12-12 2006-11-13 Reflection-type mask blank for euv lithography, and substrate with electrically conductive film for the mask blank
JP2007550102A JP5082857B2 (ja) 2005-12-12 2006-11-13 Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-357858 2005-12-12
JP2005357858 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007069417A1 true WO2007069417A1 (ja) 2007-06-21

Family

ID=38162731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322589 WO2007069417A1 (ja) 2005-12-12 2006-11-13 Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板

Country Status (5)

Country Link
US (1) US7736821B2 (ja)
EP (1) EP1962326B1 (ja)
JP (1) JP5082857B2 (ja)
KR (1) KR101308838B1 (ja)
WO (1) WO2007069417A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072706A1 (ja) * 2006-12-15 2008-06-19 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
JP2009272317A (ja) * 2008-04-30 2009-11-19 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
WO2012105698A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
JP2013141039A (ja) * 2013-04-23 2013-07-18 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2013225662A (ja) * 2012-03-19 2013-10-31 Hoya Corp Euvリソグラフィー用多層反射膜付き基板及びeuvリソグラフィー用反射型マスクブランク、並びにeuvリソグラフィー用反射型マスク及び半導体装置の製造方法
JP2014532313A (ja) * 2011-10-14 2014-12-04 フンダシオ インスティテュート デ サイエンセズ フォトニクス 光透過性導電性コーティング及び基板上へのそれらの堆積の方法
US8908150B2 (en) 2010-02-25 2014-12-09 Kabushiki Kaisha Toshiba Substrate processing method, manufacturing method of EUV mask, and EUV mask
JP2015015420A (ja) * 2013-07-08 2015-01-22 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2015028999A (ja) * 2013-07-30 2015-02-12 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2017102475A (ja) * 2017-02-06 2017-06-08 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2018106183A (ja) * 2018-02-07 2018-07-05 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417647B (zh) * 2006-06-08 2013-12-01 Asahi Glass Co Ltd Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板
US20080153010A1 (en) * 2006-11-09 2008-06-26 Asahi Glass Company., Ltd. Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflective mask blank for euv lithography
US7759024B2 (en) * 2007-02-28 2010-07-20 Intel Corporation Controlling shape of a reticle with low friction film coating at backside
JP4372178B2 (ja) * 2007-04-27 2009-11-25 株式会社東芝 光反射型マスクと光反射型マスクの作製方法及び半導体装置の製造方法
CN101965757A (zh) * 2007-10-01 2011-02-02 皇家飞利浦电子股份有限公司 高压电连接线
KR101669690B1 (ko) 2008-10-30 2016-10-27 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
KR20130007537A (ko) 2010-03-02 2013-01-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
EP2600388B1 (en) 2010-07-27 2014-10-08 Asahi Glass Company, Limited Substrate provided with reflecting layer for euv lithography, and reflective mask blank for euv lithography
GB2506784A (en) 2011-07-06 2014-04-09 Gen Electric Laminated rotor balancing provisions
KR101766519B1 (ko) 2011-07-06 2017-08-08 제너럴 일렉트릭 캄파니 라미네이트형 회전자 가공 향상
JP6069919B2 (ja) 2012-07-11 2017-02-01 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
KR20140016662A (ko) 2012-07-30 2014-02-10 에스케이하이닉스 주식회사 극자외선 리소그래피용 마스크 및 그 제조방법, 마스크 정렬도 에러 보정방법
KR20240046293A (ko) 2015-06-17 2024-04-08 호야 가부시키가이샤 도전막 부착 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조 방법
KR102093107B1 (ko) * 2015-12-07 2020-03-25 (주)에스앤에스텍 다중 전자빔 리소그래피용 블랭크 마스크 및 포토마스크
JP6863169B2 (ja) * 2017-08-15 2021-04-21 Agc株式会社 反射型マスクブランク、および反射型マスク
US10802393B2 (en) * 2017-10-16 2020-10-13 Globalfoundries Inc. Extreme ultraviolet (EUV) lithography mask
WO2019131506A1 (ja) 2017-12-27 2019-07-04 Hoya株式会社 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
KR102598586B1 (ko) * 2018-07-17 2023-11-06 칼 짜이스 에스엠에스 엘티디 포토리소그라픽 마스크의 기판에 도입되는 하나 이상의 픽셀의 효과를 결정하기 위한 방법 및 장치
KR102400200B1 (ko) 2021-04-30 2022-05-18 에스케이씨솔믹스 주식회사 포토마스크 블랭크, 포토마스크 및 반도체소자의 제조방법
KR102400198B1 (ko) 2021-04-30 2022-05-18 에스케이씨솔믹스 주식회사 포토마스크 블랭크, 포토마스크 및 반도체소자의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108701A (en) * 1978-02-10 1979-08-25 Canon Kk Photomask
JPS62183463A (ja) * 1986-02-07 1987-08-11 Asahi Glass Co Ltd フオトマスクブランクの製造法
JPH03187733A (ja) * 1989-03-07 1991-08-15 Asahi Glass Co Ltd 非晶質酸化物膜及びその製造方法及びターゲット
JP2000003845A (ja) * 1998-06-15 2000-01-07 Fujitsu Ltd X線露光用マスクの製造方法
JP2004320035A (ja) * 2003-04-16 2004-11-11 Carl-Zeiss-Stiftung Euvリソグラフィに用いるマスクブランク及び製造方法
JP2005210093A (ja) * 2003-12-25 2005-08-04 Hoya Corp 多層反射膜付き基板、露光用反射型マスクブランクス及び露光用反射型マスク、並びにそれらの製造方法
JP2006173490A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187733B2 (ja) 1996-12-28 2001-07-11 ニスカ株式会社 シート収納装置
US6352803B1 (en) 1999-06-07 2002-03-05 The Regents Of The University Of California Coatings on reflective mask substrates
JP3939132B2 (ja) * 2000-11-22 2007-07-04 Hoya株式会社 多層膜付き基板、露光用反射型マスクブランク、露光用反射型マスクおよびその製造方法、並びに半導体の製造方法
US6737201B2 (en) * 2000-11-22 2004-05-18 Hoya Corporation Substrate with multilayer film, reflection type mask blank for exposure, reflection type mask for exposure and production method thereof as well as production method of semiconductor device
JP2002299228A (ja) * 2001-04-03 2002-10-11 Nikon Corp レチクル、それを用いた露光装置及び露光方法
WO2003085709A1 (en) * 2002-04-11 2003-10-16 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
JP3806702B2 (ja) * 2002-04-11 2006-08-09 Hoya株式会社 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP4163038B2 (ja) * 2002-04-15 2008-10-08 Hoya株式会社 反射型マスクブランク及び反射型マスク並びに半導体の製造方法
DE10255605B4 (de) * 2002-11-28 2005-07-07 Infineon Technologies Ag Reflektionsmaske zur Projektion einer Struktur auf einen Halbleiterwafer sowie Verfahren zu deren Herstellung
US20050238922A1 (en) * 2003-12-25 2005-10-27 Hoya Corporation Substrate with a multilayer reflection film, reflection type mask blank for exposure, reflection type mask for exposure and methods of manufacturing them
TWI480676B (zh) * 2004-03-31 2015-04-11 Shinetsu Chemical Co 半色調相移空白光罩,半色調相移光罩,以及圖案轉移方法
JP2006267595A (ja) * 2005-03-24 2006-10-05 Toshiba Corp マスクブランクスとその製造方法及び使用方法、並びにマスクとその製造方法及び使用方法
US7678511B2 (en) * 2006-01-12 2010-03-16 Asahi Glass Company, Limited Reflective-type mask blank for EUV lithography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108701A (en) * 1978-02-10 1979-08-25 Canon Kk Photomask
JPS62183463A (ja) * 1986-02-07 1987-08-11 Asahi Glass Co Ltd フオトマスクブランクの製造法
JPH03187733A (ja) * 1989-03-07 1991-08-15 Asahi Glass Co Ltd 非晶質酸化物膜及びその製造方法及びターゲット
JP2000003845A (ja) * 1998-06-15 2000-01-07 Fujitsu Ltd X線露光用マスクの製造方法
JP2004320035A (ja) * 2003-04-16 2004-11-11 Carl-Zeiss-Stiftung Euvリソグラフィに用いるマスクブランク及び製造方法
JP2005210093A (ja) * 2003-12-25 2005-08-04 Hoya Corp 多層反射膜付き基板、露光用反射型マスクブランクス及び露光用反射型マスク、並びにそれらの製造方法
JP2006173490A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003282B2 (en) 2006-12-15 2011-08-23 Asahi Glass Company, Limited Reflective mask blank for EUV lithography, and substrate with functional film for the mask blank
WO2008072706A1 (ja) * 2006-12-15 2008-06-19 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
JP2009272317A (ja) * 2008-04-30 2009-11-19 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
US8908150B2 (en) 2010-02-25 2014-12-09 Kabushiki Kaisha Toshiba Substrate processing method, manufacturing method of EUV mask, and EUV mask
JP5888247B2 (ja) * 2011-02-04 2016-03-16 旭硝子株式会社 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
WO2012105698A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
KR101857844B1 (ko) 2011-02-04 2018-05-14 아사히 가라스 가부시키가이샤 도전막이 형성된 기판, 다층 반사막이 형성된 기판, 및 euv 리소그래피용 반사형 마스크 블랭크
US9086629B2 (en) 2011-02-04 2015-07-21 Asahi Glass Company, Limited Substrate with conductive film, substrate with multilayer reflective film and reflective mask blank for EUV lithography
JP2014532313A (ja) * 2011-10-14 2014-12-04 フンダシオ インスティテュート デ サイエンセズ フォトニクス 光透過性導電性コーティング及び基板上へのそれらの堆積の方法
US9519209B2 (en) 2011-10-14 2016-12-13 Fundació Institut De Ciències Fotòniques Optically transparent and electrically conductive coatings and method for their deposition on a substrate
JP2013225662A (ja) * 2012-03-19 2013-10-31 Hoya Corp Euvリソグラフィー用多層反射膜付き基板及びeuvリソグラフィー用反射型マスクブランク、並びにeuvリソグラフィー用反射型マスク及び半導体装置の製造方法
JP2013141039A (ja) * 2013-04-23 2013-07-18 Hoya Corp 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2015015420A (ja) * 2013-07-08 2015-01-22 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2015028999A (ja) * 2013-07-30 2015-02-12 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2017102475A (ja) * 2017-02-06 2017-06-08 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2018106183A (ja) * 2018-02-07 2018-07-05 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Also Published As

Publication number Publication date
KR101308838B1 (ko) 2013-09-13
JP5082857B2 (ja) 2012-11-28
US20070160874A1 (en) 2007-07-12
JPWO2007069417A1 (ja) 2009-05-21
EP1962326A4 (en) 2009-01-28
EP1962326A1 (en) 2008-08-27
EP1962326B1 (en) 2012-06-06
US7736821B2 (en) 2010-06-15
KR20080080276A (ko) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2007069417A1 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の導電膜付基板
JP4978626B2 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
KR101335077B1 (ko) Euv 리소그래피용 반사형 마스크 블랭크
TWI418926B (zh) Reflective mask substrate for EUV photolithography
US8288062B2 (en) Reflective mask blank for EUV lithography
JP5888247B2 (ja) 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
TWI471902B (zh) A reflective mask base used in EUV microfilm
TWI430017B (zh) Reflective mask base for EUV microfilm
US8927181B2 (en) Reflective mask blank for EUV lithography
TWI434131B (zh) Reflective mask base for EUV microfilm
US20120225375A1 (en) Optical member for euv lithography
WO2012105508A1 (ja) Euvリソグラフィ用反射型マスクブランク
TW201435485A (zh) Euv微影術用反射型光罩基底及其製造方法
KR20090016664A (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 이를 위한 기능막을 구비한 기판
TW200908084A (en) Reflective mask blank for EUV lithography
TW201616215A (zh) Euv微影術用反射型光罩基底及其製造方法、以及該光罩基底用之附反射層之基板及其製造方法
KR102653352B1 (ko) 다층 반사막 부착 기판, 반사형 마스크 블랭크 및 반사형 마스크, 그리고 반도체 장치의 제조 방법
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550102

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006823363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087007826

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE