WO2007060795A1 - アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子 - Google Patents

アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007060795A1
WO2007060795A1 PCT/JP2006/320621 JP2006320621W WO2007060795A1 WO 2007060795 A1 WO2007060795 A1 WO 2007060795A1 JP 2006320621 W JP2006320621 W JP 2006320621W WO 2007060795 A1 WO2007060795 A1 WO 2007060795A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
organic
Prior art date
Application number
PCT/JP2006/320621
Other languages
English (en)
French (fr)
Inventor
Tetsuya Inoue
Masami Watanabe
Hirofumi Kondo
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2007546377A priority Critical patent/JPWO2007060795A1/ja
Priority to EP06811876A priority patent/EP1956011A1/en
Publication of WO2007060795A1 publication Critical patent/WO2007060795A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an amine compound and an organic electoluminescence device using the same, and more specifically, light emission while maintaining good luminance Z voltage characteristics and current density Z voltage characteristics with high heat resistance.
  • the present invention relates to an organic electoluminescence device having a high efficiency and a long lifetime, and an amine compound that realizes the same.
  • Organic electoluminescence (EL) devices use the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. Since it has high visibility due to self-emission and is a complete solid-state device, it has features such as excellent impact properties. Therefore, its use as a light-emitting device in various display devices has attracted attention.
  • EL electroluminescence
  • the organic EL device has a two-layer structure of a hole transport (injection) layer and an electron transport luminescent layer, or a hole transport (injection) layer, a luminescent layer, and an electron transport (injection) layer.
  • the three-layer type is well known.
  • the element structure and the formation method are devised.
  • a hole injection material used in such an organic EL device a high molecular weight aromatic amine compound disclosed in Patent Document 1 and a triarylamine compound disclosed in Patent Document 2 are used.
  • a isomer or a phenylenediamine derivative disclosed in Patent Document 3 is known. Since these compounds have low ionic potential, the hole mobility is higher than that of a starburst amine derivative as disclosed in Patent Document 4 when holes are injected from the anode. Therefore, it was suitable as a hole injection material with a high value.
  • the materials used for organic EL devices include low-molecular-weight organic materials that produce devices by vacuum deposition, and high-molecular-weight organic materials that have a state-of-the-art coating method (such as spin coating or ink jet). Broadly divided into materials.
  • the polymer material used here is not necessarily required to be a polymer. In general, what is called a low molecular weight amorphous material is attracting attention as long as it forms an amorphous state at the operating temperature.
  • Examples of known low-molecular hole injection / transport materials include the following specific compounds.
  • TPD is widely used because it has a small ionization potential of 5.4 eV and high hole mobility.
  • the following exemplary compounds have problems such as crystallization and non-uniform film formation over a long period of time even under room temperature conditions where the heat resistance (glass transition temperature, Tg) is low.
  • Tg is about 98.
  • a so-called conductive polymer such as polythiophene or polyarine is doped with an acid such as PSS having the following structure. Injectability can be improved.
  • Polymeric hole injection / transport materials incorporating the TPD in the main chain or side chain have also been studied!
  • organic EL devices using polymer materials unlike vacuum evaporation, are formed without vacuum, so it is expected that a high-quality thin film can be easily formed. Expected to be advantageous.
  • PEDOTZPSS with the structure shown below is water-soluble and insoluble in organic solvents, so it has excellent power as a hole injection layer. There are concerns about the adverse effects of oxygen and sulfur atoms generated by decomposition.
  • Patent Document 5 describes a light emitting material for an organic EL device comprising a compound having a quinoxaline skeleton, but its heat resistance with a low glass transition temperature is not sufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-301934
  • Patent Document 2 International Publication WO98Z30071
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-309566
  • Patent Document 4 Japanese Patent Laid-Open No. 4308688
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-053956
  • the present invention has been made to solve the above-described problems, and is excellent in a physical property balance of low, ionic potential, large band gap energy, high injection efficiency, and high mobility, and excellent in heat resistance.
  • Luminance Z voltage characteristics, current density While maintaining the Z voltage characteristics, includes a long-life organic EL element with high luminous efficiency and a quinoxaline ring that realizes it
  • An object is to provide a novel amine compound.
  • the present invention provides an amine compound having a quinoxaline ring represented by the following general formula (1).
  • X is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted.
  • Y is each independently a substituted or unsubstituted aryl group having 4 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 carbon atoms, and two Y bonded to the same nitrogen atom. May be the same or different! /, And may be bonded and cross-linked together!
  • z is independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, or a substituted or unsubstituted carbon number.
  • the present invention provides an organic EL device in which an organic thin film layer having at least one light-emitting layer or a multi-layer force is sandwiched between a cathode and an anode, and at least one layer force of the organic thin film layer.
  • the quinoxaline ring The present invention provides an organic EL device containing an amine-based compound containing or as a component of a mixture.
  • the amine compound of the present invention is useful as a hole injection material or a hole transport material of an organic EL device or an electrophotographic photoreceptor, and the organic EL device using the amine compound of the present invention has low ionization. Excellent luminance balance with potential, large band gap energy, high injection efficiency, high mobility, high heat resistance, good brightness Z voltage characteristics, current density long.
  • the amine compound of the present invention is represented by the following general formula (1).
  • each X is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, or a substituted group.
  • an unsubstituted aryloxy group having 4 to 50 carbon atoms a substituted or unsubstituted thioalkoxy group having 1 to 50 carbon atoms
  • a substituted or unsubstituted thioaryloxy group having 4 to 50 carbon atoms and a substituted or unsubstituted amino group.
  • two Xs may be the same or different. At least one X is any of the above groups other than a hydrogen atom, and the two Xs cross-link with each other. An annular structure is formed.
  • Examples of the cyclic structure formed by the two X include, for example, cycloalkene having 4 to 12 carbon atoms such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclootaten, cyclohexene, cyclobutadiene, cyclooctagen, and the like.
  • Containing 6 to 12 carbon rings such as cycloalkylene diene having 6 to 12 carbon atoms, benzene, naphthalene, phenanthrene, anthracene, pyrene, taricene, and acenaphthylene, and aromatic rings having 6 to 50 carbon atoms such as indene and fluorene.
  • aromatic rings having 6 to 50 carbon atoms such as indene and fluorene.
  • aromatic rings having 6 to 50 carbon atoms such as benzene, naphthalene, phenanthrene, anthracene, pyrene, taricene, and acenaphthylene are preferred because of their high mobility. Therefore, the aromatic ring force S having 6 to 15 carbon atoms is more preferable.
  • a cyclic structure for example, the following general formula (3) can be mentioned.
  • X is a hydrogen atom and a naphthyl group, these are cross-linked with each other to form the following general formula (3).
  • the bond structure of the described naphthalene ring and quinoxaline ring is formed.
  • each Y is independently a substituted or unsubstituted aryl group having 4 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 carbon atoms.
  • nitrogen The two Y bonded to the atom may be the same or different, and may be bonded to each other and bridged.
  • Examples of the cyclic structure that may be formed by bonding and crosslinking two ridges include the basic skeleton shown below or a substituted product thereof.
  • the following structures are preferable. This is because the following force rubazole structure is excellent in electron transport properties, and other structures are excellent in hole injection property or hole transport property because ion potential levels can be lowered by cutting conjugation. .
  • each Z independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • the two Zs may be the same or different and may be bonded to each other and cross-linked.
  • Examples of the cyclic structure that may be formed by bonding and cross-linking two Zs include the same examples as the cyclic structure formed by the two Xs described above.
  • the amine compound represented by the general formula (1) has high mobility, is easy to deposit, and is easy to obtain and synthesize, and has good molecular symmetry.
  • Preferred is an amine compound represented by the following general formula (2) or (3).
  • R 9 ⁇ R 14 of Ri ⁇ R 8 and of the general formula (2) (3) are each independently a hydrogen atom, C androgenic atom, a substituted or unsubstituted alkyl having 1 to 50 carbon atoms Group, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 4 to 50 carbon atoms, substituted or unsubstituted thioalkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted Substituted thioaryloxy group having 4 to 50 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted aryl group having 4 to 50 carbon atoms, substituted or unsubstituted alkenyl having 2 to 50 carbon atoms -Group, a substituted or unsubstituted alkyl carboxylic group having 1 to 50 carbon atoms, or a substituted or unsubstit
  • aryl group of Y include, for example, a phenyl group or various tolyl groups, various substituted phenyl groups such as various xylyl groups, 1 naphthyl group or various methyl substituted 1 naphthyl groups, various dimethyl substituted 1 naphthyl groups, etc.
  • Substituents for these groups are not limited to hydrocarbon groups, but also include groups containing heteroatoms such as alkoxy groups, carboxy groups, carboxyester groups, aryloxy groups, dialkylamino groups, diarylamino groups, and thioalkoxy groups. Including.
  • the atoms forming the nucleus are not limited to carbon, such as oxygen atoms (furyl group, etc.), nitrogen atoms (pyridyl group, pyraryl group, etc.), boron atoms (boraphthal group, etc.), and silicon atoms. (Including shirafu-zole group) and hetero atoms such as thio atom (thiofull group etc.).
  • the heterocyclic group of ⁇ includes, for example, a pyridinyl group, a birazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, an indolyl group, a quinolinyl group, an attaridyl group, a pyrrolidyl group, a dioxanyl group, Piberidyl, morpholyl, piperazinyl, triatinyl, carbazolyl, furanyl, thiophenyl, oxazolyl, oxadiazolyl, benzoxazolyl, thiazolyl, thiadiazolyl, benzothiazolyl, Examples thereof include a triazolyl group, an imidazolyl group, a benzimidazolyl group, a branyl group, and the like, and each of these groups may have a substituent, and the same substituents as those
  • halogen atom ⁇ and 1-4 for example, fluorine, chlorine, bromine, iodine can be mentioned up.
  • alkyl groups include methyl, ethyl, propyl, isopyl, n-butyl, s-butyl, isobutyl, t-butyl, and n-pentyl. N-hexyl group, n-heptyl group, n-octyl group and the like.
  • the aryl group of X, Z and Ri to R “includes a phenyl group or various tolyl groups, various substituted phenyl groups such as various xylyl groups, 1 naphthyl group, various methyl substituted 1 naphthyl group, various dimethyl substituted 1 Substitution of naphthyl group, etc.
  • 1 Naphthyl group, 2-naphthyl group V ⁇ is various methyl substituted 2-naphthyl groups, various dimethyl substituted 2-naphthyl groups, etc.
  • alkoxy group of X, Z and Ri to R is represented as RO, and examples of R include the examples described for the alkyl group.
  • the aryloxy group of X, Z and Ri ⁇ R ′′ is represented as R ′ O, and examples of R ′ include the examples described for the aryl group.
  • Examples of the thioalkoxy group of X, Z and Ri to R ′′ include groups corresponding to the examples described for the alkoxy group.
  • X as a thioaryloxy O alkoxy group Z and Ri ⁇ R 14, include groups that correspond to the examples described in the Ariruokishi group.
  • Examples of the amino group of X, Z and Ri to R ′′ include a diphenylamino group, a ditolylamino group, a dinaphthylamino group, a naphthylphenylamino group, a dimethylamino group, a jetylamino group, a dihexylamino group and the like.
  • X the alkenyl groups Z and 1-4, for example, vinyl group, Ariru group, 1 butene - group, 2 Buteyuru group, 3 Buteyuru group, 1, 3 Butanje - group, 1 Mechirubi - Le Group, styryl group, 2, 2-diphenyl group, 1,2-diphenyl group, 1-methyl group, 1,1-dimethyl group, 2-methyl group, 1-phenyl group, Examples include 2-phenylyl group, 3-phenolyl group, 3,3-diphenylyl group, 1,2-dimethylaryl group, 1-loop 1-tuttle group, 3-loop 1-tuttle group, and the like.
  • the alkyl carbonyl group of X, Z, and Ri to R ′′ is represented as RCO—, and examples of R include the examples described for the alkyl group.
  • the aryl group of X, Z and Ri to R ′′ is represented as R′CO—, and examples of R ′ include the examples described for the aryl group.
  • each group examples include a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms.
  • substituted or unsubstituted aralkyl group having 6 to 50 nuclear carbon atoms substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms
  • substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms substituted or unsubstituted Examples of the substituted alkoxycarbonyl group having 1 to 50 carbon atoms, amino group, halogen atom, cyano group, nitro group, hydroxyl group, and carboxyl group.
  • the amine compound of the present invention can be produced by utilizing a known reaction (reference literature: for example, Journal of Organic Synthetic Chemistry No. 59, No. 6, 2001, p607). Less than Below, the ability to exemplify the synthesis methods [1] to [2] of representative compound groups is not limited to these.
  • N is a nitrogen atom
  • X, Y, and Z are as described above.
  • A is a halogen atom, preferably iodine, bromine or chlorine, more preferably bromine.
  • the transition metal catalyst is a transition metal compound containing a Group 8, 9 or 10 metal, preferably a transition metal compound containing a Group 10 metal, and more preferably a transition metal compound containing palladium.
  • PdCl Pd (OAc) (Ac is a acetyl group)
  • Pd (OAc) is a acetyl group)
  • DPPF 1, 1, 1 bis (diphenylphosphino) Huesen
  • a ligand is a compound of Group 15 or Group 16, preferably a compound containing Group 15, more preferably a compound containing phosphorus.
  • PAr Ar is an aryl group
  • 3 3 3 3 is an alkyl group
  • PCy Cy is a cyclohexyl group
  • P (tBu) tBu is a t-butyl group
  • the base can be used as long as it is a compound composed of an alkali metal and a conjugated base, or an alkaline earth metal and a conjugated base, which dissociates the hydrogen of the amine to be reacted as a proton.
  • it is a symbiotic base of a basic compound having an acid dissociation constant (25 ° C, in water) of 18 or more.
  • magnesium is preferred as the alkaline earth metal, preferably lithium or sodium.
  • Examples of the conjugate base of a basic compound having an acid dissociation constant (25 ° C, in water) of 18 or more include -N (SiR;), -NR, -OR (R is an alkyl group), etc. , Preferably-N (SiMe) (Me
  • 3 2 2 3 2 is a methyl group), -N (isopropyl), -OtBu.
  • the solvent is not particularly limited as long as the transition metal compound, ligand (ligand) or base does not react, but an aromatic solvent such as xylenes and toluene is preferable.
  • the reaction temperature is not particularly limited, but is usually room temperature to 200 ° C. or the boiling point of the solvent, preferably room temperature to 120 ° C.
  • the reaction time is not particularly limited, but is usually 1 hour to 150 hours, preferably 3 hours to 1 00 hours.
  • reaction ratio is not particularly limited, it is usually quinoxaline compound: amine: transition metal compound: ligand: base (molar ratio), 100: 180 to 300: 0.1 to 10: 0.1 to 40: 150 to 300 Preferably, it is 100: 190-220: 0.5-5: 1: 1-10: 180-250.
  • the concentration of the reaction solution is not particularly limited, but is usually 0.01 to 2 mol Z liter, preferably 0.1 to 0.2 mol Z liter, as the concentration of the quinoxaline compound.
  • the amine-based compound of the present invention is suitable for a hole injection material or a hole transport material, and can be applied in a wide range of fields as a solar cell, an electrophotographic photosensitive member, and an organic EL device, particularly for an organic EL device. Suitable as hole injection material or hole transport material.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer consisting of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode. Further, the organic thin film layer has a hole injection layer and / or a hole transport layer, and the hole injection layer and Z or the hole transport layer include The amine compound of the present invention is preferably contained alone or as a component of a mixture.
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the amine-based compound of the present invention may be used in any of the organic layers described above, but it is preferable that it is contained in the light emission band or hole transport band in these components, and it is particularly preferable. Is contained in the hole injection layer !. It is preferable for the emission band because it is excellent as a host material, and preferable for the hole transport band because it is excellent as a material for a hole injection layer or a hole transport layer, and particularly as a material for a hole injection layer. is there.
  • the light emitting layer may be a single layer or a plurality of layers.
  • the luminous efficiency is increased when the amine compound of the present invention is contained in 30 to LOO mol%.
  • This organic EL element is usually produced on a translucent substrate.
  • This translucent substrate is a substrate that supports the organic EL element.
  • the transmissivity of light in the visible region of 400 to 700 nm is 50% or more, and a smoother substrate is desired. It is preferable to use it.
  • a translucent substrate for example, a glass plate, a synthetic resin plate, or the like is preferably used.
  • the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the synthetic resin plate include polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, and polysulfone resin.
  • the anode plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), indium zinc alloy (IZO), tin oxide (NESA), gold, silver, platinum, copper and the like.
  • an electron transport layer or Is preferably a material having a low work function for the purpose of injecting electrons into the light emitting layer.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less.
  • the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer is
  • Injection function function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Luminescent function It has a function to provide a field for recombination of electrons and holes and connect it to light emission. However, even if there is a difference in the ease with which holes are injected and the ease with which electrons are injected, the transport capability represented by the mobility of holes and electrons may be large or small. It is preferable to move the charge ⁇ .
  • the light emitting layer As a method for forming the light emitting layer, for example, a known method such as an evaporation method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • a binder such as rosin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by spin coating or the like.
  • the light emitting layer can also be formed by twisting.
  • a known light emitting material other than the light emitting material comprising the amine compound of the present invention may be included in the light emitting layer as desired.
  • a light emitting layer containing another known light emitting material may be stacked on the light emitting layer containing any other light emitting material. Yes.
  • the light emitting layer is a layer emitting blue light, and the light emitting layer preferably has a maximum light emission wavelength of 450 to 500 nm. Preferably it consists of a punt. This is because the amine compound power ionization potential level and the energy gap value of the present invention are suitable for, for example, blue light emission as a material for the hole injection layer.
  • a styryl derivative As the host material in the light emitting layer, a styryl derivative, an arylene derivative, or an aromatic ammine (an amine derivative) is preferable. This is because, from the values of the ion potential level and the energy gap, it is suitable for blue light emission as a host material, for example.
  • the styryl derivative since it emits light in a blue region, it is particularly preferable that it is at least one selected from a distyryl derivative, a tristyryl derivative, a tetrastyryl derivative, and a styrylamine derivative.
  • the arylene derivative is particularly preferably an anthracene derivative, particularly a compound having an arylanthracene skeleton because it emits light in a blue region.
  • the aromatic amine since it emits light in the blue region, it is preferably a compound having 2 to 4 aromatic substituted nitrogen atoms, preferably 2 to 4 aromatic substituted nitrogen atoms, A compound having at least one alkenyl group is particularly preferred.
  • Examples of the styryl derivative and anthracene derivative include compounds represented by the following general formulas [1] to [6].
  • Examples of the aromatic amine include the following general formulas [7] to [8]. And the compounds shown.
  • Ri to R 8 are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • a heterocyclic group having 5 to 30 carbon atoms, Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted alkenyl group, As the substituent, a substituted or unsubstituted carbon number of 1 to 2 0 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 carbon atoms, substituted or unsubstituted alkylthio groups having 1 to 20 carbon atoms, substituted or Unsubstituted aryl group having 6 to 30 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 carbon atoms, unsubstituted monocyclic group having 5 to 30 carbon atoms, substituted or unsubstituted carbon atoms 10 to 10 30 condensed polycyclic groups or substituted or unsub
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted alkenyl group, and the substituent includes a substituted or unsubstituted carbon number.
  • alkyl group having 1 to 20 carbon atoms a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, Substituted or unsubstituted aryl group with 6 to 30 carbon atoms, substituted or unsubstituted aryl group with 6 to 30 carbon atoms, unsubstituted monocyclic group with 5 to 30 carbon atoms, substituted or unsubstituted carbon number A condensed polycyclic group having 10 to 30 or a substituted or unsubstituted heterocyclic group having 5 to 30 carbon atoms. )
  • ⁇ 1 to! ⁇ are each independently a hydrogen atom, halogen atom, cyano group, nitro group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms; Group, substituted or unsubstituted aryl group having 7 to 30 carbon atoms, unsubstituted monocyclic group having 5 to 30 carbon atoms, substituted or unsubstituted condensed polycyclic group having 10 to 30 carbon atoms, or substituted or unsubstituted A substituted heterocyclic group having 5 to 30 carbon atoms Ar 3
  • substituted or unsubstituted carbon number 1 20 alkyl group a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted Substituted aryloxy group having 6 to 30 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted arylenethio group having 6 to 30 carbon atoms, substituted or unsubstituted carbon number 6 to 30
  • n is 1 to 3
  • Ri to R 8 each independently represents a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • a heterocyclic group having 5 to 30 carbon atoms, Ar 3 and Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted alkenyl group, As the substituent, a substituted or unsubstituted carbon number of 1 to 2 0 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 carbon atoms, substituted or unsubstituted alkylthio groups having 1 to 20 carbon atoms, substituted or Unsubstituted aryl group having 6 to 30 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 carbon atoms, unsubstituted monocyclic group having 5 to 30 carbon atoms, substituted or unsubstituted carbon atoms 10 to 10 30 condensed polycyclic groups, substituted or unsub
  • R u to! ⁇ Each independently represents a hydrogen atom, an alkenyl group, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group) Or a heterocyclic group which may be substituted; a and b each represent an integer of 1 to 5, and when they are 2 or more, R 11 or R 12 may be the same or different from each other; Alternatively, R 11 or R 12 may be bonded to each other to form a ring, R 13 and R ", R 15 and R 16 , R 17 and R 18 , R 19 and R 2 ° may be bonded to each other to form a ring L 1 is a single bond or —O—, —S—, —N (R) — (R is an alkyl group or an optionally substituted aryl) Group) or arylene group.
  • R 21 to R 3 ° are independently a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an alkyl group, Ruamino represents a group or a substitutable a heterocyclic group which may, c, d, e and f are each an integer of 1 to 5; when they are 2 or more, R 21 together, R 22 together, R 26 s or R 27 together are in each Yogumata be the same or different, R 21 together, R 22 together, R 26 s or R 27 s may be bonded to each other to form a ring, R 23 and R 24 , R 28 and R 29 may be bonded to each other to form a ring.
  • L 2 represents a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an aryl group which may be substituted)
  • Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or monovalent aromatic group or styryl group having 6 to 40 carbon atoms, and g represents an integer of 1 to 4.
  • the dopant in the light emitting layer may be at least one selected from amine derivatives such as styrylamine and amine-substituted styryl compounds and condensed aromatic ring-containing compounds.
  • Preferred examples of the styrylamine and amine-substituted styryl compound include compounds represented by the following general formulas [9] to [10], and examples of the condensed aromatic ring-containing compound include: And a compound represented by the following general formula [11] And the like. [0054] [Chemical 23]
  • Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted aromatic group or styryl group having 6 to 40 carbon atoms, and p represents an integer of 1 to 3.
  • Ar 15 and Ar 16 are each independently an arylene group having 6 to 30 carbon atoms
  • E 1 and E 2 are each independently an aryl group or alkyl group having 6 to 30 carbon atoms
  • q represents an integer of 1 to 3.
  • U, Z or V is a substituent containing an amino group, and the amino group is preferably an aryl amino group.
  • A is an alkyl or alkoxy group having 1 to 16 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 6 to 30 carbon atoms, or carbon.
  • a substituted or unsubstituted arylene amino group having 6 to 30 carbon atoms B represents a condensed aromatic ring group having 10 to 40 carbon atoms, and r represents an integer of 1 to 4.
  • a phosphorescent compound can also be used as the light emitting layer.
  • a compound containing a force rubazole ring is preferred as a host material having a phosphorescent compound power.
  • a host material suitable for phosphorescence emission that also has a compound power containing a strong rubazole ring is a compound that has the function of causing the phosphorescence emission compound to emit light as a result of energy transfer from its excited state to the phosphorescence emission compound. is there.
  • exciton energy is Any compound that can transfer energy to the phosphorescent compound can be appropriately selected depending on the purpose. It may have an arbitrary heterocyclic ring in addition to the strong rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furendylene amine derivatives, arylamine derivatives, amino substituted Chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, Anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, naphtha Metal complexes of heterocyclic tetracarboxylic anhydrides
  • Examples of such host compounds include the following.
  • the dopant composed of a phosphorescent compound is not particularly limited as long as it emits triplet exciton power, preferably a compound capable of emitting triplet exciton power, but Ir, Ru, Pd, Pt, Os and Re
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • Phosphorescent compounds can be used alone or in combination of two or more.
  • ligands that form ortho-metal ⁇ metal complexes
  • preferred ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, 2- (2 chalc) pyridine derivatives, Examples include 2- (1 naphthyl) pyridine derivatives and 2-phenol quinolin derivatives. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups introduced are preferred as blue dopants. Furthermore, it may have a ligand other than the above ligands such as acetylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light-emitting layer is not particularly limited, and can be appropriately selected according to the purpose.
  • the content is 0.1 to 70% by mass, and 1 to 30% by mass. preferable. If the phosphorescent emissive compound content is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited. If the content exceeds 70% by mass, a phenomenon called concentration quenching is prominent. The device performance deteriorates.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If it is 5 nm or more, formation of the light emitting layer and adjustment of chromaticity are easy, and if it is 50 nm or less, there is no fear that the drive voltage will increase.
  • the hole injecting / transporting layer is a layer that helps injecting holes into the light emitting layer and transports them to the light emitting region, and has a large hole mobility and usually has an ion energy of 5.5 eV or less. And small.
  • a hole injection / transport layer a material that transports holes to the light-emitting layer with a lower electric field strength is preferred.
  • the mobility force of holes for example, when 10 4 ⁇ : when an electric field of LOV / cm is applied, Preferred is at least 10 " 4 cmVv ⁇ sec! /.
  • the compound of the present invention when used in a hole transport zone (hole injection / transport layer), the compound of the present invention alone may form a hole injection 'transport layer, or other materials You may mix and use.
  • the material for forming the hole injection / transport layer by mixing with the aromatic amine derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. Any material commonly used as a charge transport material and known materials used for a hole injection layer of an organic EL device can be selected and used.
  • Porphyrin compounds (disclosed in JP-A-63-29556965), aromatic tertiary amine compounds and styrylamine compounds (US) Patent No. 4, 127, 412, JP-A 53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250, 56-119132, 61-295, 558, 61-98353, 63-295695, etc.), especially aromatic Preference is given to using tertiary amine compounds.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole-injecting / transporting layer is formed by using the amine compound of the present invention and Z or the above-described compound by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. be able to.
  • the thickness of the hole-injection 'transport layer is not particularly limited Force Usually 5 ⁇ ! ⁇ 5 ⁇ m.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 1 0 _1Q SZcm or more.
  • the material for the organic semiconductor layer include thioolefin oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, allylamin dendrimers, and the like. Conductive dendrimers or the like can be used.
  • the electron injection layer'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several m.
  • an electric field of lO lC / cm is applied to avoid an increase in voltage.
  • it is preferable electron mobility is the least 10- 5 cm 2 ZVs than.
  • 8-hydroxyquinoline or a metal complex of its derivative, a oxadiazole derivative is preferable.
  • the metal complexes of 8-hydroxyquinoline or its derivatives include oxine (generally 8-quinolinol or 8-hydroxy
  • oxine generally 8-quinolinol or 8-hydroxy
  • a metal chelate oxinoid compound containing a chelate of droxyquinoline, for example, tris (8-quinolinol) aluminum can be used.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 7 and Ar 8 each represent a substituted or unsubstituted arylene group, and may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthral group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthrene group, a perylene group, and a pyrenylene group.
  • substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a film-forming material.
  • electron-transmitting compound include the following.
  • AA 3 is independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted carbon number 1 to 20 alkoxy groups, or these divalent groups.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterofused ring group having 3 to 60 nuclear carbon atoms.
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • is an integer of 0 to 5, and when ⁇ is 2 or more, a plurality of Rs may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • a fluorolenylene group, and Ar 1 is A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent or A nitrogen-containing heterocyclic derivative represented by the following formula: a heteroaryl group having 3 to 60 carbon atoms, which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, a substituted or unsubstituted group.
  • Aryl groups, substituted or unsubstituted heterocycles, or X and Y A structure that forms a sum or unsaturated ring, R
  • 1 to R are independently hydrogen, halogen 4
  • Atoms substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkyl carbo yl groups, aryl carbo groups.
  • R to R and Z are each independently a hydrogen atom, a saturated or unsaturated carbonization
  • a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently a saturated or unsaturated carbonization.
  • Z and Z substituents may be bonded to each other to form a condensed ring.
  • N is 1.
  • n 1 represents an integer of 2 to 3, and when n is 2 or more, Z may be different. However, n is 1, X, Y and R force methyl group
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • OR ⁇ R 1 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted Or an unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • Or — O Ga Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ).
  • ring A 1 and ⁇ are 6-membered aryl structures fused to each other which may have a substituent.
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, A substituted or unsubstituted alkyl group such as a methyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3 —Methylphenol group, 3-methoxyphenyl group, 3-fluorophenol Substituted, unsubstituted aryl groups such as thiol group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-trifluorophenyl group, methoxy group, n -butoxy group, t
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • At least one substance can be preferably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1).
  • 95eV) Force Group force At least one selected alkali metal, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV) and Ba (work function: 2.52 eV) Group force as force
  • Particularly preferred are those having a work function of 2.9 eV or less, including at least one selected alkaline earth metal.
  • a more preferable reducing dopant is at least one alkali metal selected from the group force consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. is there.
  • alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
  • combinations containing Cs, such as Cs and Na, Cs and K, A combination of Cs and Rb or Cs, Na and ⁇ is preferred.
  • an electron injection layer made of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • Such insulators include alkali metal chalcogenide, alkaline earth It is preferable to use at least one metal compound selected from the group consisting of metal halide chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal strength rucogates include, for example, Li 0, K 0, Na S, Na Se and Na 2 O, and are preferred.
  • New alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferred alkaline earth metal halides include, for example, CaF, BaF, SrF, MgF, and BeF.
  • V iodofluoride
  • halides other than fluoride
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal strength alkoxides, alkali metal halides and alkaline earth metal halides.
  • Electrode those having a small work function! / ⁇ (4 eV or less) metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium silver alloy, aluminum Z aluminum oxide, Al / Li 2 O, Al / LiO, Al / LiF,
  • Lumium lithium alloys indium, rare earth metals and so on.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for the light emission of the cathode is preferably larger than 10%.
  • the sheet resistance as a cathode is several hundred ⁇ / b
  • the film thickness is usually ⁇ ! ⁇ 1 ⁇ m, preferably 50 to 200 nm.
  • Examples of the material used for the insulating layer include acid aluminum, lithium fluoride, lithium oxide, fluorescesium, acid cesium, acid magnesium, calcium magnesium, acid calcium, calcium fluoride, Examples include aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. A mixture or laminate of these may be used.
  • an anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary are formed by the above materials and methods.
  • the cathode may be formed.
  • the organic EL element can be fabricated in the reverse order from the cathode to the anode.
  • an organic EL device having a structure in which an anode, a Z hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a transparent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by an evaporation method or a sputtering method so as to have a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, and used as an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • a light emitting layer is provided on the hole injection layer.
  • the light emitting layer can also be formed by thinning the light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting using the light emitting material according to the present invention. Or soon One pinhole is not likely to be generated, and it is preferable to form by a point evaporation vacuum deposition method.
  • the vapor deposition condition varies depending on the compound used, but can generally be selected from the same condition range as that of the hole injection layer.
  • an electron injection layer is provided on the light emitting layer. Also in this case, like the hole injection layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the compound of the present invention differs depending on which layer in the light emission band or the hole transport band is contained, but when the vacuum evaporation method is used, it can be co-deposited with other materials. Moreover, when using a spin coat method, it can be contained by mixing with other materials.
  • a cathode is laminated to obtain an organic EL element.
  • the cathode also has a metallic force, and vapor deposition and sputtering can be used. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the above organic EL device is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the amine compound of the present invention can be prepared by vacuum deposition, molecular beam deposition (MBE), dating in a solution dissolved in a solvent, spin coating, casting, or bar coating. It can be formed by a known method using a coating method such as a roll coating method.
  • the thickness of each organic layer of the organic EL device of the present invention is not particularly limited, but is usually preferably in the range of several nm to 1 ⁇ m in order to improve defects such as pinholes and efficiency.
  • Benzothiadiazole 18. lg (133mmo 1) is placed in a 200ml three-necked flask and dissolved in 42.9ml of 47% HBr aqueous solution. To this solution, 20 ml of bromine is added dropwise at room temperature over 20 minutes, and 13.3 ml of 47% HBr aqueous solution is added and refluxed for 24 hours. This is cooled to room temperature, the solid is dissolved in 700 ml of dichloromethane, and then 400 ml of a saturated aqueous solution of sodium thiosulfate is sufficiently extracted with a separatory funnel.
  • dichloromethane layer is washed with 150 ml of distilled water three times and then dried with anhydrous sodium sulfate.
  • Dichloromethane was concentrated at about 200 m and recrystallized by placing it at 4 ° C for 24 hours.
  • the precipitated needle crystal was filtered off to obtain 28.2 g (yield 72%) of the target compound.
  • Tg glass transition temperature
  • FD-MS field desorption mass spectrum
  • ionization potential ionization potential
  • DSC differential scanning calorimetry
  • HX110 manufactured by JEOL Ltd.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of a vacuum deposition apparatus, and a compound having a film thickness of 60 nm is first formed so as to cover the transparent electrode on the surface where the transparent electrode line is formed 1 Was deposited.
  • This Compound 1 film functions as a hole injection layer.
  • a 20 nm-thick N, N, ⁇ ′, N′-tetrakis (4-biphenyl) -4, 4, monobenzidine film was formed on the Compound 1 film.
  • This BPTPD membrane functions as a hole transport layer.
  • the following compound (40 nm) and doping compound B having a thickness of 40 nm were co-deposited on the BPTPD film at a deposition rate ratio of 40: 2.
  • This film functions as a light emitting layer.
  • a 1 Onm-thick tris (hydroxy quinoline) aluminum (Alq) film was formed. This Alq film functions as an electron transport layer.
  • Li source manufactured by Saergetta Co., Ltd.
  • Alq Li film (lOnm) as an electron injection layer (cathode).
  • A1 was deposited on this Alq: Li film to form a metal cathode, and an organic EL device was fabricated.
  • the luminous efficiency was 9.2 cdZA, and the luminance half time from the initial luminance 1 OOOcdZm 2 was 500 hours or more.
  • the maximum emission wavelength was 473 nm.
  • Example 1 a device was prepared in the same manner except that Compound 2 was used instead of Compound 1.
  • the light emission efficiency was 9. lcdZA, and the luminance half time from the initial luminance lOOOcdZm 2 was 500 hours or more.
  • the maximum emission wavelength was 473 nm.
  • Example 1 a device was prepared in the same manner using the following Comparative Compound 1 instead of Compound 1.
  • the luminous efficiency was 4. OcdZA, and the luminance half time from the initial luminance lOOOcd / m 2 was 10 hours.
  • Comparative Compound 1 Comparative Compound 1 (FW464) used in Comparative Example 1 undergoes a decomposition reaction during high-temperature heating (200 to 300 ° C), and multiple peaks mainly composed of mass number 442 are observed by FD-MS measurement. It has been done.
  • the light emission performance of Comparative Example 1 is remarkably low! It can be considered that thermal decomposition occurred during the deposition of Comparative Compound 1 during vapor deposition.
  • the novel amine compound of the present invention is suitable for a hole injection material or a hole transport material of an electrophotographic photoreceptor or an organic EL device, and has excellent solubility.
  • a thin film can be formed by a coating method.
  • an organic EL device using this amine compound has an excellent balance of physical properties such as low ionization potential, large band gap energy, high injection efficiency, and high mobility, and high heat resistance and good luminance Z voltage characteristics, current Density Long voltage life with high luminous efficiency while maintaining Z voltage characteristics. For this reason, it is extremely useful as an organic EL device with a high example, and is also suitable for in-vehicle applications that require heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、キノキサリン環を含む特定構造のアミン系化合物、並びに、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記アミン系化合物を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子であり、低いイオン化ポテンシャル、大きなバンドギャップエネルギー、高い注入効率、高い移動度という物性バランスに優れ、耐熱性が高く、良好な輝度/電圧特性、電流密度/電圧特性を維持しつつ、発光効率が高く、寿命が長い有機エレクトロルミネッセンス素子及びそれを実現する新規なアミン系化合物を提供する。

Description

明 細 書
アミン系化合物及びそれを利用した有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、アミン系化合物及びそれを利用した有機エレクト口ルミネッセンス素子に 関し、さらに詳しくは、耐熱性が高ぐ良好な輝度 Z電圧特性、電流密度 Z電圧特性 を維持しつつ、発光効率が高ぐ寿命が長い有機エレクト口ルミネッセンス素子、及び それを実現するァミン系化合物に関するものである。
背景技術
[0002] 有機エレクト口ルミネッセンス (EL)素子は、電界を印加することより、陽極より注入さ れた正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光す る原理を利用した自発光素子であり、自己発光のため視認性が高ぐかつ完全固体 素子であるため、衝撃性に優れる等の特長を有することから、各種表示装置における 発光素子としての利用が注目されて 、る。
イーストマン 'コダック社の C. W. Tangらによる積層型素子による低電圧駆動有機 EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレターズ (Applied Physics Letters) , 51卷、 913頁、 1987年等)がなされて以来、有機材料を構成材 料とする有機 EL素子に関する研究が盛んに行われている。 Tangらは、トリス(8—キ ノリノラト)アルミニウムを発光層に、トリフエ-ルジァミン誘導体を正孔輸送層に用い ている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極よ り注入された電子をブロックして再結合により生成する励起子の生成効率を高めるこ と、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送発光層の 2層型、又は 正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等がよく知られている。こう した積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子 構造や形成方法の工夫がなされて ヽる。
[0003] このような有機 EL素子に用いられる正孔注入材料として、特許文献 1に開示されて いる高分子量芳香族アミンィ匕合物、特許文献 2に開示されているトリアリールアミン多 量体又は特許文献 3に開示されているフエ-レンジァミン誘導体が知られている。 これらの化合物は 、ずれもイオンィ匕ポテンシャルが小さ 、ために、陽極から正孔が 注入されやすぐしカゝも特許文献 4に開示されているようなスターバーストアミン誘導 体よりも正孔移動度が高ぐ正孔注入材料として好適であった。
また、有機 EL素子に用いられる材料としては、真空蒸着法により素子を作製する低 分子系有機材料、溶液に溶力した状態力もの塗布法 (スピンコート法やインクジェット 法など)による高分子系有機材料に大別される。ただし、ここで用いられる高分子材 料は、必ずしも高分子である必要はなぐ一般に使用温度で非晶状態を形成するも のであれば問題なぐいわゆる低分子アモルファス材料と呼ばれるものが注目されて いる。
公知の低分子系の正孔注入 ·輸送材料としては、以下の具体的化合物が挙げられ る。この中で、特に TPDはイオン化ポテンシャルが 5. 4eVと小さくかつ高い正孔移 動度を示すことから広く用いられている。しかしながら、以下の例示化合物は、耐熱 性 (ガラス転移温度、 Tg)が低ぐ室温条件下でも長時間経つと結晶化して膜が不均 一になつてしまう等の問題があった。
[化 1]
Figure imgf000003_0001
α -ΝΡΒ 丁8約7 5で
Tg約 9 8で また、高分子系の正孔注入'輸送材料としては、ポリチォフェン系やポリア-リン系 などのいわゆる導電性高分子に下記構造を有する PSSなどの酸をドープすることで 正孔注入性が向上できる。また、前記 TPDを主鎖や側鎖に組み込んだ高分子の正 孔注入 ·輸送材料も研究されて!ヽる。 一般に高分子材料を用いた有機 EL素子は、真空蒸着と異なり、真空を介さず形成 されるため、高品質の薄膜が容易にできることが期待され、製法上のメリットが大きぐ 大面積ィ匕に有利であることが期待されている。しかし、問題点として、積層構造を形 成する正孔注入層、正孔輸送層、発光層を塗布する際の溶剤による溶出がある。下 記構造の PEDOTZPSSは水溶性であり、有機溶剤に溶けないことから、正孔注入 層として優れている力 発光寿命においては必ずしも十分ではなぐ改善が望まれて おり、その要因として、水分の混入や分解により生じた酸素原子や硫黄原子による悪 影響が懸念されている。
[化 2]
Figure imgf000004_0001
PEDOT PSS
[0005] また、特許文献 5には、キノキサリン骨格を有する化合物からなる有機 EL素子用発 光材料が記載されているが、ガラス転移温度が低ぐ耐熱性が十分ではなかった。 特許文献 1:特開平 9 - 301934号公報
特許文献 2:国際公開 WO98Z30071号公報
特許文献 3:特開 2000 - 309566号公報
特許文献 4:特開平 4 308688号公報
特許文献 5 :特開 2000— 053956号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記の課題を解決するためなされたもので、低 、イオンィ匕ポテンシャル 、大きなバンドギャップエネルギー、高い注入効率、高い移動度という物性バランスに 優れ、耐熱性が高ぐ良好な輝度 Z電圧特性、電流密度 Z電圧特性を維持しつつ、 発光効率が高ぐ寿命が長い有機 EL素子及びそれを実現するキノキサリン環を含む 新規なアミン系化合物を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、前記特許文献 5記載のキノキサリン骨格を有する化合物に対し、さらに共役構造を拡大することによ りガラス転移温度が高くなり、前記の目的を達成することを見出し、本発明を完成する に至った。
[0008] すなわち、本発明は、下記一般式(1)で表されるキノキサリン環を有するアミン系化 合物を提供するものである。
[化 3]
Figure imgf000005_0001
[0009] (式中、 Xは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1〜50のァ ルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換 の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭素数 1〜50のチオア ルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリールォキシ基、置換もし くは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50のァリール基、置換もしく は無置換の炭素数 2〜50のアルケニル基、置換もしくは無置換の炭素数 1〜50のァ ルキルカルボ-ル基、又は置換もしくは無置換の炭素数 4〜50のァリールカルボ- ル基である。 2つの Xは同じでも異なっていてもよぐ少なくとも 1つの Xは水素原子以 外の上述のうちのいずれかの基であり、 2つの Xは互いに架橋して環状構造を形成し ている。
Yは、それぞれ独立に、置換もしくは無置換の炭素数 4〜50のァリール基、又は置 換もしくは無置換の炭素数 5〜50の複素環基であり、同じ窒素原子に結合する 2つ の Yは同じでも異なって!/、てもよく、互 ヽに結合し架橋して 、てもよ!/、。 zは、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換の炭素数 1 〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしく は無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭素数 1〜50 のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリールォキシ基、 置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50のァリール基、 置換もしくは無置換の炭素数 2〜50のアルケニル基、置換もしくは無置換の炭素数 1 〜50のアルキルカルボ-ル基、又は置換もしくは無置換の炭素数 4〜50のァリール カルボ-ル基である。 2つの Zは同じでも異なっていてもよぐ互いに結合し架橋して いてもよい。 )
[0010] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層力もなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも 1層 力 前記キノキサリン環を含むアミン系化合物を単独もしくは混合物の成分として含 有する有機 EL素子を提供するものである。
発明の効果
[0011] 本発明のアミン系化合物は、有機 EL素子や電子写真感光体の正孔注入材料又は 正孔輸送材料として有用であり、本発明のアミン系化合物を用いた有機 EL素子は、 低いイオン化ポテンシャル、大きなバンドギャップエネルギー、高い注入効率、高い 移動度という物性バランスに優れ、耐熱性が高ぐ良好な輝度 Z電圧特性、電流密 度 Z電圧特性を維持しつつ、発光効率が高ぐ寿命が長い。
発明を実施するための最良の形態
[0012] 本発明のアミン系化合物は、下記一般式(1)で表されるものである。
[化 4]
Figure imgf000006_0001
[0013] 一般式(1)において、 Xは、それぞれ独立に、水素原子、置換もしくは無置換の炭 素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置 換もしくは無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭素数 1〜50のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリールォキ シ基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50のァリール 基、置換もしくは無置換の炭素数 2〜50のアルケニル基、置換もしくは無置換の炭 素数 1〜50のアルキルカルボ-ル基、又は置換もしくは無置換の炭素数 4〜50のァ リールカルボ-ル基である。
[0014] 一般式(1)において、 2つの Xは同じでも異なっていてもよぐ少なくとも 1つの Xは 水素原子以外の上述のうちのいずれかの基であり、 2つの Xは互いに架橋して環状 構造を形成している。
2つの Xが形成する環状構造としては、例えば、シクロブテン、シクロペンテン、シク 口へキセン、シクロヘプテン、シクロオタテン等の炭素数 4〜 12のシクロアルケン、シク 口へキサジェン、シクロへブタジエン、シクロォクタジェン等の炭素数 6〜 12のシクロ ァノレカジエン、ベンゼン、ナフタレン、フエナントレン、アントラセン、ピレン、タリセン、 ァセナフチレン等の炭素数 6〜50の芳香族環、インデン、フルオレン等の炭素数 6〜 50の芳香族環含有基、イミダゾール、ピロール、フラン、チォフェン、ピリジン、ベンゾ チォフェン、ベンゾフラン、カルバゾール、ジベンゾチォフェン、ジベンゾフラン等の 炭素数 5〜50の複素環などが挙げられる。
これらの中でも、移動度を高くすることができることからベンゼン、ナフタレン、フエナ ントレン、アントラセン、ピレン、タリセン、ァセナフチレン等の炭素数 6〜50の芳香族 環が好ましぐこれらのうち真空蒸着が容易になることから炭素数 6〜15の芳香族環 力 Sさらに好ましい。
また、環状構造を形成している場合として、例えば、下記一般式(3)が挙げられ、 X が水素原子とナフチル基である場合に、これらが互いに架橋して、下記一般式 (3)に 記載のナフタレン環とキノキサリン環の結合構造が形成される。
[0015] 一般式(1)において、 Yは、それぞれ独立に、置換もしくは無置換の炭素数 4〜50 のァリール基、又は置換もしくは無置換の炭素数 5〜50の複素環基であり、同じ窒素 原子に結合する 2つの Yは同じでも異なっていてもよぐ又、互いに結合し架橋してい てもよい。
2つの Υが互いに結合し架橋して形成してもよい環状構造としては、以下に示す基 本骨格もしくはその置換体が挙げられる。
[化 5]
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0005
これらの中でも好ましくは、以下の構造である。下記力ルバゾール構造は電子輸送 性に優れ、それ以外の構造は、共役を切ることで、イオンィ匕ポテンシャル準位を低く することができるので、正孔注入性又は正孔輸送性に優れるからである。
[化 6]
Figure imgf000010_0001
[0017] 一般式(1)において、 Zは、それぞれ独立に、水素原子、ハロゲン原子、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアル コキシ基、置換もしくは無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無 置換の炭素数 1〜50のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチ オアリールォキシ基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4 〜50のァリール基、置換もしくは無置換の炭素数 2〜50のァルケ-ル基、置換もしく は無置換の炭素数 1〜50のアルキルカルボニル基、又は置換もしくは無置換の炭素 数 4〜50のァリールカルボ-ル基である。 2つの Zは同じでも異なっていてもよぐ互 Vヽに結合し架橋して 、てもよ 、。
2つの Zが互いに結合し架橋して形成してもよい環状構造としては、前述した 2つの Xが形成する環状構造と同様の例が挙げられる。
[0018] 前記一般式(1)で表されるアミン系化合物は、移動度が高ぐ蒸着が容易であるこ とに加え、原料入手、合成が容易で、分子の対称性が良いことなどから、下記一般式 (2)又は(3)で表されるアミン系化合物であると好ま 、。
[化 7] R4 R5 R6
( 2 )
Figure imgf000011_0001
[0019] 一般式 (2)の Ri〜R8及び一般式 (3)の R9〜R14は、それぞれ独立に、水素原子、ハ ロゲン原子、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換 の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 4〜50のァリールォ キシ基、置換もしくは無置換の炭素数 1〜50のチォアルコキシ基、置換もしくは無置 換の炭素数 4〜50のチオアリールォキシ基、置換もしくは無置換のアミノ基、置換も しくは無置換の炭素数 4〜50のァリール基、置換もしくは無置換の炭素数 2〜50の ァルケ-ル基、置換もしくは無置換の炭素数 1〜50のアルキルカルボ-ル基、又は 置換もしくは無置換の炭素数 4〜 50のァリールカルボ-ル基であり、それぞれ同じで も異なっていてもよい。また、隣接するもの同士で架橋して環状構造を形成してもよく 、前述した 2つの Xが形成する環状構造と同様の例が挙げられる。 Y及び Zは、それ ぞれ前記と同じである。
[0020] 以下、一般式(1)〜(3)の X、 Y、 Ζ及び Ri〜R14の示す各基の具体例を説明する。 Yのァリール基としては、例えば、フエ-ル基あるいは各種トリル基、各種キシリル基 等の置換フエ-ル基、 1 ナフチル基あるいは各種メチル置換 1 ナフチル基、各種 ジメチル置換 1 ナフチル基等の置換 1 ナフチル基、 2—ナフチル基ある 、は各種 メチル置換 2—ナフチル基、各種ジメチル置換 2—ナフチル基等の置換 2—ナフチル 基、(置換) 1 アントリル基、(置換) 2 アントリル基、(置換) 9 アントリル基、(置換 ) 1—フエナントリル基、(置換) 2 フエナントリル基、(置換) 3 フエナントリル基、(置 換) 4 フエナントリル基、(置換) 9 フエナントリル基、(置換) 1—ナフタセ-ル基、( 置換) 2 ナフタセ-ル基、(置換) 9 ナフタセ-ル基、(置換) 1ーピレニル基、(置 換) 2 ピレニル基、(置換) 4ーピレニル基等が挙げられ、(置換)フエ-ル基、(置換 )ナフチル基が好ましい。
これら各基の置換基は炭化水素基に限定したものでなぐアルコキシ基、カルボキ シ基、カルボキシエステル基、ァリールォキシ基、ジアルキルアミノ基、ジァリールアミ ノ基、チォアルコキシ基等のへテロ原子を含む基も含む。また、核を形成する原子も 、炭素に限定するものではなぐ酸素原子 (フリル基など)、窒素原子 (ピリジル基、ピ 口リル基など)、ホウ素原子 (ボラフヱ-ル基など)、ケィ素原子 (シラフヱ-ル基など)、 ィォゥ原子 (チオフリル基等)等のへテロ原子を含んで 、てもよ 、。
[0021] Υの複素環基としては、例えば、ピリジニル基、ビラジニル基、ピリミジニル基、ピリダ ジニル基、トリアジニル基、インドリ-ル基、キノリニル基、アタリジ-ル基、ピロリジ- ル基、ジォキサニル基、ピベリジ-ル基、モルフオリジ-ル基、ピペラジニル基、トリア チニル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ブラニル基等が挙げられ 、これら各基は置換基を有していてもよぐ前記ァリール基で説明したものと同様の置 換基が挙げられる。
[0022] Ζ及び 〜 4のハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙 げられる。
X、 Z及び Ri〜R "のアルキル基としては、メチル基、ェチル基、プロピル基、イソプ 口ピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基 、 n—へキシル基、 n—へプチル基、 n—ォクチル基等が挙げられる。
X、 Z及び Ri〜R "のァリール基としては、フエ-ル基あるいは各種トリル基、各種キ シリル基等の置換フエニル基、 1 ナフチル基ある 、は各種メチル置換 1 ナフチル 基、各種ジメチル置換 1 ナフチル基等の置換 1 ナフチル基、 2—ナフチル基ある Vヽは各種メチル置換 2—ナフチル基、各種ジメチル置換 2—ナフチル基等の置換 1 ナフチル基、(置換) 1 アントリル基、(置換) 2 アントリル基、(置換) 9 アントリ ル基、(置換) 1—フエナントリル基、(置換) 2 フエナントリル基、(置換) 3 フエナン トリル基、(置換) 4 フエナントリル基、(置換) 9 フエナントリル基、(置換) 1—ナフタ セ-ル基、(置換) 2 ナフタセ-ル基、(置換) 9 ナフタセ-ル基、(置換) 1ーピレ -ル基、(置換) 2 ピレニル基、(置換) 4ーピレニル基等が挙げられる。
[0023] X、 Z及び Ri〜R "のアルコキシ基は RO と表され、 Rとしては前記アルキル基で説 明した例が挙げられる。
X、 Z及び Ri〜R "のァリールォキシ基は R' O と表され、 R'としては前記ァリール 基で説明した例が挙げられる。
X、 Z及び Ri〜R"のチォアルコキシ基としては、前記アルコキシ基で説明した例に 対応する基が挙げられる。
X、 Z及び Ri〜R14のチオアリールォキシ基としては、前記ァリールォキシ基で説明 した例に対応する基が挙げられる。
X、 Z及び Ri〜R"のァミノ基としては、例えば、ジフエ-ルァミノ基、ジトリルアミノ基 、ジナフチルァミノ基、ナフチルフエニルァミノ基、ジメチルァミノ基、ジェチルァミノ基 、ジへキシルァミノ基等が挙げられる。
[0024] X、 Z及び 〜 4のアルケニル基としては、例えば、ビニル基、ァリル基、 1 ブテ -ル基、 2 ブテュル基、 3 ブテュル基、 1, 3 ブタンジェ-ル基、 1ーメチルビ- ル基、スチリル基、 2, 2—ジフエ-ルビ-ル基、 1, 2—ジフエ-ルビ-ル基、 1—メチ ルァリル基、 1, 1ージメチルァリル基、 2—メチルァリル基、 1ーフヱ-ルァリル基、 2 フエ-ルァリル基、 3—フエ-ルァリル基、 3, 3 ジフヱ-ルァリル基、 1, 2 ジメチ ルァリル基、 1 フエ-ルー 1ーブテュル基、 3 フエ-ルー 1ーブテュル基等が挙げ られる。 X、 Z及び Ri〜R "のアルキルカルボ-ル基は、 RCO—と表され、 Rとしては前記ァ ルキル基で説明した例が挙げられる。
X、 Z及び Ri〜R "のァリールカルボ-ル基は、 R'CO—と表され、 R'としては前記 ァリール基で説明した例が挙げられる。
前記各基の置換基としては、置換もしくは無置換の核炭素数 5〜50のァリール基、 置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1 〜50のアルコキシ基、置換もしくは無置換の核炭素数 6〜50のァラルキル基、置換 もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換の核炭素 数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシカル ボニル基、アミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基、カルボキシル 基等が挙げられる。
本発明のアミン系化合物の具体例を以下に示すが、これら例示化合物に限定され るものではない。
[化 8]
Figure imgf000014_0001
Figure imgf000015_0001
[0027] [化 10]
Figure imgf000016_0001
[0028] [化 11]
Figure imgf000017_0001
[0029] [化 12]
Figure imgf000018_0001
以下、本発明のアミン系化合物の製造方法を説明する。
本発明のアミン系化合物は、公知の反応を利用することで製造することができる(参 考文献:例えば、有機合成化学協会誌 第 59号、第 6卷、 2001年、 p607など)。以 下、代表的な化合物群の合成方法〔1〕〜〔2〕を例示する力 これらに限定されるもの ではない。
[化 13]
Figure imgf000019_0001
合成方法〔1〕〜〔2〕において用いられる、各化合物及び試薬について説明する。 Nは窒素原子、 X、 Y及び Zは、前記の通りである。
Aは、ハロゲン原子であり、好ましくは、ヨウ素、臭素、塩素であり、さらに好ましくは 臭素である。
遷移金属触媒は、周期律第 8族、第 9族又は第 10族の金属を含む遷移金属化合 物、好ましくは第 10族の金属を含む遷移金属化合物、さらに好ましくはパラジウムを 含む遷移金属化合物であり、具体的には、 PdCl 、 Pd(OAc) (Acはァセチル基)、 Pd (
2 2 2 dba) (dbaはジベンジリレンアセトン)、 BINAP (2, 2, 一ビス(ジフエ-ルフォスフイノ)一
3
1, 1, 一ビナフチル)、 DPPF ( 1 , 1, 一ビス(ジフエ-ルフォスフイノ)フエ口セン)等が 挙げられる。
リガンド (配位子)は、第 15族又は第 16族の化合物、好ましくは第 15族を含む化合 物、さらに好ましくはリンを含む化合物であり、具体的には、 PAr (Arはァリール基)と
3
して、 P(o— Tol) (Tolはトリル基)、 PPh (Phはフエ-ル基)等が挙げられ、また、 PR (R
3 3 3 はアルキル基)として、 PCy (Cyはシクロへキシル基)、 P(tBu) (tBuは t—ブチル基)等
3 3
が挙げられる。
塩基は、アルカリ金属と共役塩基、又はアルカリ土類金属と共役塩基カゝらなる化合 物で、反応させるァミン類の水素をプロトンとして解離させるものであれば用いること ができる。好ましくは、酸解離定数(25°C、水中)が 18以上である塩基性ィ匕合物の共 役塩基である。
このアルカリ金属としては、リチウム又はナトリウムが好ましぐアルカリ土類金属とし てはマグネシウムが好まし 、。
酸解離定数(25°C、水中)が 18以上の塩基性ィ匕合物の共役塩基としては、例えば 、 - N(SiR;)、 - NR 、 - OR (Rはアルキル基)等が挙げられ、好ましくは、 - N(SiMe ) (Me
3 2 2 3 2 はメチル基)、 -N(isopropyl) 、 - OtBuである。
2
溶媒としては、遷移金属化合物、リガンド (配位子)又は塩基が反応しない限り、特 に制限されないが、キシレン類やトルエンなどの芳香族系溶媒が好ましい。
反応温度は、特に制限されないが、通常、室温〜 200°C又は溶媒の沸点温度であ り、好ましくは、室温〜 120°Cである。
反応時間は、特に制限されないが、通常、 1時間〜 150時間、好ましくは 3時間〜 1 00時間である。
反応比は、特に制限されないが、通常、キノキサリンィ匕合物:ァミン:遷移金属化合 物:リガンド:塩基(モル比)で、 100: 180〜300: 0.1〜10: 0.1〜40: 150〜300、好ましく は 100: 190〜220: 0.5〜5: 1〜10: 180〜250である。
反応液の濃度は、特に制限されないが、キノキサリンィ匕合物の濃度で、通常、 0.01 〜2モル Zリットル、好ましくは 0.1〜0.2モル Zリットルである。
[0033] 本発明のアミン系化合物は、正孔注入材料又は正孔輸送材料に適しており、太陽 電池、電子写真感光体、有機 EL素子用として幅広い分野で応用でき、特に有機 EL 素子用の正孔注入材料又は正孔輸送材料として適している。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、本発明のアミン系化合物を単独もしくは混合物の成分として含有する また、前記有機薄膜層が、正孔注入層及び/又は正孔輸送層を有し、該正孔注入 層及び Z又は正孔輸送層が、本発明のアミン系化合物を単独もしくは混合物の成分 として含有すると好ましい。
[0034] 以下、本発明の有機 EL素子の素子構成について説明する。
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
do)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極 (ID陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる。
これらの中で通常(8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
本発明のアミン系化合物は、上記のどの有機層に用いられてもよいが、これらの構 成要素の中の発光帯域もしくは正孔輸送帯域に含有されていることが好ましぐく、 特に好ましくは正孔注入層に含有されて!、る場合である。発光帯域に好まし 、のは、 ホスト材料として優れるからであり、正孔輸送帯域に好ましいのは正孔注入層又は正 孔輸送層の材料として優れ、特に正孔注入層の材料として優れるためである。
また、本発明の有機 EL素子において、発光層は単層でも複数層でも良いが、発光 効率が高まること力も本発明のアミン系化合物を 30〜: LOOモル%含有すると好まし い。
[0035] この有機 EL素子は、通常透光性の基板上に作製する。この透光性基板は有機 EL 素子を支持する基板であり、その透光性については、 400〜700nmの可視領域の 光の透過率が 50%以上であるものが望ましぐさらに平滑な基板を用いるのが好まし い。
このような透光性基板としては、例えば、ガラス板、合成樹脂板などが好適に用いら れる。ガラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、 鉛ガラス、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英な どで成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート榭脂、 アクリル榭脂、ポリエチレンテレフタレート榭脂、ポリエーテルサルファイド榭脂、ポリ サルフォン榭脂などの板か挙げられる。
[0036] 次に、陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、 4 . 5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料 の具体例としては、酸化インジウム錫合金 (ITO)、インジウム亜鉛合金 (IZO)、酸ィ匕 錫 (NESA)、金、銀、白金、銅等が適用できる。また、陰極としては、電子輸送層又 は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる こと〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω Ζ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
本発明の有機 EL素子においては、発光層は、
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能
(ii)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(iii)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 がある。ただし、正孔の注入され易さと電子の注入され易さに違いがあってもよぐま た正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の 電荷を移動することが好まし ヽ。
この発光層を形成する方法としては、例えば、蒸着法、スピンコート法、 LB法等の 公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好まし い。
ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料 化合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕するこ とによっても、発光層を形成することができる。
本発明の目的が損なわれない範囲で、所望により、発光層に、本発明のアミン系化 合物からなる発光材料以外の他の公知の発光材料を含有させてもよぐまた、本発 明の発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層してもよ い。
[0038] また、本発明の有機 EL素子において、前記発光層が青色系発光する層であると好 ましぐ発光の最大波長が 450〜500nmである発光層であり、ホスト材料と青色系ド 一パントからなると好ましい。これは、本発明のアミン系化合物力 イオン化ポテンシ ャル準位とエネルギーギャップの値から、例えば、正孔注入層の材料として、青色系 発光に好適となるからである。
前記発光層におけるホスト材料としては、スチリル誘導体、ァリーレン誘導体又は芳 香族ァミン (ァミン誘導体)が好ましい。これは、イオンィ匕ポテンシャル準位とエネルギ 一ギャップの値から、例えば、ホスト材料として、青色系発光に好適となるからである。 スチリル誘導体としては、青色領域に発光することから、ジスチリル誘導体、トリスチ リル誘導体、テトラスチリル誘導体及びスチリルァミン誘導体の中から選ばれる少なく とも一種類であることが特に好まし 、。
ァリーレン誘導体としては、青色領域に発光することから、アントラセン誘導体、特に ァリールアントラセン骨格を有する化合物であることが特に好ましい。
芳香族ァミンとしては、青色領域に発光することから、芳香族置換された窒素原子 を 2〜4個有する化合物であることが好ましぐ芳香族置換された窒素原子を 2〜4個 有し、かつァルケ-ル基を少なくとも一つ有する化合物が特に好ましい。
[0039] 前記スチリル誘導体及びアントラセン誘導体としては、例えば下記一般式〔1〕〜〔6 〕で示される化合物が挙げられ、前記芳香族ァミンとしては、例えば下記一般式〔7〕 〜〔8〕で示される化合物が挙げられる。
[化 15]
Figure imgf000024_0001
〔1〕 [0040] (式中、 Ri〜R8は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、ニトロ基、 置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の炭素数 1 〜20のアルコキシ基、置換もしくは無置換の炭素数 6〜30のァリールォキシ基、置 換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の炭素数 6 〜30のァリールチオ基、置換もしくは無置換の炭素数 7〜30のァリールアルキル基 、無置換の炭素数 5〜30の単環基、置換もしくは無置換の炭素数 10〜30の縮合多 環基又は置換もしくは無置換の炭素数 5〜30の複素環基である。 Ar1及び Ar2は、そ れぞれ独立に、置換もしくは無置換の炭素数 6〜30のァリール基又は置換もしくは 無置換のアルケニル基であり、置換基としては、置換もしくは無置換の炭素数 1〜20 のアルキル基、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無 置換の炭素数 6〜30のァリールォキシ基、置換もしくは無置換の炭素数 1〜20のァ ルキルチオ基、置換もしくは無置換の炭素数 6〜30のァリールチオ基、置換もしくは 無置換の炭素数 6〜30のァリールアルキル基、無置換の炭素数 5〜30の単環基、 置換もしくは無置換の炭素数 10〜30の縮合多環基又は置換もしくは無置換の炭素 数 5〜30の複素環基である。 )
[0041] [化 16]
Figure imgf000025_0001
(式中、!^1〜!^は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、ニトロ基、 置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の炭素数 1 〜20のアルコキシ基、置換もしくは無置換の炭素数 6〜30のァリールォキシ基、置 換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の炭素数 6 〜30のァリールチオ基、置換もしくは無置換の炭素数 7〜30のァリールアルキル基 、無置換の炭素数 5〜30の単環基、置換もしくは無置換の炭素数 10〜30の縮合多 環基又は置換もしくは無置換の炭素数 5〜30の複素環基である。 Ar1及び Ar2は、そ れぞれ独立に、置換もしくは無置換の炭素数 6〜30のァリール基又は置換もしくは 無置換のアルケニル基であり、置換基としては、置換もしくは無置換の炭素数 1〜20 のアルキル基、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無 置換の炭素数 6〜30のァリールォキシ基、置換もしくは無置換の炭素数 1〜20のァ ルキルチオ基、置換もしくは無置換の炭素数 6〜30のァリールチオ基、置換もしくは 無置換の炭素数 6〜30のァリールアルキル基、無置換の炭素数 5〜30の単環基、 置換もしくは無置換の炭素数 10〜30の縮合多環基又は置換もしくは無置換の炭素 数 5〜30の複素環基である。 )
[0043] [化 17]
Figure imgf000026_0001
[0044] (式中、!^1〜!^は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、ニトロ基、 置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の炭素数 1 〜20のアルコキシ基、置換もしくは無置換の炭素数 6〜30のァリールォキシ基、置 換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の炭素数 6 〜30のァリールチオ基、置換もしくは無置換の炭素数 7〜30のァリールアルキル基 、無置換の炭素数 5〜30の単環基、置換もしくは無置換の炭素数 10〜30の縮合多 環基又は置換もしくは無置換の炭素数 5〜30の複素環基である。 Ar3及び Ar4は、そ れぞれ独立に、置換もしくは無置換の炭素数 6〜30のァリール基又は置換もしくは 無置換のアルケニル基であり、置換基としては、置換もしくは無置換の炭素数 1〜20 のアルキル基、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無 置換の炭素数 6〜30のァリールォキシ基、置換もしくは無置換の炭素数 1〜20のァ ルキルチオ基、置換もしくは無置換の炭素数 6〜30のァリールチオ基、置換もしくは 無置換の炭素数 6〜30のァリールアルキル基、無置換の炭素数 5〜30の単環基、 置換もしくは無置換の炭素数 10〜30の縮合多環基、置換もしくは無置換の炭素数 5 〜30の複素環基又は置換もしくは無置換の炭素数 4〜40のァルケ-ル基である。 n は 1〜3、 mは 1〜3、かつ n+m≥2である。〕
[0045] [化 18]
Figure imgf000027_0001
〔4〕
[0046] (式中、 Ri〜R8は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、ニトロ基、 置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の炭素数 1 〜20のアルコキシ基、置換もしくは無置換の炭素数 6〜30のァリールォキシ基、置 換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の炭素数 6 〜30のァリールチオ基、置換もしくは無置換の炭素数 7〜30のァリールアルキル基 、無置換の炭素数 5〜30の単環基、置換もしくは無置換の炭素数 10〜30の縮合多 環基又は置換もしくは無置換の炭素数 5〜30の複素環基である。 Ar3及び Ar4は、そ れぞれ独立に、置換もしくは無置換の炭素数 6〜30のァリール基又は置換もしくは 無置換のアルケニル基であり、置換基としては、置換もしくは無置換の炭素数 1〜20 のアルキル基、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無 置換の炭素数 6〜30のァリールォキシ基、置換もしくは無置換の炭素数 1〜20のァ ルキルチオ基、置換もしくは無置換の炭素数 6〜30のァリールチオ基、置換もしくは 無置換の炭素数 6〜30のァリールアルキル基、無置換の炭素数 5〜30の単環基、 置換もしくは無置換の炭素数 10〜30の縮合多環基、置換もしくは無置換の炭素数 5 〜30の複素環基又は置換もしくは無置換の炭素数 4〜40のァルケ-ル基である。 ) [0047] [化 19]
Figure imgf000028_0001
〔5〕
[0048] (式中、 Ru〜! ^は、それぞれ独立に、水素原子、ァルケ-ル基、アルキル基、シクロ アルキル基、ァリール基、アルコキシル基、ァリールォキシ基、アルキルアミノ基、ァリ ールァミノ基又は置換してもよい複素環基を示し、 a及び bは、それぞれ 1〜5の整数 を示し、それらが 2以上の場合、 R11同士又は R12同士は、それぞれにおいて、同一で も異なっていてもよぐまた、 R11同士又は R12同士が結合して環を形成していてもよい し、 R13と R"、 R15と R16、 R17と R18、 R19と R2°が互いに結合して環を形成していてもよい。 L1は単結合又は—O—、—S—、—N (R)—(Rはアルキル基又は置換してもよいァリ ール基である)又はァリーレン基を示す。 )
[0049] [化 20]
Figure imgf000028_0002
〔6〕
(式中、 R21〜R3°は、それぞれ独立に、水素原子、ァルケ-ル基、アルキル基、シクロ アルキル基、ァリール基、アルコキシル基、ァリールォキシ基、アルキルアミノ基、ァリ ールァミノ基又は置換してもよい複数環式基を示し、 c、 d、 e及び fは、それぞれ 1〜5 の整数を示し、それらが 2以上の場合、 R21同士、 R22同士、 R26同士又は R27同士は、 それぞれにおいて、同一でも異なっていてもよぐまた、 R21同士、 R22同士、 R26同士 又は R27同士が結合して環を形成していてもよいし、 R23と R24、 R28と R29が互いに結合 して環を形成していてもよい。 L2は単結合又は— O—、— S―、— N (R) - (Rはアル キル基又は置換してもよ 、ァリール基である)又はァリーレン基を示す。〕
[0051] [化 21]
Figure imgf000029_0001
(式中、 Ar5、 Ar6及び Ar7は、それぞれ独立に、炭素数 6〜40の置換若しくは の一価の芳香族基又はスチリル基を示し、 gは 1〜4の整数を示す。 )
[0052] [化 22]
Figure imgf000029_0002
(式中、 Ar8、 Ar9、 Ar11, Ar13及び Ar"は、それぞれ独立に、炭素数 6〜40の置換若 しくは無置換の一価の芳香族基又はスチリル基を示し、 Ar1Q及び Ar12は、それぞれ 独立に炭素数 6〜40の置換若しくは無置換の二価の芳香族基又はスチリレン基又 はを示し、 h及び kはそれぞれ 0〜2の整数、 i及び jはそれぞれ 0〜3の整数である。 ) また、前記発光層におけるドーパントとしては、スチリルァミン、ァミン置換スチリル 化合物などのアミン誘導体及び縮合芳香族環含有化合物の中から選ばれる少なくと も一種類であることが好まし 、。前記スチリルァミン及びアミン置換スチリルイ匕合物とし ては、例えば、下記一般式〔9〕〜〔10〕で示される化合物が、上記縮合芳香族環含 有ィ匕合物としては、例えば、下記一般式〔11〕で示される化合物が挙げられる。 [0054] [化 23]
Figure imgf000030_0001
(式中、 Ar5、 Ar6及び Ar7は、それぞれ独立に、炭素数 6〜40の置換もしくは無置換 の芳香族基又はスチリル基を示し、 pは 1〜3の整数を示す。 )
[0055] [化 24]
U一 Ar15-f C= C一 Ar1o- - V
〔i o〕
(式中、 Ar15及び Ar16は、それぞれ独立に、炭素数 6〜30のァリーレン基、 E1及び E2 は、それぞれ独立に、炭素数 6〜30のァリール基もしくはアルキル基、水素原子又は シァノ基を示し、 qは 1〜3の整数を示す。 U及び Z又は Vはアミノ基を含む置換基で あり、該ァミノ基がァリールアミノ基であると好ましい。〕
[0056] (A)— B 〔11〕
(式中、 Aは、炭素数 1〜16のアルキル基もしくはアルコキシ基、炭素数 6〜30の置 換もしくは未置換のァリール基、炭素数 6〜30の置換もしくは未置換のアルキルアミ ノ基又は炭素数 6〜30の置換もしくは未置換のァリールアミノ基、 Bは、炭素数 10〜 40の縮合芳香族環基を示し、 rは 1〜4の整数を示す。 )
[0057] 本発明の有機 EL素子において、発光層としては、りん光発光性の化合物を用いる こともできる。りん光発光性の化合物力 なるホスト材料として力ルバゾール環を含む 化合物が好ましい。
力ルバゾール環を含む化合物力もなるりん光発光に好適なホスト材料は、その励起 状態からりん光発光性ィ匕合物へエネルギー移動が起こる結果、りん光発光性化合物 を発光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーを りん光発光性ィ匕合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に 応じて適宜選択することができる。力ルバゾール環以外に任意の複素環などを有して いてもよい。
このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フ -レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルアミンィ匕合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ-ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N—ビニルカルバゾール)誘導体、ァ-リン系共重合 体、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチオフ ヱン誘導体、ポリフ 二レン誘導体、ポリフ 二レンビニレン誘導体、ポリフルオレン誘 導体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2 種以上を併用しても良い。
このようなホストイ匕合物としては、以下のような例が挙げられる。
[化 25]
Figure imgf000032_0001
りん光発光性の化合物からなるドーパントとしては三重項励起子力 発光すること のできる化合物が好ましぐ三重項励起子力 発光する限り特に限定されないが、 Ir 、 Ru、 Pd、 Pt、 Os及び Reからなる群力 選択される少なくとも一つの金属を含む金 属錯体であることが好ましぐポルフィリン金属錯体又はオルトメタルイ匕金属錯体が好 ましい。ポルフィリン金属錯体としては、ポルフィリン白金錯体が好ましい。りん光発光 性化合物は単独で使用しても良 、し、 2種以上を併用しても良 、。
オルトメタルイ匕金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2 フエ二ルビリジン誘導体、 7, 8 べンゾキノリン誘導体、 2—(2 チェ-ル)ピリジン誘導体、 2—(1 ナフチル)ピリジン誘導体、 2—フエ-ルキノリ ン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特 に、フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好 ましい。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以 外の配位子を有して 、ても良 、。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 例えば、 0. 1〜70質量%であり、 1〜30質 量%が好ましい。りん光発光性ィヒ合物の含有量が 0. 1質量%未満では発光が微弱 でありその含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と言 われる現象が顕著になり素子性能が低下する。 また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有してちょい。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm以上では発光層形成及び色度の調整が容易であり、 50nm以下であれば駆動電圧が上昇する恐れがない。
[0060] 次に、正孔注入'輸送層は、発光層への正孔注入を助け、発光領域まで輸送する 層であって、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。 このような正孔注入 ·輸送層としては、より低い電界強度で正孔を発光層に輸送する 材料が好ましぐさらに正孔の移動度力 例えば 104〜: LOV/cmの電界印加時に、 少なくとも 10"4cmVv ·秒であるものが好まし!/、。
本発明の複素環を含むアミン誘導体を正孔輸送帯域 (正孔注入 ·輸送層)に用いる 場合、本発明の化合物単独で正孔注入'輸送層を形成してもよいし、他の材料と混 合して用いてもよい。
本発明の芳香族ァミン誘導体と混合して正孔注入'輸送層を形成する材料としては 、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に ぉ 、て正孔の電荷輸送材料として慣用されて 、るものや、有機 EL素子の正孔注入 層に使用される公知のものの中から任意のものを選択して用いることができる。
[0061] 具体例としては、例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等 参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダ ゾール誘導体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体( 米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544 号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号 公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55 — 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン 誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 5 5— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 5108 6号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、 同 54— 112637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号 公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報 、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450 号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658 , 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4 , 012, 376号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許 第 1, 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フ ルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特 許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、 同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11 350号公報、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチル ベン誘導体 (特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 146 42号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、 同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94 462号公報、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘 導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公 報)、ァニリン系共重合体 (特開平 2— 282263号公報)、特開平 1 211399号公報 に開示されている導電性高分子オリゴマー (特にチォフェンオリゴマー)等を挙げるこ とがでさる。
正孔注入層の材料としては上記のものを使用することができる力 ポルフィリン化合 物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級ァミン化合物及 びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号 公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 5 5— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295 558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特に芳香族 第三級ァミン化合物を用いることが好ま 、。
[0062] また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエ-ルァミノ)ビフエ- ル、また、特開平 4— 308688号公報に記載されているトリフエニルァミンユニットが 3 つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メチルフエ-ル)— N— フエ-ルァミノ)トリフエ-ルァミン等を挙げることができる。
さらに、前記発光層の材料として示した前述の芳香族ジメチリディン系化合物の他 、 p型 Si、 p型 SiC等の無機化合物も正孔注入層の材料として使用することができる。 正孔注入'輸送層は、本発明のアミン系化合物及び Z又は上述した化合物を用い 、例えば真空蒸着法、スピンコート法、キャスト法、 LB法等の公知の方法により薄膜 化することにより形成することができる。正孔注入'輸送層の膜厚は特に制限はない 力 通常は 5ηπ!〜 5 μ mである。
[0063] また、有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、 1 0_1QSZcm以上の導電率を有するものが好適である。このような有機半導体層の材 料としては、含チオフヱンオリゴマーゃ特開平 8— 193191号公報に開示してある含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等を用いることができる。
[0064] 次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きい。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 lO lC /cmの電界印加時に電子移動度が少なくとも 10— 5cm2ZVs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金 属錯体ゃォキサジァゾール誘導体が好適である。前記 8—ヒドロキシキノリン又はそ の誘導体の金属錯体の具体例としては、ォキシン(一般に 8—キノリノール又は 8—ヒ ドロキシキノリン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8— キノリノール)アルミニウムを用いることができる。
[0065] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[化 26]
Figure imgf000036_0001
(式中、 Ar1, Ar2, Ar3, Ar5, Ar6, Ar9は、それぞれ置換又は無置換のァリール基を 示し、それぞれ互いに同一であっても異なっていてもよい。また、 Ar4, Ar7, Ar8は、 置換又は無置換のァリーレン基を示し、それぞれ同一であっても異なって 、てもよ ヽ )
ここで、ァリール基としては、フエ-ル基、ビフヱ-ル基、アントラ-ル基、ペリレニル 基、ピレニル基が挙げられる。また、ァリーレン基としてはフエ-レン基、ナフチレン基 、ビフエ二レン基、アントラ-レン基、ペリレニレン基、ピレニレン基などが挙げられる。 また、置換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又 はシァノ基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好ま 、。
[0066] 上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 27]
Figure imgf000037_0001
さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (A)〜( F)で表されるちのち用いることがでさる。
[化 28]
Figure imgf000037_0002
(一般式 (A)及び (B)中、 A A3は、それぞれ独立に、窒素原子又は炭素原子であ る。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
ΐλ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ηは 0〜5の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。)で表される含窒素複素環誘導体。
[0068] HAr-L-Ar'-Ar2 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0069] [化 29]
Figure imgf000038_0001
(式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R
1〜Rは、それぞれ独立に水素、ハロゲ 4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ 基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ- ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0071] [化 30]
Figure imgf000039_0001
[0072] (式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基又はァリールォキシ基 を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Zは異なってもよい。但し、 nが 1、 X、 Y及び R力メチル基
1 2 であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z力メチル基の場
8 1
合を含まない。)で表されるボラン誘導体。
[0073] [化 31]
Figure imgf000040_0001
(F)
[0074] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (G)で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R^R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)又は— O Ga Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子を 表す。 ]
[0075] [化 32]
Figure imgf000040_0002
(式中、環 A1及び ΑΊま、置換基を有してよい互いに縮合した 6員ァリール環構造であ る。)
[0076] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (G)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル 基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエ-ル 基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルオロフェ- ル基、 3—トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基、 3— -トロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブト キシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3—へキサフルォロ— 2—プ 口ポキシ基、 6— (パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換の アルコキシ基、フエノキシ基、 p— -トロフエノキシ基、 p—t—ブチルフエノキシ基、 3— フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチルフエノキシ基 等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 t—プチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ-ルチオ基、 p— -トロフエ-ルチオ基、 p—t—ブ チルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフルオロフヱ-ルチオ基、 3—トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換のァリールチオ基、シ ァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチ ルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ-ルァミノ基等のモノ又はジ 置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビス ァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水 酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェチ ルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基、ブチルカ ルバモイル基、フエ-ルカルバモイル基等の力ルバモイル基、カルボン酸基、スルフ オン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フエ -ル基、ナフチル基、ビフエ-ル基、アントラ-ル基、フエナントリル基、フルォレ -ル 基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基、ピリミジニル基、ピリダ ジニル基、トリアジニル基、インドリ-ル基、キノリニル基、アタリジ-ル基、ピロリジ- ル基、ジォキサニル基、ピベリジ-ル基、モルフオリジ-ル基、ピペラジニル基、トリア チニル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ブラニル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成しても良い。
[0077] 本発明の有機 EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機層 の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントと は、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性 を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類 金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲンィ匕物、アルカリ 土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は 希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯 体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適 に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力 なる群力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、 Sr (仕事関数: 2. 0〜2. 5eV)及び Ba (仕事関数: 2. 52eV)力 なる群力 選択さ れる少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のもの が特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csから なる群力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又 は Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元能力が 高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光輝度の 向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとし て、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合 わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせである ことが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮するこ とができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や長 寿命化が図られる。
[0078] 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲ -ド、アルカリ土 類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン 化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい 。電子注入層がこれらのアルカリ金属カルコゲ-ド等で構成されていれば、電子注入 性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属力 ルコゲ-ドとしては、例えば、 Li 0、 K 0、 Na S、 Na Se及び Na Oが挙げられ、好ま
2 2 2 2 2
しいアルカリ土類金属カルコゲ-ドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS 及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例え ば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましいアルカリ 土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び BeFと
2 2 2 2 2
V、つたフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸ィ匕窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、この ような無機化合物としては、上述したアルカリ金属カルコゲ -ド、アルカリ土類金属力 ルコゲ -ド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が 挙げられる。
次に、陰極としては、仕事関数の小さ!/ヽ (4eV以下)金属、合金、電気伝導性化合 物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具 体例としては、ナトリウム,ナトリウム—カリウム合金、マグネシウム,リチウム,マグネシ ゥム '銀合金,アルミニウム Z酸化アルミニウム, Al/Li O, Al/LiO , Al/LiF,ァ
2 2
ルミ-ゥム ·リチウム合金,インジウム,希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで、発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率 は 10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百 Ω /ロ以 下が好ましぐさらに、膜厚は通常 ΙΟηπ!〜 1 μ m、好ましくは 50〜200nmである。
[0080] また、一般に、有機 EL素子は、超薄膜に電界を印可するために、リークやショート による画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄 膜層を挿入することが好まし ヽ。
絶縁層に用いられる材料としては、例えば、酸ィ匕アルミニウム、弗化リチウム、酸化リ チウム、弗ィヒセシウム、酸ィヒセシウム、酸ィヒマグネシウム、弗ィヒマグネシウム、酸ィ匕カ ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ- ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸ィ匕バナジウム等が 挙げられる。これらの混合物や積層物を用いてもよい。
[0081] 次に、本発明の有機 EL素子を作製する方法については、例えば上記の材料及び 方法により陽極、発光層、必要に応じて正孔注入層、及び必要に応じて電子注入層 を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で 有機 EL素子を作製することもできる。
以下、透光性基板上に、陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例について説明する。
まず、適当な透光性基板上に、陽極材料からなる薄膜を 1 μ m以下、好ましくは 10 〜200nmの範囲の膜厚になるように、蒸着法あるいはスパッタリング法により形成し 、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: LO— 3Torr、蒸着速度 0. 01〜50nmZ秒、基板温度 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
[0082] 次に、この正孔注入層上に発光層を設ける。この発光層の形成も、本発明に係る 発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法 により、発光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐか つピンホールが発生しにく 、等の点力 真空蒸着法により形成することが好まし 、。 真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異 なるが、一般的に正孔注入層の形成と同様な条件範囲の中から選択することができ る。
[0083] 次に、この発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同 様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は 正孔注入層、発光層と同様の条件範囲から選択することができる。
本発明の化合物は、発光帯域ゃ正孔輸送帯域のいずれの層に含有させるかによ つて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。 またスピンコート法を用いる場合は、他の材料と混合することによって含有させること ができる。
そして、最後に陰極を積層して有機 EL素子を得ることができる。陰極は金属力も構 成されるもので、蒸着法、スパッタリングを用いることができる。しかし、下地の有機物 層を製膜時の損傷力 守るためには真空蒸着法が好まし 、。
以上の有機 EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで作 製することが好ましい。
[0084] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明のアミ ン系化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法 (MBE法)あるい は溶媒に解かした溶液のデイツビング法、スピンコーティング法、キャスティング法、バ 一コート法、ロールコート法等の塗布法による公知の方法で形成することができる。 本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、ピンホール等の 欠陥や、効率を良くするため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。 実施例
[0085] 次に、本発明を実施例によりさらに詳細に説明する力 本発明は、これらの例によ つてなんら限定されるものではな!/、。
合成実施例 1 (化合物 1の合成)
化合物 1の合成経路を以下に示す。
[化 33]
Figure imgf000046_0001
中間体 1-1 中間体 1-2 中間体 1 - 3
Figure imgf000046_0002
[0086] (1)中間体 1 1の合成
200ml三口フラスコにベンゾチアジアゾール(Benzothiadiazole) 18. lg (133mmo 1)を入れ、 47%HBr水溶液 42. 9mlに溶解させる。この溶液に室温下で臭素 20ml を 20分間かけて滴下し、更に 47%HBr水溶液 13. 3mlをカ卩え、 24時間還流させる 。これを室温まで冷却し、ジクロロメタン 700mlに固体を溶解させた後、飽和のチォ 硫酸ナトリウム水溶液 400mlをカ卩ぇ分液ロートにて充分抽出を行なう。さらにジクロロ メタン層を蒸留水 150mlで 3回洗浄した後、無水硫酸ナトリウムで乾燥させる。ジクロ ロメタンを 200mほで濃縮し、 4°Cで 24時間置くことで再結晶を行なった。析出した針 状結晶をろ別することで目的化合物を 28. 2g (収率 72%)得た。
(2)中間体 1 2の合成
還流管を取り付けた 500mlの三口フラスコに中間体 1—1を 10. 0g (FW293. 96, 34mmol)及び溶媒エタノール 400mlを入れ、氷冷下、水素化ホウ素ナトリウム 24. 2g (式量 (FW) 37. 83, 640mmol)を力卩ぇ約 2時間、充分撹拌させた。ガス (硫化水 素)が発生しなくなったところで室温に戻し、終夜放置 (約 14時間)した。次に減圧下 溶媒を完全に留去し、水を約 400ml加え溶解させ、そのまま一晩放置することで、 目 的生成物を再結晶化させた(7. 17g)。次にェチルエーテルで 3回抽出、飽和食塩 水洗浄、無水硫酸ナトリウムによる乾燥、ろ過、ジェテルエーテル留去を経て、 目的 化合物を 8. 05g得た。合計収率は 82%であった。
[0087] (3)中間体 1 3の合成
500mlの三口フラスコに中間体 1—2 (FW287. 90, 24. 3mmol, 7. 0g)及び溶 媒エタノール 300ml、 9, 10 フエナントレンキノン 5. lg (FW208, 24. 3mmol)を 加え 8時間撹拌した。エタノールを溶媒に、再結晶を 5回繰り返すことで、 目的生成物 をほぼ定量的に得た。
(4)化合物 1の合成
アルゴン雰囲気下、三口フラスコに中間体 1—3 (FW438, 5. 7mmol, 2. 5g)、ジ フエ-ルァミン 2. 3g (FW169, 13. 7mmol)、Pd (dba) (dbaはジベンジリレンァセ
2 3
トン) 0. 10g (FW916, 0. l lmmol)、 t—ブトキシナトリウム 1. 4g (FW96, 14. 3 mmol)、無水トルエン 20ml、 P (tBu) 36mg (tBuは t—ブチル基)(FW202, 0. 18 mmol)をカ卩えて 80°Cで 8時間攪拌した。反応液をシリカゲルカラムクロマトグラフィー で精製し、化合物 1として紫色の固体 3gを得た。収率は 86%であった。
得られた生成物について、 FD— MS (フィールドディソープシヨンマススペクトル)、 イオン化ポテンシャル及び DSC (示差走査熱量分析)で測定した Tg (ガラス転移温 度)を測定した結果を以下に示す。
FD— MS : Calcd.for C H N =614 Found =614
44 30 4
イオン化ポテンシャル: 5. 58eV
Tg : 98°C
[0088] 合成実施例 2 (化合物 2の合成)
化合物 2の合成経路を以下に示す。
[化 34]
Figure imgf000048_0001
[0089] (1)中間体 2— 1の合成
合成実施例 1の(3)において、 9, 10—フエナントレンキノン 5. lgの代わりにァセナ フテンキノン 4. 4g (FW182, 24. 3mmol)を用いた以外は同様にして、中間体 2— 1を 8. 5g、収率 80%で得た。
(2)化合物 2の合成
合成実施例 1の(4)において、中間体 1—3 2. 5gの代わりに中間体 2—l (FW43 8, 5. 7mmol, 2. 3g)を用いた以外は同様にして、化合物 2としてオレンジ色の固体 3. Ogを得た。収率は 90%であった。
得られた生成物について、 FD— MS、イオン化ポテンシャル及び DSCで測定した Tg (ガラス転移温度)を測定した結果を以下に示す。
FD— MS : Calcd.for C H N = 588 Found = 588
42 28 4
イオン化ポテンシャル: 5. 19eV
Tg :ピークが検出されず
[0090] なお、合成実施例 1、 2にお!/、て FD— MS測定、 DSC測定及びイオン化ポテンシ ャル測定に用いた装置及び測定条件を以下に示す。
<FD— MS測定 >
装置: HX110 (日本電子社製)
条件:加速電圧 8kV
スキャンレンジ mZz = 50〜1500
ェミッタ種 カーボン
ェミッタ電流 0mA→2mAZ分→40mA (10分保持) < DSC測定 >
装置: パーキンエルマ一 Pyrisl
条件:(1)第 1加熱 30°C→260°C 昇温速度 10°CZ分,すべて窒素雰囲気
(2) 260°C 3分保持
(3) 260°C→ 50°C急冷 200°CZ分
(4) -50°C 10分保持
(5)第 2加熱 50°C→260°C 昇温速度 10°CZ分
<イオン化ポテンシャル測定 >
装置:光電子分光装置 AC 1 (リガク社)
条件:粉末状態、空気中
実施例 1
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmの化合物 1を成膜した。この化合物 1膜は正孔注入層として 機能する。続けて、この化合物 1膜上に膜厚 20nmの N, N, Ν' , N'—テトラキス (4 ービフエ-ル)—4, 4,一べンジジン膜(BPTPD膜)を成膜した。この BPTPD膜は正 孔輸送層として機能する。さらに、この BPTPD膜上に膜厚 40nmの下記化合物 Αと ドーピングィ匕合物 Bを 40 : 2の蒸着速度比で共蒸着した。この膜は発光層として機能 する。この膜上に膜厚 1 Onmのトリス (ヒド口キシキノリン)アルミニウム (下記 Alq)膜を成 膜した。この Alq膜は電子輸送層として機能する。この後、還元性ドーパント Li (Li源: サエルゲッタ一社製)と Alqを二元蒸着し電子注入層(陰極)として Alq :Li膜(lOnm )を形成した。この Alq:Li膜上に A1を蒸着して金属陰極を形成し、有機 EL素子を作 製した。
得られた有機 EL素子を評価したところ、発光効率は 9. 2cdZAであり、初期輝度 1 OOOcdZm2からの輝度半減時間は 500時間以上であった。また、最大発光波長は、 473nmであった。 [0092] [化 35]
Figure imgf000050_0001
[0093] 実施例 2
実施例 1にお 、て、化合物 1の代わりに化合物 2を用いた以外は同様に素子を作 製した。得られた有機 EL素子を評価したところ、発光効率は 9. lcdZAであり、初期 輝度 lOOOcdZm2からの輝度半減時間は 500時間以上であった。また、最大発光波 長は、 473nmであった。
[0094] 比較例 1
実施例 1において、化合物 1の代わりに下記比較ィ匕合物 1を用いた同様に素子を 作製した。得られた有機 EL素子を評価したところ、発光効率は 4. OcdZAであり、初 期輝度 lOOOcd/m2からの輝度半減時間は 10時間であった。
[化 36]
Figure imgf000050_0002
比較化合物 1 比較例 1で用いた比較化合物 1 (FW464)は高温加熱(200〜300°C)時に分解反 応が生じ、質量数 442を主成分とする複数のピークが FD— MS測定で観測されてい る。比較例 1の発光性能が著しく低!、理由として比較化合物 1が蒸着成膜時に熱分 解が起きたことが考えられる。
この熱分解を抑制し、有機 EL素子としての発光特性を高くするためには本発明の アミン系化合物のように、キノキサリン構造の共役構造拡大や架橋構造を導入するこ とが重要である。
産業上の利用可能性
以上、詳細に説明したように、本発明の新規なアミン系化合物は、電子写真感光体 や有機 EL素子の正孔注入材料又は正孔輸送材料に適しており、溶解性にも優れて いるため塗布法にて薄膜を形成できる。特に、このアミン系化合物を用いた有機 EL 素子は、低いイオン化ポテンシャル、大きなバンドギャップエネルギー、高い注入効 率、高い移動度という物性バランスに優れ、耐熱性が高ぐ良好な輝度 Z電圧特性、 電流密度 Z電圧特性を維持しつつ、発光効率が高ぐ寿命が長い。このため、実施 例の高い有機 EL素子として極めて有用であり、耐熱性が要求される車載用途にも適 している。

Claims

請求の範囲
下記一般式(1)で表されるキノキサリン環を含むアミン系化合物。
Figure imgf000052_0001
(式中、 Xは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1〜50のァ ルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換 の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭素数 1〜50のチオア ルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリールォキシ基、置換もし くは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50のァリール基、置換もしく は無置換の炭素数 2〜50のアルケニル基、置換もしくは無置換の炭素数 1〜50のァ ルキルカルボ-ル基、又は置換もしくは無置換の炭素数 4〜50のァリールカルボ- ル基である。 2つの Xは同じでも異なっていてもよぐ少なくとも 1つの Xは水素原子以 外の上述のうちのいずれかの基であり、 2つの Xは互いに架橋して環状構造を形成し ている。
Yは、それぞれ独立に、置換もしくは無置換の炭素数 4〜50のァリール基、又は置 換もしくは無置換の炭素数 5〜50の複素環基であり、同じ窒素原子に結合する 2つ の Yは同じでも異なって!/、てもよく、互 ヽに結合し架橋して 、てもよ!/、。
Zは、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換の炭素数 1 〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしく は無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭素数 1〜50 のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリールォキシ基、 置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50のァリール基、 置換もしくは無置換の炭素数 2〜50のアルケニル基、置換もしくは無置換の炭素数 1 〜50のアルキルカルボ-ル基、又は置換もしくは無置換の炭素数 4〜50のァリール カルボ-ル基である。 2つの Zは同じでも異なっていてもよぐ互いに結合し架橋して いてもよい。 )
下記一般式(2)で表される請求項 1に記載のキノキサリン環を含むアミン系化合物
[化 2]
Figure imgf000053_0001
(式中、 R^R8は、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換 の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基 、置換もしくは無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭 素数 1〜50のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリー ルォキシ基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50の ァリール基、置換もしくは無置換の炭素数 2〜50のアルケニル基、置換もしくは無置 換の炭素数 1〜50のアルキルカルボニル基、又は置換もしくは無置換の炭素数 4〜 50のァリールカルボ-ル基であり、それぞれ同じでも異なっていてもよい。また、隣接 するもの同士で架橋して環状構造を形成してもよい。 Y及び Zは、それぞれ前記と同 じである。 )
下記一般式(3)で表される請求項 1に記載のキノキサリン環を含むアミン系化合物
[化 3]
Figure imgf000054_0001
(式中、 R9〜R14は、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換 の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基 、置換もしくは無置換の炭素数 4〜50のァリールォキシ基、置換もしくは無置換の炭 素数 1〜50のチォアルコキシ基、置換もしくは無置換の炭素数 4〜50のチオアリー ルォキシ基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数 4〜50の ァリール基、置換もしくは無置換の炭素数 2〜50のアルケニル基、置換もしくは無置 換の炭素数 1〜50のアルキルカルボニル基、又は置換もしくは無置換の炭素数 4〜 50のァリールカルボ-ル基であり、それぞれ同じでも異なっていてもよい。また、隣接 するもの同士で架橋して環状構造を形成してもよい。 Y及び Zは、それぞれ前記と同 じである。 )
[4] 正孔注入材料又は正孔輸送材料である請求項 1〜3の!、ずれかに記載のキノキサ リン環を含むアミン系化合物。
[5] 有機エレクト口ルミネッセンス素子用正孔注入材料又は正孔輸送材料である請求 項 1〜3のいずれかに記載のキノキサリン環を含むアミン系化合物。
[6] 正極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも 1層力 請求項 1〜3のいずれかに記載のキノキサリン環を含むアミン系化合物を単 独もしくは混合物の成分として含有する有機エレクト口ルミネッセンス素子。
[7] 前記有機薄膜層が、正孔注入層及び Z又は正孔輸送層を有し、該正孔注入層及 び z又は正孔輸送層が、前記アミン系化合物を単独もしくは混合物の成分として含 有する請求項 6記載の有機エレクト口ルミネッセンス素子。
[8] 前記発光層が、青色系発光する請求項 6記載の有機エレクト口ルミネッセンス素子
[9] 前記発光層が、アントラセン誘導体をホスト材料として含有する請求項 6に記載の 有機エレクト口ルミネッセンス素子。
[10] 前記発光層が、ァミン誘導体をホスト材料又はドーパントとして含有する請求項 8又 は 9に記載の有機エレクト口ルミネッセンス素子。
PCT/JP2006/320621 2005-11-28 2006-10-17 アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子 WO2007060795A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007546377A JPWO2007060795A1 (ja) 2005-11-28 2006-10-17 アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子
EP06811876A EP1956011A1 (en) 2005-11-28 2006-10-17 Amine compound and organic electroluminescent element employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-341595 2005-11-28
JP2005341595 2005-11-28

Publications (1)

Publication Number Publication Date
WO2007060795A1 true WO2007060795A1 (ja) 2007-05-31

Family

ID=38067032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320621 WO2007060795A1 (ja) 2005-11-28 2006-10-17 アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20070132372A1 (ja)
EP (1) EP1956011A1 (ja)
JP (1) JPWO2007060795A1 (ja)
KR (1) KR20080080099A (ja)
CN (1) CN101316826A (ja)
TW (1) TW200732310A (ja)
WO (1) WO2007060795A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256343A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd アセナフトキノキサリン誘導体、発光素子、発光装置および電子機器
WO2009157426A1 (ja) * 2008-06-23 2009-12-30 住友化学株式会社 組成物及び同組成物を用いてなる発光素子
JP2011222556A (ja) * 2010-04-02 2011-11-04 Idemitsu Kosan Co Ltd キノキサリン化合物及びそれを用いた有機薄膜太陽電池
JP2014080400A (ja) * 2012-10-18 2014-05-08 Seiko Epson Corp チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2014080401A (ja) * 2012-10-18 2014-05-08 Seiko Epson Corp チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
KR101531946B1 (ko) * 2006-09-29 2015-06-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 및 퀴녹살린 유도체를 사용한 발광소자,발광장치, 전자기기

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586290B (zh) 2011-11-22 2021-05-11 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
CN103772416B (zh) * 2012-10-18 2018-01-19 精工爱普生株式会社 噻二唑系化合物、发光元件用化合物、发光元件、发光装置、认证装置以及电子设备
KR102431667B1 (ko) * 2017-09-21 2022-08-12 삼성디스플레이 주식회사 헤테로환 화합물, 이를 포함하는 유기 전계 발광 소자 및 유기 전계 발광 표시 장치
DE102020117591A1 (de) * 2019-07-12 2021-01-14 Semiconductor Energy Laboratory Co., Ltd. Organische Verbindung, Licht emittierende Vorrichtung, Licht emittierendes Gerät, elektronisches Gerät und Beleuchtungsvorrichtung
CN113683601B (zh) * 2021-08-19 2022-09-20 广东工业大学 一种二氮苯并荧蒽类化合物及其制备方法和应用

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093445A (ja) 1983-10-28 1985-05-25 Ricoh Co Ltd 電子写真用感光体
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH09301934A (ja) 1996-05-10 1997-11-25 Kemipuro Kasei Kk 高分子量芳香族アミン化合物およびそれよりなるホール輸送性材料
WO1998030071A1 (fr) 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
JP2000053956A (ja) 1998-08-10 2000-02-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2000309566A (ja) 1998-09-09 2000-11-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
JP2001160489A (ja) * 1999-12-01 2001-06-12 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Patent Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093445A (ja) 1983-10-28 1985-05-25 Ricoh Co Ltd 電子写真用感光体
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH09301934A (ja) 1996-05-10 1997-11-25 Kemipuro Kasei Kk 高分子量芳香族アミン化合物およびそれよりなるホール輸送性材料
WO1998030071A1 (fr) 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000053956A (ja) 1998-08-10 2000-02-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2000309566A (ja) 1998-09-09 2000-11-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
JP2001160489A (ja) * 1999-12-01 2001-06-12 Toyota Central Res & Dev Lab Inc 有機電界発光素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913
HUANG T.H. ET AL.: "Tunable Dipolar Acenaphthopyrazine Derivatives Containing Diphenylamine", CHEMISTRY OF MATERIALS, vol. 16, no. 25, 14 December 2004 (2004-12-14), pages 5387 - 5393, XP003009726 *
JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, vol. 6, 2001, pages 607

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531946B1 (ko) * 2006-09-29 2015-06-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 및 퀴녹살린 유도체를 사용한 발광소자,발광장치, 전자기기
JP2009256343A (ja) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd アセナフトキノキサリン誘導体、発光素子、発光装置および電子機器
WO2009157426A1 (ja) * 2008-06-23 2009-12-30 住友化学株式会社 組成物及び同組成物を用いてなる発光素子
JP2011222556A (ja) * 2010-04-02 2011-11-04 Idemitsu Kosan Co Ltd キノキサリン化合物及びそれを用いた有機薄膜太陽電池
JP2014080400A (ja) * 2012-10-18 2014-05-08 Seiko Epson Corp チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2014080401A (ja) * 2012-10-18 2014-05-08 Seiko Epson Corp チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器

Also Published As

Publication number Publication date
CN101316826A (zh) 2008-12-03
KR20080080099A (ko) 2008-09-02
JPWO2007060795A1 (ja) 2009-05-07
US20070132372A1 (en) 2007-06-14
EP1956011A1 (en) 2008-08-13
TW200732310A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
KR101152999B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
JP5619853B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5274459B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP4848152B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5249781B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5329429B2 (ja) アザインデノフルオレンジオン誘導体、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
KR101551591B1 (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
JPWO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006067931A1 (ja) アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080801A1 (ja) 新規イミド誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2008032631A1 (fr) Dérivé d&#39;amine aromatique et dispositif électroluminescent organique l&#39;employant
KR20100038193A (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자
WO2006073059A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007060795A1 (ja) アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子
WO2008001551A1 (fr) Dérivé d&#39;amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044454.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007546377

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006811876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087012672

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2658/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE