WO2007061070A1 - 耐火れんが - Google Patents

耐火れんが Download PDF

Info

Publication number
WO2007061070A1
WO2007061070A1 PCT/JP2006/323480 JP2006323480W WO2007061070A1 WO 2007061070 A1 WO2007061070 A1 WO 2007061070A1 JP 2006323480 W JP2006323480 W JP 2006323480W WO 2007061070 A1 WO2007061070 A1 WO 2007061070A1
Authority
WO
WIPO (PCT)
Prior art keywords
brick
alumina
mass
expansion
magnesia
Prior art date
Application number
PCT/JP2006/323480
Other languages
English (en)
French (fr)
Inventor
Ryosuke Nakamura
Hiroyuki Shikama
Hisashi Tomiya
Hisaharu Sasaki
Original Assignee
Shinagawa Refractories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co., Ltd. filed Critical Shinagawa Refractories Co., Ltd.
Priority to DE602006019772T priority Critical patent/DE602006019772D1/de
Priority to US12/094,938 priority patent/US7939458B2/en
Priority to EP06833284A priority patent/EP1955987B1/en
Priority to AU2006317007A priority patent/AU2006317007B2/en
Publication of WO2007061070A1 publication Critical patent/WO2007061070A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a refractory used in a kiln exposed to various high temperatures, and particularly to a refractory brick used in a ladle for steel making.
  • Alumina and magnesia are corundum and periclase crystals, respectively, which react at high temperatures during use in a furnace such as a ladle to produce spinel crystals with volume expansion.
  • a dense spinel-containing layer is formed in the vicinity of the high-temperature working surface. Therefore, it has the feature that slag infiltration is very small and resistance to slag erosion is excellent.
  • carbon does not contain carbon, it has the characteristic that it can eliminate contamination of steel caused by lining refractories, particularly when receiving or purifying low-carbon molten steel.
  • the brick used in the ladle is mainly made of high alumina or carbon-containing brick, and alumina spinel is used in some ironworks.
  • Patent Document 1 proposes an unfired alumina-magnesia brick using a resin as a binder for alumina and magnesia.
  • Patent Document 2 discloses a non-fired alumina-magnesia brick using a coarse-grained magnesia raw material and a spinel raw material of 1 mm or less.
  • Patent Document 1 Japanese Published Patent Showa 63-151661
  • Patent Document 2 Japanese Published Patent No. 2000-272956
  • High-alumina bricks are general refractory bricks widely used in ladle and various kilns. However, the durability is inferior to carbon-containing bricks and alumina-spinel bricks.
  • Carbon-containing bricks are used in various kilns and in some ladles. However, the carbon in bricks can contaminate the steel, especially when used for linings of ladles that handle low carbon steel. In addition, carbon is oxidized and disappears in a furnace in an oxidizing atmosphere.
  • Alumina-spinel bricks are used in various kilns, and more recently in ladle.
  • Alumina-spinel brick is a fired brick that is manufactured by combining a synthesized spinel raw material and an alumina raw material, and is usually fired at several hundreds of degrees Celsius (usually around 1500 ° C).
  • the power containing magnesia (MgO) which is a component of spinel in the brick is already contained in the brick as a spinel crystal, and there is no periclase which is a magnesia crystal.
  • MgO magnesia
  • a new spinel formation reaction does not occur even at a high temperature at which this brick is used. Therefore, the formation of a dense spinel-containing layer near the working surface accompanying the spinel formation reaction during use, which is a characteristic of alumina magnesia, does not occur.
  • the alumina-magnesia cast material mainly composed of alumina and magnesia has both excellent slag infiltration resistance and slag erosion resistance characteristics, and therefore is used as a ladle lining.
  • the unfired alumina-magnesia brick proposed in Patent Document 1 uses a resin as a binder, the resin is carbonized by heating, and the brick remains in the structure.
  • This carbonized carbon reaction significantly inhibits the reaction between alumina and magnesia, that is, the spinel formation reaction, so the formation of a dense spinel-containing layer by spinel formation and expansion reaction, which is a characteristic of the original alumina-magnesia material, is almost It does not occur and there is no slag infiltration suppression effect. Therefore, it is not put into practical use.
  • the unfired alumina-magnesia brick disclosed in Patent Document 2 uses a magnesia raw material in a coarse-grained region, so that the amount used is small, but the heating during spinel generation is large. The brick has collapsed and is not put into practical use.
  • As one method for producing bricks with an alumina magnesia material there is a method in which a block is formed by precasting into a predetermined shape in a manufacturing plant in advance using an alumina magnesia casting material.
  • volume expansion control for forming a dense spinel-containing layer by utilizing volume expansion at the time of spinel formation reaction that occurs at high temperature during use which is a characteristic of alumina magnesia casting material
  • the present invention does not require special construction equipment and drying equipment required for casting construction, while having the excellent characteristics of the existing alumina magnesia casting material.
  • the purpose is to provide refractory bricks that can be bricked and mass-produced by press molding, and therefore can be easily press-molded to produce bricks, and It is an object of the present invention to provide a practical technique capable of controlling the volume expansion characteristic at the time of spinel formation reaction occurring at a high temperature during use.
  • the present invention uses an alumina raw material and a magnetic raw material containing 90% by mass or more of fine powder of 0.5 mm or less, the total amount of A1203 and MgO is 90% by mass or more, and MgO is 4 to 16 mass 0/0, Si02 and 0.5 to 5 mass 0/0, NA20 and the containing from 0.3 to 2 mass 0/0 total amount of K20, the balance being unavoidable impurities and a 1203, was press-molded A refractory brick that has been heat-treated at 100 ° C or higher and 1150 ° C or lower, and does not contain carbon and organic substances that retain carbon at 1200 ° C or higher. The CaO content is less than 0.5% by mass. This makes it possible to put alumina magnesia refractory bricks that could not be achieved in the past into practical use.
  • additives such as a dispersant and a curing modifier, which are required in conventional casting materials, are used. Since the additive component can be omitted, refractory bricks having slag infiltration resistance and corrosion resistance superior to the casting material have been completed.
  • the present invention makes it possible to control the expansibility associated with the spinel formation reaction that occurs at high temperatures during use. It has become possible to provide a refractory brick that can form a spinel-containing layer. As a result, slag infiltration resistance and slag erosion resistance, which are significantly better than conventional refractory bricks, were achieved. By simultaneously achieving the technology for controlling expansion and overcoming manufacturing problems, and ensuring the strength of bricks, it is possible to perform press molding that enables mass production. No need for special kneading equipment, distribution equipment, drying equipment, etc., and bricks can be stacked as before.
  • the volume expansion accompanying the spinel formation reaction becomes a large value exceeding 2% of the force depending on the magnesia content. If this expansion force appears as it is lined in a kiln such as a ladle, a large stress is generated due to expansion, and the refractory lined is destroyed and collapses. Conversely, if the volume expansion accompanying the spinel formation reaction is too small, a dense spinel-containing layer cannot be formed in the brick structure, and the slag infiltration suppressing effect cannot be obtained. Therefore, technology that can control this volume expansion is an essential requirement for the practical use of alumina magnesia refractories.
  • alumina magnesia casting material as a matter of course, high alumina cement is used as the binder.
  • High alumina cement in alumina-magnesia casting In addition to acting as a binder, G is considered to play another important role.
  • the strength of high alumina cement is the strength of A1203 and CaO.
  • silica Si02
  • the synergistic effect of A1203, CaO and Si02 creates a spinel produced at high temperatures during use. It has been found that volume expansion characteristics associated with crystal changes can be controlled. In particular, in a restrained state, that is, in a state where a load is applied to the constructed lining construction, the expansion suppressing effect is effectively exhibited.
  • the content of high alumina cement and Si02 By adjusting the content of high alumina cement and Si02, the expansion behavior under load is adjusted while having free expansion, and finally a dense spinel-containing layer is formed near the required working surface. In addition, it is possible to prevent the refractory lining structure from being destroyed.
  • the present inventors have developed a practical technique that can be easily press-molded for manufacturing bricks and at the same time can control the volume expansion characteristics at the time of spinel formation reaction that occurs at high temperatures during use. Therefore, the present invention was completed based on the idea that alumina-magnesia brick, which has achieved excellent results in the casting material, has not been put into practical use. Furthermore, since the dispersing agent and the curing regulator required for the casting material can be omitted, a refractory brick having slag infiltration resistance and corrosion resistance superior to the casting material has been completed.
  • the refractory brick of the present invention is essentially composed of an alumina raw material and a magnesia raw material, and must have a component depending on these raw materials, that is, a combined force of A1203 and MgO of 90% by mass or more. If it is less than 90% by mass, it can be said that brick with alumina and magnesia force is V, which is the original purpose of the spinel formation reaction between alumina (corundum crystal) and magnesia (periclase crystal). The accompanying expansion behavior becomes unclear, and as a result, the slag infiltration resistance of bricks cannot be greatly improved.
  • Alumina raw material The material is the main component of the refractory material from the coarse-grained area to the fine powder area.
  • the particle size of the magnesia raw material used in the present invention is such that a fine powder of 0.5 mm or less is 90% by mass or more in order to generate a spinel formation reaction at high temperature uniformly and efficiently in a brick. Must be used in fine powder containing.
  • the present inventors are accompanied by a spinel formation reaction that occurs in a temperature range of 1200 ° C or higher using magnesia raw materials of various particle sizes together with the constituents of Si02, Na20, or K20, which are constituent elements of the present invention.
  • the expansion properties were compared and examined.
  • magnesia raw material containing 40% by mass or more of particles of 90 m or less exhibits a very reliable expansion behavior, and it is easy to adjust the expandability by the constituent elements of the present invention, Si02, Na20 or K20. is there.
  • the amount of particles of 90 / z m or less is preferably 65% or more.
  • magnesia raw material containing 90% by mass or more of fine powder of 0.3 mm or less had almost the same result as the magnesia raw material mainly composed of 90 m or less.
  • the magnesia raw material that can be used in the present invention is a magnesia raw material containing 90% by mass or more of fine powder of 0.5 mm or less.
  • the magnesia raw material undergoes a reaction with the alumina raw material, that is, a spinel formation reaction in a temperature range of 1200 to 1400 ° C, which is slightly lower than the temperature of the working surface when the brick of the present invention is used. It is used to form a dense spinel-containing layer near the working surface, and must be a magnesia raw material containing 90% by mass or more of fine powder of 0.5 mm or less as described above. The amount of MgO in the brick must be 4 to 16% by mass.
  • magnesia is known to have large slag infiltration (it is easy to infiltrate into slag) as an original property. Therefore, if the amount of MgO component exceeds 16% by mass, slag infiltration resistance is not improved because the increase in MgO component itself encourages the slag infiltration.
  • the spinel formation reaction between alumina and magnesia always occurs in a certain temperature range, that is, a temperature range of 1200 ° C or higher if the alumina and magnesia particles are in contact with each other in the brick structure. Moreover, the volume change accompanying this reaction is also a phenomenon that always occurs at the same time. Therefore, when the expansion coefficient is measured in a state in which the brick is not constrained at all and the dimensions can be freely changed, it always shows a large expansion as the spinel is generated.
  • the coefficient of expansion is usually measured as the coefficient of linear expansion, and the value usually exceeds 2%.
  • the feature of the alumina-magnesia brick of the present invention is that a dense spinel-containing layer is formed in the vicinity of the working surface of the brick by controlling such free expansion characteristics and expansion characteristics under load.
  • the slag infiltration resistance is greatly improved.
  • the meta brick of the present invention should contain Si02 force of 0.5 to 5% by mass and Na20 + K20 of 0.3 to 2% by mass.
  • Si02 is used for the purpose of absorbing the expansion associated with the spinel formation reaction. However, even if it exists alone, it cannot sufficiently absorb the expansion. A force that utilizes the fact that Si02 forms a glass phase at high temperatures In the A1203 and MgO components, the glass phase mainly composed of Si02 is slightly vitrified in the temperature range of 1200-1400 ° C where spinel is formed. ! Therefore, the amount necessary for expansion absorption, that is, the amount of the glass phase sufficient to allow the particles to move to absorb the stress accompanying expansion is not reached. At higher temperatures, the force that produces more glass phase So it can no longer serve to absorb the expansion associated with spinel formation! /.
  • Si02 component force By coexisting with the alkali component of Na20 or K20, a glass phase is formed in the temperature range where spinel is generated by the reaction of alumina and magnesia, and large expansion associated with the spinelization reaction occurs. A function to absorb is obtained.
  • the temperature is about 850 ° C! Force A glass phase is formed. This is a temperature sufficiently lower than the spinel formation reaction temperature, and then the amount of the glass phase increases as the temperature rises.
  • Si02 is a component constituting the main component of the glass phase, and its content is 0.5 to 5% by mass. If it is less than 5% by mass, the absolute amount of the glass phase is insufficient, and the movement of particles during spinel formation cannot be promoted, and the expansion cannot be absorbed. More preferably, the content is 0.8% by mass or more. Since a sufficient amount of glass phase can be obtained when the content of Si02 is 5% by mass or less, even if the expansion is large when the MgO content is large, the movement of particles during spinel formation is easy. Can absorb expansion. Therefore, the Si02 component exceeding 5% by mass is unnecessary, and the amount of the glass phase is excessive, so that the corrosion resistance is lowered, which is not preferable.
  • the required content range of Si02 is the use of the magnesia raw material containing 90% by mass or more of the alumina raw material and 0.5 mm or less fine powder in the present invention, and the total amount of A1203 and MgO is 90% by mass or more.
  • the alumina magnesia brick having an MgO content power of ⁇ 16% by mass is in a range necessary for absorbing expansion during spinel formation.
  • Alkali metal oxides such as Na20 and K20, which are known as glass-modifying ions, are used for glass mainly composed of Si02, and when mixed with glass composed of Si02 alone, The melting point is lowered and the viscosity is lowered at the same temperature. It is important that these components exist simultaneously with Si02.
  • the total amount of Na20 and K20 required for the present invention must be adjusted by the total amount of A1203 and MgO, that is, the amount of the main component, the content of the MgO component, and the content of the Si02 component.
  • A1203 and MgO is 90% by mass or more
  • MgO content force is ⁇ 16% by mass, Si02 force SO. If it is within the range of 2% by mass, it forms a glass phase with an appropriate viscosity together with Si02, assists the movement of particles in the temperature range where spinel is generated, absorbs expansion caused by spinel formation, and provides a precise working surface.
  • a nearby spinel-containing layer can be formed.
  • the alumina raw material and the magnesia raw material which are the main raw materials of the refractory brick according to the present invention, have various grades of raw materials and contain corresponding impurity components.
  • the meta brick of the present invention does not contain any impure components other than A1203, MgO, Si02, Na20, and K20, but in practice it is necessary to consider the appropriateness of the cost, and to some extent How is the impurity component of?
  • the total amount of at least A1203 and MgO must be 90% by mass or more, and the balance other than MgO, Si02, Na20, and K20 is composed of A1203 and impurities.
  • the content of impurities is preferably 6% by mass or less if possible in order to exhibit the corrosion resistance of the original alumina + magnesia. Further, in order to reliably control the expansion characteristics of the refractory brick of the present invention, it is more preferable that the impurity content is 5% by mass or less! /.
  • the impure component content is desirably 4% by mass or less in order to exhibit its high corrosion resistance.
  • the brick since the refractory brick of the present invention is heated at a low temperature, the brick may include a so-called ignition loss such as crystallization water, and this ignition loss is regarded as an impurity.
  • the refractory brick of the present invention is formed into a kneaded clay that can be formed into a press containing about 2 to 3% by mass of water by a conventional method, and is pressed. As a molding press apparatus, a generally used hydraulic press or friction press is used.
  • the heating temperature, especially the upper limit after press molding is important.
  • Firing means that the stability of the brick is increased by sintering the particles to obtain strength and by preheating at a temperature close to the temperature at which the brick is used.
  • Non-fired bricks are those that give sufficient strength as a binder at room temperature, as represented by carbon-containing bricks, and carbonize the resin by heating to give carbon bonds. This is used when the brick properties can be maintained sufficiently without heat treatment.
  • A1203 derived from the alumina raw material in the brick and MgO derived from the magnesia raw material are present without reacting until the brick is lined in the kiln and heated in use.
  • the spinel formation reaction takes place mainly in the vicinity of 1200 to 1400 ° C. Therefore, in the refractory brick of the present invention, it must not be heat-treated at a temperature of 1200 ° C or higher!
  • the heating temperature of the refractory brick according to the present invention must never be 1200 ° C or higher, and is suitably 1150 ° C or lower in consideration of an error in heating temperature and heating time. It is preferably 1100 ° C or lower and most preferably 1050 ° C or lower! /.
  • the brick of the present invention must be heated at a temperature of 100 ° C or higher in order to completely dry at least a small amount of water necessary for press molding. In order to dry more reliably, 110 ° C or higher is preferable. If 150 ° C or higher, almost free moisture remains. Is not.
  • the optimum heating temperature differs depending on what kind of refractory brick of the present invention is used as a binder.
  • silicate which is composed of Si02 and Na20 or K20, which are essential elements of the present invention
  • this silicate dissolves in water, after press molding, 100 ° If it is dry at C or above, it has a sufficient base strength, and it can form a brick as it is. If it is hardly soluble and hardly soluble in water, heating at low temperature will not provide sufficient strength.
  • 650 ⁇ It is better to heat at a temperature of about LOOO ° C.
  • strength can be obtained by simply removing the moisture, and sufficient strength can be obtained if the temperature is not raised to some extent, for example, about 200 to 300 ° C. There are also things.
  • the carbon-force brick remaining even at a high temperature of 1200 ° C or higher should not be included in the structure. If carbon brick is included in the structure, the opportunity for direct contact between the alumina raw material particles and the magnesia raw material particles is lost, and a spinel is generated by the reaction between A1203 and MgO. If spinel does not occur, expansion does not occur, and formation of a dense spinel-containing layer near the working surface, which is obtained by controlling it, and the features of the refractory brick according to the present invention cannot be obtained.
  • the refractory brick of the present invention is not only carbon but also an organic substance having a property of remaining carbon even when heated to 1200 ° C, for example, an organic polymer compound having many benzene rings such as pitch, Do not contain phenolic resin.
  • the CaO component is also contained in the magnesia raw material as an impure component, so it is completely contained. It is difficult to avoid it, but it is better to reduce it as much as possible.
  • the state of the dough for pressing the brick may change in a short time, and if it is difficult to produce a brick with a stable packing density and strength, it can be removed with a force.
  • the glass phase formed by Si02, Na20, and K20 which are essential components of the present invention, is affected, and the absolute amount of glass changes and the viscosity changes.
  • the allowable content of CaO in the refractory brick of the present invention is 0.5% by mass, and if it exceeds this, the influence on the kneaded clay and glass phase of the press molding as described above becomes large and stable. In particular, the refractory brick characteristics of the present invention cannot be exhibited, which is preferable.
  • the refractory brick of the present invention uses an magnesia raw material containing 90% by mass or more of an alumina raw material and fine powder of 0.5 mm or less, and the total amount of A1203 and MgO is 90% by mass or more.
  • Refractory bricks that have been heat-treated at 100 ° C or higher and 1150 ° C or lower after being press-molded, and do not contain carbon and organic substances that retain carbon at 1200 ° C or higher.
  • these limits are the resistance to refractory bricks characterized by being less than 5% by mass. It is an important requirement that it can be controlled.
  • the desired free expansion and expansion under load can be obtained without any problem within the limited scope of the present invention.
  • a very special impurity component For example, when a low melting point metal component or the like is contained, the hot properties may not show the behavior of refractory bricks mainly composed of alumina and magnesia.
  • desirable hot expansion characteristics are that the free expansion coefficient at 1500 ° C is 2 to 5%, and expansion under load at 1500 ° C when a load of IMPa is applied. The rate should not exceed 1%.
  • Expansion under load of the refractory brick of the present invention is an important characteristic for specifying how much expansion associated with the spinel formation reaction can be absorbed in a state where it is lined in a kiln. It is necessary that the expansion rate under load at 1500 ° C does not exceed 1%. If it exceeds 1%, there is a possibility that the brick will crack due to the stress generated by the expansion of the brick, or that the crack may further break and collapse. More preferably, it is 0.5% or less, and the most optimal range is 0 to 1%.
  • the "fired brick compression creep test method" specified in JIS R2658 is used. As 5 ° CZ, measure the amount of expansion when the temperature reaches 1500 ° C.
  • the present IS R2858 is a method for measuring a so-called creep amount in which a force that reaches a certain temperature is maintained even when the force reaches a certain temperature, and the dimension that changes within a predetermined time is measured.
  • the alumina raw material used for the refractory brick of the present invention is a raw material containing A1203 mainly composed of alumina and capable of producing spinel by reacting with magnesium, and is usually used for a refractory.
  • Refractory raw materials such as sintered alumina, white fused alumina, brown fused alumina, porphyry shale (Chinese bauxite), bauxite, calcined alumina, etc. It is also possible to use alumina materials such as V, which are partly dissolved in spinel.
  • magnesia raw material electrofused magnesia and seawater magnesia clinker can be used, and natural magnesia clinker obtained by killing natural magnesite can be used.
  • binders there are various types of binders, and not all of them have been studied, but basically they are not particularly limited. However, as described above, organic binders that retain carbon even when heated at a high temperature of 1200 ° C. or higher, such as pitch and phenol resin, cannot be used. Organic binders such as molasses, pulp waste liquor, dextrin, methylcelluloses, and polybutyl alcohol that burn out at temperatures below 1200 ° C and should be used unless carbon remains above 1200 ° C it can.
  • inorganic binders include bitter juice (MgC12), alkali metal silicates such as sodium silicate and potassium silicate, sodium aluminate, and the like. A1203, Mg 0, Si02, Na20, K20 If it contains a component, the amount added can be adjusted so that each component is within the scope of the present invention, and it is preferable because it does not increase other impure components. However, binders with strong agglomeration effects such as sodium aluminate need to be used in order to obtain an appropriate kneaded clay for press molding.
  • sodium silicate and potassium silicate are most preferable.
  • An alkali metal silicate such as Different types of Si02 and Na20 or K20 are commercially available, and by knowing in advance the contents of Si02, Na20, and K20 as impure components of the alumina and magnesia materials used in the refractory bricks of the present invention, By using the optimal proportion of silicate, more solid expansion absorption can be achieved. Also, these silicates are convenient because of their high strength after heating.
  • alkali metal silicates known as water glass, such as liquids with water at room temperature, powders, or glass powders that hardly dissolve in water. There is. Even if any of these is used, a kneaded soil excellent in press formability can be obtained.
  • these kneaders and mixers are provided with pressure or pressure reduction, temperature control devices (heating, cooling or heat retention), and the like.
  • Mixed or The kneading time varies depending on the type of raw material, blending amount, binder type, temperature (room temperature, raw material and binder), and the type and size of the mixer or kneader, but is usually from several minutes to several hours.
  • the kneaded material is produced by a pressing machine such as a friction press, which is an impact pressure press, a screw press or a hide mouth screw press, a hydraulic press or a toggle press, which is a static pressure press, a vibration press, or a molding machine called CIP.
  • a pressing machine such as a friction press, which is an impact pressure press, a screw press or a hide mouth screw press, a hydraulic press or a toggle press, which is a static pressure press, a vibration press, or a molding machine called CIP.
  • CIP molding machine
  • These molding machines may be equipped with a vacuum deaeration device or a temperature control device (heating, cooling or heat insulation).
  • the molding pressure and number of tightening by the press molding machine depend on the size of the brick to be molded, the type of raw material, the blending amount, the type of noda, the temperature (room temperature, raw material and binder), the type and size of the molding machine. Although it is different, the molding pressure is usually 0.2t
  • the refractory brick of the present invention must not be heated at a temperature exceeding 1150 ° C.
  • a hot air circulation type drying heating furnace can be used. If heating at a temperature higher than that is required, electric heating type, gas heating type, oil heating type, etc.
  • any type of furnace can be used as long as the temperature is sufficiently adjustable and the furnace can perform homogeneous heating.
  • Tables 4 to 6 show the results of heat-treating each brick at the respective temperatures shown in Tables 1 to 3 and measuring the compressive strength after heating.
  • each brick was cut out with a dry cutter, a sample for measuring the hot expansion coefficient was prepared, and the results of measuring the free expansion coefficient at 1500 ° C under the conditions described above according to JIS R2207 are shown in Tables 4 to 6.
  • samples for hot creep measurement were prepared, and the results of measuring the expansion coefficient under a load of 1500 ° C under the conditions described above according to JIS R2858 are shown in Tables 4 to 6.
  • the refractory brick according to the present invention was used for the side wall lining of the ladle for steelmaking ladle according to Invention Example 2 listed in Table 1.
  • This ladle has traditionally used high alumina bricks with an A1203 content of 85% by mass, and the ladle life at that time was approximately 200 ch. In order to improve this life, an alumina-spinel brick was tested and the life was improved to 250 h.
  • the service life was greatly improved to 398ch.
  • alumina-spinel bricks are used many times during use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

アルミナ-マグネシア質流し込み材と同等の耐用性を有し、特に製鋼用取鍋に適した耐火れんがを提供する。アルミナ原料と0.5mm以下の微粉を90質量%以上含有するマグネシア原料を使用し、Al2O3とMgOとの合量が90質量%以上であり、MgOを4~16質量%、SiO2を0.5~5質量%、Na2OとK2Oの合量を0.3~2質量%含有し、残部が不可避不純物とAl2O3である、プレス成形された後100°C以上1150°C以下で加熱処理した耐火れんが。

Description

耐火れんが
技術分野
[0001] 本発明は、各種の高温にさらされる窯炉に用いられる耐火物に関するものであり、 特に、製鋼用取鍋に用いられる耐火れんがに関するものである。
背景技術
[0002] 製鋼用取鍋には、従来力 の耐火れんがまたは不定形耐火物である流し込み材が 、内張り用耐火物として用いられている。その中で、日本国内の一貫製鉄所では流し 込み材を使用現場で流し込み施工して内張りを形成する方法が主流である。
[0003] 流し込み材質は、近年、アルミナとマグネシアとを主体とするアルミナ マグネシア 質力 広く用いられている。アルミナとマグネシアは、それぞれコランダムとペリクレ一 ズ結晶でなり、これらは取鍋等窯炉の使用中の高温下で反応し、体積膨張を伴いな がらスピネル結晶を生成する。この結晶の変化に伴い、高温の稼動表面付近に緻密 なスピネル含有層を形成するため、スラグの浸潤が非常に少なぐ且つスラグ侵食に 対する抵抗性に優れるという特徴を有している。しカゝも、炭素を含有していないので、 特に低カーボンの溶鋼を受鋼しあるいは精鍊する場合には、内張り耐火物に起因す る鋼の汚染を排除できると 、う特徴をも有して 、る。
[0004] し力しながら、流し込み施工で取鍋内張り耐火物を形成するには、施工現場に流し 込み材を水で混練するためのミキサーや、混練物を所定厚みに施工するための金枠 、混練物を枠内に均等に投入するための分配装置、更に、十分に均質で充填度の 高い施工体を得るための振動装置など、多くの機械設備を準備する必要がある。
[0005] さらには、施工後の流し込み材は水分を含有しているため、徐々に加熱し乾燥する ための乾燥設備が必要である。乾燥速度が速すぎる場合、しばしば施工体中の水分 による水蒸気爆裂を生じることがあるので、この乾燥設備は十分な温度コントロール が可能な仕様でなければならない。流し込み材の耐火物としての性能は、この現場 施工及び乾燥状態の良否によって、最終的に決定づけられる。
[0006] 一方、日本国内の多くの電気炉製鉄所や欧米のほとんどの製鉄所では、取鍋の内 張り材にはれんがが使用されている。
[0007] 流し込み施工ではなくれんが施工を行っているのは、前述した施工や乾燥のため に特別に設備や装置を設置しなければならないこと、内張り材の性能を左右する現 場施工の安定性に不安があることなどがその理由である。
[0008] 取鍋に使用されているれんがの材質としては、高アルミナ質または炭素含有れんが が主体であり、一部の製鉄所でアルミナースピネル質が用いられている。
[0009] また特許文献 1には、アルミナとマグネシアに結合剤としてレジンを用いた不焼成ァ ルミナ—マグネシア質れんがが提案されている。
[0010] さらに特許文献 2には、粗粒のマグネシア原料と lmm以下のスピネル原料を用い た不焼成アルミナ—マグネシア系れんがが開示されている。
[0011] 特許文献 1 :日本公開特許昭和 63— 151661号公報
特許文献 2:日本公開特許第 2000— 272956号公報
発明の開示
発明が解決しょうとする課題
[0012] 高アルミナ質れんがは、取鍋をはじめ各種窯炉に幅広く使用されている一般的な 耐火れんがである。ただ耐用性においては、炭素含有れんがやアルミナ—スピネル 質れんがに比べ劣っている。
[0013] 炭素含有れんがは、各種窯炉に使用されており一部の取鍋でも使用されている。し 力しながら特に低カーボン鋼を取り扱う取鍋の内張りなどに使用すると、れんが中の 炭素が鋼を汚染する可能性がある。また、酸化性雰囲気の窯炉では炭素が酸化され 消失してしまう。
[0014] アルミナースピネル質れんがは、各種の窯炉に使用されており、最近では取鍋でも 使用されている。
[0015] アルミナースピネル質れんがは、合成されたスピネル原料とアルミナ原料とを組み 合わせて製造され、通常千数百 °C (通常 1500°C前後)で焼成された焼成れんがで ある。このれんがの場合、れんが中にスピネルの構成成分であるマグネシア(MgO) を含有する力 既にれんが中でスピネル結晶として含有されているもので、マグネシ ァの結晶であるペリクレーズは存在しな 、。 [0016] したがって、このれんがが使用される高温下でも、あらたなスピネルの生成反応は 生じない。そのために、アルミナ マグネシア質の特徴である、使用中のスピネル生 成反応に伴なう稼動面付近の緻密なスピネル含有層の形成は生じない。
[0017] アルミナースピネル質れんがでは、スピネル含有の効果によって、耐スラグ侵食性 は高アルミナ質れんが等と比べて良好であるにもかかわらず、スラグ浸潤が大きいた めに剥離損傷が生じやすぐ内張り寿命が不安定となり、且つ、満足な長寿命化が困 難である。
[0018] 前述したように、アルミナとマグネシアを主体とするアルミナ マグネシア質流し込 み材は、優れた耐スラグ浸潤性と耐スラグ侵食性の双方の特徴を有するため、取鍋 用内張りとして用いられて 、る。
[0019] しかしながら、流し込み施工のためには、前述の通り、現場施工のための種々の施 ェ装置及び施工体の安全な乾燥のための乾燥装置など、各種設備を予め設置する 必要があり、当然のことながら、設備の設置コスト (数千万円以上)を要し、そのうえ継 続的な装置メンテナンスが必要となる。
[0020] そのため世界的には、内張りを流し込み材で構築している製鉄所は、非常に少なく 、特別な施工装置や乾燥設備を必要としない、れんが積みによる内張りを採用してい るほうが、圧倒的に多いのが現状である。
[0021] ところが、優れた特徴を有するアルミナ マグネシア質流し込み材と同等あるいは 類似したアルミナ—マグネシア質の耐火れんがは、実用化されて!/ヽな 、。
[0022] 特許文献 1に提案されている不焼成アルミナ一マグネシアれんがは、レジンを結合 剤として用いているので、加熱によってレジンが炭化し、れんが組織中に残留する。 この炭化カーボン力 アルミナとマグネシアの反応、即ち、スピネル生成反応を著しく 阻害してしまうため、本来のアルミナ—マグネシア質材料の特徴である、スピネル生 成膨張反応による緻密なスピネル含有層の形成がほとんど生じず、スラグ浸潤抑制 効果がない。そのため実用化されていない。
[0023] 特許文献 2に開示されている不焼成アルミナ—マグネシア系れんがは、マグネシア 原料を粗粒域で使用して 、るため、使用量が少な 、割にスピネル生成時の膨張が大 きぐ加熱中にれんがが崩壊してしまい、実用化されていない。 [0024] アルミナ マグネシア質の材料でれんがを製造する一つの方法として、アルミナ マグネシア質流し込み材を用いて、予め製造工場内で所定の形状にプレキャストを 行い、ブロックを形成する方法がある。
[0025] しかし、成形能率はプレス成形の比ではなぐ製造コストが甚大となるため、通常の れんがの範疇を超える大型のブロック、あるいは非常に複雑な形状でプレス成形が 困難な場合などの特別なもの以外、即ち通常のれんがの成形としては実用化されて いない。
[0026] このように、アルミナ マグネシア質流し込み材の特徴である、使用中の高温下で 生じるスピネル生成反応時の体積膨張を利用して、緻密なスピネル含有層を形成さ せるための体積膨張制御技術と、困難なく大量にプレス成形が可能で、れんがとして の耐用性等の基本特性を保持する技術との、両者を満足できる実用技術がなカゝつた
[0027] 本発明は、既存のアルミナ マグネシア質流し込み材が持つ優れた特徴を有しな がら、流し込み施工に必要とされるような特別な施工装置や乾燥設備を要せず、従 来の方法でれんが積み施工ができ、さらに、プレス成形による大量生産が可能な、耐 火れんがを提供することを目的とし、そのために、れんがを製造する上で、容易にプ レス成形が可能で、且つ、使用中の高温下で生じるスピネル生成反応時の体積膨張 特性を制御できる実用技術を提供することを目的とする。
課題を解決するための手段
[0028] 本発明は、アルミナ原料と 0. 5mm以下の微粉を 90質量%以上含有するマグネシ ァ原料を使用し、 A1203と MgOとの合量が 90質量%以上であり、 MgOを 4〜16質 量0 /0、 Si02を 0. 5〜5質量0 /0、 Na20と K20の合量を 0. 3〜2質量0 /0含有し、残部 が不可避不純物と A1203である、プレス成形された後 100°C以上 1150°C以下でカロ 熱処理された耐火れんがであって、さらに、炭素及び 1200°C以上で炭素を残留す る有機物を含有せず、 CaO含有量が 0. 5質量%未満であることを特徴とする耐火れ んがであり、これによつて、従来成し得なかったアルミナ マグネシア質耐火れんが の実用化を可能としたものである。
[0029] 更には、従来の流し込み材において必要とされる、分散剤や硬化調整剤などの添 加成分を省略できるため、流し込み材より優れた耐スラグ浸潤性と耐食性とを有する 耐火れんがを完成するに至った。
発明の効果
[0030] 本発明によって、使用中の高温下で生じるスピネル生成反応に伴なう膨張性を、制 御することが可能となったことにより、膨張性を積極利用して、加熱面付近に緻密なス ピネル含有層を形成し得る耐火れんがを提供することが可能となった。これにより、従 来の耐火れんがに比べ、格段に優れる耐スラグ浸潤性及び耐スラグ侵食性を達成し た。膨張性の制御のための技術と製造上の問題の克服、及びれんがとしての強度の 確保を同時に達成したことにより、大量生産が可能なプレス成形が可能となり、ひい ては、使用現場において流し込み施工に必要とされる特別な混練装置、分配装置、 乾燥設備などを要せず、従来どおりのれんが積み施工が可能となった。さらに、流し 込み施工のように、現場での施工良否のばらつきが生じないため、常に安定した性 能の耐火物施工体を得ることができるようになった。実際の取鍋で使用された結果で も、従来に比べて 1. 5〜2倍の寿命を達成した。
図面の簡単な説明
[0031] [図 1]本発明例 2の侵食試験後の切断面
[図 2]比較例 1の侵食試験後の切断面
発明を実施するための最良の形態
[0032] アルミナ—マグネシア質耐火物における、スピネル生成反応に伴なう体積膨張は、 マグネシア含有量にもよる力 2%を超える大きな値となる。この膨張力 取鍋などの 窯炉内に内張りされた状態でそのまま現れると、膨張に伴なう大きなストレスが発生し 、内張りされた耐火物が破壊され崩壊することになる。逆に、スピネル生成反応に伴 なう体積膨張があまり小さ 、と、れんが組織中に緻密なスピネル含有層を形成するこ とができず、スラグ浸潤抑制効果を得ることができない。したがって、この体積膨張を 制御できる技術が、アルミナ マグネシア質耐火物を実用化するためには必須の要 件である。
[0033] アルミナ マグネシア質流し込み材では、当然のように結合材として高アルミナセメ ントが用いられている。アルミナ—マグネシア質流し込み材における高アルミナセメン トは、結合材として働くとともに、もう一つの重要な役割を担っていると考えられる。
[0034] 高アルミナセメントは、 A1203と CaOとでなる力 これに極少量のシリカ(Si02)が 加わると、 A1203、 CaO及び Si02の相乗効果で、使用中の高温下で生じるスピネ ル生成時の結晶変化に伴なう体積膨張特性を制御できることが見出されている。特 に、拘束された状態、即ち施工された内張り構築体に荷重が力かるような状態では、 その膨張抑制効果が有効に発揮される。高アルミナセメントと Si02の含有量を調整 することで、自由膨張を有しつつ、荷重下での膨張挙動を調整し、最終的に必要とさ れる稼動面付近に緻密なスピネル含有層を形成し、且つ、耐火物内張り構築体の破 壊を防止することが可能となって 、る。
[0035] し力しながら、れんがをプレス成形する上で、高アルミナセメントなどのセメント類を 用いることは非常に困難である。即ち、れんがのプレス成形用練り土に必要とされる 添加水分量は、 2〜3質量%程度であり、流し込み施工に必要な水分と比べて極僅 かであるため、短時間の内に少量の水分がセメントと反応してしまい、成形用の練り 土がパサパサの状態を呈し、プレス成形が困難となり、成形しても十分な充填密度を 得ることができない。さらに、成形後の素地強度も低ぐ取り扱いが困難である。
[0036] 本発明者らは、れんがを製造する上で、容易にプレス成形が可能で、且つ同時に、 使用中の高温下で生じるスピネル生成反応時の体積膨張特性を制御可能な実用技 術がな力つたため、流し込み材では優れた成果を収めているアルミナ—マグネシア 質のれんがが実用化できていな力つたとの考えに基づき、本発明を完成するに至つ た。さらに、流し込み材で必要とされる分散剤や、硬化調整剤などを省略できるため 、流し込み材より優れた耐スラグ浸潤性と耐食性とを有する耐火れんがを完成するに 至った。
[0037] 本発明の耐火れんがは、本質的にアルミナ原料とマグネシア原料とからなるもので あり、これら原料に依存する成分、即ち、 A1203と MgOの合量力 90質量%以上で なければならない。 90質量%未満では、アルミナとマグネシア力もなるれんがとは言 V、がたぐ本来の目的である、アルミナ (コランダム結晶)とマグネシア(ペリクレーズ結 晶)との熱間におけるスピネル生成反応、及びこれに伴なう膨張挙動が明確でなくな り、そのために、れんがの耐スラグ浸潤性にも大きな改善が図れなくなる。アルミナ原 料は、粗粒域から微粉域までの耐火材料の主体をなす。
[0038] 本発明に使用されるマグネシア原料の粒度は、高温下でのスピネル生成反応をれ んが中で均質に且つ効率的に生じさせるために、 0. 5mm以下の微粉を 90質量% 以上含む微粉で使用されなければならな 、。
[0039] 本発明者らは、本発明の構成要件である Si02、 Na20あるいは K20の成分ととも に、種々の粒度のマグネシア原料を用いて 1200°C以上の温度域で生じるスピネル 生成反応に伴なう膨張性を比較検討した。
[0040] その結果、例えば lmm程度の中粒以上のサイズのマグネシア原料を使用すると、 スピネル生成反応が徐々に生じ、反応に時間が力かるとともに最終的な絶対膨張量 が大きくなることが判った。し力しながら、スピネル生成反応、即ち、膨張挙動が、あま りに緩慢に進行するため、その膨張量を制御する上で最もふさわしい Si02量や、 N a20あるいは K20量を設定することが難しぐ且つ、これら Si02や、 Na20あるいは K20の必要量が増加する。しかも、スピネル生成がマグネシア粒の周囲で生じるた め、組織内でスピネルが均等に分散した状態で生成しないため、稼動面付近の緻密 なスピネル含有層が生じ 1 、好ましくないと判断された。
[0041] 一方、スピネル生成に伴なう膨張性及びその制御の容やすさからは、マグネシア原 料は細かいほうがよいとの結論に達した。即ち、 90 m以下の粒子を 40質量%以上 含有する微粉マグネシア原料では、非常に確実な膨張挙動が表れ、且つ、本発明の 構成要素である Si02、 Na20あるいは K20による膨張性の調整が容易である。 90 /z m以下の粒子の量は好ましくは 65%以上である。また、 0. 3mm以下の微粉を 90 質量%以上含有するマグネシア原料であれば、 90 m以下を主体とするマグネシア 原料の場合と、ほとんど同じ結果であった。
[0042] し力しながら、実用上は 0. 5mm以下の微粉を使用すれば、それより微細な粉末を 使用したときとほとんど変わらない程度に、スピネル生成時の膨張挙動が現れ、その 制御も可能である。さらに、 0. 5mmを越える粒が 10質量%未満混在していても、特 に弊害なくスピネル生成膨張が表れ、その調整も大きな困難なく可能であり、実用的 に十分であると判断された。しかし、 0. 5mmを超える粒が 10質量%以上含有される と、先述した中粒以上のマグネシア原料を使用したときのような問題点が生じ始める ので、好ましくない。したがって、本発明で使用できるマグネシア原料は、 0. 5mm以 下の微粉を 90質量%以上含有するマグネシア原料である。
[0043] マグネシア原料は、本発明のれんがが使用されるときの稼動面の温度よりやや低い 1200〜1400°Cの温度域で、アルミナ原料との反応、即ちスピネル生成反応を生じ て、高温の稼動面付近に緻密なスピネル含有層を形成するために使用されるのであ つて、前記したように 0. 5mm以下の微粉を 90質量%以上含むマグネシア原料でな ければならず、その使用量は、れんが中の MgO成分量として 4〜16質量%でなけれ ばならない。 4質量%未満であると、アルミナ原料と反応してスピネルを生成しても、 その生成絶対量が不十分であり、このスピネル生成反応に伴なう膨張量も不十分で あるため、スラグ浸潤を抑制するに十分な稼動面付近の組織の緻密化が困難である 。一方、マグネシアは、元来の性質としてスラグ浸潤が大きいこと (スラグに浸潤され やすいこと)が知られている。そのため、 MgO成分量が 16質量%を越えると、 MgO 成分の増加そのものが招ぐスラグ浸潤のしゃすさが助長されるために、耐スラグ浸 潤性が向上しなくなる。
[0044] アルミナとマグネシアとのスピネル生成反応は、れんが組織中でアルミナとマグネシ ァ粒子が接触していれば、一定の温度域、すなわち、 1200°C以上の温度域で必ず 生じる。また、この反応に伴なう体積変化も、同時に必ず生じる現象である。したがつ て、れんがが全く拘束されず、自由に寸法を変化できる状態で、膨張率を測定すると 、スピネル生成に伴い、必ず大きな膨張を示す。膨張率は通常、線膨張率として測 定され、その値は 2%を超えるのが普通である。
[0045] アルミナ マグネシアれんがを、窯炉内張り材として実用化する上で問題となるの は、膨張特性に関するものであるが、この無拘束下での自由膨張が問題ということで はない。むしろこの自由膨張が生じるカゝらこそ、組織中に緻密なスピネル含有層を形 成することができるのである。重要なのは、拘束された状態、すなわち、荷重を受けた 状態での荷重下膨張である。
[0046] アルミナ マグネシア質れんがが、窯炉内に内張りされた状態で、加熱され、スピネ ルを生成する温度域になると、スピネル生成とともに膨張しょうとする力 れんがは鉄 皮に拘束されているため、膨張しょうとする分だけ圧縮応力を受けることになる。この ときの圧縮応力は、れんがに荷重を与えた状態と同じとみなすことができる。
[0047] もし、拘束下、すなわち荷重下での膨張が、自由膨張に近い膨張量であると、窯炉 内に内張りされた状態で、当然のことながら非常に大きい応力がれんが内に発生し、 れんがが破壊され崩壊してしまうことになる。一方、自由膨張が大きぐ且つ、荷重が 力かった状態での膨張が小さい、すなわち全体体積の変化が小さいということは、ミク 口組織中の気孔などで膨張が吸収されていることを意味する。これはすなわち、れん がが崩壊することなぐ膨張による体積変化分がれんが組織内で吸収されているので あって、組織が緻密化されたことにほかならない。
[0048] 本発明の、アルミナ マグネシア質れんがの特徴は、このような、自由膨張特性と 荷重下膨張特性とを制御することにより、れんがの稼動面付近に緻密なスピネル含 有層を形成させて、耐スラグ浸潤性を大幅に向上させるものである。
[0049] 本発明の而火れんがには、 Si02力 . 5〜5質量%と Na20+K20が 0. 3〜2質 量%含有されなければならな 、。
[0050] Si02は、スピネル生成反応に伴なう膨張を吸収する目的で使用されるのであるが 、単独で存在しても、十分な膨張吸収ができない。 Si02が高温でガラス相を形成す ることを利用するものである力 A1203と MgO成分中では、 Si02主体のガラス相は 、スピネルが生成する 1200〜 1400°Cの温度領域では極僅かしかガラス化して!/、な いため、膨張吸収に必要な量、即ち、膨張に伴なう応力を吸収するために粒子同士 が動くことができるに十分なガラス相の量には至っていない。より高温度では、より多 くのガラス相が生じる力 それでは、もはやスピネル生成に伴なう膨張を吸収するとい う役目を果たすことができな!/、。
[0051] スピネル生成反応に伴なう大きな膨張を吸収するためには、ちょうどスピネルが生 成する温度域で、適度なガラス相が組織中に存在し、これがある意味で潤滑剤のよう な役割で、粒子が動くことを可能にすることができなければならない。
[0052] Si02成分力 Na20あるいは K20のアルカリ成分と共存することにより、アルミナと マグネシアとの反応でスピネルが生成される温度域で、ガラス相を形成し、スピネル 化反応に伴なう大きな膨張を吸収する働きが得られる。よく知られているように、 SiO 2と Na20や K20のようなアルカリ金属酸化物が共存すると、およそ 850°Cと!、う低温 力 ガラス相ができる。これはスピネル生成反応温度よりも十分に低い温度であり、そ の後、温度上昇とともにガラス相の量は増加する。
[0053] 従来の一般的な耐火物の考え方においては、このような低融点の成分を、耐火物 に含有することは、耐火度や耐食性を低下させるので、好ましくないとされている。確 かに、これら成分の量が多すぎると、耐食性の低下などを引き起こすことは間違いな いが、本発明では、 A1203と MgOが特定の割合で主成分を構成している耐火物に おいて、これらの低融点でガラス相を形成する成分を特定量使用することによって、 従来困難であった膨張の吸収という作用を与え、耐食性を低下させることなぐれん がの破壊が生じず、大幅に耐スラグ浸潤性を高めた耐火れんがを得ることに成功し たのである。
[0054] Si02はガラス相の主体を成す成分であって、その含有量は 0. 5〜5質量%である 。 0. 5質量%未満では、ガラス相の絶対量が不足で、スピネル生成時の粒子の移動 を促すことができず、膨張を吸収することができない。より好ましくは、 0. 8質量%以 上含有しているほうが良い。 5質量%以下の Si02を含有量で、もはや十分な量のガ ラス相が得られるので、 MgO含有量が多い場合の大きな膨張であっても、スピネル 生成時の粒子の移動は容易であり、膨張を吸収することができる。したがって、 5質量 %を超える Si02成分は不要であり、し力もガラス相の量が過剰となるため、耐食性の 低下の方向に進むので、好ましくない。
[0055] この Si02の必要含有量範囲は、本発明における、アルミナ原料と 0. 5mm以下の 微粉を 90質量%以上含有するマグネシア原料を使用し、 A1203と MgOの合量が 9 0質量%以上で、且つ、 MgO含有量力 〜16質量%であるアルミナ マグネシア質 れんがにぉ 、て、スピネル生成時の膨張を吸収するために必要な範囲である。
[0056] Na20や K20のようなアルカリ金属酸化物は、ガラス修飾イオンとして知られるとお り、 Si02を主体とするガラスに用いられるものであり、 Si02単味でなるガラスに混合 されることにより、その融点を下げ、また同じ温度においては粘性を下げる働きがある 。これら成分は、 Si02と同時に存在することが重要である。
[0057] 本発明に必要とされる Na20と K20の合量は、 A1203と MgOとの合量、即ち主体 成分の量、 MgO成分の含有量、及び Si02成分の含有量などにより調整されなけれ ばならないが、少なくとも A1203と MgOとの合量が 90質量%以上で、 MgO含有量 力 〜16質量%、 Si02力 SO. 5〜5質量%の含有量である場合には、 0. 3〜2質量 %の範囲内であれば、 Si02とともに適度な粘度のガラス相を形成し、スピネルが生 成する温度域において、粒子の移動を助け、スピネル生成による膨張を吸収し、緻 密な稼動面付近のスピネル含有層の形成が可能である。
[0058] Na20と K20の合量力 0. 3質量%未満であると、先述したように、 Si02を主体と するガラス相を、スピネル生成温度域で十分形成させることが困難である。一方、 2質 量%を越えて含有しても、ガラス相の熱間での粘性が低下するだけで、効果はなぐ Si02と同様に耐食性が低下する傾向となるので、好ましくない。
[0059] このように、 Si02とともに Na20、K20のどちらかあるいは両方が同時に存在する こと〖こよって、本発明の耐火れんがにおいて、前記したような、スピネル生成時の膨 張を吸収し、このことが、稼動面付近の緻密なスピネル含有層の形成を可能とし、優 れた耐スラグ浸潤性を与えるのである。
[0060] 本発明の耐火れんがの主体原料である、アルミナ原料やマグネシア原料には、様 々なグレードの原料があり、相応の不純物成分を含有している。もちろん、本発明の 而火れんがにおいて、 A1203, MgO, Si02, Na20, K20以外の不純成分が含 有されないほうが好ましいが、実用的には、コストの妥当性も考慮する必要があり、あ る程度の不純物成分は致し方な 、。
[0061] 先述したように、本発明の耐火れんがでは、少なくとも A1203と MgOとの合量は 90 質量%以上でなければならず、 MgO、 Si02、 Na20、 K20以外の残部が A1203と 不純物からなるものである。不純物の含有量は、本来のアルミナ +マグネシアのもつ 耐食性を発揮させるために、可能ならば 6質量%以下が好ましい。さらに、本発明の 耐火れんがの膨張特性の制御を確実に行うためには、不純物含有量は 5質量%以 下であることがより好まし!/、。
[0062] 電融アルミナ原料等を使用する場合には、その高い耐食性を発揮させるために、 不純成分含有量は、 4質量%以下であることが望ましい。なお、本発明の耐火れんが は、低温で加熱されるので、れんが中には結晶水などのいわゆる灼熱減量分を含む ことがあり、この灼熱減量分は不純物として見なされる。 [0063] 本発明の耐火れんがは、通常の方法で、 2〜3質量%程度の水分を含有するプレ ス成形が可能な練り土とされ、プレス成形される。成形用のプレス装置には、一般に 用いられる、油圧プレスやフリクションプレスが使用される。
[0064] 本発明の耐火れんがでは、プレス成形された後の、加熱温度、特に上限は重要で ある。
[0065] 一般に、れんが製造においては、焼成といわれるように 1000°C以上の温度で加熱 されることが多いが、一方では、不焼成れんがといわれる数百 °C以下の低温加熱処 理だけのれん力もある。
[0066] 焼成は、粒子同士を焼結させて、強度を得るために、またそのれんがが使用される 温度に近い温度で予め加熱することによって、れんがの安定性を高めておくなどの 意味で行われる。一方、不焼成れんがは、例えば炭素含有れんがに代表されるよう に、常温では榭脂がバインダーとして十分な強度を与え、加熱によって榭脂が炭化し 炭素結合が得られるもので、予め、製造工場内で加熱処理しなくても、十分にれんが 特性を維持できる場合に採用されている。
[0067] 本発明の耐火れんがでは、れんがが窯炉に内張りされ、使用に際して加熱を受け るまで、れんが中のアルミナ原料由来の A1203とマグネシア原料由来の MgOとが、 そのまま、反応せずに存在していなければならない。即ち、スピネル生成反応は、れ んがが使用されている窯炉の中で生じなければならない。そうでなければ、スピネル 生成反応に伴なう体積膨張が拘束下で生じる状況を得ることができず、
膨張をれんが内に吸収することによる緻密化を得ることもできなくなる。したがって、ス ピネル生成反応は前記したように 1200〜 1400°C付近を中心として生じるため、本 発明の耐火れんがでは、 1200°C以上の温度で加熱処理されてはならな!、。
[0068] 本発明の耐火れんがの加熱温度は、決して 1200°C以上であってはならず、加熱 温度の誤差や加熱時間を考慮すると、 1150°C以下であることが適当である。好まし くは 1100°C以下であり、 1050°C以下であれば最も好まし!/、。
[0069] 一方、本発明のれんがは、少なくともプレス成形に必要な少量の水分を完全に乾 燥するために、 100°C以上の温度で加熱されなければならない。より確実に乾燥する ためには、 110°C以上が好ましぐ 150°C以上であれば、ほぼ自由水分が残留するこ とはない。
[0070] また、本発明の耐火れんがに、どのような種類のものを結合剤に用いるかによつて、 最適の加熱温度は異なる。例えば、本発明の必須要素である、 Si02と Na20または K20とを成分とする、珪酸塩を結合剤として使用する場合、この珪酸塩が水に溶解 する場合には、プレス成形した後、 100°C以上の乾燥で十分な素地強度を有し、そ のままれんがを成すことができる力 難溶性のもので水にほとんど溶けない場合には 、低温度の加熱では十分な強度が得られないため、 650〜: LOOO°C程度の温度でカロ 熱するのが良い。また、有機物を含む結合剤が使用される場合にも、単に水分を取り 除けば強度が得られるものと、ある程度、例えば 200〜300°Cくらいに、温度を上げ なければ十分な強度が得られな 、ものもある。
[0071] 本発明の耐火れんがでは、 1200°C以上の高温でも残留する炭素力 れんが組織 内に含まれるべきではない。炭素がれんが組織内に含まれると、アルミナ原料粒子と マグネシア原料粒子の直接接触機会が奪われ、 A1203と MgOとの反応によるスピ ネルが生じに《なる。スピネルが生じなければ、膨張も起こらず、それを制御すること により得られる、稼動面付近の緻密なスピネル含有層の形成と ヽぅ本発明の耐火れ んがの特徴が得られない。
[0072] 炭素がれんが組織内に含まれていても、部分的にはアルミナ原料粒子とマグネシ ァ原料粒子の直接接触が得られるので、スピネルも多少は生成する。しかし確実にス ピネル生成反応が生じるとは 、えず、このスピネル生成に伴なう体積膨張を制御する ことによって得られる、本発明の耐火れんがの特徴を確実に実現することが困難であ る。
[0073] したがって、本発明の耐火れんがは、炭素はもちろん、 1200°Cに加熱されても炭 素を残留する性質のある有機物、例えば、ピッチのようなベンゼン環を多く持つ有機 高分子化合物や、フエノール榭脂などを、含有してはならない。
[0074] プレス成形時の一次結合剤として、有機質の増粘剤や接着剤などを少量使用する ことは可能である。スピネルが生成し始める温度、即ち本発明の耐火れんがが加熱さ れ、 1200°Cに到達したときに、焼失しているものであれば問題はない。
[0075] CaO成分は、マグネシア原料中にも不純成分として含有されて 、るので、全く含有 させないことは困難であるが、できるだけ少ないほうが良い。 CaO成分が多いと、れん がをプレス成形するための練り土の状態を短時間で変化させてしまうことがあり、安定 した充填密度及び強度を有するれんがの製造を困難にするば力りでなぐスピネル が生成する温度域において、本発明の必須成分である Si02、 Na20や K20により 形成されるガラス相に影響を与え、ガラスの絶対量が変化したり、粘性が変化したり するので好ましくない。
[0076] 本発明の耐火れんがにおける CaOの許容含有量は、 0. 5質量%であり、これを超 えると、前記のようなプレス成形の練り土やガラス相への影響が大きくなり、安定的に 本発明の耐火れんがの特徴を発揮することができなくなるため、好ましくな 、。
[0077] 本発明の耐火れんがは、上述したように、アルミナ原料と 0. 5mm以下の微粉を 90 質量%以上含有するマグネシア原料を使用し、 A1203と MgOとの合量が 90質量% 以上であり、 MgOを 4〜16質量0 /0、 Si02を 0. 5〜5質量0 /0、 Na20と K20の合量を 0. 3〜2質量%含有し、残部が不可避不純物と A1203である、プレス成形された後 1 00°C以上 1150°C以下で加熱処理された耐火れんがであって、さらに、炭素及び 12 00°C以上で炭素を残留する有機物を含有せず、 CaO含有量が 0. 5質量%未満で あることを特徴とする耐火れんがである力 当然これらの限定は、およそ 1200°C以上 で生じるスピネル生成反応に伴なう膨張、即ち、自由膨張量と荷重下膨張量を制御 できることを重要な用件として成されたものである。
[0078] したがって、通常に用いられている耐火物用原料を使用する限り、本発明の限定範 囲で問題なく望ましい自由膨張と荷重下膨張を得られるが、例えば非常に特別な不 純成分、例えば低融点金属成分など、が含有されたような場合には、熱間での性質 は本来のアルミナとマグネシアを主体とする耐火れんがの挙動を示さなくなることもあ り得る。
[0079] 本発明の耐火れんがにおいて、望ましい熱間膨張特性は、 1500°Cでの自由膨張 率が 2〜5%で、且つ、 IMPaの荷重を加えたときの 1500°Cでの荷重下膨張率が 1 %を超えないことである。
[0080] スピネル生成反応による自由膨張は、小さすぎると拘束による緻密化が十分ではな くなるので好ましくなぐ大きすぎると荷重下膨張の制御が困難になる場合が生じるの で好ましくな 、。その最適範囲は 2〜5%である。
[0081] 自由膨張の測定は、 JIS R2207に規定される方法に従う。加熱速度が速すぎると スピネル生成反応が追 、つかず、小さ 、膨張を示すこともあるので注意が必要であ る。即ち、スピネル生成反応は 1200°C〜1400°Cで生じる力 実際には、マグネシア 原料の粒子サイズやアルミナ原料との接触状態などによって、その反応の進行速さ が影響を受けるため、通常、幾分遅れて膨張が検出される傾向がある。したがって、 昇温速度は早過ぎないようにし、且つ測定最高温度は概ね反応が終了したと見なさ れる 1500°Cとするのが妥当であり、昇温速度 4°CZ分で加熱し、 1500°Cに到達した ときの値をもって評価されるのが最も妥当であると判断された。上記の最適範囲 2〜5 %は、昇温速度 4°CZ分で加熱し、 1500°Cに到達したときの値である。
[0082] 本発明の耐火れんがの荷重下膨張は、窯炉に内張りされた状態で、スピネル生成 反応に伴なう膨張をどの程度吸収できるのかを特定する上で重要な特性であり、 1M Paの荷重をカ卩えたときの 1500°Cでの荷重下膨張率が 1%を超えないことが必要で ある。 1%を超えると、れんがの膨張で発生する応力によって、れんがに亀裂が生じ たり、更には割れを発生し崩壊してしまう可能性が生じる。より好ましくは 0. 5%以下 であり、最も最適な範囲は 0〜一 3%である。
[0083] 荷重下膨張率の値がマイナス側、即ち IMPaの荷重下で加熱されたとき、 1500°C 到達時に既にへたりを生じている(元の寸法より縮小している)ことを示す。ただ現実 的には、れんがの膨張と荷重による応力で変形するのであって、恒常的に IMPaの 荷重が加わっているわけではないので、実炉ではへたりは生じない。本発明の耐火 れんがでは、マイナスを示すものはより変形しやすい、と解釈されるものである。
[0084] その意味で、膨張特性としては 1500°Cでの荷重下膨張率の値がマイナスでも問題 はない。しかし、あまり大きなマイナスの値を示すような場合は、窯炉内容物の流動な どによる磨耗が生じやすい傾向があるので、通常は 6%を超えないほうが良い。
[0085] 本発明における荷重下膨張特性に関しては、 JIS R2658に規定される「耐火れん がの圧縮クリープ試験方法」を用い、圧力は IMPaで試験の開始からカ卩える方法とし 、昇温速度は 5°CZ分として、温度が 1500°Cに到達したときの膨張量として測定す る。 [0086] 本 IS R2858は一定温度に到達した時点力もその温度が保たれ、所定時間内 に変化する寸法を検出する、いわゆるクリープ量を測定するための方法であるが、本 発明の耐火れんがにおいては、れんが自らの膨張による応力(荷重)によって、どの 程度変形できるかを捉えることが重要なのであって、れんが自体の膨張による応力以 上の荷重はほとんど加わらな 、ので、それ以降のクリープ変形は大きな意味をもたな い。
[0087] 本発明の耐火れんがに使用されるアルミナ原料は、アルミナを主体とし、マグネシ ァと反応してスピネルを生成可能な A1203を含有して ヽる原料であって、通常耐火 物に使用される耐火原料、例えば、焼結アルミナ、ホワイト電融アルミナ、ブラウン電 融アルミナ、ばん土けつ岩(中国ボーキサイト)、ボーキサイト、仮焼アルミナなどのほ 力 アルミナを主体としその他の成分を付随する、例えば、スピネルを一部固溶して V、るようなアルミナ原料も使用可能である。
[0088] マグネシア原料としては、電融マグネシアや海水マグネシアクリンカーのほ力、天然 マグネサイトを死焼して得られる天然マグネシアクリンカーが使用できる。
[0089] 結合剤には、種々のものがあり、全てが検討されたわけではないが、基本的には特 に限定されるものではない。しかし、先述しているとおり、 1200°C以上の高温で加熱 されても炭素が残留する有機の結合剤、例えば、ピッチやフエノール榭脂のようなも のは、使用できない。有機質のバインダーとしては、糖蜜、パルプ廃液、デキストリン 、メチルセルロース類、ポリビュルアルコールなどで、 1200°C以下の温度で焼失して しまうもので、 1200°C以上で炭素を残留するものでなければ使用できる。
[0090] 無機質のバインダーとしては、苦汁(MgC12)や、珪酸ソーダ、珪酸カリウムなどの 珪酸アルカリ金属塩、アルミン酸ソーダなど、本発明の構成要件を成す A1203、 Mg 0、 Si02、 Na20、 K20の成分を含有するものであれば、その添加量を各成分が本 発明の範囲内であるように調整して用いることができ、これら以外の不純成分を増加 させることがないので好ましい。但し、アルミン酸ソーダのように凝集作用の強いバイ ンダーは、プレス成形のための適度な練り土を得るための使用上の配慮が必要であ る。
[0091] これらの無機質バインダーの中でも最も好適なのは、珪酸ナトリウム及び珪酸カリウ ムなどの珪酸アルカリ金属塩である。 Si02と Na20または K20との比率が異なるも のが市販されており、本発明の耐火れんがに用いられるアルミナ原料やマグネシア 原料の不純成分としての Si02や Na20、 K20の含有量を予め知ることで、最適の 比率の珪酸塩を用いることにより、より堅実な膨張の吸収を図ることができる。また、こ れらの珪酸塩は、加熱後の強度も高く好都合である。珪酸アルカリ金属塩は水ガラス として知られるように、常温で水を伴なつた液体のものや、粉末化されたもの、あるい は水にほとんど溶解しないガラス粉状のものなど、幾つかの種類がある。これらいず れを用いても、プレス成形性に優れる練り土が得られる。
[0092] コロイダルシリカも、本発明の耐火れんがのバインダーとして好適である。シリカゾル からなる液体であり、シリカと極僅かのアルカリを含むもので、本発明において Si02 量と Na20+K20量を調整するのが容易で、加熱後の結合力にも優れている。また 、例えば乳酸アルミニウムのように、有機無機系の化合物もあり、これらを使用するこ とも可能である。化合物でなくても、無機質バインダーと有機質バインダーとを混合使 用し、それぞれの欠点を補うなどの使 、方も可能である。
[0093] 本発明の耐火れんがでは、 A1203、 MgOの主体成分以外では、 Si02の含有量 が Na20と K20の合量より多いため、例えば、先述の珪酸ナトリウムゃ珪酸カリウムを バインダーとして使用し、 Na20と K20成分を調整したとき、 Si02成分が不足する。 そういう場合には、当然 Si02含有量を調整する必要があるが、そのためには、珪砂 ゃ珪石、ロー石の粉末や、シリカフラワーあるいは耐火粘土などを添加してもよいし、 Si02をある程度含むアルミナ原料やマグネシア原料を使用することもできる。
[0094] 本発明の耐火れんがの製造方法としては、配合された原料を一括あるいは分割し て、混合機もしくは混練機により混合及び混練する。一般的にれんがのプレス成形の 前処理工程である混練としては、容器固定型では、ローラー式の SWPやシンプソン ミキサー、ブレード式のハイスピードミキサー、加圧式ハイスピードミキサーやへンシェ ルミキサー、あるいは加圧ニーダ一と呼ばれる混練機や、容器駆動型でローラー式 の MKPやウエットパン、コナーミキサー、ブレード式のアイリツヒミキサー、ボノレテック スミキサーなどの混練機が使用される。また、これら混練機や混合機に加圧もしくは 減圧、温度制御装置 (加温や冷却もしくは保温)等を付ける場合もある。混合もしくは 混練時間は原料の種類、配合量、バインダーの種類、温度 (室温、原料やバインダ 一)、混合機もしくは混練機の種類や大きさによって異なるが、通常数分から数時間 である。
[0095] 混練物は、衝撃圧プレスであるフリクションプレス、スクリュープレスあるいはハイド口 スクリュープレスなど、静圧プレスである油圧プレスやトツグルプレスなどのほ力、振動 プレス、 CIPと呼ばれている成形機によって成形することができる。これら成形機には 真空脱気装置や温度制御装置 (加温や冷却もしくは保温)等を付ける場合もある。プ レス成形機による成形圧力や締め回数は、成形されるれんがの大きさ、原料の種類、 配合量、ノインダ一の種類、温度 (室温、原料やバインダー)、成形機の種類や大き さ、によって異なるが、成形圧力は通常 0. 2t〜3. Otであり、締め回数は 1回力 数 十回で成形される。
[0096] 本発明の耐火れんがは、 1150°Cを超える温度で加熱されてはならない。およそ 50 0°C以下の加熱の場合には熱風循環式の乾燥加熱炉を使用できるし、それ以上の 温度での加熱が必要な場合には、電気加熱式、ガス加熱式、オイル加熱式などの、 バッチ式単独窯、例えばシャトルキルンやカーベルキルンや、連続式のトンネル窯な どが最適である。もちろん、温度が十分に調整可能で均質加熱ができる加熱炉であ ればどのような形式のものでも使用できる。
実施例
[0097] 本発明の耐火れんが及び比較例について、実施した試験及びその結果の要点を
、表 1、表 2、表 3、表 4、表 5、表 6にまとめて記載した。
[0098] [表 1]
本発明例
1 2 3 4 5 主原料
電融アルミナ 93 88 80 80 フ 8 焼結アルミナ - - - - - 仮焼アルミナ - - - 8 8 ブラウン電融アルミナ - - - - - バン土頁岩 - 電融マグネシァ
海水マグネシアク リンカ一 5 7 14 7 7 パインダ一
珪酸ナ トリウム 1 3 3 3 - 珪酸カ リゥム - - - - - 難溶性珪酸ナ 卜リゥムガラス 4 メチルセルロース※ タ 0. 03 燐酸アルミニウム 一 一 一 一 一 フエノール樹脂 - - - - - 高アルミナセメ ン ト - - - - - その他
耐火粘土 1 2 3 - 3 シリカフラワー 一 一 一 2 一 マグネシア原料粒度分布
0. 5 mm以下 (質量 ¾) 100 100 100 91 98
9 0〃 m以下 (質量%) 78 78 78 46 68 化学成分 (質量%)
A 1 O + M g O 97. フ 94. 9 93. 6 94. 1 93. 1
M g O 4. 8 6. 9 13. 5 6. 8 6. 8
S i O 0. 9 2. 2 2. 8 3. 7 4. 4
N a 20 + K 20 0. 4 1. 0 0. 9 1. 7 1. 6
C a O <0. 1 0. 1 0. 2 0. 2 0. 2
C - - - <0. 1 不純物 1. 0 1. 8 2. 5 0. 3 0. 7 加熱温度 (°c) 200 200 200 125 1000
« : 「外」 は外掛けでの添加量 2]
本発明例
6 7 8 9 1 0 主原料
電融アルミナ 43 - 10 - - 焼結アルミナ - 40 - 27 - 仮焼アルミナ - 7 10 10 8 ブラウン電融アルミナ 40 40 57 30 48 バン土頁岩 25 30 電融マグネシァ - 4 - - - 海水マグネシアク リ ンカー 10 4 16 12 10 バインダ一
珪酸ナ トリウム 2 1 3 2 2 珪酸カ リウム 1 3 1 - 難溶性珪酸ナ トリゥムガラス - - - 1. 5 - メチルセルロース※ - - - - 外 0. 03 燐酸アルミニウム
フエノール樹脂
高アルミナセメン ト - - - - - その他
耐火粘土 2 4 3 2. 5 2 シリカフラワー 2 - - - - マグネシア原料粒度分布
0. 5 mm以下 (質量0 /o) 100 100 100 98 98
9 0 m以下 (質量%) 78 78 78 68 68 化学成分 (質量%)
A 1 2 O 3 + M g O 91. 3 91. 1 90. 9 90. 1 90. 8
M g O 9. 8 8. 0 15. 6 11. 7 9. 8
S i O 2 4. 8 3. 5 4. 2 4. 5 4. 1
N a 20 + K 20 1. 3 0. 6 1. 8 1. 3 1. 2
C a O 0. 3 0. 2 0. 4 0. 3 0. 3
C く 0. 1 不純物 2. 3 4. 6 2. 7 3. 8 3. 6 加熱温度 (¾) 350 350 350 フ 50 350
※ : 「外」 は外掛けでの添加量 3]
比較例
1 2 3 4 5 6 主原料
電融アルミナ 88 88 88 93 88 88 焼結アルミナ - - - - - - 仮焼アルミナ - - - - - - ブラウン電融アルミナ - - バン土頁岩
電融マグネシア 一 一 一 一 一 一 海水マグネシアク リンカー 7 7 7 5 7 7 バインダー
珪酸ナ トリゥム - - 3 - - 4 珪酸カ リウム - - - - - - 難溶性珪酸ナトリウムガラス
メチルセルロース - - - - - - 憐酸アルミニウム - - - 2 - - フエノール樹脂 - 2. 5 - - - - 高アルミナセメン 卜 - - - - 5 - その他
耐火粘土 5 2. 5 2 一 一 3 シリカフラワー 2 マグネシア原料粒度分布
0. 5 mm以下 (質量0/ 100 100 0 65 100 100
9 0 μ m以下 (質量%) フ 8 78 0 8 78 フ 8 化学成分 (質量%)
A 1 O + M g O 95. フ 94. 8 97. 8 91. 1
M g O 6. 8 6. 8 6. 8 4. 9 6. 8 6. 8
S i O 2. 8 1. 5 2. 1 0. 2 0. 3 5. 7
N a 20 + K 20 0. 3 0. 2 0. 6 0. 2 0. 2 2. 2
C a O 0. 2 0. 2 0. 2 0. 1 1. 4 0. 2
C - 1. 7 - - - - 不純物 1. 0 1. 5 2. 3 2. 5 0. 3 0. 8 加熱温度 (°c) 1450 200 200 200 200 200
[0101] [表 4]
Figure imgf000023_0001
[0102] [表 5] 本発明例
6 7 8 9 1 0 成形性 良好 良好 良好 良好 良好 生角の強さ 良好 良好 良好 良好 良好 加熱後圧縮強度 (M Pa ) 73. 1 84. 5 76. 9 52. 6 60. 4
1 500°C自由 B彭張率 ( % ) 3. 4 3. 2 4. フ 3. 6 3. 3
1 500°C荷重下膨張率 ( - 2. 5 - 1 . 9 - 1 . 8 - 3. 8 - 2. 9 侵食試験
スラグ浸潤深さ (m m) 浸潤なし 浸潤なし 浸潤なし 浸潤なし 浸潤なし 侵食深さ (m m ) 8. 0 8. 3 8. 2 8. 8 9. 1
[0103] [表 6]
Figure imgf000024_0001
[0104] 各種のアルミナ原料、マグネシア原料、ノ インダー、調整添加材料を組み合わせて 配合物を作成し、プレス成形に適当な練り土になるよう適度に水分を加え混練した後 、フリクションプレスを用いて成形圧力 ltonZcm2にて成形した。但し、混練におい て液体バインダーを使用した場合は、必要がなければ水分は加えなかった。また、フ エノール榭脂をバインダーに使用した配合物では、水は加えていない。成形した生 角は、所定の温度が 500°C以下の場合は熱風循環式加熱炉で 24時間、 500°C以 上では電気炉で 5時間加熱して、れんがとした。
[0105] 表 1〜表 3に、それぞれ本発明例及び比較例について、原料構成とともにマグネシ ァ原料の粒度、それぞれのれんがの化学成分及び加熱温度を記載した。また表 4〜 表 6に、それぞれ本発明例及び比較例について、各れんがの、練り土をプレス成形 する際の成形のしゃすさを成形性として、成形後の生角が角欠けや崩れを生じやす いかどうかを生角の強さとして、さらに、加熱後圧縮強度、 1500°C自由膨張率、 150 o°c荷重下膨張率、ならびに侵食試験結果をスラグ浸潤深さと侵食深さで表示し、記 載した。
[0106] 成形性は、プレス成形にお 、て、容易に充填圧縮ができるかどうか、成形脱枠時に エッジ部に亀裂などの欠陥が生じないかどうか、脱枠時に枠のライナー面に練り土の 一部が付着する面付きがないかどうか、ラミネーシヨンが発生しないかどうか、につい て比較評価し、どの項目も問題なく正常な状態である場合を「良好」とし、 1つの項目 に多少の不具合があるが、問題となるほどでな 、場合は「問題なし」として記述した。
1つ以上の項目に、大量に成形する場合には問題となると考えられる欠点が見られ た場合は、その状況を記載した。
[0107] 生角の強度については、成形脱枠後のハンドリングに問題がない程度に強度があ るかどうかを評価し、全く問題なくハンドリング可能な場合は「良好」、やや強度が不 十分であるが注意をすればノ、ンドリング可能なものを「やや脆い」と表記した。通常の ハンドリングが困難な場合には「ノ、ンドリング困難」と表記した。
[0108] 各れんがを、表 1〜表 3に記載したそれぞれの温度で加熱処理し、加熱後に圧縮 強度を測定した結果を表 4〜表 6に記載した。また、加熱後各れんがを乾式カッター で切り出し、熱間膨張率測定試料を作成し、 JIS R2207に従い、先述した条件で 1 500°C自由膨張率を測定した結果を表 4〜表 6に記載した。同様に、熱間クリープ測 定用試料を作成し、 JIS R2858に従い、先述した条件で 1500°C荷重下膨張率を 測定した結果を表 4〜表 6に記載した。
[0109] 各試料にっ 、て、酸素一プロパン加熱による回転ドラム法侵食試験を行った。侵食 材として Si02を 8質量%、 Fe203を 32質量%、 CaOを 52質量%、 MgOを 4質量% 、 MnOを 4質量%含有する合成スラグを用い、 1650°C、 4時間の条件で行った、侵 食材は一時間毎に取り替えた。試験後試料を採取し、長手方向に中央で切断し、ス ラグ浸潤深さ及び侵食深さを測定した結果を表 4〜表 6に記載した。
[0110] 表 4、表 5に示すように、本発明例ではいずれも成形性は良好であり、生角の強さも なんら問題ない。加熱後の圧縮強度は、れんがとして十分に高く良好である。 1500 °C自由膨張率はいずれも 2〜5%であり、且つ 1500°C荷重下膨張率は 1%以下であ り、良好な膨張特性を有している。これにより、侵食試験結果では、スラグ浸潤はいず れの試料もほとんど測定できない程度に小さぐ侵食深さも 10mm以下であり良好で ある。
[0111] 比較例 1は 1450°Cと高い温度で加熱したれんがであって、成形性は問題なぐ生 角強度はやや脆いが問題となるほどではないが、加熱後強度はやや低めである。高 温加熱の結果としてもはやスピネルが生成されてしまっており、自由膨張率、荷重下 膨張率ともに不十分な数値を示している。特に重要なことは、自由膨張率と荷重下膨 張率との差がほとんどなぐ本発明の特徴である、窯炉で使用中にスピネル生成に伴 なう大きな膨張がれんが内に吸収されて緻密化することはなぐその結果、スラグ浸 潤深さは大きぐ侵食深さも非常に大きぐ試験後試料には亀裂が見られた。
[0112] 比較例 2は、フエノール榭脂をバインダーに用いたれんがである力 成形性には問 題はなぐ生角の強さも良好であり、加熱後の強度もほぼ問題ないが、バインダーの フエノール榭脂が高温加熱中に炭化して炭素を残すため、せつ力べアルミナとマグネ シァを原料に用いているにもかかわらず、自由膨張率は大きくなぐスピネルの十分 な生成が阻害されていることが判る。同時に、荷重下膨張率も自由膨張率と大きな違 いがなぐ比較例 1と同様に、スピネル生成に伴なう膨張を利用した緻密化は生じな い。侵食試験結果では、フエノール榭脂バインダーによる炭素がれんがマトリックスに 分布している効果により、スラグ浸潤、侵食深さともに比較例 1よりは小さいが、本発 明例の方が格段に良好であるといえる。
[0113] 比較例 3は、マグネシア原料に粗粒を用いたもので、表 3には 0と記載しているが、 3 〜: Lmmのマグネシア原料を用いた。この場合 MgO含有量や Si02、 Na20+K20 含有量は本発明の範囲内であるにもかかわらず、粒度が大きいために自由膨張量 が異常に大きぐ且つ、荷重下膨張率も大きぐスピネル生成の膨張を吸収できてお らず、スピネル含有緻密層の形成に乏しいものである。結果として、侵食試験で、スラ グ浸潤、侵食量とも大きい値となった。尚、浸食試験後試料には大きな亀裂が多数 見られ、何とか浸潤 ·浸食量を測定できるギリギリの状態であった。実炉のように試験 試料よりかなり大きいサイズのれんがの場合には、亀裂に伴なう割れや剥離が生じる と思われる。
[0114] 比較例 4は、燐酸ボンドれんがであるが、粒度が粗いマグネシア原料を使用したも のである。また、 Si02及び Na20+K20の含有量も本発明に望まれる範囲より少な い。この燐酸ボンドれんがは、成形時に練り土がライナー面に付着する面付きが顕著 であり、実生産は困難である。また、生角の強度もやや脆いと判定された。 1500°C自 由膨張率は粗 、マグネシア原料によるスピネル生成反応を反映して大き 、値である 1S 一方荷重下膨張は Si02及び Na20+K20の不足に起因して、自由膨張率と ほとんど変わらず大きい値であった。そのため、侵食試験を試みたが、試料の強度が やや低 、こともあって試験中に大きな亀裂を生じて割れてしま 、、評価できなかった
[0115] 比較例 5は、流し込み材と同様にセメントを使用したものである力 練り土が混練後 短時間でパサパサの状態を呈し、まともな成形ができな力つた。即ち、フリクションプ レスで多数回締めを行っても十分な充填力さ比重が得られなかった。また、脱枠時に エッジ欠けが起こり、また、ラミネーシヨンが入りやすぐ何度かの成形を試みてようや くサンプルれんがを得た。し力しながら、このれんがの生角にはほとんど強度がなぐ 通常のハンドリングは不可能であり、細心の注意を払って取り扱わないと崩落してしま う状態であった。 自由膨張は適度に大きい値であるが、荷重下膨張は Si02及び Na 20+K20が不足のため、大きすぎる。れんがの強度が低いため、また昇温時に膨 張が大きく吸収されることがないため、回転ドラム試験装置内で崩壊してしまい試験 ができなかった。
[0116] 比較例 6は、成形性、生角の強度、加熱後の強度ともに良好であった力 Si02及 び Na20+K20が多いため、侵食試験では侵食深さが大きかった。
[0117] 本発明の耐火れんがと、比較例の侵食試験結果の一例として、本発明例 2の切断 面を図 1に、また比較例 1の切断面を図 2に示す。
[0118] 本発明の耐火れんがである、表 1に掲げた本発明例 2のれんが力 製鋼用取鍋の 側壁ライニングに使用された。この取鍋では従来 A1203含有量 85質量%クラスの高 アルミナ質れんがが使用されており、そのときの取鍋寿命はおよそ 200chであった。 この寿命を向上させるために、アルミナースピネル質れんがが試験され寿命は 250c hに向上していた。同じ製鋼取鍋に本発明の耐火れんがが内張りされたところ、寿命 は 398chと大幅に向上した。しかも、アルミナ—スピネルれんがでは使用途中に何度 力スラグ浸潤層に起因する表面剥離が生じるため、残存厚みの推定が困難であり、 運用上に不安があつたが、本発明のアルミナ マグネシア質耐火れんがでは剥離現 象は全く観察されず、安定な取鍋運用が可能であった。

Claims

請求の範囲
[1] アルミナ原料と 0. 5mm以下の微粉を 90質量%以上含有するマグネシア原料を使 用し、 Al Oと MgOとの合量が 90質量%以上であり、 MgOを 4〜16質量%、 SiOを
2 3 2
0. 5〜5質量%、 Na Oと K Oの合量を 0. 3〜2質量%含有し、残部が不可避不純
2 2
物と Al Oである、プレス成形された後 100°C以上 1150°C以下で加熱処理された耐
2 3
火れんが。
[2] 炭素及び 1200°C以上で炭素を残留する有機物を含有せず、 CaO含有量が 0. 5 質量%未満である、請求項 1の耐火れんが。
PCT/JP2006/323480 2005-11-25 2006-11-24 耐火れんが WO2007061070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602006019772T DE602006019772D1 (de) 2005-11-25 2006-11-24 Feuerfester stein
US12/094,938 US7939458B2 (en) 2005-11-25 2006-11-24 Refractory brick
EP06833284A EP1955987B1 (en) 2005-11-25 2006-11-24 Refractory brick
AU2006317007A AU2006317007B2 (en) 2005-11-25 2006-11-24 Refractory brick

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-380989 2005-11-25
JP2005380989A JP4470207B2 (ja) 2005-11-25 2005-11-25 耐火れんが

Publications (1)

Publication Number Publication Date
WO2007061070A1 true WO2007061070A1 (ja) 2007-05-31

Family

ID=38067293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323480 WO2007061070A1 (ja) 2005-11-25 2006-11-24 耐火れんが

Country Status (6)

Country Link
US (1) US7939458B2 (ja)
EP (1) EP1955987B1 (ja)
JP (1) JP4470207B2 (ja)
AU (1) AU2006317007B2 (ja)
DE (1) DE602006019772D1 (ja)
WO (1) WO2007061070A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836062A (zh) * 2022-05-11 2022-08-02 上海利尔耐火材料有限公司 一种中间包镁质无磷涂抹料

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
MY185000A (en) 2011-04-13 2021-04-30 Saint Gobain Ceramics Refractory object including beta alumina and processes of making and using the same
JP5760714B2 (ja) 2011-06-03 2015-08-12 住友電気工業株式会社 ナノインプリント用モールド
JP5712888B2 (ja) * 2011-09-29 2015-05-07 品川リフラクトリーズ株式会社 製鋼用容器の内張りライニング構造
JP5896515B2 (ja) * 2011-12-01 2016-03-30 黒崎播磨株式会社 乾式吹き付け用不定形耐火物
EP2802543B1 (en) 2012-01-11 2019-06-05 Saint-Gobain Ceramics & Plastics, Inc. Refractory object
US9422195B1 (en) 2012-09-19 2016-08-23 Universal Refractories, Inc. Magnesium oxide castable refractory foundry ladle liners
JP5949426B2 (ja) * 2012-10-16 2016-07-06 品川リフラクトリーズ株式会社 アルミナ−クロミア−マグネシア質耐火れんが
PL2781494T3 (pl) * 2013-03-22 2015-07-31 Refractory Intellectual Property Gmbh & Co Kg Ogniotrwały zestaw ceramiczny oraz ogniotrwały wyrób ceramiczny
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
JP5943032B2 (ja) * 2014-05-15 2016-06-29 品川リフラクトリーズ株式会社 軽量断熱アルミナ・マグネシア質耐火物の製造方法
WO2016138111A1 (en) 2015-02-24 2016-09-01 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
ES2704953T3 (es) * 2016-11-17 2019-03-20 Refractory Intellectual Property Gmbh & Co Kg Procedimiento para el tratamiento de productos cerámicos refractarios
JP7277712B2 (ja) * 2019-02-18 2023-05-19 品川リフラクトリーズ株式会社 マグネシア・スピネル質耐火れんが
CN110590342A (zh) * 2019-09-30 2019-12-20 中冶武汉冶金建筑研究院有限公司 一种硅溶胶结合的刚玉质耐火泥浆
JP2021054677A (ja) * 2019-09-30 2021-04-08 京セラ株式会社 セラミック構造体
DE102019220085A1 (de) * 2019-12-18 2021-06-24 Refratechnik Holding Gmbh Versatz zur Herstellung eines grobkeramischen feuerfesten basischen Erzeugnisses, derartiges Erzeugnis sowie Verfahren zu seiner Herstellung, Zustellung eines Industrieofens und Industrieofen
CN111517765B (zh) * 2020-04-29 2021-07-23 洛阳大洋高性能材料有限公司 一种高纯度刚玉熔铸砖生产工艺及其生产设备
CN112047746A (zh) * 2020-08-10 2020-12-08 辽宁东和新材料股份有限公司 一种rh浸渍管用免烧镁铝尖晶石砖及其制备方法
CN111957951B (zh) * 2020-08-18 2022-09-20 中科南京绿色制造产业创新研究院 一种耐火浇注料用改性铝粉的制备方法和用途
CN113582708A (zh) * 2021-08-23 2021-11-02 佛山市东鹏陶瓷有限公司 一种岩板底浆配方及制备工艺
CN114105617A (zh) * 2021-12-02 2022-03-01 郑州荣盛窑炉耐火材料有限公司 一种水泥回转窑用抗扭拉耐磨耐火砖及其制备方法
CN114230320B (zh) * 2021-12-23 2022-10-28 河南竹林庆州耐火材料有限公司 一种用于刚玉镁铝尖晶石浇注料制备预制砖的方法
CN115636677B (zh) * 2022-10-26 2023-10-24 中南大学 一种浮法玻璃生产用的锡槽顶盖砖及其制备方法
CN115594491B (zh) * 2022-11-02 2023-06-13 中钢洛耐科技股份有限公司 一种抗铝液渗透耐火砖及其制备方法
CN116751068B (zh) * 2023-08-18 2023-10-31 山东淄博沈淄耐火材料有限公司 等静压成型铝酸钙锡槽底砖的制备方法
CN117585987B (zh) * 2024-01-18 2024-03-19 河北国亮新材料股份有限公司 一种中间包涂抹料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109062A (ja) * 1994-10-13 1996-04-30 Kyushu Refract Co Ltd アルミナ質不焼成れんが
JPH09328357A (ja) * 1996-06-04 1997-12-22 Yotai Refractories Co Ltd ロ−タリ−キルン用高アルミナ質れんがおよびその 製造方法
JP2000119061A (ja) * 1998-10-13 2000-04-25 Tokyo Yogyo Co Ltd 高合金金属溶製用不焼成ハイアルミナ質れんが
JP2000272956A (ja) * 1999-03-24 2000-10-03 Nkk Corp 不焼成アルミナ−マグネシア系れんが
JP2003145265A (ja) * 2001-08-30 2003-05-20 Toshiba Ceramics Co Ltd 鋳造用浸漬ノズル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507611B1 (ja) 1969-04-09 1975-03-27
JPS5214724B2 (ja) 1972-06-07 1977-04-23
US3879210A (en) * 1972-06-14 1975-04-22 Carborundum Co Fused-cast refractory
JPH0676252B2 (ja) 1986-12-15 1994-09-28 川崎製鉄株式会社 不焼成アルミナ・マグネシア質煉瓦
JP3489588B2 (ja) 1992-11-10 2004-01-19 サンゴバン・ティーエム株式会社 高アルミナ質鋳造耐火物
DE10255068B4 (de) * 2002-11-25 2006-06-01 Refractory Intellectual Property Gmbh & Co. Kg Ohne Wasserzusatz fließfähige feuerfeste Masse sowie deren Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109062A (ja) * 1994-10-13 1996-04-30 Kyushu Refract Co Ltd アルミナ質不焼成れんが
JPH09328357A (ja) * 1996-06-04 1997-12-22 Yotai Refractories Co Ltd ロ−タリ−キルン用高アルミナ質れんがおよびその 製造方法
JP2000119061A (ja) * 1998-10-13 2000-04-25 Tokyo Yogyo Co Ltd 高合金金属溶製用不焼成ハイアルミナ質れんが
JP2000272956A (ja) * 1999-03-24 2000-10-03 Nkk Corp 不焼成アルミナ−マグネシア系れんが
JP2003145265A (ja) * 2001-08-30 2003-05-20 Toshiba Ceramics Co Ltd 鋳造用浸漬ノズル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1955987A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836062A (zh) * 2022-05-11 2022-08-02 上海利尔耐火材料有限公司 一种中间包镁质无磷涂抹料
CN114836062B (zh) * 2022-05-11 2024-04-16 上海利尔耐火材料有限公司 一种中间包镁质无磷涂抹料

Also Published As

Publication number Publication date
EP1955987A4 (en) 2009-01-07
JP4470207B2 (ja) 2010-06-02
EP1955987B1 (en) 2011-01-19
US20090286668A1 (en) 2009-11-19
US7939458B2 (en) 2011-05-10
EP1955987A1 (en) 2008-08-13
JP2007145684A (ja) 2007-06-14
AU2006317007B2 (en) 2011-06-30
AU2006317007A1 (en) 2007-05-31
DE602006019772D1 (de) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4470207B2 (ja) 耐火れんが
JP5879414B2 (ja) 向上した耐熱衝撃性を示す焼結耐火物
KR101832945B1 (ko) 대용량 공업용 로의 라이닝으로서 비소성 내화물의 이용 및 비소성 내화물로 라이닝된 공업용 로
KR20130093609A (ko) 크롬 옥사이드 파우더
US20110021340A1 (en) Refractory
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
CN108472722B (zh) 包含沸石型微结构的可浇筑耐火材料组合物及其用途
JP4796170B2 (ja) クロミア質キャスタブル耐火物及びそれを用いたプレキャストブロック
JP5073791B2 (ja) アルミナ−マグネシア質耐火れんが及びその製造方法
Long et al. Microstructure and physical properties of steel-ladle purging plug refractory materials
JP5949426B2 (ja) アルミナ−クロミア−マグネシア質耐火れんが
CZ20003060A3 (cs) Bázická volně tekoucí licí hmota a tvarované díly vyrobené z této hmoty
AU2008333636A1 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
JP6344621B2 (ja) マグネシア・スピネル焼成煉瓦の製造方法
JP4744066B2 (ja) 不定形耐火物
JPH082975A (ja) 流し込み施工用耐火物
JP2004203702A (ja) 蛇紋石又はタルクを含有する不定形耐火物と施工体およびこれらで内張りされた窯炉
JP2017206414A (ja) アルミナ−クロミア質焼成煉瓦の製造方法
RU2239612C1 (ru) Огнеупорная бетонная смесь (варианты)
JP4576367B2 (ja) 廃棄物溶融炉用クロムフリー不定形耐火物およびこれを内張りに使用した廃棄物溶融炉
Sadatomi et al. Reaction behavior of slag and spinel in steel ladle castables
EP3050858B1 (en) A method for lining metallurgical vessels using self hardening refractory material
RU2818338C1 (ru) Способ получения периклазоуглеродистого бетона и периклазоуглеродистый бетон
JPH0794343B2 (ja) マグネシアクリンカー及びその製造方法
Liu et al. Effect of hollow spheres on the properties of lightweight periclase‐magnesium aluminate spinel refractories

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006317007

Country of ref document: AU

Ref document number: 12094938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006833284

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006317007

Country of ref document: AU

Date of ref document: 20061124

Kind code of ref document: A