WO2007063851A1 - ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子 - Google Patents

ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子 Download PDF

Info

Publication number
WO2007063851A1
WO2007063851A1 PCT/JP2006/323720 JP2006323720W WO2007063851A1 WO 2007063851 A1 WO2007063851 A1 WO 2007063851A1 JP 2006323720 W JP2006323720 W JP 2006323720W WO 2007063851 A1 WO2007063851 A1 WO 2007063851A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
nickel
aqueous solution
cobalt
mass
Prior art date
Application number
PCT/JP2006/323720
Other languages
English (en)
French (fr)
Inventor
Toshihiro Kato
Kenya Itou
Syuuji Okada
Arata Tanaka
Keiichiro Nomura
Original Assignee
Tyco Electronics Raychem K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics Raychem K.K. filed Critical Tyco Electronics Raychem K.K.
Priority to KR1020087015681A priority Critical patent/KR101356377B1/ko
Priority to CN2006800446942A priority patent/CN101316673B/zh
Priority to EP06833524A priority patent/EP1974840A4/en
Publication of WO2007063851A1 publication Critical patent/WO2007063851A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to nickel powder, a method for producing the same, and a polymer PTC element using the nickel powder.
  • the nickel powder can be suitably used as a conductive particle for conductive paste and conductive resin, and can be particularly suitably used as a conductive filler for polymer PTC elements.
  • tin lead (Sn—Pb) solder has been used to connect electronic devices, but in recent years, the use of conductive paste for the connection of electronic devices has been studied in response to the Pb-free process. . In recent years, devices using conductive resin have been widely used.
  • the conductive paste is a paste obtained by kneading conductive particles and various types of resin, and the conductive resin is a molded body obtained by curing this.
  • the properties required for the conductive particles include low electrical resistance, high migration resistance, and excellent weather resistance even when kneaded with a resin having high electrical conductivity.
  • metal powder or carbon powder is used as the conductive particles.
  • noble metal powders have high conductivity and low electrical resistance, but are expensive.
  • base metal powders typified by nickel (Ni) or copper (Cu) are inexpensive and have high electrical conductivity, but they are inferior in weather resistance, so they are kneaded with resin.
  • Ni nickel
  • Cu copper
  • carbon powder is inexpensive and has high weather resistance, but there is a problem that electrical resistance becomes high when mixed with a resin having low conductivity.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-025345
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-075057
  • silver (Cu) is used on the surfaces of Ni particles and Cu particles.
  • a powder coated with a noble metal such as Ag has been proposed. Since these powders are coated with Ni particles and Cu particles with precious metals, the characteristics are generally improved, and there is a problem with respect to migration resistance.
  • powder coated with Ag is not suitable for use in environments where migration resistance is required. Moreover, it is expensive to coat Ni particles and Cu particles with precious metals.
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-043734
  • the surface shape of Ni particles or the like is changed, for example, a hemispherical nodule is formed on the surface, thereby kneading with rosin.
  • Attempts have also been made to reduce the electrical resistance of the hour.
  • the point that the weather resistance of the particles is inferior remains, it cannot be said that the stability in long-term use is improved.
  • Ni powder having a specific shape and improved conductivity and weather resistance by adding cobalt (Co) (see Patent Document 4). Improvement is expected. Under such circumstances, it is desired to provide conductive particles that are inexpensive, have excellent weather resistance, have low electrical resistance when kneaded with resin, and can be used stably over a long period of time.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-25345
  • Patent Document 2 JP 2002-75057 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-43734
  • Patent Document 4 International Publication No. 2005Z023461 Pamphlet
  • the present invention has been made in view of the serious problems, and is inexpensive, has low electrical resistance in a state where it is mixed with rosin, has excellent weather resistance, and is stable over a long period of time. Then, it aims at providing the nickel powder which can be used as an electroconductive particle used for electroconductive paste, electroconductive resin, the electroconductive filler for PTC elements, etc., and its manufacturing method.
  • the nickel powder according to the present invention contains 1 to 20% by mass of cobalt, the balance is made of nickel and inevitable impurities, and is composed of secondary particles in which primary particles are aggregated.
  • Particle size is 1.0 to 3. O ⁇ m, standard deviation of primary particle size ⁇ and average primary particle size d
  • the ratio of ⁇ / ⁇ is 0.4 or less, the average secondary particle size is 5-60 ⁇ m, and the tap density is 1.0-3.
  • the specific surface area is equal to or 2. is Om 2 / g or less.
  • the ratio of the average primary particle diameter d to the average secondary particle diameter d is d / ⁇ in the range of 5-60.
  • the cobalt content of the primary particles present in the surface layer portion of the secondary particles is 1 to 40% by mass with respect to the total mass of the surface layer portion.
  • the method for producing nickel powder according to the present invention includes a first reduction precipitation step in which nickel is precipitated by adding a divalent nickel salt to an aqueous solution containing a reducing agent, and after the first reduction precipitation step.
  • a divalent corret salt is added to the aqueous solution in which nickel is precipitated to precipitate the nickel powder. And obtained further-the force to dry the nickel powder at 80-230 ° C in an inert atmosphere or vacuum, or 200-200% in a reducing atmosphere after drying at 80-150 ° C in air Heat treatment at 400 ° C And wherein a call.
  • the content of cobalt ions in the aqueous solution added with a divalent conoleate salt is 1 to 40% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution.
  • the cobalt ion concentration in the aqueous solution is higher than the cobalt ion concentration in the aqueous solution in the first reduction precipitation step, and the nickel powder obtained through the first and second reduction precipitation steps contains cobalt.
  • the content is preferably 1 to 20% by mass.
  • the content power of cobalt in the surface layer portion of the secondary particles is preferably 8 to 20% by mass with respect to the total mass of the surface layer portion. It is preferred that the cobalt content power as a whole is 10% by mass.
  • the cobalt content force inside the nickel powder is preferably 3-6% by mass based on the total mass of the inside of the nickel powder. Further, it is preferable that the tap density is 2.3 to 3. OgZmL. Polymer PTC elements are one of these features.
  • a polymer PTC element according to the present invention comprises a polymer PTC element comprising a conductive filler and a polymer material, and a metal PTC element arranged on at least one surface of the polymer PTC element. Any one of the nickel powder and the nickel powder produced by the method is used as a conductive filler.
  • the nickel powder according to the present invention When a nickel powder according to the present invention is kneaded with a resin to produce a resin molded article, a resin molded article with extremely low electrical resistance can be obtained. Further, the obtained resin molded article has excellent weather resistance and can be used stably for a long period of time. Therefore, the nickel powder according to the present invention can be used very suitably as conductive particles used in conductive paste, conductive grease, and the like. As will be described later, the nickel powder of the present invention can also be suitably used as a conductive filler for polymer PTC elements.
  • the nickel powder according to the present invention is inexpensive because it does not use an expensive material and can be obtained without requiring a complicated process.
  • the average primary particle diameter of the nickel powder according to Patent Document 4 is 0.2 to 2. O / zm.
  • the average primary particle diameter of the nickel powder is 1.0 to 3. O / zm, and the tap density of the nickel powder according to Patent Document 4 is 0.5 to 2. OgZmL.
  • the tap density of the nickel powder is 1.0 to 3.5 gZmL.
  • the nickel powder according to the present invention has a standard deviation ⁇ of the primary particle size and an average primary particle size d 0 .Om
  • the nickel powder according to the present invention is more weatherproof than the nickel powder according to Patent Document 4. Power is good.
  • the nickel powder according to the present invention can be suitably used for a polymer PTC element, and has a resistivity even in a harsh environment such as a high temperature and a dry condition (for example, an environment in a car on a summer day). Since the increase is small! /, It is useful compared to conventional PTC devices.
  • FIG. 1 is a photograph of the nickel powder obtained in Example 1 taken with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 2 is a scanning electron microscope (SEM) photograph of the nickel powder obtained in Comparative Example 2.
  • the enlargement rate in (b) is larger than the enlargement rate in (a).
  • FIG. 3 is a graph showing resistance-temperature curves of PTC elements of examples and comparative examples.
  • FIG. 4 is a graph showing the change over time in the resistance value of the PTC elements of Examples and Comparative Examples under high temperature and dry conditions.
  • FIG. 5 is a graph showing the change over time in the rate of change in resistance value after a trip under high temperature and dry conditions of the PTC elements of Examples and Comparative Examples.
  • FIG. 6 is a graph showing changes in resistance values over time of room temperature and normal humidity conditions of PTC elements of Examples and Comparative Examples.
  • FIG. 7 is a graph showing the change over time of the resistance change rate after a trip under the room temperature and normal humidity conditions of the PTC elements of Examples and Comparative Examples.
  • FIG. 8 is a graph showing changes in resistance values over time under oxidation acceleration conditions of PTC elements of Examples and Comparative Examples.
  • FIG. 9 is a graph showing the change over time in the rate of change in resistance value after tripping under the oxidation acceleration conditions of the PTC elements of the example and the comparative example.
  • FIG. 10 is a graph showing the rate of change in resistance value due to a trip cycle test.
  • the particle diameter and tap density of the nickel powder are those obtained using the resin resin mixed with the nickel powder. It has been found that the electrical resistance of the compact can be greatly reduced by controlling the particle size and tap density of the nickel powder, which have a large effect on the electrical resistance of the shape, within a specific range. It was.
  • the weather resistance of nickel powder can be improved by adding a small amount of cobalt to nickel powder, particularly by adding cobalt to the surface layer of nickel powder. Furthermore, the inventors have also found that weather resistance is further improved by suppressing fluctuations in the primary particle diameter and setting the specific surface area to a specific value.
  • the present invention has been completed based on hard knowledge.
  • the nickel powder according to the present invention will be described in detail, and the nickel powder manufacturing method according to the present invention will also be described.
  • the nickel powder according to the present invention contains 1 to 20% by mass of cobalt, the balance is composed of nickel and inevitable impurities, and is composed of secondary particles in which primary particles are aggregated.
  • Particle size is 1.0 to 3. O ⁇ m, standard deviation of primary particle size ⁇ and average primary particle size d
  • the ratio ⁇ / ⁇ of 1 is 0.4 or less, the average secondary particle size is 5 to 60 ⁇ m, the tap density is 1.0 to 3.5 gZmL, and the specific surface area is 2. Om 2 Zg or less.
  • the primary particle size is the particle size of each agglomerated particle and is measured by SEM observation. Specifically, the nickel powder is fixed to the sample holder with conductive double-sided tape, and observed with JEOL Ltd. 3 ⁇ 4iSM-6360LA at an acceleration voltage of 20 kV and a magnification of 2500 times. Then, by applying the image processing software (Smile View) attached to the device to the obtained SEM image, the particle diameters of 200 or more primary particles are excluded, except for particles that overlap and the particle diameter cannot be determined. Measure to obtain the average particle diameter d of the primary particles. Also gain
  • the standard deviation of the primary particle size is also calculated from the obtained data.
  • the nickel powder is appropriately aggregated to form secondary particles having a complex shape such as a chain.
  • the nickel powder is entangled with each other in the resin molded body obtained by kneading with the resin to form a network, and the resin molded body has a remarkably low electric resistance. As well as showing excellent weather resistance.
  • the average primary particle diameter of the nickel powder according to Patent Document 4 is 0.2 to 2.0 ⁇ m.
  • the average primary particle size of nickel powder is 0 Even if it is less than 1.
  • the nickel powder has good weather resistance if it contains 1 to 20% by mass of cobalt as a whole.
  • the average primary particle size of nickel powder is 0. or more and less than 1.0 m, the effect of oxidation on the surface of nickel powder is due to the average primary particle size of nickel powder being 1.0 to 3. O / zm.
  • the weather resistance of the molded product obtained by kneading with rosin is worse than that when the average primary particle size is 1.0 to 3.0 m. Therefore, the average primary particle diameter of nickel powder is preferably 1.0 m or more.
  • the average primary particle diameter of the nickel powder exceeds 3.0 ⁇ m, the contact between the nickel powders is reduced over the molded body obtained by kneading with the resin and the resistance of the molded body is reduced. It will rise.
  • the average primary particle size is further increased, the aggregation of the nickel powder itself is reduced, becoming close to a monodispersed state, the number of contacts between the nickel powders is further reduced, and the resistance of the compact is further increased.
  • the ratio of the standard deviation ⁇ of the primary particle size to the average primary particle size d ⁇ / ⁇ is the change in the primary particle size.
  • the average uniform particle size increases. Thereby, even a nickel powder having an average primary particle size larger than the conventional one can be agglomerated. In addition, since the average primary particle size is increased, a larger amount of nickel powder can be kneaded with the resin than before, and the weather resistance is improved. Furthermore, the reduction of fine primary particles that tend to oxidize also suppresses the oxidization of the nickel powder, greatly improving the weather resistance.
  • the particle size of secondary particles is measured by laser particle size distribution measurement. Specifically, using MICROTRAC HR A MODEL 9320-X100 manufactured by Nikkiso Co., Ltd., nickel powder was put into a 0.2% by weight aqueous solution of sodium hexametaphosphate, and ultrasonic stirring was performed at 300 W for 10 minutes. Then, measure the average particle size (D50) in the FRA mode and use this as the average secondary particle size d.
  • the average secondary particle size in the range of 5 to 60 ⁇ m, the number of places where nickel powders (specifically, particles constituting the powder) come into contact after kneading with the resin is increased, Electricity of the molded resin Air resistance is significantly reduced.
  • the average secondary particle size is less than 5 m, the number of entangled portions decreases because of less aggregation, and the resistance value after kneading with the resin increases. Further, if the average secondary particle diameter exceeds 60 m, the dispersion of nickel powder in the resin may be uneven, which is not preferable.
  • the tap density of the nickel powder affects the degree of dispersion of the nickel powder in the resin.
  • a shaking specific gravity measuring instrument KRS-409 manufactured by Kuramochi Scientific Instruments Co., Ltd. is used to measure the tap density.
  • KRS-409 manufactured by Kuramochi Scientific Instruments Co., Ltd.
  • the volume of nickel powder is read from the scale of the measuring cylinder, and the mass (g) of nickel powder is divided by the read volume.
  • the tap density of the nickel powder according to Patent Document 4 is 0.5 to 2. Og / mL. Even if the tap density of nickel powder is 0.5 g / mL or more and less than 1. Og / mL, the weather resistance of nickel powder is good if 1 to 20 mass% of cobalt is contained as a whole. However, it is effective to increase the amount of nickel powder to be kneaded in order to improve the weather resistance of the resin molded body. When the tap density is 0.5 gZmL or more and less than 1. OgZmL, it is difficult to increase the amount of the ice-kneaded kneaded powder, so the weather resistance will be lower than when the tap density is 1. OgZmL. Therefore, the tap density of the nickel powder is preferably 1. Og / mL or more.
  • the specific surface area greatly affects the weather resistance of the nickel powder.
  • Multi soap 16 manufactured by UASA Iotas is used for the measurement of the specific surface area. Degassing temperature 200 ° C, degassing time 15 minutes after degassing with nitrogen gas, measured by BET 1 point method with nitrogen 30% -argon mixed gas adsorption The
  • the specific surface area is 2. Om 2 / g or less, the surface micropores are reduced, the surface oxidation is suppressed, and the weather resistance is greatly improved.
  • a specific surface area of 1.2 m 2 / g or less is preferable because the effect of improving weather resistance is further increased.
  • the nickel powder according to the present invention contains 1 to 20% by mass of cobalt, based on the total mass of the nickel powder, and the weather resistance of the nickel powder is remarkably improved by this cobalt.
  • Cobalt is slightly less basic than nickel, because the cobalt corrodes preferentially corrodes, and the corroded coronole has electrical conductivity.
  • the content of cobalt is less than 1% by mass of the total nickel powder, the effect of improving weather resistance is insufficient.
  • the surface layer portion of the nickel powder secondary particles refers to a portion deposited by the second stage reduction deposition process when nickel powder is produced by a two stage reduction deposition process.
  • the cobalt content in the surface layer part is preferably in the range of 1 to 40% by mass with respect to the total mass of the surface layer part.
  • the surface layer contains 1% by mass or more of cobalt.
  • the nickel powder becomes ferromagnetic, which is not preferable when used for electronic parts.
  • the present invention does not exclude an embodiment in which cobalt is also contained in the nickel powder. That is, it may be preferable in such a case that cobalt may be contained inside in addition to the surface layer portion of the nickel powder. For example, this is the case when nickel powder is used in the polymer PTC element described below.
  • the average secondary particle diameter dz average primary particles The value of the diameter d is preferably in the range of 5-60.
  • the nickel powder kneaded with rosin (details
  • the nickel powder manufacturing method according to the present invention is produced by a two-stage reduction precipitation process and a drying / heating process.
  • an aqueous solution containing a divalent nickel salt is added to an aqueous solution containing a reducing agent (generally containing an excessive reducing agent). -Precipitate almost all of the ice.
  • a reducing agent is added to the aqueous solution containing the nickel powder precipitated in the first reduction precipitation step as necessary, and a divalent nickel salt aqueous solution is also added. Then, nickel is further deposited.
  • a low hydrophilic surfactant is added at least in the first reduction precipitation step.
  • a modified silicone oil-based surfactant one having an HLB value represented by the following formula 1 of 10 or less is added.
  • H L B value (Inorganic value Organic value) X 1 0
  • the reducing agent is not particularly limited as long as it can reduce and precipitate nickel, but a hydrazine reducing agent is suitable.
  • the nickel particles precipitated in the first reduction precipitation step become secondary particles in which primary particles are appropriately aggregated and constitute the interior of the nickel powder, but the agglomeration force is weak and has been reacted. When separated from solution or mixed with resin, it is easily separated into single particles.
  • the agglomeration is further strengthened by the deposited nickel, and an appropriate agglomeration can be maintained without separation in subsequent operations.
  • the nickel deposited in the second reduction precipitation process aggregates outside the nickel secondary particles deposited in the first reduction precipitation process to form a surface layer of nickel powder, structurally connects the networks, and has high strength. It is thought to form nickel powder.
  • the electrical resistance of the molded product due to the mixing of the nickel powder and resin thus obtained is extremely low.
  • the powder characteristics described above are produced by passing through the above-described two-step reduction precipitation process and adjusting the concentration of nickel salt and reducing agent, the temperature of the aqueous solution, and other conditions.
  • the average primary particle size is 1.0 to 3.0 m
  • the ratio of the standard deviation ⁇ of the primary particle size to the average primary particle size d ⁇ / ⁇ is 0.4 or less
  • Nickel may be deposited in a state where a divalent cobalt salt is added to the aqueous solution.
  • the content of cobalt ions in the aqueous solution may be 1 to 20% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution at any stage.
  • the cobalt salt is not added to the aqueous solution in the first reduction precipitation step, and the second reduction is performed. Only in the original precipitation step, a divalent cobalt salt may be added to the aqueous solution. ⁇ Ka ⁇ cobalt salt at that time, to Yogu be such that 1 to 40 mass 0/0 on the total amount of nickel ion and cobalt ion content force in the aqueous solution of cobalt ions in the aqueous solution Further, the cobalt content in the surface layer portion of the nickel powder can be made 1 to 40% by mass.
  • the nickel powder obtained in the two-step reduction process as described above is heated at 80 to 230 ° C in an inert atmosphere or vacuum and dried, whereby nickel atoms on the surface diffuse. Micropores disappear further and the specific surface area becomes smaller. If the drying temperature is less than 80 ° C, the specific surface area where micropores are not sufficiently eliminated will exceed 2. Om 2 Zg. On the other hand, when the temperature exceeds 230 ° C, the surface is passivated and the nickel hydroxide and nickel are decomposed, and after the drying, the acid advances and the resistance during kneading of the resin increases. .
  • the drying temperature is more preferably 120 to 230 ° C. from the viewpoint of sufficiently eliminating the micropores.
  • the nickel powder obtained in the two-step reduction process is dried at 80 to 150 ° C in the air and then heated at 200 to 400 ° C in a reducing atmosphere.
  • the pores can be extinguished sufficiently.
  • a large amount of hydroxide is generated on the surface and the specific surface area increases, and the resistance value after kneading of the resin significantly increases, but heating in a reducing atmosphere after drying However, it can be decomposed except for a small amount of nickel hydroxide, and the specific surface area can be reduced. If the heating in a reducing atmosphere is less than 200 ° C, the decomposition of nickel hydroxide is insufficient, and the resistance value after kneading the resin with a large specific surface area becomes high. Above 400 ° C, nickel hydroxide and nickel nickel will be decomposed too much and nickel powder will be sintered together.
  • the present invention further provides a polymer PTC element using the nickel powder of the present invention described above or described later as a conductive filler.
  • the following is a description of the polymer PTC element.
  • Polymer PTC element itself is well known, and the description of the polymer PTC element itself is omitted.
  • the PTC element according to the present invention includes (A) (al) a conductive filler and (a2) a polymer PTC element comprising a polymer material, and (B) Both of them have metal electrodes arranged on one surface, and the nickel powder according to the present invention is used as a conductive filler.
  • the above-mentioned considerations on the physical properties of nickel powder in the molded body, particularly the effects on weather resistance, conductivity, etc. also apply to nickel powder as a conductive filler in polymer PTC elements.
  • the polymer material used in the polymer PTC element according to the present invention may be a known polymer material used in a conventional polymer PTC element that has PTC characteristics.
  • Such a polymer material is a thermoplastic crystalline polymer, and examples thereof include polyethylene, ethylene copolymer, fluorine-containing polymer, polyamide and polyester, and these may be used alone or in combination.
  • polyethylene high-density polyethylene, low-density polyethylene, or the like can be used; as the ethylene copolymer, an ethylene ethyl acrylate copolymer, an ethylene butyl acrylate copolymer, Ethylene butyl acetate copolymer, ethylene-polyoxymethylene copolymer, etc. can be used; examples of fluorine-containing polymers include poly (vinylidene fluoride), difluorinated ethylene, tetrafluoroethylene, hexafluoropropylene copolymer, etc. Can be used; 6 nylon, 6, 6 nylon, 12 nylon, etc. can be used as polyamide; polybutylene terephthalate (PBT), polyethylene terephthalate (PET), etc. can be used as polyester.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • the metal electrode used in the polymer PTC element according to the present invention may be composed of any known metal material used in conventional polymer PTC elements.
  • the metal electrode may be in the form of a plate or foil, for example.
  • the target PTC element of the present invention can be obtained.
  • the metal electrode is not particularly limited. Specific examples include a roughened metal plate and a roughened metal foil. When using a roughened metal electrode, the roughened surface contacts the PTC element. For example, commercially available electrodeposited copper foil or nickel plating electrodeposited copper foil can be used.
  • Such a “metal electrode” is disposed on at least one of the main surfaces of the PTC element, and is preferably disposed on two opposing main surfaces of the PTC element.
  • the metal electrode may be arranged in the same manner as a conventional method for manufacturing a PTC element.
  • the metal electrode may be disposed by thermocompression bonding to a plate-like or sheet-like PTC element obtained by extrusion molding.
  • a mixture of polymeric material and conductive filler may be extruded onto the metal electrode. Thereafter, a smaller PTC element may be formed by cutting as necessary.
  • the present invention provides a PTC device in which a metal lead is electrically connected to at least one metal electrode of the above-described PTC element of the present invention, and further, such a PTC device is provided. Also provided are electrical devices (eg, cell phones) that are electrically connected to wiring or electronic components.
  • the nickel powder of the present invention particularly preferred for use in the PTC device of the present invention is, for example, as follows:
  • cobalt is 2 to 20% by mass, preferably 3 to 18% by mass, more preferably 3 to 15% by mass, for example 4 to 10% by mass, especially 5 to 7% by mass ( For example, 6% by mass).
  • cobalt is 3 to 40% by mass, preferably 8 to 30% by mass, more preferably 8 to 20% by mass, for example 9 based on the total mass of the surface layer portion. ⁇ 15% by weight, especially 10% by weight.
  • the nickel powder preferably used for the PTC element may preferably contain cobalt inside the surface layer portion, but it is not necessarily required to contain the inside.
  • the amount of cobalt inside is preferably 2 to 7% by mass (particularly 3 to 6% by mass) based on the total mass of the inside.
  • the PTC device according to the present invention is particularly preferred for use in the present invention.
  • Specific examples of the nickel powder according to the present invention include various types of cobalt content described above. For example, the following can be exemplified: The total amount of cobalt is 5 to 7% by mass, the amount of cobalt in the surface layer is 9 to 12% by mass, The amount of cobalt inside is 4-5% by mass.
  • 0.3 or less preferably 0.25 or less.
  • ⁇ rows 10-40 ⁇ m, preferably 15-30 ⁇ m.
  • the ratio between the polymer material and the conductive filler may be any suitable ratio as long as the function as a predetermined PTC element is exhibited.
  • the conductive filler is 65 to 90% by mass, preferably 70 to 85% by mass on a mass basis.
  • Examples and comparative examples relating to nickel powder are Examples 1 to 12 and Comparative Examples 1 to 6, and Examples and comparative examples relating to polymer PTC elements are Examples A to D and Comparative Examples A and B. .
  • Examples and comparative examples relating to nickel powder (Examples 1 to 12 and Comparative Examples 1 to 6)] (Example 1)
  • the aqueous solution after completion of the precipitation of the nickel powder in the first reduction precipitation step was mixed with 4.8 L of 60% hydraulic mouth hydrazine, and an aqueous solution (Co containing (Aqueous solution mixed so that the amount is 10% by mass with respect to the amount of Ni + Co)) in terms of Ni + Co (the total mass of Ni and Co in which the salt contained in the aqueous solution is converted to metal) 3.
  • an aqueous solution Co containing (Aqueous solution mixed so that the amount is 10% by mass with respect to the amount of Ni + Co) in terms of Ni + Co (the total mass of Ni and Co in which the salt contained in the aqueous solution is converted to metal) 3.
  • 7 kg of nickel powder was deposited in the second reduction deposition process. Then, after filtering and washing with water, it was dried in vacuum at 80 ° C to obtain nickel powder.
  • the Co content of the obtained nickel powder was 6.6% by mass.
  • the powder characteristics are shown in Table 1 below.
  • the Co content in the entire nickel powder is the analytical value.
  • the Co content in the surface layer is calculated from the value obtained by converting the salt in the aqueous solution in the second reduction precipitation step into Ni and Co. . Specifically, it was calculated as a ratio of the Co-converted value to the total value of the Ni-converted value and the Co-converted value.
  • d in Table 1 means an average primary particle diameter, and was measured by SEM observation.
  • Nickel powder was fixed to the sample holder with conductive double-sided tape, and observed with JEOL Ltd. SM-6360LA at an acceleration voltage of 20 kV and a magnification of 2500 times.
  • the image processing software (Smile View) attached to the device is applied to the obtained SEM image, and the particle size of 200 or more primary particles is excluded, except for particles that overlap and the particle size cannot be determined.
  • the standard deviation of the diameter was also calculated.
  • d means the average secondary particle size, and the secondary particle size is measured by laser particle size distribution measurement.
  • represents the standard deviation of the average primary particle size d
  • ⁇ / ⁇ is the standard of the primary particle size.
  • the tap density in Table 1 was measured using a shaking specific gravity measuring device KRS-409 manufactured by Kuramochi Scientific Instruments Co., Ltd.! 15 g of nickel powder was weighed and placed in a 20 mL graduated cylinder, the tap speed was 120 times Z, and 500 taps were performed at a tap height of 20 mm. Thereafter, the volume of the nickel powder was read from the scale of the graduated cylinder, and the mass (g) of the nickel powder was divided by the read volume.
  • Multi soap 16 manufactured by UASA Iotas was used. After degassing with nitrogen gas at a degassing temperature of 200 ° C and a degassing time of 15 minutes, the BET one-point method with nitrogen 30% -argon mixed gas adsorption was used.
  • the above nickel powder and polyethylene resin are mixed so that the nickel powder content is 35% by volume and 43% by volume with respect to nickel powder + polyethylene resin, and the melting point of the polyethylene resin It knead
  • the molded sheet-like sample was cut into 25 (mm) WX 60 (mm) L and the surface resistivity was measured according to JIS K 7194.
  • the initial surface resistivity of the 35% by volume kneaded product was 0. 20 9 ⁇ well, and 43% by volume kneaded product was 0.036 ⁇ well.
  • a low resistivity meter (Loresta-GP, manufactured by Dia Instruments Inc.) was used.
  • nickel powder After filtering and washing with water, it was dried at 80 ° C. in vacuum to obtain nickel powder.
  • the obtained nickel powder contained Co only in the surface layer portion, and the overall Co content was 5.0% by mass.
  • Table 1 shows the powder characteristics. Further, when this nickel powder was evaluated in the same manner as in Example 1, the initial surface resistivity of the 35% by volume kneaded product (that is, 35% by volume mixed as described above) was 0.711 ⁇ Yes, it was 0.194 ⁇ for the 43% by volume kneaded product (that is, 43% by volume mixed as described above). Further, when the surface resistivity after the moisture resistance test was measured, the 35% by volume kneaded product showed 0.706 ⁇ well, and the 43% by volume kneaded product showed 0.160 ⁇ well. These results are shown in Table 2.
  • an aqueous solution obtained by mixing 45 mL of hydrazine and a salty-cobalt aqueous solution and a salty-nickel aqueous solution in the aqueous solution after the completion of the first reduction precipitation step (Co content is 1.5% by mass with respect to Ni + Co content)
  • 39 g of Ni + Co equivalent mass was added, and nickel powder was further precipitated by the second reduction precipitation step.
  • the total nickel content of the obtained nickel powder was 1.2% by mass.
  • Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1.
  • the initial surface resistivity of the 35% by volume kneaded product was 0.725 ⁇ well, and the 43% by volume kneaded product was 0.203 ⁇ well.
  • the surface resistivity after the moisture resistance test was measured, the 35% kneaded product showed 0.772 ⁇ well and the 43% kneaded product showed 0.173 ⁇ well.
  • Example 3 In the same manner as in Example 3, two-stage nickel reduction precipitation was performed by a two-stage reduction precipitation process.
  • the heating force is up to 65 ° C.
  • Example 4 the heating is up to 60 ° C.
  • the aqueous solution of cobalt chloride and the salt are salified.
  • An aqueous solution mixed with an aqueous nickel solution (an aqueous solution mixed so that the Co content is 20% by mass relative to the Ni + Co content (In Example 3, in the first reduction precipitation step, the Co content is 1% by mass, in the second reduction precipitation step, Co content was 1.5% by mass with respect to Ni + Co content;)) was added in 39g in terms of Ni + Co equivalent to precipitate nickel powder. Then, after filtering and washing with water, the nickel powder was obtained by drying at 80 ° C in vacuum.
  • the overall Co content of the obtained nickel powder was 19.4 mass%.
  • Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.097 ⁇ , and that of the 43% by volume kneaded product was 0.033 ⁇ . Met. Further, when the surface resistivity after the moisture resistance test was measured, the 35% by volume kneaded product showed 0.115 ⁇ well, and the 43% by volume kneaded product showed 0.035 ⁇ well. These results are shown in Table 2.
  • an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution are mixed (an aqueous solution in which the Co content is 40% by mass with respect to the Ni + Co content (in Example 3, Co The content was 1.5% by mass with respect to the amount of Ni + Co .;)) was added in 39g of Ni + Co converted mass to precipitate nickel powder. Then, after filtering and washing with water, the nickel powder was obtained by drying at 80 ° C in vacuum. [0096] The obtained nickel powder contained Co only in the surface layer portion, and the total Co content of the obtained nickel powder was 18.7% by mass. Table 1 shows the powder characteristics. The nickel powder was evaluated in the same manner as in Example 1.
  • Example 6 is different from Example 1 only in that the drying temperature in vacuum is 150 ° C. (Example 1 is 80 ° C.).
  • the total nickel content of the obtained nickel powder was 6.5% by mass, and the specific surface area was 0.
  • Example 2 In the same manner as in Example 1, two-stage reduction and precipitation processes were performed, and two-stage reduction and precipitation of nickel was performed.
  • the first reduction and precipitation step an aqueous solution in which a salt-cone aqueous solution and a salt-nickel aqueous solution are mixed (an aqueous solution in which the Co content is 4% by mass relative to the Ni + Co content (in Example 1)
  • the Co content was 5% by mass with respect to the Ni + Co content; 3.7) of Ni + Co equivalent mass was added to precipitate nickel powder.
  • the second reduction precipitation step 35% after the start of addition of 60% hydraulic hydrazine in the first reduction precipitation step, an additional 60% hydraulic hydrazine and aqueous salt water solution are added.
  • an aqueous solution of a mixture of a nickel salt and an aqueous nickel solution (an aqueous solution mixed so that the Co content is 10% by mass with respect to the Ni + Co content) was added to precipitate nickel powder. Then, after filtering and washing with water, it was dried at 200 ° C. in vacuum to obtain nickel powder. [0101] The total nickel content of the obtained nickel powder was 6.2% by mass, and the specific surface area was 0.65 m 2 Zg. The powder characteristics are shown in Table 1 below. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.151 ⁇ well, and the surface resistivity after the moisture resistance test was 0.122 ⁇ well. These results are shown in Table 2.
  • the obtained nickel powder contained Co only in the surface layer portion, the Co content as a whole was 4.6 mass%, and the specific surface area was 0.97 m 2 Zg. Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.209 ⁇ well, and the surface resistivity after the moisture resistance test was 0.190 ⁇ well. These results are shown in Table 2.
  • Ni + Co equivalent weight of an aqueous solution mixed with an aqueous solution and a salty nickel aqueous solution (an aqueous solution mixed so that the Co content is 1.5% by mass with respect to the Ni + Co content) Powder was deposited. Then, after filtering and washing with water, it was dried at 120 ° C. in a vacuum to obtain nickel powder.
  • the total nickel content of the obtained nickel powder was 1.3% by mass, and the specific surface area was 0.
  • Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.361 ⁇ well, and the surface resistivity after the moisture resistance test was 0.318 ⁇ well. . These results are shown in Table 2.
  • the second reduction precipitation step 30 minutes after the start of the addition of hydrazine in the first reduction precipitation step, 45 ml of hydrazine, a salty cobalt aqueous solution, and a salty nickel aqueous solution were further mixed. 39 g of the resulting aqueous solution (aqueous solution mixed so that the Co content was 20% by mass with respect to the Ni + Co content) was added in terms of Ni + Co equivalent mass to further precipitate nickel powder. Then, after filtering and washing with water, it was dried at 200 ° C in a vacuum to obtain nickel powder.
  • the total nickel content of the obtained nickel powder was 18.8% by mass, and the specific surface area was 1.00m 2 Zg.
  • the powder characteristics are shown in Table 1 below.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.085 ⁇ well, and the surface resistivity after the moisture resistance test was 0.081 ⁇ well. These results are shown in Table 2.
  • a two-step reduction precipitation process is used to perform a two-step reduction precipitation of nickel.
  • the heating was performed up to 70 ° C.
  • the salt-cobalt aqueous solution was not added, and 39 g of the salt-nickel aqueous solution alone was added in terms of Ni to precipitate the nickel powder.
  • hydrazine addition was started in the first reduction precipitation step, and after 45 minutes of force, 45 mL of hydrazine, salt-cobalt aqueous solution and salt-nickel were added.
  • An aqueous solution mixed with an aqueous solution (an aqueous solution mixed so that the Co content was 40% by mass with respect to the Ni + Co content) was added in an amount of 39 g in terms of Ni + Co equivalent, and nickel powder was further deposited. Then, after filtering and washing with water, it was dried at 220 ° C. in vacuum to obtain nickel powder.
  • the obtained nickel powder contained Co only in the surface layer portion, the Co content as a whole was 19.1% by mass, and the specific surface area was 1.15m 2 Zg. Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.406 ⁇ well, and the surface resistivity after the moisture resistance test was 0.369 ⁇ well. These results are shown in Table 2 below.
  • Example 7 In the same manner as in Example 7, two-stage reduction precipitation of nickel was performed by a two-stage reduction precipitation process. Then, after filtering and washing with water, it was dried at 110 ° C. in the atmosphere, and further heated at 350 ° C. in nitrogen—10% hydrogen for 2 hours. The total nickel content of the obtained nickel powder was 5.9% by mass, and the specific surface area was as small as 0.35 m 2 Zg. Table 1 shows the powder characteristics. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.205 ⁇ , and the surface resistivity after the moisture resistance test was 0.196 Q / D. . These results are shown in Table 2.
  • the obtained nickel powder contained Co only in the surface layer portion, and the Co content was 4.8% by mass.
  • the powder characteristics are shown in Table 1 below. Since a modified silicone oil surfactant having an HLB value of 11 was used, the average primary particle diameter d was reduced. Also this nickel The powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.043 ⁇ well. When 43% by volume nickel powder was kneaded, Kneading was impossible between the kneaded powder (specifically, between the particles constituting the powder) and kneading was impossible. Furthermore, when the surface resistivity after the moisture resistance test was measured, the 35% by volume kneaded product showed 0.059 ⁇ well. These results are shown in Table 2.
  • nickel powder was obtained in the same manner as in Example 2 by two-stage reduction and precipitation of nickel by a two-stage reduction and precipitation process. Due to the pulverization process, the tap density increased to 3.61 gZmL.
  • the obtained nickel powder contained Co only in the surface layer portion, and the Co content was 4.6 mass%. Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 356 ⁇ and the 43% by volume kneaded product was 129 ⁇ . . Due to the high initial surface resistivity, these samples were not tested for moisture resistance. These results are shown in Table 2.
  • the obtained nickel powder contains Co.
  • Table 1 shows the powder characteristics. Further, when this nickel powder was kneaded with polyethylene resin in the same manner as in Example 1, even when nickel powder was kneaded at 35% by volume, the resin was absorbed between the nickel powders. It was impossible.
  • Table 1 shows the powder characteristics of typical filler-like nickel powder (manufactured by INCO) commercially available as conductive particles for conductive paste and conductive grease. This nickel powder does not contain Co.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.124 ⁇ port, and that of the 43% by volume kneaded product was 0.043 ⁇ port. Met. Further, when the surface resistivity after the moisture resistance test was measured, it was 0.406 ⁇ well for the 35% by volume kneaded product, and 0.668 ⁇ for the 43% by volume kneaded product. These results are shown in Table 2.
  • the obtained nickel powder contained Co only in the surface layer portion, the Co content was 5.0% by mass, and the specific surface area was 2.26 m 2 / g. Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.039 ⁇ Z port, and the surface resistivity after the moisture resistance test was 0.051 ⁇ port. These results are shown in Table 2.
  • the obtained nickel powder had Co ⁇ only in the surface layer portion, the Co content was 5.0% by mass, and the specific surface area was 1.13m 2 Zg. Table 1 shows the powder characteristics.
  • the nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.046 ⁇ Noro, and the surface resistivity after the moisture resistance test was 0.066 ⁇ . These results are shown in Table 2.
  • Example 6 35 ⁇ 0. 147 0. 112 0. 76
  • Example 7 35 ⁇ 0 o. 151 0. 122 0. 81
  • Example 8 35 ⁇ 0. 209 0. 190 0. 91
  • Example 9 35 ⁇ 0. 361 0. 318 0. 88
  • Example 1 0 35 ⁇ 0. 085 0. 081 0. 95
  • Example 1 35 ⁇ 0. 406 0. 369 0. 91
  • Example 1 2 35:. ⁇ 0. 205 0. 196 0. 96
  • the rate of increase in the surface resistivity before and after the moisture resistance test is 1.19 at the maximum, which is an example within the scope of the present invention.
  • Nos. 1 to 12 are also excellent in weather resistance and can be used stably over a long period of time.
  • Replacement paper (Rule 26) [0126]
  • Comparative Example 1 a modified silicone oil surfactant having an HLB value of 11 was added, so the average primary particle size was 0.9 m, which is lower than the lower limit of 1. of the present invention. Therefore, when the Ni powder kneading ratio was 43% by volume, kneading with polyethylene resin was impossible.
  • Ni powder kneading ratio When the Ni powder kneading ratio is 35% by volume, the force capable of kneading with polyethylene resin
  • the specific surface area of Ni powder is 2.03 m 2 / g, which is the upper limit of the present invention 2.
  • the rate of increase in surface resistivity before and after the moisture resistance test (surface resistivity after the moisture resistance test Z surface resistivity before the moisture resistance test) is 1.36 (Ni powder kneading ratio is 35% by volume), which is inferior in weather resistance.
  • the tap density is 3.61 gZmL, which is the upper limit of the present invention, 3.5 gZmL. Therefore, the nickel powder is unevenly distributed in the resin and the particles constituting the powder are in contact with each other.
  • the initial value of the surface resistivity is S356 ⁇ , and the Z port is used.
  • the surface resistivity is The initial value of 129 ⁇ was the Z port, and in the case of V and misalignment, the surface resistivity of the sheet-like sample formed after kneading the resin became extremely large.
  • Comparative Example 3 has a tap density of 0.61 gZmL, which is the lower limit of the present invention. 1. Since it is lower than OgZmL, it becomes difficult to increase the amount of nickel powder kneaded into the resin, and the kneading of Ni powder Even when the ratio was 35% by volume, kneading with polyethylene resin was impossible.
  • Comparative Example 4 is Ni powder that does not contain Co
  • the surface resistivity increase rate before and after the moisture resistance test is 3.28 (Ni powder kneading ratio is 35% by volume) and 1.59 (Ni powder kneading ratio is 43% by volume), which is inferior in weather resistance.
  • Comparative Example 6 the specific surface area is within the range of the present invention.
  • the force average primary particle diameter is lower than that of the present invention, and the standard deviation of the primary particle diameter is large. It is inferior in weather resistance.
  • FIGs. 1 (a) and (b) show photographs of the nickel powder obtained in Comparative Example 2 using a scanning electron microscope (SEM).
  • the nickel powder obtained in Example 1 has a primary particle size of about 1.8 m.
  • the nickel powder obtained in Comparative Example 2 contains a mixture of particles with irregular primary particle sizes. There are many fine primary particles that are thought to be the cause of sexual deterioration.
  • Nickel-cobalt alloy filler ie, nickel powder of the present invention or nickel powder for comparison
  • conductive filler high-density polyethylene is used as the polymer material
  • roughened nickel foil is used as the metal electrode ( PTC elements were manufactured using Fukuda Metal Foil Industry Co., Ltd. (thickness: about 25 ⁇ m).
  • the nickel powders used were those manufactured in Example 1, Example 6, Example 7, and Example 12, and PTC elements were manufactured using these. These PTC elements are called PTC elements of Example A, Example B, Example C, and Example D, respectively.
  • the nickel powder of Comparative Example 6 and Comparative Example 5 was used as a conductive filler. These PTC elements are referred to as Comparative Example A and Comparative Example B, respectively.
  • the Co content was calculated on the assumption that substantially all of the nickel salt and the condensate salt in the aqueous solution used for the production were precipitated.
  • Polymer materials include high-density polyethylene sold by EQUISTAR (PETR)
  • OTHENE LB832 density: 0. 957- 0.964 8/1111, Meno Leto fin index:. 0 23- 0.
  • a nickel metal foil manufactured by Fukuda Metal Foil Powder Industry, electrolytic nickel foil, thickness: about 25 m was used.
  • Powdered polymeric material coupling agent (Kenrich PETROCHEMICALS Co., NZ-33) was 2 mass 0/0 ⁇ Ka ⁇ against polyethylene mass, they kitchen blender (San Co., MILL MIXER MODEL FM — Polymer blend was obtained by mixing for 30 seconds at 50). To this, nickel powder and Mg (OH) (Albemarle, HI
  • the PTC composition obtained in (4) is used to make an iron plate Z Teflon (registered trademark) sheet Z thickness adjustment spacer (0.5 mm thick SUS) + PTC composition Z Teflon (registered trademark) sheet Z steel plate and sandwich structure are stacked on top of each other, and preheated for 3 minutes at a temperature of 180 to 200 ° C and a pressure of 0.5 MPa using a hot-pressure press (manufactured by Toho Press Co., Ltd., hydraulic forming machine: Model T-1). After pressing, this pressing was performed at a pressure of 5 MPa for 4 minutes. After that, press for 4 minutes at 0.5 MPa using a cooling press machine (hydraulic molding machine: model T 1) manufactured by Toho Press Mfg. A sheet-like polymer PTC element (PTC element original plate) was produced.
  • the polymer PTC element black original plate prepared in (4-3) was irradiated with an electron beam of lOOOOkGy, and then punched into a 3 X 4 mm with a manual punch to obtain a test piece of the polymer PTC element.
  • the resistance value (resistance value between two leads) was measured 2 days after production.
  • This resistance value can be called the initial resistance value of the PTC element because the resistance value of the lead is much smaller than the resistance value of the PTC element.
  • a milliohm meter (HEWLETT PACKARD, 4263A) was used to measure the initial resistance value and the resistance value of the PTC element under various conditions as described later. Table 5 shows the measurement results (unit: ⁇ ) of the initial resistance value.
  • test sample of the example has a slightly lower resistance value
  • all of the test samples including the sample of the comparative example have a low resistance value as usual.
  • the device of the example and the comparative example is also called a threshold temperature in the range of about 120 ° C to 130 ° C.
  • the resistance of the PTC element increases rapidly), and the resistance value after such a range will be at least about 10 15 times more than the previous resistance value even for the V, misaligned element. Therefore, it is clear that all the test samples have a switching function as a PTC element.
  • the resistance value increases at least about 10 3 times or more, and thought to have a function as a PT C element Yo,.
  • test samples of Examples and Comparative Examples were stored in a constant temperature oven (Yamato constant temperature oven DK600) controlled at a high temperature of 85 ° C ⁇ 3 ° C and a relative humidity of 10% or less for 24 hours. After storage time of 165 hours, 502 hours, and 1336 hours, remove 5 test samples of each Example and Comparative Example from the constant temperature oven, leave them at room temperature for 1 hour, and then use a milliohm meter to determine the resistance value (before tripping). Resistance value) was measured.
  • Yamato constant temperature oven DK600 Yamato constant temperature oven DK600
  • a DC stabilized power supply (PAD35-60L, manufactured by Kikusui Electronics Co., Ltd.) was used, voltage was applied for 5 minutes at a setting of 6V / 50 A, and the element was tripped. Thereafter, the device was allowed to stand at room temperature for 1 hour, and then the resistance value of the element (resistance value after trip) was measured with a milliohm meter.
  • the measurement results are shown in Table 6 and Table 7 below.
  • the results are shown in Fig. 4 (85 ° C storage resistance value) and Fig. 5 (85 ° C storage trip jump) versus storage time.
  • the values in Table 6 are resistance values before tripping, and the unit is ⁇ .
  • Table 7 shows the ratio of the resistance value after trip after each time to the resistance value before trip in storage time force SO time at 85 ° C, that is, resistance.
  • test samples of the examples and comparative examples were placed on a PTC device stored at room temperature controlled at 23 ⁇ 5 ° C and relative humidity 20-60% (equivalent to general humidity when humidity is not controlled).
  • the same test as the above (7) was performed. However, the number of samples used was 20 each, and after 1002 hours and after the storage time of 1863 hours, 5 samples each were taken and the resistance value (pre-trip resistance value) was measured. Moreover, the resistance value after a trip was measured similarly.
  • the measurement results are shown in Table 8 and Table 9 below. The results are shown in Fig. 6 (normal temperature storage resistance value) and Fig. 7 (room temperature storage trip jump) versus storage time.
  • Table 8 The numerical values in Table 8 are resistance values before tripping, and the unit is ⁇ ⁇ .
  • Table 9 shows the storage time at room temperature is 0 hours. The ratio of the resistance value after the trip after each time, that is, the resistance change rate, to the resistance value before the trip.
  • a test sample was placed in a pressure vessel, and compressed air was supplied to the atmosphere to create a pressurized atmosphere of 40 atm. Conditions were set to accelerate the oxidation of the conductive filler of the PTC element. After storing the test samples in this pressurized atmosphere for 14 days and 28 days, air / room temperature atmosphere After holding for 1 hour, the resistance values were measured in the same manner as before (These measured values are shown as “2week” and “4week” in FIG. 8, respectively. Is shown as [init ial].) 0 After that, as before, the PTC element was tripped and then left at room temperature for 1 hour to measure the resistance. The measurement results are shown in Table 10 and Table 11 below. The results are shown in Fig.
  • Table 10 shows resistance values before tripping and the unit is ⁇ ⁇ .
  • Table 11 shows the ratio of the resistance value after the trip after each time, that is, the resistance change rate, to the resistance value before the trip when the storage time at 40 atmospheres is 0 hour.
  • the resistance value before a test was measured using the milliohm meter at room temperature. These samples were then set in a trip cycle tester. In this testing machine, Kikusui Electronics MODEL PAD 35-60L was used as the power supply, and the voltage was set to 6Vdc and the test current was set to 50A.
  • a current of 50 A was applied to each sample for 6 seconds.
  • the sample tripped within this application time, and the voltage of 6V was applied to the sample for the remaining time.
  • the test force is also removed from the sample, and after one hour has elapsed after the predetermined number of cycles, the resistance value of the sample is measured.
  • the sample was set on the testing machine again and the trip cycle test was continued.
  • the prescribed number of cycles was 50, 100 and 200 cycles.
  • Table 12 and Fig. 10 show the measurement results of this resistance value.
  • the numerical values in the tables and figures are shown as the ratio of the resistance value after the end of each cycle to the resistance value at the initial value (0 cycle), that is, the resistance change rate.
  • the samples of the examples were compared with the samples of the comparative example at a higher temperature'dry storage condition, normal temperature ⁇ normal. It was confirmed that good performance was maintained in all of the humidity storage conditions, the storage conditions under the accelerated atmosphere, and the trip site test. Therefore, when the nickel powder of the present invention used for producing such a sample is used as a conductive filler, a preferable PTC element can be produced. This is presumed to be because the nickel powder of the present invention has been selected from nickel powders containing cobalt as having specific characteristics. In other words, in consideration of the characteristics of nickel powder itself containing Co, it is possible to select a specific range from the viewpoint of a more controlled primary particle size distribution and secondary particle morphology. It is thought that it is caused.
  • PTC elements have been evaluated under normal temperature and normal humidity conditions.
  • the increase in the resistance value of the element is not remarkable, as can be seen from the results of FIGS.
  • the difference in the increase in the resistance value of the PTC element is apparent in the evaluation under the high temperature / dry condition.
  • the environment in which PTC elements are used varies and may be used at high temperatures and in dry conditions (for example, in a car on a summer day).
  • the PTC element of the present invention has such an excessive The increase in resistivity is small even in harsh environments! Therefore, it is useful compared to conventional PTC devices.
  • the nickel powder according to the present invention can be suitably used as conductive particles for conductive paste and conductive resin, and as a conductive filler for polymer PTC elements.
  • the PTC element according to the present invention has a switching performance equivalent to that of a PTC element using nickel powder containing only nickel as a conductive filler, and further improved performance with respect to long-term aging. Therefore, it can be used for a longer period of time that is wide in an electric device or the like, like a conventional PTC element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Thermistors And Varistors (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 安価であって、樹脂と混練した状態における電気抵抗が低く、かつ、耐侯性に優れ、長期間にわたり安定して導電ペースト用の導電性粒子および導電樹脂用の導電性粒子として使用できるニッケル粉を提供する。  コバルトを1~20質量%含有し、残部がニッケルおよび他不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、平均一次粒子径が1.0~3.0μm、一次粒子径の標準偏差σと平均一次粒子径dの比σ/dが0.4以下、平均二次粒子径が5~60μm、タップ密度が1.0~3.5g/mL、比表面積が2.0m2/g以下であるニッケル粉とする。

Description

明 細 書
ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマー
PTC素子
技術分野
[0001] 本発明は、ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマ 一 PTC素子に関する。該ニッケル粉は、導電ペーストおよび導電榭脂用の導電性粒 子として好適に用いることができ、特にポリマー PTC素子用の導電性フイラ一として 好適に用いることができる。
背景技術
[0002] 従来、電子機器の接続にはすず鉛 (Sn—Pb)系はんだが用いられていたが、近年 では Pbフリー化に対応して電子機器の接続に導電ペーストの使用が検討されている 。また、近年においては、導電榭脂を利用したデバイスが広く用いられるようになって きている。
[0003] 導電ペーストは、導電性粒子と各種の榭脂を混練したペーストであり、導電榭脂は 、これを硬化させた成形体である。導電性粒子に求められる特性としては、粒子その ものの導電性が高ぐ榭脂と混練した状態でも電気抵抗が低いこと、耐マイグレーショ ン性が高いこと、耐候性に優れること等が挙げられる。現在、導電性粒子としては、金 属粉もしくはカーボン粉が用いられて 、る。
[0004] 金属粉のうち、貴金属粉は導電性が高ぐ電気抵抗が低いが、高価であるという問 題がある。また、ニッケル (Ni)あるいは銅 (Cu)などに代表される卑金属粉は、コスト 的に安価であり、かつ、高い導電性を有しているが、耐候性に劣るため、榭脂と混練 して導電ペーストや導電榭脂として長期にわたり使用すると、電気抵抗が上昇すると いう問題がある。
[0005] また、カーボン粉は、安価であり、かつ、耐候性も高いが、導電性が低ぐ榭脂と混 練した時の電気抵抗が高くなるという問題がある。
[0006] これらの問題点を解決すベぐ特許文献 1 (特開 2002— 025345号公報)および特 許文献 2 (特開 2002— 075057号公報)において、 Ni粒子や Cu粒子の表面に銀( Ag)等の貴金属を被覆した粉末が提案されている。これらの粉末は、貴金属で Ni粒 子や Cu粒子を被覆しているので、特性的な面は全般的に改善されている力 耐マイ グレーシヨン性については問題がある。特に、 Agで被覆した粉末については耐マイ グレーシヨン性が求められる使用環境下では、使用には適さない。また、貴金属で Ni 粒子や Cu粒子を被覆することはコスト的に高価となる。
[0007] また、特許文献 3 (特開 2001— 043734号公報)では、 Ni粒子等の表面形状を変 更すること、例えば表面に半球状の小瘤を形成することにより、榭脂と混練した時の 電気抵抗を下げる試みもなされている。しかし、粒子の耐侯性が劣る点はそのままで あるため、長期間の使用における安定性を改善しているとは言えない。
[0008] さらに、本発明者は、特定の形状を持ち、コバルト (Co)を添加することで導電性と 耐候性を改善した Ni粉を提案しているが (特許文献 4参照。)、さらなる改善が期待さ れている。このような事情から、安価で、かつ、耐侯性に優れ、榭脂と混練した状態で 低い電気抵抗を有し、長期間にわたり安定して使用できる導電性粒子の提供が望ま れている。
[0009] 特許文献 1 :特開 2002— 25345号公報
特許文献 2:特開 2002 - 75057号公報
特許文献 3:特開 2001—43734号公報
特許文献 4:国際公開第 2005Z023461号パンフレット
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、力かる問題点に鑑みてなされたものであって、安価であって、榭脂と混 練した状態における電気抵抗が低ぐかつ、耐侯性に優れ、長期間にわたり安定して 、導電ペースト、導電榭脂、 PTC素子用の導電性フイラ一等に用いる導電性粒子とし て使用できるニッケル粉およびその製造方法を提供することを目的とする。
課題を解決するための手段
[0011] 本発明に係るニッケル粉は、コバルトを 1〜20質量%含有し、残部がニッケルおよ び不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、 平均一次粒子径が 1. 0〜3. O ^ m,一次粒子径の標準偏差 σと平均一次粒子径 d の比 σ /άの値が 0. 4以下、平均二次粒子径が 5〜60 μ m、タップ密度が 1. 0〜3
1
. 5gZmL、比表面積が 2. Om2/g以下であることを特徴とする。
[0012] 前記平均一次粒子径 dと前記平均二次粒子径 dとの比 d /άの値が 5〜60の範
1 2 2 1
囲内であることが好ましい。
[0013] また、前記二次粒子の表層部に存在する一次粒子のコバルト含有量が、該表層部 の全質量あたり 1〜40質量%であることが好まし 、。
[0014] 本発明に係るニッケル粉の製造方法は、還元剤を含有する水溶液に 2価のニッケ ル塩を添加してニッケルを析出させる第 1の還元析出工程と、第 1の還元析出工程後 の水溶液に少なくとも 2価のニッケル塩を添加して、さらにニッケルを析出させる第 2 の還元析出工程とからなり、前記第 1および第 2の還元析出工程のうち、少なくとも第 1の還元析出工程において HLB値が 10以下の低親水性の界面活性剤を添加する とともに、少なくとも第 2の還元析出工程において、ニッケルを析出させる水溶液に 2 価のコノ レト塩を添加してニッケルを析出させてニッケル粉を得て、さらに得られた- ッケル粉を不活性雰囲気または真空中で 80〜230°Cで乾燥させる力、または、大気 中で 80〜 150°Cで乾燥させた後に還元雰囲気中で 200〜400°Cの熱処理をするこ とを特徴とする。
[0015] 前記第 2の還元析出工程において 2価のコノ レト塩を添カ卩した水溶液中のコバルト イオンの含有量力 該水溶液中のニッケルイオンとコバルトイオンの合計量に対し 1 〜40質量%であり、かつ、該水溶液中のコバルトイオン濃度が前記第 1の還元析出 工程における水溶液中のコバルトイオン濃度より高ぐさらに、前記第 1および第 2の 還元析出工程を経て得られるニッケル粉はコバルトを 1〜20質量%含有していること が好ましい。
[0016] また、前記第 1の還元析出工程における水溶液に、該水溶液中のコバルトイオン含 有量が該水溶液中のニッケルイオンとコノ レトイオンの合計量に対し 1〜 20質量0 /0と なるように 2価のコバルト塩を添加するとともに、前記第 2の還元析出工程における水 溶液に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバル トイオンの合計量に対し 1〜20質量0 /0となるように 2価のコノ レト塩を添加してもよい [0017] 前記ニッケル粉をポリマー PTC素子に用いる場合には、前記二次粒子の表層部に おけるコバルトの含有量力 該表層部の全質量当たり 8〜20質量%であることが好ま しぐニッケル粉全体としてのコバルトの含有量力 〜 10質量%であることが好ましぐ ニッケル粉の内部におけるコバルトの含有量力 該内部の全質量当たり 3〜6質量% であることが好ましい。さらに、タップ密度が 2. 3〜3. OgZmLであることが好ましぐ d /ά力 ¾〜16であることが好ましい。尚、ポリマー PTC素子は、これらの特徴の 1つ
2 1
またはそれ以上を有するのがより好ましぐ全てを有するのが特に好ましい。
[0018] 本発明に係るポリマー PTC素子は、導電性フィラーおよびポリマー材料を含んで成 るポリマー PTC要素、ならびにポリマー PTC要素の少なくとも 1つの表面に配置され た金属電極を有して成るポリマー PTC素子であって、前記ニッケル粉ならびに前記 方法によって製造されるニッケル粉のいずれかを導電性フィラーとして使用すること を特徴とする。
発明の効果
[0019] 本発明に係るニッケル粉を榭脂と混練して榭脂成形体を作製すると、電気抵抗が 著しく低い榭脂成形体を得ることができる。また、得られた榭脂成形体は優れた耐侯 性を有しており、長期間安定して使用できる。したがって、本発明に係るニッケル粉 は、導電ペーストおよび導電榭脂等に用いる導電性粒子として極めて好適に用いる ことができる。また、後述するように、本発明のニッケル粉は、ポリマー PTC素子の導 電性フイラ一としても好適に使用できる。
[0020] さらに、本発明に係るニッケル粉は、高価な材料を使用しておらず、かつ、複雑な 工程を要せずに得ることができるので、安価である。
[0021] なお、特許文献 4に係るニッケル粉も耐候性に優れるが、特許文献 4に係る-ッケ ル粉の平均一次粒子径 0. 2〜2. O /z mに対して、本発明に係るニッケル粉の平均 一次粒子径は 1. 0〜3. O /z mであり、また、特許文献 4に係るニッケル粉のタップ密 度が 0. 5〜2. OgZmLに対して、本発明に係るニッケル粉のタップ密度が 1. 0〜3 . 5gZmLである。さらに、本発明に係るニッケル粉は、一次粒子径の標準偏差 σと 平均一次粒子径 d 0 . Om
1の比 σ /ά
1を . 4以下、比表面積を 2 2Zg以下に規定して いる。このため、本発明に係るニッケル粉は特許文献 4に係るニッケル粉よりも耐候性 力 り良好となっている。
[0022] また、本発明に係るニッケル粉はポリマー PTC素子に好適に用いることができ、高 温かつ乾燥条件 (例えば夏の日の車中の環境)のような過酷な環境においても抵抗 率の増加が小さ!/、ので、従来の PTC素子と比較して有用である。
図面の簡単な説明
[0023] [図 1]実施例 1で得られたニッケル粉の走査型電子顕微鏡 (SEM)による写真である 。 (b)の拡大率は (a)の拡大率よりも大きくなつている。
[図 2]比較例 2で得られたニッケル粉の走査型電子顕微鏡 (SEM)による写真である 。 (b)の拡大率は (a)の拡大率よりも大きくなつている。
[図 3]実施例および比較例の PTC素子の抵抗—温度曲線を示すグラフである。
[図 4]実施例および比較例の PTC素子の高温'乾燥条件下での抵抗値の経時変化 を示すグラフである。
[図 5]実施例および比較例の PTC素子の高温 ·乾燥条件下でのトリップ後の抵抗値 の変化率の経時変化を示すグラフである。
[図 6]実施例および比較例の PTC素子の室温 ·通常湿度条件下での抵抗値の経時 変化を示すグラフである。
[図 7]実施例および比較例の PTC素子の室温 ·通常湿度条件下でのトリップ後の抵 抗値の変化率の経時変化を示すグラフである。
[図 8]実施例および比較例の PTC素子の酸化加速条件下での抵抗値の経時変化を 示すグラフである。
[図 9]実施例および比較例の PTC素子の酸化加速条件下でのトリップ後の抵抗値の 変化率の経時変化を示すグラフである。
[図 10]トリップサイクル試験による抵抗値の変化率を示すグラフである。
発明を実施するための形態
[0024] 本発明者らは、ニッケル粉が混練された榭脂の電気抵抗に関する研究を進めた結 果、ニッケル粉の粒径およびタップ密度が、ニッケル粉が混練された榭脂を用いた成 形体の電気抵抗に与える影響が大きぐニッケル粉の粒径、タップ密度を特定の範 囲に制御することで、前記成形体の電気抵抗を大きく下げることができることを見出し た。
[0025] また、少量のコバルトをニッケル粉に含有させること、特にニッケル粉の表層部にコ バルトを含有させることにより、ニッケル粉の耐候性が改善されることを見出した。さら に、一次粒子径の変動を抑制すること、および比表面積を特定の値とすることで耐候 性がより改善されることも見出した。
[0026] 本発明は、力かる知見に基づき完成されたものである。以下、本発明に係るニッケ ル粉にっ 、て詳細に説明するとともに、本発明に係るニッケル粉の製造方法につ!ヽ ても説明する。
[0027] 本発明に係るニッケル粉は、コバルトを 1〜20質量%含有し、残部がニッケルおよ び不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、 平均一次粒子径が 1. 0〜3. O ^ m,一次粒子径の標準偏差 σと平均一次粒子径 d
1 の比 σ /άの値が 0. 4以下、平均二次粒子径が 5〜60 μ m、タップ密度が 1. 0〜3 . 5gZmL、比表面積が 2. Om2Zg以下である。
[0028] 「平均一次粒子径、一次粒子径の標準偏差」
一次粒子径は、凝集している個々の粒子の粒径のことであり、 SEM観察によって 測定する。具体的には、ニッケル粉をサンプルホルダーに導電性両面テープによつ て固定し、 日本電子株式会社 ¾iSM— 6360LAにて加速電圧 20kV、倍率 2500倍 で観察する。そして、得られた SEM像に、前記装置に付属している画像処理ソフト (S mile View)を適用し、粒子が重なり粒子径が判別できないものを除き、 200個以上の 一次粒子について粒子径を測定して、一次粒子の平均粒子径 dを求める。また、得
1
られたデータから一次粒子径の標準偏差も算出する。
[0029] 平均一次粒子径を 1. 0〜3. 0 μ mの範囲とすることで、ニッケル粉は適度に凝集し 、鎖状などの複雑な形状の二次粒子となる。このような二次粒子とすることにより、榭 脂との混練によって得られる榭脂成形体にぉ 、て、ニッケル粉は互いに絡み合って ネットワークを構成し、該榭脂成形体は著しく低い電気抵抗を示すとともに、優れた耐 候性を示すこととなる。
[0030] これに対し、特許文献 4 (国際公開第 2005Z023461号パンフレット)に係る-ッケ ル粉の平均一次粒子径は 0. 2〜2. 0 μ mである。ニッケル粉の平均一次粒子径が 0 . 以上 1. 未満であっても、コバルトが全体として 1〜20質量%含有され ていればニッケル粉の耐候性は良好である。しかし、ニッケル粉の平均一次粒子径 が 0. 以上 1. 0 m未満の場合は、ニッケル粉の表面の酸化の影響がニッケル 粉の平均一次粒子径が 1. 0〜3. O /z mの場合よりも大きくなり、榭脂との混練によつ て得られる成形体の耐候性は、平均一次粒子径が 1. 0〜3. 0 mの場合よりは悪く なる。したがって、ニッケル粉の平均一次粒子径は 1. 0 m以上であることが好まし い。
[0031] 一方、ニッケル粉の平均一次粒子径が 3. 0 μ mを超えると、榭脂との混練によって 得られる成形体にぉ ヽて、ニッケル粉間の接点が減少し成形体の抵抗が上昇してし まう。平均一次粒子径がさらに大きくなると、ニッケル粉自体の凝集が少なくなり、単 分散の状態に近くなり、ニッケル粉間の接点がさらに減少してしまい、成形体の抵抗 はさらに上昇してしまう。
[0032] 一次粒子径の標準偏差 σと平均一次粒子径 dとの比 σ /άは、一次粒子径の変
1 1
動の程度を示す。 σ /άを 0. 4以下とすることで、一次粒子径が小さい粒子が大幅
1
に減少し、一次粒子径が平均値程度以上である粒子の存在数が変わらなくても、平 均一次粒子径が大きくなる。これにより、従来よりも大きな平均一次粒子径を有する二 ッケル粉であっても凝集が可能となる。また、平均一次粒子径が大きくなることで、従 来より多量のニッケル粉を榭脂と混練することが可能となり、耐候性が向上する。さら に、酸ィ匕しやすい細かな一次粒子が減少することでも、ニッケル粉の酸ィ匕が抑制され 、耐候性が大幅に向上する。
[0033] 「平均二次粒子径」
ニッケル粉が凝集すると、二次粒子を形成する。二次粒子の粒径はレーザー粒度 分布測定により測定する。具体的には、日機装株式会社製の MICROTRAC HR A MODEL 9320— X100を用い、ニッケル粉をへキサメタリン酸ナトリウム 0. 2質 量%水溶液中に投入し、 300Wで 10分間の超音波撹拌を行った後、 FRAモードで 平均粒子寸法 (D50)を測定し、これを平均二次粒子径 dとする。
2
[0034] 平均二次粒子径を 5〜60 μ mの範囲とすることで、榭脂との混練後にニッケル粉同 士 (詳細には粉を構成する粒子同士)が接触する箇所が多くなり、榭脂成形体の電 気抵抗が著しく低下する。しかし、平均二次粒子径が 5 m未満では、凝集が少ない ため絡み合う箇所が減少し、榭脂との混練後の抵抗値が高くなる。また、平均二次粒 子径が 60 mを超えると、榭脂中でのニッケル粉の分散が不均一となるおそれがあ るため、好ましくない。
[0035] 「タップ密度」
ニッケル粉のタップ密度は、榭脂中でのニッケル粉の分散度に影響する。タップ密 度の測定には、株式会社蔵持科学器械製作所製の振とう比重測定器 KRS— 409を 用いる。ニッケル粉 15gを秤量して 20mLメスシリンダー内に入れ、タップ速度を 120 回 Z分とし、タップ高さ 20mmで 500回のタップを行う。その後、ニッケル粉の容積を メスシリンダーの目盛りから読み取り、ニッケル粉の質量 (g)を読み取った容積で除し て算出する。
[0036] タップ密度を 1. 0〜3. 5gZmLの範囲とすることにより、榭脂中にニッケル粉が均 一に分散し、榭脂成形体の電気抵抗は著しく低くなる。
[0037] これに対し、特許文献 4に係るニッケル粉のタップ密度は 0. 5〜2. Og/mLである 。ニッケル粉のタップ密度が 0. 5g/mL以上 1. Og/mL未満であっても、コバルトが 全体として 1〜20質量%含有されて 、ればニッケル粉の耐候性は良好である。しか し、榭脂成形体の耐候性を改善するには混練するニッケル粉を多くすることが有効で ある。タップ密度が 0. 5gZmL以上 1. OgZmL未満の場合は、榭脂へ混練する-ッ ケル粉を多くすることが困難となるので、耐候性がタップ密度 1. OgZmLの場合より 低下してしまう。したがって、ニッケル粉のタップ密度は 1. Og/mL以上であることが 好ましい。
[0038] 一方、ニッケル粉のタップ密度が 3. 5gZmLを超えると、榭脂中でニッケル粉が偏 在してしまい、(詳細には粉を構成する粒子の)相互の接触が減少し、榭脂成形体の 電気抵抗が大きくなつてしまう。
[0039] 「比表面積」
比表面積はニッケル粉の耐候性に大きく影響する。比表面積の測定には、ュアサ アイォ-タス社製のマルチソープ 16を用いる。脱気温度 200°C、脱気時間 15分の窒 素ガスによる脱気後、窒素 30%—アルゴン混合ガス吸着による BET1点法で測定す る。
[0040] 比表面積が 2. Om2/g以下になると表面のマイクロポアが減少して表面の酸化が 抑制され耐候性が大幅に向上する。比表面積が 1. 2m2/g以下であると、耐候性の 向上効果はより大きくなり好ましい。
[0041] 「コバルト含有量」
本発明に係るニッケル粉は、ニッケル粉の全体の合計質量を基準として、コバルト を 1〜20質量%含有しており、このコバルトにより、ニッケル粉の耐候性は著しく向上 する。コバルトはニッケルよりわずかに卑であり、コバルトが優先的に腐食することに カロえて、腐食したコノ レトが導電性を有するからである。し力しながら、コバルトの含 有量がニッケル粉全体の 1質量%未満では耐侯性向上の効果がなぐ 20質量%を 超えて添加してもコスト的に高価となり好ましくない。
[0042] 「二次粒子の表層部に存在する一次粒子のコバルト含有量」
コバルト含有量をなるベく少なくしつつ、十分な耐侯性を確保するためには、 -ッケ ル粉の二次粒子の表層部に多くのコバルトを含有させることが好ましい。ここで、ニッ ケル粉の二次粒子の表層部とは、ニッケル粉を二段階の還元析出工程により作製す る場合において、二段階目の還元析出工程により析出した部位のことである。
[0043] 該表層部におけるコバルト含有量は、該表層部の全質量あたり 1〜40質量%の範 囲とすることが好ましい。必要な耐侯性を得るためには、該表層部に 1質量%以上の コバルトを含有させることが必要である。しかし、該表層部に 40質量%を超えて添カロ しても、耐候性をさらに向上させることは難しい。また、該表層部に 40質量%を超え て添加すると、ニッケル粉が強磁性を帯びるようになり、電子部品等に使用する場合 に好ましくない。なお、上述の説明から明らかなように、本発明は、ニッケル粉の内部 にもコバルトが含まれている態様を排除するものではない。すなわち、ニッケル粉の 表層部に加えて内部にもコバルトが含まれていてもよぐそのような場合が好ましいこ ともある。例えば、後述するポリマー PTC素子にニッケル粉を使用する場合がそうで ある。
[0044] 「平均二次粒子径 d
2 Z平均一次粒子径 dの値」
1
さらに、本発明に係るニッケル粉においては、平均二次粒子径 d z平均一次粒子 径 dの値が 5〜60の範囲にあることが好ましい。平均二次粒子径 d Z平均一次粒子
1 2
径 dの値が 5〜60の範囲にある時、榭脂と混練したニッケル粉同士 (詳細には粉を
1
構成する粒子同士)の接触が起きやすくなり、得られる榭脂成形体の電気抵抗は小 さくなる。しかし、この比が 5未満の場合はニッケル粉同士の接触が起きに《なり好ま しくない。また、 60を超えると凝集が大きくなるため、榭脂中での分散が不均一となり 好ましくない。
[0045] 「ニッケル粉の製造方法」
次に、本発明に係るニッケル粉の製造方法について説明する。本発明に係る-ッ ケル粉は、 2段階の還元析出工程および乾燥'加熱工程により製造する。
[0046] まず第 1の還元析出工程において、還元剤を含有する水溶液 (還元剤を過剰に含 有させることが一般的である。)に、 2価のニッケル塩を含有する水溶液を添加して- ッケルをほぼ全て析出させる。そして、引き続き第 2の還元析出工程において、第 1の 還元析出工程により析出したニッケル粉を含む水溶液に、必要に応じて還元剤を添 カロするととも〖こ、 2価のニッケル塩水溶液も添カ卩してニッケルをさらに析出させる。
[0047] 前記製造の際、少なくとも第 1の還元析出工程においては、低親水性の界面活性 剤を添加する。例えば、変性シリコーンオイル系界面活性剤であれば、下記数式 1で 示される HLB値が 10以下のものを添加する。低親水性の界面活性剤を添加するこ とで、反応中のニッケルイオン濃度を抑制して過剰な核生成を防ぎ、微細なニッケル 一次粒子の発生を抑えて、適度な大きさの一次粒子に成長させることができる。
[0048] [数 1]
H L B値 = (無機性値 有機性値) X 1 0
[0049] 界面活性剤を添加しな ヽ場合は、過剰な核生成が生じ、微細なニッケル一次粒子 が発生する。また、適度な大きさの一次粒子に成長しないため、一次粒子径のバラッ キも大きくなる。
[0050] 界面活性剤を添加しても、添加する界面活性剤の HLB値が 10を上回る場合は、 一次粒子径のバラツキは抑えられるものの、微細なニッケル一次粒子が発生し、平均 一次粒子径が小さくなつてしまう。 [0051] なお、還元剤を含有する水溶液には、酒石酸などの多価カルボン酸、エチレンジァ ミンなどの通常使用されている錯化剤、 PH調整用の水酸ィ匕ナトリウム等を添加するこ とができる。また、還元剤としては、ニッケルを還元析出し得るものであれば特に制限 はないが、ヒドラジン系の還元剤が適する。
[0052] 前記製造方法において、第 1の還元析出工程により、析出したニッケル粒子は一次 粒子が適度に凝集した二次粒子となり、ニッケル粉の内部を構成するが、その凝集 力は弱ぐ反応済溶液との分離操作あるいは榭脂との混鍊の際に、容易に分離して 単独の粒子となってしまう。ところが、第 2の還元析出工程を引続いて行なうことによ つて、さらに析出したニッケルにより凝集が強固となり、その後の操作でも分離するこ となく適度な凝集を維持できる。第 2の還元析出工程で析出したニッケルは、第 1の 還元析出工程で析出したニッケル二次粒子の外側に凝集してニッケル粉の表層部 を形成し、ネットワークを構造的につなぎ、強度の高いニッケル粉を形成するものと考 えられる。こうして得たニッケル粉と樹脂との混鍊による成形体の電気抵抗は著しく低 い。
[0053] 上記の 2段階の還元析出工程を経させるとともに、ニッケル塩や還元剤の濃度、水 溶液の温度その他の条件を調整して製造することにより、以上述べてきた粉体特性( 一次粒子が凝集した二次粒子で構成され、平均一次粒子径が 1. 0〜3. 0 m、一 次粒子径の標準偏差 σと平均一次粒子径 dの比 σ /άが 0. 4以下、平均二次粒子
1 1
径力 〜 60 m、タップ密度が 1. 0〜3. 5g/mL、比表面積が 2. Om2/g以下)を 有するニッケル粉を得ることができる。
[0054] このニッケル粉にコバルトを含有させるには、上記した 2段階の還元析出工程のうち 、第 2の還元析出工程のみ、または第 1の還元析出工程および第 2の還元析出工程 の両方において、水溶液に 2価のコバルト塩を添カ卩した状態でニッケルを析出させれ ばよい。内部も含めたニッケル粉全体にコバルトを含有させる場合には、第 1および 第 2の還元析出工程のそれぞれにおいて、水溶液に 2価のコバルト塩を添加した状 態でニッケルを析出させればよぐ水溶液中のコバルトイオンの含有量をいずれのェ 程においても水溶液中のニッケルイオンとコバルトイオンの合計量に対し 1〜20質量 %とすればよい。ニッケル粉の内部よりも表層部にコバルトを多く含有させる場合に は、第 1の還元析出工程よりも第 2の還元析出工程において、水溶液中に 2価のコバ ルト塩を多く添加し、最終的にニッケル粉全体のコバルト含有量が 1〜20質量%とな るように調整すればよい。
[0055] また、ニッケル粉の内部にはコバルトを含有させず、表層部にのみコバルトを含有さ せる場合には、第 1の還元析出工程ではコバルト塩を水溶液に添加せず、第 2の還 元析出工程においてのみ、水溶液に 2価のコバルト塩を添加すればよい。その際の コバルト塩の添カ卩量は、水溶液中のコバルトイオンの含有量力 水溶液中のニッケル イオンとコバルトイオンの合計量に対し 1〜40質量0 /0となるようにすればよぐこれに よりニッケル粉の表層部におけるコバルト含有量を 1〜40質量%にすることができる。
[0056] 以上のようにして 2段階の還元工程で得られたニッケル粉を、不活性雰囲気または 真空中で 80〜230°Cで加熱し、乾燥させることにより、表面のニッケル原子が拡散し てマイクロポアがさらに消滅し、比表面積が小さくなる。乾燥温度が 80°C未満では、 マイクロポアの消滅が十分ではなぐ比表面積が 2. Om2Zgを超えてしまう。一方、 2 30°Cを超えると表面を不動態化して 、る水酸ィ匕ニッケルが分解してしま 、、乾燥後 に酸ィ匕が進行し、榭脂混練時の抵抗が高くなつてしまう。乾燥温度は、マイクロポアを 十分に消滅させる点で、 120〜230°Cとすることがより好ましい。
[0057] また、前記 2段階の還元工程で得られたニッケル粉を大気中で 80〜150°Cで乾燥 した後、還元雰囲気中で 200〜400°Cで加熱することによつても、マイクロポアを十 分に消滅させることができる。大気中で乾燥させると、表面に多量の水酸化物が生成 して比表面積が大きくなるとともに、榭脂混練後の抵抗値が大幅に上昇してしまうが、 乾燥後に還元雰囲気中で加熱することで、少量の水酸化ニッケルが残る以外は分解 することができ、比表面積を小さくすることができる。還元雰囲気中での加熱が 200°C 未満では、水酸化ニッケルの分解が不十分で、比表面積が大きぐ榭脂混練後の抵 抗値も高くなつてしまう。 400°Cを超えると水酸ィ匕ニッケルが分解しすぎるばかりか二 ッケル粉同士が焼結してしまう。
[0058] このように、本発明に係るニッケル粉の製造方法では、貴金属等の高価な材料は 使用しておらず、かつ、複雑な工程は要しない。したがって、本発明に係るニッケル 粉は安価に得ることができる。 [0059] 「ポリマー PTC素子」
以上、本発明に係るニッケル粉およびその製造方法について説明したが、本発明 は、さらに上述又は後述の本発明のニッケル粉を導電性フイラ一として用いたポリマ 一 PTC素子をも提供する。以下、該ポリマー PTC素子について説明する力 ポリマ 一 PTC素子自体は周知であり、ポリマー PTC素子自体につ 、ての説明は省略する
[0060] 本発明に係る PTC素子は、具体的には、(A) (al)導電性フィラー、および (a2)ポ リマー材料を含んで成るポリマー PTC要素、ならびに(B)ポリマー PTC要素の少なく とも 1つの表面に配置された金属電極を有して成り、導電性フイラ一として本発明に 係るニッケル粉を使用する。なお、上述の成形体におけるニッケル粉の物性につい ての考察、特に耐候性、導電性等に与える影響についての考察は、ポリマー PTC素 子における導電性フィラーとしてのニッケル粉にも同様に当てはまる。
[0061] 本発明に係るポリマー PTC素子において使用するポリマー材料は、 PTC特性をも たらす、常套のポリマー PTC素子に使用されている既知のポリマー材料であってよい
。そのようなポリマー材料は、熱可塑性の結晶性ポリマーであり、例えば、ポリエチレ ン、エチレン共重合体、フッ素含有ポリマー、ポリアミドおよびポリエステルを例示でき 、これらを単独で、または組み合わせて使用してよい。
[0062] より具体的には、ポリエチレンとしては、高密度ポリエチレン、低密度ポリエチレン等 を使用でき;エチレン共重合体としては、エチレン ェチルアタリレート共重合体、ェ チレン ブチルアタリレート共重合体、エチレン ビュルアセテート共重合体、ェチレ ン—ポリオキシメチレン共重合体等を使用でき;フッ素含有ポリマーとしては、ポリフッ 化ビ-リデン、 2フッ化工チレン 4フッ化工チレン 6フッ化プロピレン共重合体等を 使用でき;ポリアミドとしては、 6 ナイロン、 6, 6 ナイロン、 12 ナイロン等を使用 でき;また、ポリエステルとしてはポリブチレンテレフタレート(PBT)、ポリエチレンテレ フタレート(PET)等を使用できる。
[0063] 本発明に係るポリマー PTC素子に用いる金属電極は、常套のポリマー PTC素子に 使用されているいずれの既知の金属材料で構成してよい。金属電極は、例えばプレ ートまたは箔の形態であってよい。本発明が目的とする PTC素子を得ることができる 限り、金属電極は特に制限されるものではない。具体的には粗面化金属プレート、粗 面化金属箔等を例示できる。粗面化されている金属電極を使用する場合、粗面化面 が PTC要素に接触する。例えば市販の電着銅箔、ニッケルメツキ電着銅箔を使用す ることがでさる。
[0064] このような「金属電極」は、 PTC要素の主表面の少なくとも 1つに配置され、好ましく は PTC要素の対向する 2つの主表面に配置される。金属電極の配置は、 PTC素子 の常套の製造方法と同様に実施してよい。例えば、押出成形により得られたプレート 状またはシート状の PTC要素に金属電極を熱圧着することによって配置してよい。別 の態様では、ポリマー材料と導電性フィラーの混合物を金属電極上に押出成形して よい。その後、必要に応じて切断することによってより小さい形態の PTC素子としても よい。
[0065] カ卩えて、本発明は、上述の本発明の PTC素子の少なくとも一方の金属電極に金属 リードが電気的に接続されている PTCデバイスを提供し、更に、そのような PTCデバ イスが配線または電子部品に電気的に接続されている電気装置 (例えば携帯電話) をも提供する。
[0066] 本発明の PTC素子において使用するのが特に好ましい本発明のニッケル粉は、例 えば次のようなものである:
(コバルトの含有量)
ニッケル粉の全体の合計質量を基準として、コバルトを 2〜20質量%、好ましくは 3 〜18質量%、より好ましくは 3〜15質量%、例えば 4〜10質量%、特に 5〜7質量% (例えば 6質量%)含む。
[0067] また、ニッケル粉の表層部においては、該表層部の全質量を基準として、コバルト を 3〜40質量%、好ましくは 8〜30質量%、より好ましくは 8〜20質量%、例えば 9〜 15質量%、特に 10質量%含む。
[0068] さらに、 PTC素子に用いるのが好ましいニッケル粉は、表層部にカ卩えてその内側で ある内部にもコバルトを含んでもよぐそれが好ましいが、内部にコノ レトを含む必要 は必ずしもない。内部にコバルトが含まれる場合、内部のコバルトの量は、内部の全 質量を基準として、例えば 2〜7質量% (特に 3〜6質量%)であることが好ましい。 [0069] 本発明に係る PTC素子にぉ 、て使用するために特に好ま 、本発明に係る-ッケ ル粉の具体例としては、上述の 3種のコバルト含有量の範囲で構成される種々の組 み合わせの!/、ずれかであり、例えば次のようなものを例示できる:全体としてのコバル トの量は 5〜7質量%、表層部のコバルトの量は 9〜12質量%、内部のコバルトの量 は 4〜5質量%。
[0070] (タップ密度)
例えば 2. 0〜3. 5gZmL、好ましくは 2. 3〜3. OgZmL。
[0071] (平均一次粒子径)
例えば 1. 5〜2. 、好ましくは 1. 7〜2. 2 μ ι0
[0072] (一次粒子径の標準偏差 Ζ平均一次粒子径)
例えば 0. 3以下、好ましくは 0. 25以下。
[0073] (平均二次粒子径)
ί列えば 10〜40 μ m、好ましくは 15〜30 μ m。
[0074] (平均二次粒子径 Z平均一次粒子径)
例えば 5〜20、好ましくは 8〜16、より好ましくは 10〜15。
[0075] (比表面積)
例えば 2以下、好ましくは 1. 7以下。
[0076] 本発明のポリマー PTC素子のポリマー PTC要素において、ポリマー材料と導電性 フィラーとの割合は、所定の PTC素子としての機能を発揮する限り、いずれの適当な 割合であってもよい。例えば、質量基準で導電性フィラーが 65〜90質量%、好ましく は 70〜85質量%である。
[0077] 上述のような本発明に係るニッケル粉を含む、本発明に係る PTC素子では、高温- 乾燥状態にさらされ得る環境下で長期間にわたって使用する場合であっても、従来 の PTC素子と比較した場合、抵抗値の増加が大幅に抑制される。
実施例
[0078] 以下、実施例および比較例により本発明をさらに説明する。ニッケル粉に係る実施 例および比較例は、実施例 1〜12および比較例 1〜6であり、ポリマー PTC素子に 係る実施例および比較例は、実施例 A〜Dおよび比較例 Aおよび Bである。 [0079] 「ニッケル粉に係る実施例および比較例(実施例 1〜12および比較例 1〜6)」 (実施例 1)
純水 138Lに 25%水酸化ナトリウム水溶液 37. 8Lおよび酒石酸 1209gを添カロし、 撹拌しながら 70°Cまで加温した。この水溶液に、 60%水力口ヒドラジン 28. 8Lおよび HLB値が 9の変性シリコーンオイル系界面活性剤をカ卩え、さらに塩化コバルト水溶液 および塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 5質量 %となるように混合した水溶液)を Ni+Co換算質量で 3. 7kg加え、第 1の還元析出 工程によりニッケル粉を析出させた。次に、この第 1の還元析出工程によるニッケル 粉の析出終了後の水溶液に、 60%水力口ヒドラジン 4. 8L、および塩ィ匕コバルト水溶 液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 10質量 %となるように混合した水溶液)を Ni+Co換算質量 (水溶液中に含有される塩を金 属に換算した Niと Coの合計の質量)で 3. 7kgカ卩えて、第 2の還元析出工程によりさ らにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて 80°Cで 乾燥させてニッケル粉を得た。
[0080] 得られたニッケル粉の Co含有量は 6. 6質量%であった。その粉体特性を下記表 1 に示す。ただし、ニッケル粉全体における Co含有量は分析値である力 表層部の Co 含有量は、第 2の還元析出工程における水溶液中の塩を Ni換算および Co換算した 値カゝら算出したものである。具体的には、前記 Ni換算した値と前記 Co換算した値と の合計値に対する、前記 Co換算した値の割合として算出した。
[0081] 表 1中の dは平均一次粒子径を意味し、 SEM観察により測定した。具体的には、
1
ニッケル粉をサンプルホルダーに導電性両面テープによって固定し、日本電子株式 会社衡 SM— 6360LAにて加速電圧 20kV、倍率 2500倍で観察した。そして、得ら れた SEM像に、前記装置に付属している画像処理ソフト (Smile View)を適用し、粒 子が重なり粒子径が判別できないものを除き、 200個以上の一次粒子について粒子 径を測定して、一次粒子の平均粒子径 dを求めた。また、得られたデータカゝら一次粒
1
子径の標準偏差も算出した。
[0082] 表 1中の dは平均二次粒子径を意味し、二次粒子の粒径はレーザー粒度分布測
2
定により測定した。具体的には、 日機装株式会社製の MICROTRAC HRA MO DEL 9320— XIOOを用い、ニッケル粉をへキサメタリン酸ナトリウム 0. 2質量0 /0水 溶液中に投入し、 300Wで 10分間の超音波撹拌を行った後、 FRAモードで平均粒 子寸法 (D50)を測定し、これを平均二次粒子径 dとした。
2
[0083] 表 1中の σは平均一次粒子径 dの標準偏差を表し、 σ /άは一次粒子径の標準
1 1
偏差 σと平均一次粒子径 dとの比を表す。
1
[0084] 表 1中のタップ密度の測定には株式会社蔵持科学器械製作所製の振とう比重測定 器 KRS— 409を用!、た。ニッケル粉 15gを秤量して 20mLメスシリンダー内に入れ、 タップ速度を 120回 Z分とし、タップ高さ 20mmで 500回のタップを行った。その後、 ニッケル粉の容積をメスシリンダーの目盛りから読み取り、ニッケル粉の質量 (g)を読 み取った容積で除して算出した。
[0085] 表 1中の比表面積の測定にはュアサアイォ-タス社製のマルチソープ 16を用いた 。脱気温度 200°C、脱気時間 15分の窒素ガスによる脱気後、窒素 30%—アルゴン 混合ガス吸着による BET1点法で測定した。
[0086] 次に、上記のニッケル粉とポリエチレン榭脂を、ニッケル粉含有量がニッケル粉 + ポリエチレン榭脂に対して 35容量%および 43容量%となるように混合し、ポリエチレ ン榭脂の融点以上の温度で混練して、シート状に成形した。
[0087] 成形したシート状試料を 25 (mm) WX 60 (mm) Lに切り出して、表面抵抗率を JIS K 7194にしたがって測定したところ、 35容量%混練品の初期の表面抵抗率は 0. 20 9 ΩΖ口であり、 43容量%混練品では 0. 036 ΩΖ口であった。なお、この測定には 、低抵抗率計 (ロレスタ -GP、株式会社ダイァインスツルメンッ製)を用いた。
[0088] さらに、耐侯性を評価するため、シート状試料を、 85°C— 85%RHに設定した恒温 恒湿槽中に 168時間保持する耐湿試験を行なった後、上記と同様に表面抵抗率を 測定した。 35容量%混練品では 0. 217 ΩΖ口を示し、 43容量%混練品では 0. 03 3 ΩΖ口を示した。これらの結果を表 2に示す。
[0089] (実施例 2)
実施例 1と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。純水 138Lに 25%水酸化ナトリウム水溶液 25. 2Lおよび酒石酸 806gを添カロ し、撹拌しながら 70°Cまでカ卩温した。この水溶液に、 60%水力口ヒドラジン 19. 2Lおよ び HLB値が 9の変性シリコーンオイル系界面活性剤をカ卩えた。この水溶液には塩ィ匕 コバルト水溶液を添加せず、塩化ニッケル水溶液のみを Ni換算質量で 2. 5kg添加 して、第 1の還元析出工程を行わせた。次に、この第 1の還元析出工程による-ッケ ル粉の析出終了後の水溶液に、塩化コバルト水溶液と塩化ニッケル水溶液を混合し た水溶液 (Co含有量が Ni+Co量に対し 10質量%となるように混合した水溶液)を N i+Co換算質量で 2. 5kg添加して、第 2の還元析出工程によりさらにニッケル粉を析 出させた。
その後、ろ過および水洗した後、真空中にて 80°Cで乾燥させてニッケル粉を得た。
[0090] 得られたニッケル粉は表層部にのみ Coを含有しており、全体としての Co含有量は 5. 0質量%であった。その粉体特性を表 1に示す。また、このニッケル粉について、 実施例 1と同様にして評価したところ、 35容量%混練品(即ち、上述のように 35容量 %混合したもの)の初期の表面抵抗率は 0. 711 ΩΖ口であり、 43容量%混練品(即 ち、上述のように 43容量%混合したもの)では 0. 194 Ω ロであった。さらに、耐湿 試験後の表面抵抗率を測定したところ、 35容量%混練品では 0. 706 ΩΖ口を示し 、 43容量%混練品では 0. 160 ΩΖ口を示した。これらの結果を表 2に示す。
[0091] (実施例 3)
純水 2280mLに水酸化ナトリウム 94. 8gおよび酒石酸 12. 6gを添加し、撹拌しな がら 65°Cまでカ卩温した。この水溶液にヒドラジン 180mLおよび HLB値が 9の変性シ リコーンオイル系界面活性剤を加え、さらに塩化コバルト水溶液と塩化ニッケル水溶 液を混合した水溶液 (Co含有量が Ni+Co量に対し 1質量%となるように混合した水 溶液)を Ni+Co換算質量で 39gを加えて、第 1の還元析出工程によりニッケル粉を 析出させた。次に、この第 1の還元析出工程終了後の水溶液に、ヒドラジン 45mLお よび塩ィ匕コバルト水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+ Co量に対し 1. 5質量%となるように混合した水溶液)を Ni+Co換算質量で 39gカロえ て、第 2の還元析出工程により、さらにニッケル粉を析出させた。その後、ろ過および 水洗した後、真空中にて 80°Cで乾燥させてニッケル粉を得た。
[0092] 得られたニッケル粉の全体としての Co含有量は 1. 2質量%であった。その粉体特 性を表 1に示す。また、このニッケル粉について、実施例 1と同様にして評価したとこ ろ、 35容量%混練品の初期の表面抵抗率は 0. 725 Ω Ζ口であり、 43容量%混練 品では 0. 203 Ω Ζ口であった。さらに、耐湿試験後の表面抵抗率を測定したところ、 35容量%混練品では 0. 720 Ω Ζ口を示し、 43容量%混練品では 0. 173 Ω Ζ口を 示した。これらの結果を表 2に示す。
[0093] (実施例 4)
実施例 3と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。実施例 3では 65°Cまでの加温である力 実施例 4では 60°Cまでの加温とし、第 1の還元析出工程と第 2の還元析出工程の両方において、塩化コバルト水溶液と塩 化ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 20質量%となる ように混合した水溶液 (実施例 3では、第 1の還元析出工程では Co含有量が Ni+Co 量に対し 1質量%、第 2の還元析出工程では Co含有量が Ni+Co量に対し 1. 5質量 %。;))を Ni+Co換算質量で 39g添加して、ニッケル粉を析出させた。その後、ろ過 および水洗した後、真空中にて 80°Cで乾燥してニッケル粉を得た。
[0094] 得られたニッケル粉の全体としての Co含有量は 19. 4質量%であった。その粉体 特性を表 1に示す。また、このニッケル粉について、実施例 1と同様にして評価したと ころ、 35容量%混練品の初期の表面抵抗率は 0. 097 ΩΖ口であり、 43容量%混練 品では 0. 033 ΩΖ口であった。さらに、耐湿試験後の表面抵抗率を測定したところ、 35容量%混練品では 0. 115 ΩΖ口を示し、 43容量%混練品では 0. 035 ΩΖ口を 示した。これらの結果を表 2に示す。
[0095] (実施例 5)
実施例 3と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。第 1の還元析出工程において添加する水溶液には塩ィ匕コバルト水溶液を添カロ せず、塩ィ匕ニッケル水溶液のみを Ni換算質量で 39g添加して、第 1の還元析出工程 を行わせた。第 2の還元析出工程においては、塩化コバルト水溶液と塩化ニッケル水 溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 40質量%となるように混合し た水溶液 (実施例 3では、 Co含有量が Ni+Co量に対し 1. 5質量%。;))を Ni+Co換 算質量で 39g添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、 真空中にて 80°Cで乾燥してニッケル粉を得た。 [0096] 得られたニッケル粉は表層部にのみ Coを含有しており、得られたニッケル粉の全 体としての Co含有量は 18. 7質量%であった。その粉体特性を表 1に示す。また、こ のニッケル粉について、実施例 1と同様にして評価したところ、 35容量%混練品の初 期の表面抵抗率は 0. 539 ΩΖ口であり、 43容量%混練品では 0. 178 ΩΖ口であ つた。さらに、耐湿試験後の表面抵抗率を測定したところ、 35容量%混練品では 0. 609 ΩΖ口を示し、 43容量%混練品では 0. 176 ΩΖ口を示した。これらの結果を 表 2に示す。
[0097] (実施例 6)
実施例 1と同様にして、 2段階の還元析出工程により 2段階のニッケルの還元析出 を行い、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて 150 °Cで乾燥させてニッケル粉を得た。本実施例 6は、真空中の乾燥温度が 150°C (実 施例 1は 80°C)である点のみが実施例 1と異なる。
[0098] 得られたニッケル粉の全体としての Co含有量は 6. 5質量%であり、比表面積は 0.
94m2Zgであった。その粉体特性を表 1に示す。
[0099] 次に、実施例 1と同様に表面抵抗率を測定したところ、初期の表面抵抗率は 0. 14 7ΩΖ口であり、耐湿試験後の表面抵抗率は 0. 112ΩΖ口を示した。これらの結果 を表 2に示す。
[0100] (実施例 7)
実施例 1と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。第 1の還元析出工程においては塩ィ匕コノ レト水溶液と塩ィ匕ニッケル水溶液を 混合した水溶液 (Co含有量が Ni+Co量に対し 4質量%となるように混合した水溶液 (実施例 1では、 Co含有量が Ni+Co量に対し 5質量%。;))を Ni+Co換算質量で 3 . 7kg添加してニッケル粉を析出させた。次に、第 2の還元析出工程においては、第 1の還元析出工程において 60%水力口ヒドラジンの添カ卩を開始してから 35分経過後に 、さらに 60%水力口ヒドラジンおよび塩ィ匕コバルト水溶液と塩ィ匕ニッケル水溶液を混合 した水溶液 (Co含有量が Ni+Co量に対し 10質量%となるように混合した水溶液。 ) を添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて 2 00°Cで乾燥させてニッケル粉を得た。 [0101] 得られたニッケル粉の全体としての Co含有量は 6. 2質量%であり、比表面積は 0. 65m2Zgであった。その粉体特性を下記表 1に示す。また、このニッケル粉について 、実施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 151 ΩΖ口であり、 耐湿試験後の表面抵抗率は、 0. 122 ΩΖ口であった。これらの結果を表 2に示す。
[0102] (実施例 8)
実施例 1と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。純水 138Lに 25%水酸化ナトリウム水溶液 25. 2Lおよび酒石酸 806gを添カロ し、撹拌しながら 75°Cまで加温した。この水溶液に、 60%水力口ヒドラジン 19. 2Lをカロ え、さらに第 1の還元析出工程においては塩ィ匕コバルト水溶液は添加せず、塩ィ匕- ッケル水溶液のみを Ni換算質量で 2. 5kg添加してニッケル粉を析出させた。次に、 第 2の還元析出工程においては、第 1の還元析出工程において 60%水力!]ヒドラジン の添カ卩を開始してから 50分経過後に、さらに 60%水力口ヒドラジンおよび塩ィ匕コバルト 水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 10 質量%となるように混合した水溶液)を Ni+Co換算質量で 2. 5kg添加して、 -ッケ ル粉を析出させた。その後、ろ過および水洗した後、真空中にて 220°Cで乾燥させ てニッケル粉を得た。
[0103] 得られたニッケル粉は表層部にのみ Coを含有し、全体としての Co含有量は 4. 6質 量%であり、比表面積は 0. 97m2Zgであった。その粉体特性を表 1に示す。また、こ のニッケル粉について、実施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 209 ΩΖ口であり、耐湿試験後の表面抵抗率は、 0. 190ΩΖ口であった。これら の結果を表 2に示す。
[0104] (実施例 9)
実施例 1と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。第 1の還元析出工程においては、純水 138Lに 25%水酸ィ匕ナトリウム水溶液 2 5. 2Lおよび酒石酸 806gを添カ卩し、撹拌しながら 70°Cまで加温した。この水溶液に 、 60%水力口ヒドラジン 19. 2Lを加え、さらに第 1の還元析出工程においては塩ィ匕コ バルト水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対 し 1. 5質量%となるように混合した水溶液)を Ni+Co換算質量で 2. 5kg添加して- ッケル粉を析出させた。次に、第 2の還元析出工程においては、第 1の還元析出ェ 程において 60%水力口ヒドラジンの添カ卩を開始して力も 40分経過後に、さらに 60%水 カロヒドラジンおよび塩ィ匕コバルト水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co 含有量が Ni+Co量に対し 1. 5質量%となるように混合した水溶液)を Ni+Co換算 質量で 2. 5kg添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、 真空中にて 120°Cで乾燥させてニッケル粉を得た。
[0105] 得られたニッケル粉の全体としての Co含有量は 1. 3質量%であり、比表面積は 0.
85m2Zgであった。その粉体特性を表 1に示す。また、このニッケル粉について、実 施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 361 ΩΖ口であり、耐湿 試験後の表面抵抗率は、 0. 318 ΩΖ口であった。これらの結果を表 2に示す。
[0106] (実施例 10)
純水 2280mLに水酸化ナトリウム 94. 8gおよび酒石酸 12. 6gを添加し、撹拌しな がら 55°Cまでカ卩温した。この水溶液にヒドラジン 180mLおよび HLB値が 9の変性シ リコーンオイル系界面活性剤を加え、さらに塩化コバルト水溶液と塩化ニッケル水溶 液を混合した水溶液 (Co含有量が Ni+Co量に対し 20質量%となるように混合した 水溶液)を Ni+Co換算質量で 39gの塩ィ匕ニッケル水溶液をカ卩えて、第 1の還元析出 工程によりニッケル粉を析出させた。次に、第 2の還元析出工程においては、第 1の 還元析出工程においてヒドラジンの添加を開始してから 30分経過後に、さらにヒドラ ジン 45mLおよび塩ィ匕コバルト水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co 含有量が Ni+Co量に対し 20質量%となるように混合した水溶液)を Ni+Co換算質 量で 39g加えて、さらにニッケル粉を析出させた。その後、ろ過および水洗した後、真 空中にて 200°Cで乾燥させてニッケル粉を得た。
[0107] 得られたニッケル粉の全体としての Co含有量は 18. 8質量%であり、比表面積は 1 . 09m2Zgであった。その粉体特性を下記表 1に示す。また、このニッケル粉につい て、実施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 085 ΩΖ口であり 、耐湿試験後の表面抵抗率は 0. 081 ΩΖ口を示した。これらの結果を表 2に示す。
[0108] (実施例 11)
実施例 10と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を 行ったが、加温を 70°Cまで行った。第 1の還元析出工程においては、塩ィ匕コバルト 水溶液は添加せず、塩ィ匕ニッケル水溶液のみを Ni換算質量で 39g添加して-ッケ ル粉を析出させた。次に、第 2の還元析出工程においては、第 1の還元析出工程に おいてヒドラジンの添カ卩を開始して力 45分経過後に、さらにヒドラジン 45mLおよび 塩ィ匕コバルト水溶液と塩ィ匕ニッケル水溶液を混合した水溶液 (Co含有量が Ni+ Co 量に対し 40質量%となるように混合した水溶液)を Ni+Co換算質量で 39gカ卩えて、 さらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて 220°C で乾燥してニッケル粉を得た。
[0109] 得られたニッケル粉は表層部にのみ Coを含有し、全体としての Co含有量は 19. 1 質量%であり、比表面積は 1. 15m2Zgであった。その粉体特性を表 1に示す。また、 このニッケル粉について、実施例 1と同様にして評価したところ、初期の表面抵抗率 は 0. 406 ΩΖ口であり、耐湿試験後の表面抵抗率は 0. 369 ΩΖ口を示した。これ らの結果を下記表 2に示す。
[0110] (実施例 12)
実施例 7と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。その後、ろ過および水洗した後、大気中で 110°Cで乾燥し、さらに窒素— 10% 水素中 350°Cの温度で 2時間加熱した。得られたニッケル粉の全体としての Co含有 量は 5. 9質量%であり、比表面積は 0. 35m2Zgと小さ力つた。その粉体特性を表 1 に示す。また、このニッケル粉について、実施例 1と同様にして評価したところ、初期 の表面抵抗率は 0. 205 Ω Ζ口であり、耐湿試験後の表面抵抗率は 0. 196 Q /D であった。これらの結果を表 2に示す。
[0111] (比較例 1)
実施例 2と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つたが、第 1の還元析出工程においては、 HLB値が 11の変性シリコーンオイル系界 面活性剤を添加してニッケル粉を得た。
[0112] 得られたニッケル粉は表層部にのみ Coを含有しており、 Co含有量は 4. 8質量% であった。その粉体特性を下記表 1に示す。 HLB値が 11の変性シリコーンオイル系 界面活性剤を使用したため、平均一次粒子径 dが小さくなつた。また、このニッケル 粉について、実施例 1と同様の評価をしたところ、 35容量%混練品の初期の表面抵 抗率は 0. 043 ΩΖ口であった力 ニッケル粉を 43容量%混練した場合には、 -ッケ ル粉間に(詳細には粉を構成する粒子の間に)榭脂が吸収されてしま 、混練は不可 能であった。さらに、耐湿試験後の表面抵抗率を測定したところ、 35容量%混練品 は 0. 059 ΩΖ口を示した。これらの結果を、表 2に示す。
[0113] (比較例 2)
真空乾燥後に粉砕処理を行なってニッケル粉を得た以外は、実施例 2と同様にし て、 2段階の還元析出工程により 2段階のニッケルの還元析出を行ってニッケル粉を 得た。粉砕処理を行なったため、タップ密度が 3. 61gZmLと大きくなつた。
[0114] 得られたニッケル粉は表層部にのみ Coを含有しており、 Co含有量は 4. 6質量% であった。その粉体特性を表 1に示す。また、このニッケル粉について、実施例 1と同 様の評価をしたところ、 35容量%混練品の初期の表面抵抗率は 356 Ω Ζ口であり、 43容量%混練品では 129 Ω ロであった。初期の表面抵抗率が高力つたため、こ れらの試料については耐湿試験を行なわなかった。これらの結果を、表 2に示す。
[0115] (比較例 3)
純水 3800mLに水酸化ナトリウム 164gおよびエチレンジァミン 21gを添カ卩し、撹拌 しながら 85°Cまで加温した。この水溶液にヒドラジン 300mLと Ni換算質量で 130gの 塩ィ匕ニッケル水溶液をカ卩ぇ (塩ィ匕コバルト水溶液はカ卩えていない。)、 1段階のみの 還元析出工程によりニッケル粉を析出させた。その後、ろ過および水洗した後、真空 中にて 80°Cで乾燥してニッケル粉を得た。
[0116] 得られたニッケル粉は Coを含有して 、な 、。その粉体特性を表 1に示す。また、こ のニッケル粉について、実施例 1と同様にしてポリエチレン榭脂と混練したところ、二 ッケル粉を 35容量%混練した場合にぉ 、ても、ニッケル粉間に榭脂が吸収されてし まい不可能であった。
[0117] (比較例 4)
導電ペーストおよび導電榭脂用の導電性粒子として市販されている代表的なフイラ 一状ニッケル粉 (INCO社製)について、その粉体特性を表 1に示す。このニッケル粉 は Coを含有していない。 [0118] このニッケル粉について、実施例 1と同様にして評価したところ、 35容量%混練品 の初期の表面抵抗率は 0. 124 ΩΖ口であり、 43容量%混練品では 0. 043 ΩΖ口 であった。更に、耐湿試験後の表面抵抗率を測定したところ、 35容量%混練品では 0. 406 Ω Ζ口であり、 43容量%混練品では 0. 068 Ω ロであった。これらの結果 を、表 2に示す。
[0119] (比較例 5)
実施例 2と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つたが、加温を 70°Cまで行った。第 1の還元析出工程においては、 HLB値が 11の 変性シリコーンオイル系界面活性剤を添加してニッケル粉を得た。次に、第 2の還元 析出工程においては、第 1の還元析出工程において 60%水力!]ヒドラジンの添加を開 始してから 25分経過後に、さらに 60%水力口ヒドラジンおよび塩ィ匕コバルト水溶液と塩 化ニッケル水溶液を混合した水溶液 (Co含有量が Ni+Co量に対し 10質量%となる ように混合した水溶液)を Ni+ Co換算質量で 2. 5kg添加して、ニッケル粉を析出さ せた。その後、ろ過および水洗した後、真空中にて 80°Cで乾燥させてニッケル粉を 得た。
[0120] 得られたニッケル粉は表層部にのみ Coを含有し、 Co含有量は 5. 0質量%であり、 比表面積は 2. 26m2/gであった。その粉体特性を表 1に示す。また、このニッケル 粉について、実施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 039 Ω Z口であり、耐湿試験後の表面抵抗率は 0. 051 ΩΖ口であった。これらの結果を、 表 2に示す。
[0121] (比較例 6)
実施例 2と同様に、 2段階の還元析出工程により 2段階のニッケルの還元析出を行 つた。純水 160Lに 25%水酸化ナトリウム水溶液 32. 9Lおよび酒石酸 1617gを添カロ し、撹拌しながら 60°Cまでカ卩温した。この水溶液に、 60%水力口ヒドラジン 38. 5Lをカロ え、さらに第 1の還元析出工程においては塩ィ匕コバルト水溶液は添加せず、塩ィ匕- ッケル水溶液のみを Ni換算質量で 4. 8kg添加してニッケル粉を析出させた。次に、 第 2の還元析出工程においては、第 1の還元析出工程において 60%水力!]ヒドラジン の添加を開始してから 30分経過後に、さらに塩化コバルト水溶液と塩化ニッケル水 溶液を混合した水溶液(Co含有量が Ni + Co量に対し 10質量%となるように混合し た水溶液)を Ni+ Co換算質量で 4. 8kg添カ卩して、さらにニッケノレを析出させた。そ の後、ろ過および水洗した後、大気中にて 100°Cで乾燥させ、さらに、窒素一 10% 水素中 350でで 2時間の熱処理を行レ、、ニッケル粉を得た。
[0122] 得られたニッケル粉は表層部にのみ Co ^有し、 Co含有量は 5. 0質量%であり、 比表面積は 1. 13m2Zgであった。その粉体特性を表 1に示す。また、このニッケル 粉について、実施例 1と同様にして評価したところ、初期の表面抵抗率は 0. 046 Ω ノロであり、耐湿試験後の表面抵抗率は 0. 066 ΩΖ口を示した。これらの結果を、 表 2に示す。
[0123] [表 1]
Figure imgf000028_0001
[0124] [表 2]
差替え用紙 (規則 26) N i粉の 樹脂混練した状態での 表面抵抗率 試料 混練比率 混練可否 表面抵抗率( /口) の上昇率
(容量%) 初期値 耐湿試験後 (倍)
35 〇 0. 209 0. 217 1. 04 実施例 1
43 〇 0. 036 0. 033 0. 92
35 〇 0. 711 0. 706 0. 99 実施例 2
43 〇 0. 194 0. 160 0. 82
35 〇 0. 725 0. 720 0. 99 実施例 3
43 〇 0. 203 0. 173 0. 85
35 〇 0. 097 0. 115 1. 19 実施例 4
43 〇 0. 033 0. 035 1. 06
35 〇 0. 539 0. 609 1. 13 実施例 5
43 〇
Figure imgf000029_0001
0. 176 0. 99 実施例 6 35 〇 0. 147 0. 112 0. 76 実施例 7 35 〇 0 o. 151 0. 122 0. 81 実施例 8 35 〇 0. 209 0. 190 0. 91 実施例 9 35 〇 0. 361 0. 318 0. 88 実施例 1 0 35 〇 0. 085 0. 081 0. 95 実施例 1 1 35 〇 0. 406 0. 369 0. 91 実施例 1 2 35 : .〇 0. 205 0. 196 0. 96
35 〇 0. 043 0. 059 1. 36 比較例 1
43 X ― ― ―
35 〇 356 ― ― 比較例 2
43 〇 129 , ― ― 比較例 3 35 X ― ― ―
35 〇 0. 124 0. 406 3. 28 リ 4
43 〇 0. 043 0. 068 1. 59 比較例 5 35 〇 0. 039 0. 051 1. 31 比較例 6 35 〇 0. 046 0. 066 1. 43 本発明の範囲内の実施例 1~5は、 Ni粉の混練比率が 35容量%であっても 43容 量%であっても、ポリエチレン樹脂との混練が可能で、実施例 6〜12は Ni粉の混練 比率が 35容量0 /。でポリエチレン樹脂との混練が可能であった。また、本発明の範囲 内の実施例 1~12では、樹脂混練後に成形したシート状試料の表面抵抗率は、耐 湿試験の前後のいずれにおいても 0. 8 Ω /口以下と小さかった。さらに、耐湿試験 の前後での該表面抵抗率の上昇率(耐湿試験後の表面抵抗率/耐湿試験前の表 面抵抗率)は最大でも 1. 19であり、本発明の範囲内の実施例 1〜12は、耐候性にも 優れ、長期間にわたり安定して使用できると考えられる。 差替え用紙 (規則 26) [0126] これに対し、比較例 1では、 HLB値が 11の変性シリコーンオイル系界面活性剤を 添加したため、平均一次粒子径が 0. 9 mと本発明の下限値である 1. を下回 つているため、 Ni粉の混練比率が 43容量%の場合にポリエチレン榭脂との混練が不 可能であった。 Ni粉の混練比率が 35容量%の場合はポリエチレン榭脂との混練を 行うことができた力 Ni粉の比表面積が 2. 03m2/gであり、本発明の上限値である 2 . Om2Zgを上回っているため、耐湿試験の前後での表面抵抗率の上昇率 (耐湿試 験後の表面抵抗率 Z耐湿試験前の表面抵抗率)が、 1. 36 (Ni粉の混練比率が 35 容量%)と大きぐ耐候性が劣っている。
[0127] 比較例 2はタップ密度が 3. 61gZmLと本発明の上限値である 3. 5gZmLを上回 つているため、榭脂中でニッケル粉が偏在して粉を構成する粒子の相互の接触が減 少して 、ると考えられ、 Ni粉の混練比率が 35容量%の場合は表面抵抗率の初期値 力 S356 Ω Z口となり、 Ni粉の混練比率が 43容量%の場合は表面抵抗率の初期値が 129 Ω Z口となり、 V、ずれの場合も榭脂混練後に成形したシート状試料の表面抵抗 率が極めて大きくなつた。
[0128] 比較例 3はタップ密度が 0. 61gZmLと本発明の下限値である 1. OgZmLを下回 つているため、榭脂へ混練するニッケル粉を多くすることが困難となり、 Ni粉の混練 比率が 35容量%であってもポリエチレン榭脂との混練が不可能であった。
[0129] 比較例 4は、 Coを含まな 、Ni粉であるため、耐湿試験の前後での表面抵抗率の上 昇率 (耐湿試験後の表面抵抗率 Z耐湿試験前の表面抵抗率)が、 3. 28 (Ni粉の混 練比率が 35容量%)および 1. 59 (Ni粉の混練比率が 43容量%)と大きぐ耐候性 が劣っている。
[0130] 比較例 5は、平均一次粒子径が本発明を下回り、一次粒子径の標準偏差も大きぐ かつ比表面積が大きいため、表面抵抗率の上昇率が 1. 31と大きぐ耐候性に劣つ ている。
[0131] 比較例 6は、比表面積は本発明の範囲である力 平均一次粒子径が本発明を下回 り、一次粒子径の標準偏差も大きいため、表面抵抗率の上昇率が 1. 43と大きぐ耐 候性に劣っている。
[0132] また、図 1 (a)、 (b)に実施例 1で得られたニッケル粉の走査型電子顕微鏡 (SEM) による写真を示し、図 2 (a)、(b)に比較例 2で得られたニッケル粉の走査型電子顕微 鏡 (SEM)による写真を示す。
[0133] 図 l (a)、(b)からわ力るように、実施例 1で得られたニッケル粉は 1.8 m前後に一 次粒子径が揃っている。これに対し、図 2 (a)、(b)からわ力るように、比較例 2で得ら れたニッケル粉には、一次粒径の大きさが不揃いの粒子が混在しており、耐候性を 悪ィ匕させる原因と考えられる細かな一次粒子が多く存在している。
[0134] 「ポリマー PTC素子に係る実施例および比較例(実施例 A〜Dおよび比較例 Aおよ び B)」
次に、本発明に係るニッケル粉を用いて本発明に係る PTC素子を製造した実施例 を説明する。また、比較のための比較例も説明する。
[0135] (1)導電性フィラー
導電性フィラーとしてはニッケル一コバルト合金フィラー(即ち、本発明のニッケル粉 または比較のためのニッケル粉)を、ポリマー材料としては高密度ポリエチレンを、ま た、金属電極としては粗面化ニッケル箔 (福田金属箔工業株式会社製、厚さ:約 25 μ m)を用いて PTC素子を製造した。
[0136] 使用したニッケル粉は、前記実施例 1、実施例 6、実施例 7および実施例 12にお ヽ て製造したものであり、これらを使用して PTC素子を製造した。これらの PTC素子を それぞれ実施例 A、実施例 B、実施例 Cおよび実施例 Dの PTC素子と呼ぶ。また、比 較のため前記比較例 6および比較例 5のニッケル粉を導電性フイラ一として用いた。 これらの PTC素子をそれぞれ比較例 Aおよび比較例 Bの PTC素子と呼ぶ。
[0137] 使用したニッケル粉の内部の Co含有量は以下の表 3の通りである。
[0138] [表 3] ニッケル粉内部の
Co含有量
(質量 ½)
実施例 A 5
実施例 B 5
実施例 C 4
実施例 D 4
比較例 A 0
比較例 B 0
[0139] なお、 Co含有量は、製造に用いた水溶液のニッケル塩およびコノ レト塩が実質的 に全部析出したものとして算出した。
[0140] (2)ポリマー材料
ポリマー材料としては、巿販の高密度ポリエチレン (EQUISTAR社製、 PETR
OTHENE LB832、密度: 0. 957— 0. 9648/1111、メノレトィンデックス:0. 23— 0.
30gZlO分、融点 135±3°C)を使用した。
[0141] (3)金属電極
金属電極としては、ニッケル金属箔 (福田金属箔粉工業製、電解ニッケル箔、厚さ: 約 25 m)を使用した。
[0142] (4) PTC素子の製造
(4 1) PTC組成物の製造
粉末状のポリマー材料にカップリング剤 (KENRICH PETROCHEMICALS社 製、 NZ— 33)をポリエチレン質量に対して 2質量0 /0添カ卩し、それらをキッチンブレン ダー(サン株式会社製、 MILL MIXER MODEL FM— 50)にて 30秒間混合し てポリマーブレンドを得た。これに、ニッケル粉と Mg (OH) (アルべマール社製、 HI
2
0)を以下の表 4に示す量で加え、キッチンプレンダ一で 30秒間混合して導電性ポリ マー組成物を得た。
[0143] [表 4] ニッケル粉 Mg(OH)2 ポリマー
(vol%) (vol%) ブレンド 実施例 A 43 10 残部 実施例 B 43 10
実施例。 43 10 残部 実施例 D 43 10 残部 比較例 A 35 10 残部 比較例 B 35 10 残部
[0144] 得られた導電性ポリマー組成物 45mLを、ミル (東洋精機製作所製、ラボプラストミ ル 型式 50C150、ブレード R60B)に投入し、設定温度 160°Cおよびブレード回転 数 60RPMで 15分間混練して PTC組成物を得た。
[0145] (4 2) PTC要素原板の調製
(4- 1)にて得られた PTC組成物を、鉄板 Zテフロン (登録商標)シート Z厚み調整 スぺーサー(厚さ 0. 5mmの SUS製) +PTC組成物 Zテフロン(登録商標)シート Z 鉄板と 、うサンドイッチ構造にしてこれらを重ね、熱圧力プレス機 (東邦プレス製作所 製、油圧成形機:型式 T— 1)にて、温度 180〜200°C、圧力 0. 5MPaで 3分間予備 プレスした後、圧力 5MPaにて 4分間本プレスを行った。その後、チラ一にて設定温 度 22°Cの水を循環させた冷却プレス機 (東邦プレス製作所製、油圧成形機:型式 T 1)を使用して 0. 5MPaにて 4分間プレスを行い、シート状のポリマー PTC要素(P TC要素原板)を作製した。
[0146] (4 3)ポリマー PTC素子ブラック原板の製造
次に、 (4- 2)にて作製した PTC要素原板と金属電極を用いて、鉄板 Zテフロン( 登録商標)シート Zシリコーンラバー Zテフロン (登録商標)シート Z金属電極 Z厚み 調整スぺーサー(厚さ 0. 5mmの SUS製) +PTC要素原板 Z金属電極 Zテフロン( 登録商標)シート Zシリコーンラバー Zテフロン (登録商標)シート Z鉄板と 、うサンド イッチ構造にしてこれらを重ね、上記熱圧力プレス機にて温度 220〜230°C、プレス 圧力 9MPaで 4分間本プレスした。その後、チラ一にて設定温度 22°Cの水を循環さ せた上記冷却プレス機を使用して 9MPaにて 4分間冷却プレスを行 、、ポリマー PT C要素(PTC要素原板)の両側の主表面に金属電極を熱圧着したポリマー PTC素子 ブラック原板 (切断前の PCT素子の集合体)を作製した。 [0147] (4 4) PTC素子の製造
(4- 3)にて作製したポリマー PTC素子ブラック原板に対して、 lOOOkGyの電子線 を照射し、その後、 3 X 4mmに手動パンチ器により打抜いてポリマー PTC素子の試 験片を得た。
[0148] (4 5) PTCデバイスの製造
(4-4)にて打ち抜いた 3 X 4mmの試験片の両面に、厚さ 0. 125mm,硬度 1Z4 H、 4mm X 5. 2mmの純 Niリード片をノヽンダ付けして、全体としてストラップ形状の P TCデバイスを試験サンプルとして得た。ハンダ付けには、ペースト半田(千住金属ェ 業株式会社製、 M705— 728C)を片面に対して約 2. Omg使用し、窒素雰囲気下で リフロー炉(日本アビォ-タス社製、型式 TCW— 118N、補助ヒーター温調 360°C、 プリヒート温調 250°C、リフロー温調(1) 240°C、リフロー温調(2) 370°C、ベルトスピ ード 370mmZ分)を用いた。
[0149] (5)初期抵抗値の測定
得られた試験サンプルについて、製造の 2日後、抵抗値(2つのリード間の抵抗値) を測定した。この抵抗値は、リードの抵抗値が PTC素子の抵抗値と比べてはるかに 小さいので、 PTC素子の初期抵抗値と呼ぶことができる。なお、初期抵抗値および 後述するように種々の条件下における PTC素子の抵抗値の測定には、ミリオームメ 一ター(HEWLETT PACKARD社製、 4263A)を用いた。初期抵抗値の測定結 果 (単位: Ω )を表 5に示す。
[0150] [表 5]
Figure imgf000034_0001
[0151] この結果から、実施例の試験サンプルの方が抵抗値が若干低いが、比較例のサン プルも含め、いずれの試験サンプルも、通常のように低い抵抗値を有することがわか る。
[0152] (6) PTC特性の確認 次に、実施例および比較例の試験サンプル各 5個について、抵抗 温度特性を測 定することによって R (抵抗)—T (温度)試験を実施した。試験温度範囲は 20°C〜15 0°Cとし、試験サンプルの周囲湿度は、 60%以下であった。試験サンプルの周囲温 度を 5°Cずつ上昇させ、その温度雰囲気で 10分間保持した後、 PTC素子抵抗値を 測定した。各温度にて測定された抵抗値の初期温度(21°C)における抵抗値に対す る比 (即ち、抵抗変化の割合)を、図 3に示す。
[0153] 図 3の結果から、実施例および比較例の素子については約 120°C〜130°Cの範囲 に閾温度(PTC素子の温度が室温力 上昇してトリップ温度 (trip temperature)とも 呼ばれる PTC素子の抵抗が急激に増加する温度)を有し、 V、ずれの素子につ ヽても 、そのような範囲の後の抵抗値は、前の抵抗値の少なくとも約 1015倍以上となってお り、従って、いずれの試験サンプルも PTC素子としてのスイッチング機能を有すること が明らかである。なお、一般的には抵抗値が少なくとも約 103倍以上大きくなると、 PT C素子としての機能を有すると考えてょ 、。
[0154] (7)高温,乾燥条件下での抵抗値の経時変化の測定
実施例および比較例の試験サンプルを 85°C± 3°C、相対湿度 10%以下の高温' 乾燥条件下に管理された恒温オーブン (ャマト製恒温オーブン DK600)に入れて 保存し、 24時間、 165時間、 502時間および 1336時間の保存時間の経過後に、各 実施例および比較例の試験サンプルを 5個ずつ恒温オーブンより取り出して室温に て 1時間放置後、ミリオームメーターにて抵抗値 (トリップ前抵抗値)を測定した。抵抗 値測定後、直流安定化電源 (菊水電子工業製、 PAD35— 60L)を使用し、 6V/50 Aの設定にて 5分間の電圧印加を行い、素子をトリップさせた。その後、同じく室温に て 1時間放置した後、ミリオームメーターにて素子の抵抗値 (トリップ後抵抗値)を測定 した。測定結果を以下の表 6および表 7に示す。また、この結果を保存時間に対して 図 4 (85°C保存抵抗値)および図 5 (85°C保存トリップジャンプ)に示す。なお、表 6中 の数値はトリップ前の抵抗値であり、単位は πιΩである。表 7は、 85°Cでの保存時間 力 SO時間でトリップ前における抵抗値に対する各時間経過後のトリップ後の抵抗値の 割合、すなわち抵
抗変化率を示す。 [0155] [表 6]
Figure imgf000036_0001
SD :標準偏薆
[0156] [表 7]
Figure imgf000036_0002
SO:標準漏差
[0157] 高温 ·乾燥条件下では、トリップ前の抵抗値につ!、て、実施例および比較例のサン プルの 、ずれにつ ヽても経時変化はそれほど大きくな 、が、トリップ後の抵抗値につ いては、比較例のサンプルの方が明らかに抵抗値の増加率が大きくなつている。
[0158] (8)常温,通常湿度条件下での抵抗値の経時変化の測定
実施例および比較例の試験サンプルを、 23 ± 5°C、相対湿度 20〜60% (湿度を 制御しない場合の一般的な湿度に相当)に管理された室温内にて保存された PTC 素子に対して上記(7)と同様の試験を実施した。但し、使用したサンプル数は各 20 個であり、 1002時間後、 1863時間の保存時間の経過後に各 5個ずつ抜き取って抵 抗値 (トリップ前抵抗値)を測定した。また、トリップ後の抵抗値も同様に測定した。測 定結果を以下の表 8および表 9に示す。また、この結果を保存時間に対して図 6 (常 温保存抵抗値)および図 7 (常温保存トリップジャンプ)に示す。なお、表 8中の数値 はトリップ前の抵抗値であり、単位は πι Ωである。表 9は、常温での保存時間が 0時間 でトリップ前における抵抗値に対する、各時間経過後のトリップ後の抵抗値の割合、 すなわち抵抗変化率を示す。
[0159] [表 8]
[0160] [表 9]
Figure imgf000037_0002
Figure imgf000037_0003
SD:標準偏差
[0161] 常温 ·通常湿度条件下では、トリップ前の抵抗値についても、また、トリップ後の抵 抗値につ 、ても、実施例および比較例のサンプルの
Figure imgf000037_0001
、ても経時的な影 響はそれほど大きくないが、比較例のサンプルの方が比較的トリップ後の抵抗値の増 加率が大きい。
[0162] (9)加圧下での酸化加速試験
圧力容器内に試験サンプルを投入し、そこに圧縮空気を供給して 40気圧の加圧 雰囲気とし、 PTC素子の導電性フィラーの酸化を加速し得る条件を設定した。この加 圧雰囲気内で 14日間および 28日間試験サンプルを保存した後、大気 ·室温雰囲気 にて 1時間保持した後、先と同様に抵抗値を測定した (これらの測定値は、図 8に、そ れぞれ「2week」および「4week」として図示している。なお、保存前については [init ial」として図示している。 )0また、その後、先と同様に、 PTC素子をトリップさせ、その 後、同じく室温にて 1時間放置して抵抗値を測定した。測定結果を以下の表 10およ び表 11に示す。また、この結果を保存時間に対して図 8 (40気圧加圧試験後抵抗値 )および図 9 (40気圧加圧試験後トリップジャンプ)に示す。なお、表 10中の数値はト リップ前の抵抗値であり、単位は πι Ωである。表 11は、 40気圧での保存時間が 0時 間でトリップ前における抵抗値に対する、各時間経過後のトリップ後の抵抗値の割合 、即ち、抵抗変化率で示している。
[0163] [表 10]
Figure imgf000038_0001
SD :標準偏差
[0164] [表 11]
Figure imgf000038_0002
標準偏差
[0165] これらの結果から、加圧条件下では、トリップ前の抵抗値については、実施例およ び比較例のサンプルの 、ずれにつ!、ても経時的な影響はそれほど大きくな 、。しか しながら、トリップ後の抵抗値については、比較例のサンプルの方力 時間が経過す ると、抵抗値の増加が顕著になることが分かる。特に実施例 Aおよび実施例 Bのサン プルについては、トリップ後の抵抗値の増加に関して特に良好な結果が得られている
[0166] (10)トリップ ·サイクル試験
実施例および比較例のサンプルについて、室温にてミリオームメーターを使用して 試験前抵抗値を測定した。その後、これらのサンプルをトリップサイクル試験機にセッ トした。この試験機では、供給電源として菊水電子製 MODEL PAD 35— 60Lを 使用し、電圧 6Vdc、試験電流 50Aに設定した。
[0167] 各サンプルには 50Aの電流を 6秒間印加した。この印加時間内にサンプルがトリツ プし、その残りの時間はサンプルに 6Vの電圧を印加した。
[0168] 6秒間の印加時間が終了すると電流,電圧印加を解除し、 54秒間の無印加状態と した。この電流 ·電圧印加の OnZOFFはシーケンサ一にて制御されており、これを 1 サイクルと定義し、各サンプルにつ 、てトリップを 200サイクル実施した。
[0169] なお、所定数のサイクルが終了した後、試験機力もサンプルをいつたん外して、そ の所定数のサイクル終了後、 1時間経過した後に、サンプルの抵抗値を測定し、その 後、サンプルを再び試験機にセットしてトリップサイクル試験を継続した。なお、サイク ルの所定数は、 50サイクル、 100サイクルおよび 200サイクルとした。この抵抗値の 測定結果を、表 12および図 10に示す。なお、表および図の数値は、初期値 (0サイク ル)における抵抗値に対する各サイクル終了後の抵抗値の割合、すなわち抵抗変化 率で示している。
[0170] [表 12] 50サイクル 100サイクプレ 200サイク レ
SD 平均 SD 平均 SD 比較例 A 2.71 0.408 4.37 0.637 5.69 0.281 比較例 B 2.22 0.274 3.11 0.673 3.52 0.586 実施例 A 1.95 0.058 2.62 0.203 2,90 0.112 実施例 B 1.62 0,131 1.92 0.181 2.22 0.170 実] ts例 c 2.25 0.140 3.19 0.209 3.86 0.230 実施例 D 2.16 0.353 2.69 0.154 3.27 0.559
SD :標準偏差
[0171] 比較例 Aのサンプルについては 200サイクル終了後には、抵抗値が相当増加して V、た反面、実施例のサンプルにつ 、ては抵抗値の増加がそれほどでもな力つた。
[0172] 上述の PTC素子に関する実施例および比較例の結果から、実施例のサンプル、 特に実施例 Aおよび実施例 Bのサンプルは、比較例のサンプルと比べ、高温'乾燥 保存条件、常温 ·通常湿度保存条件、加速雰囲気下での保存条件およびトリップサ イタル試験のいずれにおいても良好な性能を保持することが確認された。従って、そ のようなサンプルを製造するために用いた本発明のニッケル粉を導電性フイラ一とし て用いると、好ましい PTC素子を製造することができる。このことは、本発明の-ッケ ル粉が、コバルトを含むニッケル粉の中から特定の特徴を有するものとして選択され ているからであると推定される。即ち、 Coを含むニッケル粉そのものの特性にカ卩え、よ りコントロールされた 1次粒子径分布および 2次粒子のモルフォロジ一(形態)的な観 点から特定の範囲のものを選択することに起因しているものと考えられる。
[0173] 特に着目すべき点は、 PTC素子が高温,乾燥条件に長時間さらされると、トリップ後 の抵抗値が増加するが、本発明の PTC素子の場合、その増加する割合が比較的小 さい。
従来、 PTC素子の評価は、常温'通常湿度条件で実施されていた。このような評価で は、図 6および図 7の結果からもわ力るように素子の抵抗値の増加は顕著ではない。 しかしながら、高温'乾燥条件での評価では、 PTC素子の抵抗値の増加の差異が明 らカとなる。 PTC素子が使用される環境は種々異なり、高温かつ乾燥条件 (例えば夏 の日の車中の環境)で使用される場合がある。本発明の PTC素子は、そのような過 酷な環境にお!ヽても抵抗率の増加が小さ!、ので、従来の PTC素子と比較して有用 である。
産業上の利用可能性
[0174] 本発明に係るニッケル粉は、導電ペーストおよび導電榭脂用の導電性粒子として、 また、ポリマー PTC素子の導電性フイラ一として好適に用いることができる。
[0175] また、本発明に係る PTC素子は、ニッケルのみを含むニッケル粉を導電性フィラー として用いる PTC素子と同等のスイッチング性能を有し、さらに、長期の経時変化に 対してはより向上した性能を示すので、従来の PTC素子と同様に電気装置等におい て幅広ぐより長い期間にわたって使用できる。

Claims

請求の範囲
[1] コバルトを 1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、力 つ、一次粒子が凝集した二次粒子で構成され、さら〖こ、平均一次粒子径が 1. 0〜3. 0 m、一次粒子径の標準偏差 σと平均一次粒子径 dの比 σ /άの値が 0. 4以下、
1 1
平均ニ次粒子径が5〜60 111、タップ密度が 1. 0〜3. 5gZmL、比表面積が 2. 0 m2Zg以下であることを特徴とするニッケル粉。
[2] 前記平均一次粒子径 dと前記平均二次粒子径 dとの比 d /άの値が 5〜60の範
1 2 2 1
囲内であることを特徴とする請求項 1に記載のニッケル粉。
[3] 前記二次粒子の表層部に存在する一次粒子のコバルト含有量が、該表層部の全 質量あたり 1〜40質量%であることを特徴とする請求項 1または 2に記載のニッケル 粉。
[4] 還元剤を含有する水溶液に 2価のニッケル塩を添加してニッケルを析出させる第 1 の還元析出工程と、第 1の還元析出工程後の水溶液に少なくとも 2価のニッケル塩を 添加して、さらにニッケルを析出させる第 2の還元析出工程とからなり、前記第 1およ び第 2の還元析出工程のうち、少なくとも第 1の還元析出工程において HLB値が 10 以下の低親水性の界面活性剤を添加するとともに、少なくとも第 2の還元析出工程に ぉ 、て、ニッケルを析出させる水溶液に 2価のコノ レト塩を添カ卩してニッケルを析出さ せてニッケル粉を得て、さらに得られたニッケル粉を不活性雰囲気または真空中で 8 0〜230°Cで乾燥させる力、または、大気中で 80〜150°Cで乾燥させた後に還元雰 囲気中で 200〜400°Cの熱処理をすることを特徴とするニッケル粉の製造方法。
[5] 前記第 2の還元析出工程において 2価のコノ レト塩を添加した水溶液中のコバルト イオンの含有量力 該水溶液中のニッケルイオンとコバルトイオンの合計量に対し 1 〜40質量%であり、かつ、該水溶液中のコバルトイオン濃度が前記第 1の還元析出 工程における水溶液中のコバルトイオン濃度より高ぐさらに、前記第 1および第 2の 還元析出工程を経て得られるニッケル粉はコバルトを 1〜20質量%含有していること を特徴とする請求項 4に記載のニッケル粉の製造方法。
[6] 前記第 1の還元析出工程における水溶液に、該水溶液中のコバルトイオン含有量 が該水溶液中のニッケルイオンとコノ レトイオンの合計量に対し 1〜 20質量0 /0となる ように 2価のコバルト塩を添加するとともに、前記第 2の還元析出工程における水溶液 に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバルトィ オンの合計量に対し 1〜20質量%となるように 2価のコバルト塩を添加することを特徴 とする請求項 4に記載のニッケル粉の製造方法。
[7] 前記二次粒子の表層部におけるコノ レトの含有量力 該表層部の全質量当たり 8
〜20質量%であることを特徴とする請求項 3に記載のニッケル粉。
[8] ニッケル粉全体としてのコバルトの含有量力 〜 10質量%であることを特徴とする 請求項 1〜3および請求項 7のいずれかに記載のニッケル粉。
[9] ニッケル粉の内部におけるコバルトの含有量力 該内部の全質量当たり 3〜6質量
%であることを特徴とする請求項 1〜3ならびに請求項 7および 8のいずれかに記載 の-ッケル粉。
[10] タップ密度が 2. 3〜3. OgZmLであることを特徴とする請求項 1〜3および請求項
7〜9の!、ずれかに記載のニッケル粉。
[11] 前記比 d /άの値が 8〜16の範囲内であることを特徴とする請求項 1〜3および請
2 1
求項 7〜10のいずれかに記載のニッケル粉。
[12] (A) (al)導電性フィラー、および
(a2)ポリマー材料
を含んで成るポリマー PTC要素、ならびに
(B)ポリマー PTC要素の少なくとも 1つの表面に配置された金属電極
を有して成るポリマー PTC素子であって、請求項 1〜3および請求項 7〜: L 1に記載 のニッケル粉ならびに請求項 4〜6に記載の方法によって製造されるニッケル粉のい ずれかを導電性フイラ一として使用することを特徴とするポリマー PTC素子。
PCT/JP2006/323720 2005-11-29 2006-11-28 ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子 WO2007063851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087015681A KR101356377B1 (ko) 2005-11-29 2006-11-28 니켈분 및 그 제조 방법 및 상기 니켈분을 이용한 폴리머ptc 소자
CN2006800446942A CN101316673B (zh) 2005-11-29 2006-11-28 镍粉及其制造方法、以及使用该镍粉的聚合物ptc元件
EP06833524A EP1974840A4 (en) 2005-11-29 2006-11-28 NICKEL POWDER, METHOD FOR ITS PRODUCTION AND SUCH A NICKEL POWDER USING POLYMER PTC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005344631A JP4942333B2 (ja) 2005-11-29 2005-11-29 ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子
JP2005-344631 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063851A1 true WO2007063851A1 (ja) 2007-06-07

Family

ID=38092184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323720 WO2007063851A1 (ja) 2005-11-29 2006-11-28 ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子

Country Status (6)

Country Link
EP (1) EP1974840A4 (ja)
JP (1) JP4942333B2 (ja)
KR (1) KR101356377B1 (ja)
CN (1) CN101316673B (ja)
TW (1) TWI402116B (ja)
WO (1) WO2007063851A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013482A (ja) * 2007-07-06 2009-01-22 Ist Corp ニッケ粉又はニッケル合金粉及びその製造方法
JP5429299B2 (ja) * 2009-10-05 2014-02-26 株式会社村田製作所 扁平形状のNi粒子の製造方法
CN101728039B (zh) * 2009-12-31 2016-02-24 上海长园维安电子线路保护有限公司 过电流保护元件
CN102489718A (zh) * 2011-12-14 2012-06-13 丹阳市博高新材料技术有限公司 一种亚微米级片状超细镍粉的制备方法
JP6357347B2 (ja) * 2013-05-14 2018-07-11 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2015138915A (ja) * 2014-01-23 2015-07-30 住友金属鉱山株式会社 積層コンデンサ用ニッケル系合金微粒子およびその製造方法
JP6270035B2 (ja) * 2014-02-25 2018-01-31 住友金属鉱山株式会社 ニッケル粉末の製造方法
EP3127634B1 (en) * 2014-03-31 2019-05-08 Dowa Electronics Materials Co., Ltd. Fe-co alloy powder, manufacturing method therefor, antenna, inductor, and emi filter
JP6843370B2 (ja) * 2017-03-16 2021-03-17 住友金属鉱山株式会社 ニッケル粉末の製造方法
CN110799285B (zh) * 2017-07-05 2022-04-29 东邦钛株式会社 金属粉末及其制造方法
US10950372B2 (en) 2017-10-19 2021-03-16 Littelfuse, Inc. Surface mounted fuse device having positive temperature coefficient body
CN113165067B (zh) * 2019-01-28 2023-03-14 三井金属矿业株式会社 金属粒子、使用了其的磁性体膏糊、压粉磁心及感应器以及金属粒子的制造方法
CN112630110B (zh) * 2020-12-14 2023-04-25 百尔罗赫塑料添加剂(江苏)有限公司 一种氧化锌粉末粒径测试方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043734A (ja) 1999-07-28 2001-02-16 Dowa Mining Co Ltd ニッケル粉およびその製造法
JP2002025345A (ja) 2000-07-05 2002-01-25 Nisshin Steel Co Ltd 耐マイグレーション性に優れた導電性粒子
JP2002043734A (ja) 2000-07-24 2002-02-08 Senju Metal Ind Co Ltd プリント基板のはんだ付け方法およびその装置
JP2002075057A (ja) 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd 被覆銅粉
JP2005048191A (ja) * 1992-06-05 2005-02-24 Raychem Corp 導電性ポリマー組成物
WO2005023461A1 (ja) 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. ニッケル粉およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502754C2 (sv) * 1994-03-31 1995-12-18 Sandvik Ab Sätt att framställa belagt hårdämnespulver
SE502931C2 (sv) * 1994-06-10 1996-02-26 Sandvik Ab Metod för tillverkning av pulver för WC-hårdmaterial
CN1060982C (zh) * 1997-11-17 2001-01-24 北京有色金属研究总院 超细金属粉的制备方法
KR100330919B1 (ko) * 2000-04-08 2002-04-03 권문구 피티씨 전도성 폴리머를 포함하는 전기장치
CN1272128C (zh) * 2003-09-24 2006-08-30 中南大学 纤维状镍钴合金粉与镍钴复合氧化物粉的制备方法
JP2005240164A (ja) 2004-02-27 2005-09-08 Sumitomo Metal Mining Co Ltd ニッケル粉およびその製造方法
US8164414B2 (en) * 2004-06-08 2012-04-24 Tyco Electronics Japan G.K. Polymer PTC element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048191A (ja) * 1992-06-05 2005-02-24 Raychem Corp 導電性ポリマー組成物
JP2001043734A (ja) 1999-07-28 2001-02-16 Dowa Mining Co Ltd ニッケル粉およびその製造法
JP2002025345A (ja) 2000-07-05 2002-01-25 Nisshin Steel Co Ltd 耐マイグレーション性に優れた導電性粒子
JP2002043734A (ja) 2000-07-24 2002-02-08 Senju Metal Ind Co Ltd プリント基板のはんだ付け方法およびその装置
JP2002075057A (ja) 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd 被覆銅粉
WO2005023461A1 (ja) 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. ニッケル粉およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1974840A4

Also Published As

Publication number Publication date
EP1974840A4 (en) 2011-11-09
KR20080072081A (ko) 2008-08-05
CN101316673B (zh) 2011-11-09
KR101356377B1 (ko) 2014-01-27
JP2007146251A (ja) 2007-06-14
CN101316673A (zh) 2008-12-03
TW200734086A (en) 2007-09-16
JP4942333B2 (ja) 2012-05-30
EP1974840A1 (en) 2008-10-01
TWI402116B (zh) 2013-07-21

Similar Documents

Publication Publication Date Title
WO2007063851A1 (ja) ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーptc素子
JP4954885B2 (ja) 導電粉およびその製造方法、導電粉ペースト、導電粉ペーストの製造方法
JP4734593B2 (ja) ポリマーptc素子
US10076032B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
WO2008059789A1 (fr) Fine poudre de cuivre plaquée argent, pâte conductrice produite à partir d'une fine poudre de cuivre plaquée argent, et procédé pour produire une fine poudre de cuivre plaquée argent
JP4094480B2 (ja) 連鎖状金属粉末とその製造方法、及びそれを用いた導電性付与材
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
WO2007040195A1 (ja) 微粒銀粒子付着銀銅複合粉及びその微粒銀粒子付着銀銅複合粉製造方法
JP4876979B2 (ja) 接合部材および接合方法
TW200940213A (en) Copper powder for conductive paste and conductive paste
JP2003105404A (ja) 銀コート銅粉の製造方法、その製造方法で得られた銀コート銅粉、その銀コート銅粉を用いた導電ペースト、及びその導電ペーストを用いたプリント配線板
CA2489893C (en) Nickel powder and production method therefor
JP2008111175A (ja) 複合金属粉とその製造方法および導電性ペースト
JP6609153B2 (ja) プリント配線板用基材、プリント配線板及び電子部品
JP2005240164A (ja) ニッケル粉およびその製造方法
JP5942791B2 (ja) ニッケル粉末の製造方法
JP7093639B2 (ja) 銀被覆樹脂粒子
JP2017066476A (ja) 導電性ペースト用銅粉およびその製造方法
Alejandrino et al. Development of low-cost adhesive conductive carbon ink for electronic printed circuit board
JP2014210970A (ja) ニッケル粉とその製造方法
JP2015017314A (ja) ニッケル粉及びその製造方法
JP2015004079A (ja) ニッケル粉及びその製造方法
Zhang et al. Preparation of silver-coated copper powders and its application in conductive adhesives
JP2015081377A (ja) ニッケル粒子表面へのコバルト含有ニッケル層の被覆方法を含むニッケル粉の製造方法及びそれを用いたニッケル粉
JP2022180322A (ja) 銅粉末及びこれを含む導電性組成物、並びに、これを用いた配線構造及び導電性部材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044694.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833524

Country of ref document: EP

Ref document number: 1020087015681

Country of ref document: KR