WO2007058343A1 - 振動子およびその製造方法 - Google Patents

振動子およびその製造方法 Download PDF

Info

Publication number
WO2007058343A1
WO2007058343A1 PCT/JP2006/323086 JP2006323086W WO2007058343A1 WO 2007058343 A1 WO2007058343 A1 WO 2007058343A1 JP 2006323086 W JP2006323086 W JP 2006323086W WO 2007058343 A1 WO2007058343 A1 WO 2007058343A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
groove
electrode
substrate
vibrator
Prior art date
Application number
PCT/JP2006/323086
Other languages
English (en)
French (fr)
Inventor
Katsumi Fujimoto
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007509782A priority Critical patent/JP4636086B2/ja
Priority to CN2006800322263A priority patent/CN101258382B/zh
Priority to EP20060823473 priority patent/EP1953498B1/en
Publication of WO2007058343A1 publication Critical patent/WO2007058343A1/ja
Priority to US12/101,227 priority patent/US7579760B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5663Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5628Manufacturing; Trimming; Mounting; Housings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders

Definitions

  • the present invention relates to a vibrator and a method for manufacturing the vibrator, and more particularly, for example, to a vibrator used in a piezoelectric vibration gyro for detecting angular velocity and a method for manufacturing the vibrator.
  • FIG. 11 is a cross-sectional view showing a conventional vibrator as the background of the present invention.
  • the vibrator 1 includes, for example, a first piezoelectric substrate 2a and a second piezoelectric substrate 2b.
  • the first piezoelectric substrate 2a and the second piezoelectric substrate 2b are stacked with the bonding layer 3 interposed therebetween. Further, the first piezoelectric substrate 2a and the second piezoelectric substrate 2b are polarized in opposite thickness directions as indicated by arrows in FIG. 11 (a). Then, two divided electrodes 4a and 4b are formed on the main surface of the first piezoelectric substrate 2a with an interval in the width direction. Further, the common electrode 5 is formed on the main surface of the second piezoelectric substrate 2b (see Patent Document 1).
  • the vibrator 1 is used, for example, in a piezoelectric vibration gyro for detecting angular velocity.
  • a drive signal such as a sine wave signal is applied to the divided electrodes 4 a and 4 b and the common electrode 5 in the vibrator 1.
  • the first piezoelectric substrate 2a and the second piezoelectric substrate 2b are displaced in the opposite directions.
  • the second piezoelectric substrate 2b contracts in a direction parallel to the main surface.
  • the second piezoelectric substrate 2b extends in a direction parallel to the main surface.
  • the first piezoelectric substrate 2a and the second piezoelectric substrate 2b bend in a direction perpendicular to the main surface.
  • signals differing in force between the two divided electrodes 4a and 4b are output.By taking the difference between the output signals of the two divided electrodes 4a and 4b, A signal corresponding to the rotational angular velocity can be detected. From this output signal, the rotational angular velocity can be determined.
  • a vibrator 6 as shown in FIG. 11 (b) is disclosed as a vibrator having no bonding layer.
  • the vibrator 6 is formed by forming electrodes 8a, 8b, 8c and 8d, 8e, 8f on the opposing surface of the rectangular columnar vibrator 7, respectively. From the electrode 8e force to the electrodes 8a, 8b, 8c, the vibrating body 7 ⁇ is polarized and further polarized from the electrode 8e toward the electrodes 8d, 8f. (See Patent Document 2).
  • a vibrator 8 as shown in FIG. 11 (c) is disclosed as a vibrator having no other bonding layer.
  • the vibrator 9 includes, for example, a quadrangular prism-shaped vibrating body 10, and two divided electrodes 11a and l ib are formed on one main surface so as to extend in the longitudinal direction and at intervals in the width direction.
  • the common electrode 12 is formed on the entire main surface of the vibrating body 10 that faces the formation surface of the divided electrodes 11a and ib.
  • the divided electrode 11a, ib forming surface side of the vibrating body 10 is strongly polarized toward the divided electrode 11a, ib, and the common electrode 12 side is weakly polarized. This is achieved by heating one side of the vibrating body 10 polarized in the thickness direction to a temperature above the Curie point to weaken the polarization and simultaneously cooling the other side to leave the polarization. (See Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-332988
  • Patent Document 2 Japanese Patent Laid-Open No. 11 83496
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-314629
  • the bonding-type vibrator 1 has a bonding process for bonding the first piezoelectric substrate 2a and the second piezoelectric substrate 2b, so that the bonding process is a productive efficiency in mass production. It was a factor that lowered
  • the vibrator 6 has a problem that the electromechanical coupling coefficient is smaller than that of the bonded vibrator 1.
  • the vibrator 9 of the morph type has a better electromechanical coupling coefficient than the vibrator 6 in which the direction of a part of the polarization is changed, but the portion displaced by the drive signal is the thickness direction of the vibrator 10. Since it is only on one side, only one half of the electromechanical coupling coefficient of the junction type vibrator 1 can be obtained.
  • a main object of the present invention is to provide an electromechanical coupling coefficient having a large production efficiency, a vibrator, and a manufacturing method thereof.
  • the present invention relates to a quadrangular prism-shaped vibrating body having four side surfaces extending in the longitudinal direction, a common electrode formed on the entire surface of one side surface of the vibrating body, and a side surface facing the side surface on which the common electrode is formed.
  • the vibrating body includes a first polarization portion polarized in the direction of the divided electrode from a side surface where no electrode is formed, and a divided electrode formed so as to be divided in the width direction.
  • a vibrator having a second polarization portion polarized in a common electrode direction from the side surface.
  • the vibrator according to the present invention includes a quadrangular prism-shaped vibrating body having four side surfaces extending in the longitudinal direction, a common electrode formed on the entire surface of one side surface of the vibrating body, and a common electrode.
  • a split electrode formed so as to be divided in the width direction across the side surface facing the opposite side surface, and the vibrating body includes a first polarization portion polarized in the split electrode direction from the side surface on which no electrode is formed.
  • the vibrator having a second polarization portion polarized in the common electrode direction, such as a split electrode, in a portion other than the first polarization portion.
  • the vibrator described above is polarized in substantially opposite directions on both sides in the thickness direction of the vibrator without the bonding layer, a drive signal is applied to the divided electrode and the common electrode of the vibrator. As a result, displacements in opposite directions occur on both sides of the vibrating body in the thickness direction.
  • a tuning fork vibrator according to the present invention is a tuning fork vibrator in which two vibrators according to claim 1 or 2 are arranged side by side and the two vibrators are connected by a connecting portion.
  • the divided electrode forces of the two vibrators are connected so that they are formed on the same plane, and the connecting portion is formed by connecting the two vibrators with appropriate widths at one end of the two vibrators. It is a vibrator.
  • An H-type vibrator according to the present invention is an H-type vibrator in which two vibrators according to claim 1 or claim 2 are arranged side by side and two vibrators are connected by a connecting portion.
  • the split electrodes of the two vibrators are connected so as to be formed on the same plane, and the connecting portion is formed by connecting with an appropriate width at the approximate center of the two vibrators. It is an H-shaped resonator.
  • the method for manufacturing a vibrator according to the present invention includes a first step of forming electrodes on one main surface and the other main surface of the substrate, and grooves at constant intervals on the one main surface and the other main surface of the substrate.
  • the second step of forming the electrode, the third step of forming the electrode in the groove, the fourth step of further adding the groove shallower and wider than the groove to the groove, the electrode formed in the groove on one main surface and the one main By applying a voltage between the electrode formed on the surface and between the electrode formed with the groove on the other main surface and the electrode formed on the other main surface, it is formed on the groove on the one main surface.
  • the fifth step is to polarize from one electrode to the principal surface and polarize from the electrode formed in the groove on the other principal surface to the electrode formed on the other principal surface.
  • the sixth step of forming the split electrode, the seventh step of cutting the substrate at the part where the groove is formed Including a method for manufacturing a vibrator.
  • a first step of forming electrodes on one main surface and the other main surface of a substrate is polarized from one main surface of the substrate toward the other main surface.
  • the electrode force formed in the groove is also polarized on the one main surface by the sixth step, the seventh step for forming the split electrode on the one main surface, and the substrate is cut at the groove formed portion.
  • the ratio of the portion of the polarization to be inverted can be adjusted by adjusting the depth of the grooves.
  • a method for manufacturing a tuning fork vibrator according to the present invention includes a first step of forming electrodes on one main surface and the other main surface of a substrate, and at a constant interval on one main surface and the other main surface of the substrate.
  • the sixth step is to cut the substrate every other part of the groove.
  • the substrate is cut leaving one end of the substrate, thereby forming a connecting part that connects the two ends and one end of the two resonators.
  • another tuning-fork type vibrator manufacturing method includes a first step of forming electrodes on one main surface and the other main surface of the substrate, from one main surface of the substrate to the other main surface direction.
  • the second step of dividing the electrode into the groove the third step of forming a groove on one main surface of the substrate at a constant interval, the fourth step of forming the electrode in the groove, and the groove having a groove shallower and wider than the groove.
  • the method for manufacturing an H-type vibrator according to the present invention includes a first step of forming electrodes on one main surface and the other main surface of the substrate, and grooves at constant intervals on the one main surface and the other main surface of the substrate.
  • the second step of forming the electrode, the third step of forming the electrode in the groove, the fourth step of further adding the groove shallower and wider than the groove to the groove, the electrode formed in the groove on one main surface and the one main By applying a voltage between the electrode formed on the surface and between the electrode formed with the groove on the other main surface and the electrode formed on the other main surface, it is formed on the groove on the one main surface.
  • the fifth step of polarizing from one electrode to the other main surface and polarizing from the electrode formed in the groove on the other main surface toward the electrode formed on the other main surface, the polarization electrode on one main surface is to cut the substrate every other part of the grooved portion. Step: At the portion of the cut substrate where the groove is formed, the substrate is cut while leaving the central portion of the substrate, thereby forming a connecting portion that connects the two vibrators and the central portion of the two vibrators. This is a method for manufacturing an H-shaped vibrator, including the eighth step.
  • another H-type vibrator manufacturing method includes a first step of forming electrodes on one main surface and the other main surface of the substrate, from one main surface to the other main surface direction of the substrate.
  • the second step of polarization to a third step, the third step of forming grooves on one main surface of the substrate at regular intervals, the fourth step of forming electrodes in the grooves, and the grooves further shallower and wider than the grooves.
  • the fifth step is to apply a voltage between the electrode formed on the groove on the one main surface and the electrode formed on the one main surface, so that the electrode is polarized from the electrode formed on the groove toward the one main surface.
  • the vibrator according to the present invention since there is no bonding layer in the vibrating body, a conventional process of bonding two piezoelectric substrates is not required, so that the rationality of the manufacturing process can be reduced. be able to Further, in the vibrator according to the present invention, reverse polarization is formed on both sides in the thickness direction of one vibrating body. Therefore, when a drive signal is applied to the divided electrode and the common electrode, opposite displacements are generated on both sides in the thickness direction of the vibrating body, resulting in an increase in the electromechanical coupling coefficient.
  • the vibrator according to the present invention has no bonding layer, the detection sensitivity is hardly deteriorated due to a force change caused by a change in the state of the bonding layer due to a temperature change or the like.
  • polarization in different directions is possible on both sides in the thickness direction of one vibrator by using the electrodes formed in the grooves.
  • FIG. 1 is a perspective view showing a vibrator according to the present invention.
  • FIG. 2 is an illustrative view showing a manufacturing method for forming a vibrator according to the present invention.
  • FIG. 3 is a perspective view showing another vibrator according to the present invention.
  • FIG. 4 is an illustrative view showing a manufacturing method for forming another vibrator according to the present invention.
  • FIG. 5 is a perspective view showing a tuning fork vibrator according to the present invention.
  • FIG. 6 is an illustrative view showing a manufacturing method for forming a tuning fork vibrator according to the present invention.
  • FIG. 7 is a perspective view showing another tuning fork vibrator according to the present invention.
  • FIG. 8 is an illustrative view showing a manufacturing method for forming another tuning fork vibrator according to the present invention.
  • FIG. 9 is a perspective view showing an H-type vibrator according to the present invention.
  • FIG. 10 is a perspective view showing another H-type vibrator according to the present invention.
  • FIG. 11 is an illustrative sectional view showing a conventional vibrator as the background of the present invention.
  • Fig. 1 is a perspective view showing a vibrator that works on one embodiment of the present invention.
  • the vibrator 20 includes a quadrangular columnar vibrator 24 having four side surfaces 22a, 22b, 22c, and 22d extending in the longitudinal direction.
  • a common electrode 26 is formed on the entire surface of one side surface 22a of the vibrating body 24.
  • the split electrodes 28a and 28b are formed so as to be divided at the center in the width direction of the side surface 22b so as to extend in the longitudinal direction of the side surface 22b facing the side surface 22a on which the common electrode 26 is formed.
  • a first polarization unit 30 and a second polarization unit 32 are formed in the vibrating body 24 .
  • the first polarization unit 30 is formed so as to polarize the side surfaces 22c and 22d on which the electrode of the vibrating body 24 is not formed toward the divided electrodes 28a and 28b forming surfaces 22b.
  • the second polarization unit 32 is The side surfaces 22c and 22d where no electrode is formed are formed so as to be divided by the direction of the common electrode 26 forming surface 22a.
  • FIG. 2 is a cross-sectional view showing a manufacturing method for forming the vibrator 20.
  • a substrate 34 is prepared.
  • the first grooves 40a and 40b are formed in parallel at regular intervals at positions where the one main surface and the other main surface of the substrate 34 face each other.
  • First grooves 40a and 40b which are respectively formed on the one main surface and the other main surface of the substrate 34, are formed with the electrodes 42a and 42b.
  • the entire surface electrodes 36 and 38 are connected to the electrodes 42a and 42b.
  • the electrodes 42a and 42b are completely filled with no gaps in the first grooves 40a and 40b. It is only necessary that the electrodes 42a and 42b are in full contact with the side and bottom surfaces of the grooves 40a and 40b.
  • the second grooves 44a and 42a are wider and shallower than the first grooves 40a and 40b. 44b force S is formed. As a result, the entire surface electrodes 36, 38 and the electrodes 42a, 42b are separated from each other by force.
  • the electrode 42a formed in the first groove 40a on the one main surface of the substrate 34 and the full surface electrode 36 on the one main surface, and in the first groove 40b on the other main surface of the substrate 34 is formed.
  • the divided electrodes 28a and 28b are formed by cutting along the center line 46 between the grooves 44a in the entire surface electrode 36 on the one main surface of the substrate 34.
  • the substrate 34 is cut along the wide second grooves 44a and 44b to form a plurality of vibrators 20.
  • the electrodes 42a and 42b in the first grooves 40a and 40b are removed.
  • the vibrator 20 does not have a bonding layer, a process for bonding the substrates to each other through the bonding layer is unnecessary. Therefore, the cost of the manufacturing process can be reduced because of the rational manufacturing process.
  • the vibrator 20 includes a vibrating body 24 polarized in opposite thickness directions. By applying a drive signal to the split electrodes 28a, 28b and the common electrode 26, bimorph vibration is performed, so that the vibrator 20 having a large electromechanical coupling coefficient can be obtained.
  • the electrode 42a formed on the first groove 40a and the entire surface electrode 36, and the electrode 42b and the entire surface electrode 38 formed on the first groove 40b By applying a voltage between them, it is possible to form the first polarization part 30 and the second polarization part 32 in different directions on both sides in the thickness direction of one vibrating body 24. In addition, a large number of vibrators 20 can be obtained simultaneously from a single plate.
  • FIG. 3 is a perspective view showing a vibrator that works on another embodiment of the present invention.
  • the vibrator 50 includes a quadrangular prism-shaped vibrator 24 having four side surfaces 22a, 22b, 22c, and 22d extending in the longitudinal direction.
  • a common electrode 26 is formed on the entire surface of one side surface 22a of the vibrating body 24.
  • Split electrodes 28a and 28b are formed on the side surface 22b opposite to the side surface 22a on which the common electrode 26 is formed so as to extend in the longitudinal direction of the side electrode 22a and be divided at the center in the width direction of the side surface 22b.
  • a first polarization unit 30 and a second polarization unit 32 are formed in the vibrating body 24 .
  • the first polarization unit 30 is formed so as to polarize the side surfaces 22c and 22d on which the electrode of the vibrating body 24 is not formed toward the divided electrodes 28a and 28b forming surfaces 22b.
  • the second polarization portion 32 is formed so as to be polarized in a direction from the divided electrode 28a, 28b formation surface 22b to the common electrode 26 formation surface 22a in a portion other than the first polarization portion 30 of the vibrating body 24.
  • FIG. 4 is an illustrative sectional view showing a manufacturing method for forming the vibrator 50.
  • a substrate 34 is prepared. Full surface electrodes 36 and 38 are formed on one main surface and the other main surface of the substrate 34 as shown in FIG. 4 (a). As shown by the arrow in FIG. 4 (a), the substrate 34 is polarized in the thickness direction, that is, the one main surface force of the substrate 34 is also polarized over the entire region in the direction of the other main surface.
  • first grooves 4 Oa are formed in parallel at regular intervals.
  • An electrode 42 a is formed in the first groove 40 a formed on one main surface of the substrate 34. As a result, the whole surface electrode 36 and the electrode 42a are connected.
  • the electrode 42a is a force in which the first groove 40a is completely filled with no gap, and the present invention is not limited to this. Electrode 42a It should be.
  • the divided electrodes 28a and 28b are formed by cutting along the center line 46 between the grooves 44a in the entire surface electrode 36 on one main surface of the substrate 34.
  • the substrate 34 is cut along the wide second grooves 44a and 44b to form a plurality of vibrators 50.
  • the electrode 42a in the first groove 40a is removed.
  • a vibrator 50 does not have a bonding layer, a process of bonding the substrates to each other through the bonding layer is not necessary. Therefore, a rational manufacturing process can reduce costs. Further, since the vibrator 50 includes the vibrating body 24 polarized in the opposite thickness directions, applying a driving signal to the divided electrodes 28a and 28b and the common electrode 26 causes a neomorphic vibration. Therefore, the vibrator 50 having a large electromechanical coupling coefficient can be obtained.
  • the voltage is applied between the full-surface electrode 36 and the full-surface electrode 38 to polarize in the thickness direction of the vibrating body 24, and then formed in the first groove 40a.
  • the first polarized portion 30 and the second polarized portion 32 having different orientations can be formed on both sides in the thickness direction of one vibrating body 24. It becomes possible.
  • the range of the first polarization part 30 can be adjusted by adjusting the depth of the first groove 40a.
  • the state of the bimorph vibration of the vibrator can be adjusted.
  • a large number of the vibrators 50 can be obtained simultaneously from a single plate.
  • FIG. 5 is a perspective view showing a tuning fork type vibrator that works on the embodiment of the present invention.
  • the tuning fork vibrator 120 includes two vibrators 20 arranged side by side. These vibrators One end side of 20 is connected by a connecting portion 60, and is formed in a tuning fork shape as a whole.
  • the two vibrators 20 have the same configuration as that of the vibrator 20 shown in FIG. 1, and the connecting portion 60 is made of the same material as that of the vibrator 24 constituting the vibrator 20.
  • Electrodes 42a and 42b are formed on the opposing portion of the connecting portion 60 so as to extend side by side with the two vibrators 20. These electrodes 42a and 42b are used in the manufacturing process of the tuning fork vibrator 120.
  • the electrodes 42a and 42b formed in the above are left unrelated to the operation of the tuning fork vibrator 120.
  • the tuning fork vibrator 120 includes the steps shown in FIG. 2 (a) and FIG. 2 (c), and a polarized substrate 34 is formed.
  • the electrode 34 is cut along the center line 46 between the grooves 44a in the full-surface electrode on one main surface of the substrate 34 to form the divided electrodes 28a and 28b.
  • every other substrate 34 is cut out of the portions where grooves are formed, and a plurality of substrates having grooves in the center are formed.
  • the substrate is cut while leaving one end side of the substrate. Thereby, the two vibrators 20 and the connecting portion 60 are formed, and the tuning fork vibrator 120 can be obtained.
  • FIG. 7 is a perspective view showing a tuning fork vibrator that can be applied to another embodiment of the present invention.
  • the tuning fork vibrator 150 includes two vibrators 50 arranged side by side. One end sides of these vibrators 50 are connected by a connecting portion 60 and formed as a tuning fork type as a whole.
  • the two vibrators 50 have the same configuration as that of the vibrator 50 shown in FIG. 3, and the connecting portion 60 is made of the same material as that of the vibrator 24 constituting the vibrator 50.
  • An electrode 42a is formed on the opposing portion of the connecting portion 60 so as to extend in parallel with the two vibrators 50. This electrode 42a is an electrode formed in the manufacturing process of the tuning fork vibrator 150. 42 a remains and is not related to the operation of the tuning fork type vibrator 150.
  • a manufacturing method for forming the tuning fork vibrator 150 will be described.
  • the tuning fork vibrator 150 includes the steps shown in FIGS. 4 (a) to 4 (d), and a polarized substrate 34 is formed.
  • the electrodes 34a and 28b are formed by cutting along the center line 46 between the grooves 44a in the full-surface electrode on one main surface of the substrate 34.
  • every other substrate 34 is cut out of the portions where the grooves are formed, and a plurality of substrates having grooves in the center are formed.
  • the groove of the substrate thus obtained In the portion, the substrate is cut leaving one end side of the substrate. Thereby, the two vibrators 50 and the connecting portion 60 are formed, and the tuning fork vibrator 150 can be obtained.
  • FIG. 9 is a perspective view illustrating an H-type vibrator that is useful for the embodiment of the present invention.
  • H-type vibrator 220 includes two vibrators 20 arranged side by side. The central parts of these vibrators 20 are connected by a connecting part 60 and formed in an H shape as a whole.
  • the two vibrators 20 have the same configuration as that of the vibrator 20 shown in FIG. 1, and the connecting portion 60 is formed of the same material as that of the vibrator 24 constituting the vibrator 20.
  • These electrodes 42a and 42b are formed in the manufacturing process of the H-type vibrator 220. The electrodes 42a and 42b remain, and the operation of the H-type vibrator 220 is unrelated!
  • the H-type vibrator 220 includes the steps shown in FIGS. 2 (a) to 2 (d), and a polarized substrate 34 is formed.
  • the electrodes 34a and 28b are formed by cutting along the center line 46 between the grooves 44a in the full-surface electrode on one main surface of the substrate 34.
  • every other substrate 34 is cut out of the portions where grooves are formed, and a plurality of substrates having grooves in the center are formed.
  • the substrate is cut leaving the central portion of the substrate. Thereby, the two vibrators 20 and the connecting portion 60 are formed, and the H-type vibrator 220 can be obtained.
  • FIG. 10 is a perspective view showing an H-shaped vibrator that works on another embodiment of the present invention.
  • H-type vibrator 250 includes two vibrators 50 arranged side by side. The central portions of these vibrators 50 are connected by a connecting portion 60 and formed in an H shape as a whole.
  • the two vibrators 50 have the same configuration as that of the vibrator 50 shown in FIG. 3, and the connecting portion 60 is formed of the same material as that of the vibrator 24 that constitutes the vibrator 50.
  • the force that the electrode 42a is formed to extend in parallel with the two vibrators 50 at the opposite part of the connecting part 60. This electrode 42a remains the electrode 42a formed in the manufacturing process of the H-type vibrator 250. It is not related to the operation of the H-type vibrator 250.
  • the H-shaped resonator 250 includes the steps shown in FIGS. 4 (a) to 4 (d), and the polarized substrate 34 is It is formed.
  • the electrodes 34a and 28b are formed by cutting along the center line 46 between the grooves 44a in the full-surface electrode on one main surface of the substrate 34.
  • every other substrate 34 is cut out of the portions where grooves are formed, and a plurality of substrates having grooves in the center are formed.
  • the substrate is cut leaving the central portion of the substrate. Thereby, the two vibrators 50 and the connecting portion 60 are formed, and the H-type vibrator 250 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Gyroscopes (AREA)

Abstract

 生産効率がよく、電気機械結合計通の値の大きい振動子およびその製造方法を提供する。  本願発明の一実施形態である振動子20は、長手方向に延びる4つの側面22a,22b,22c,22dを有する四角柱状の振動体24を含む。そして、振動体24の1つの側面22aの全面には、共通電極26が形成される。側面22aに対向する側面22bには、その長手方向に延びるようにして、側面22bの幅方向に分割されるように分割電極28a,28bが形成される。振動体24には、第1分極部30が、振動体24の電極が形成されていない側面22c,22dから分割電極28a,28bに向かって分極するように形成され、また、第2分極部32は、振動体24の電極が形成されていない側面22c,22dから共通電極26に向かって分極するように形成される。すなわち、接合層を有しないで、厚み方向に逆向きに分極された振動子20である。

Description

明 細 書
振動子およびその製造方法
技術分野
[0001] この発明は、振動子およびその製造方法に関し、特にたとえば、角速度を検知する ための圧電振動ジャイロに用いられる振動子およびその製造方法に関する。
背景技術
[0002] 図 11は、本願発明の背景となる従来の振動子を示す断面図である。
振動子 1は、図 11 (a)に示すように、たとえば第 1の圧電体基板 2aおよび第 2の圧 電体基板 2bを含む。第 1の圧電体基板 2aおよび第 2の圧電体基板 2bは、接合層 3 を介在させながら積層される。また、第 1の圧電体基板 2aおよび第 2の圧電体基板 2 bは、図 11 (a)の矢印で示すように、互いに逆の厚み方向に分極している。そして、 第 1の圧電体基板 2aの主面には、その幅方向に間隔を隔てて 2つの分割電極 4a, 4 bが形成される。また、第 2の圧電体基板 2bの主面には、共通電極 5が形成される( 特許文献 1参照)。
振動子 1は、たとえば、角速度を検知するための圧電振動ジャイロに使用される。振 動子 1における分割電極 4a, 4bおよび共通電極 5に、たとえば正弦波信号などの駆 動信号が印加される。この駆動信号によって、第 1の圧電体基板 2aおよび第 2の圧 電体基板 2bは、互いに逆に変位する。この場合、第 1の圧電体基板 2aがその主面 に平行する方向に伸びて 、るときには、第 2の圧電体基板 2bはその主面に平行する 方向に縮む。逆に第 1の圧電体基板 2aがその主面に平行する方向に縮んで!/、るとき には、第 2の圧電体基板 2bはその主面に平行する方向に伸びる。そのため、第 1の 圧電体基板 2aおよび第 2の圧電体基板 2bは、その主面に直交する方向に屈曲運動 する。この状態で中心軸 Oにおいて振動子 1が回転すると、 2つの分割電極 4a, 4b 力 異なる信号が出力されるため、 2つの分割電極 4aと分割電極 4bの出力信号の差 をとることにより、その回転角速度に応じた信号を検出することができる。この出力信 号から、回転角速度を知ることができる。
[0003] このような振動子 1では、 2枚の基板の接合工程を有するので、該接合工程が量産 時の生産効率を考えるうえでの阻害要因となり、さらに、個々の振動子の特性のばら つきを発生させる要因にもなつていた。また、接合層 3をエポキシ系接着剤などの有 機接着剤で形成する場合、振動子 1の励振時には、その接着剤も共に振動すること で角速度の検出の効率を下げたり、温度による接着剤の変化により振動状態が変化 して角速度検出感度の変動を引き起こしたりして 、た。
[0004] そこで、接合層を有しない振動子について、図 11 (b)に示すような振動子 6が開示 されている。
振動子 6は、四角柱状の振動体 7の対向面に、それぞれ電極 8a, 8b, 8cおよび 8d , 8e, 8f力形成されて!ヽる。そして、振動体 7ίま、電極 8e力ら電極 8a, 8b, 8cに向力 つて分極されており、さらに、電極 8eから電極 8d, 8fに向かってそれぞれ分極されて いる。(特許文献 2参照)。
また、別の接合層を有しない振動子として、図 11 (c)に示すような振動子 8が開示さ れている。
振動子 9は、たとえば四角柱状の振動体 10を含み、 1つの主面には、その長手方 向に延びるように、かつその幅方向に間隔を隔てて 2つの分割電極 11a, l ibが形成 されている。また、振動体 10の分割電極 11a, l ib形成面に対向する主面には、共 通電極 12が全面に形成される。そして、振動体 10の分割電極 11a, l ib形成面側 は、分割電極 11a, l ibに向かって強く分極され、共通電極 12側は、弱く分極されて いる。これは、あら力じめ厚み方向に分極された振動体 10の一方面側をキュリー点 以上の温度に加熱して分極を弱めると同時に、他方面を冷却して分極を残すことに より達成される (特許文献 3参照)。
上述したような振動子 6、 9は、接合層を有しないので、接合層を設けていたことによ る従来の不都合は生じない。
[0005] 特許文献 1 :特開平 7— 332988号公報
特許文献 2:特開平 11 83496号公報
特許文献 3:特開 2000— 314629号公報
発明の開示
発明が解決しょうとする課題 [0006] 上述のように、接合型の振動子 1は、第 1の圧電体基板 2aと第 2の圧電体基板 2bと を接合する接合工程を有するので、該接合工程が量産時の生産効率を低下させる 要因となっていた。
また、振動子 6は、接合型の振動子 1に比べて、電気機械結合係数の値が小さいと いう問題があった。また、ュ-モルフ型である振動子 9は、分極の一部の方向を変え た振動子 6に比べて、電気機械結合係数はよいものの、駆動信号によって変位する 部分が振動体 10の厚み方向の一方側だけであるため、接合型の振動子 1の半分以 下の電気機械結合係数しか得られな 、と 、つた問題があった。
このように、接合型の振動子では、生産効率に問題があり、接合層を有しない振動 子では、電気機械結合係数が小さい、すなわち、電気工ネルギと機械工ネルギとの 変換効率が劣るという問題があった。
[0007] それゆえに、この発明の主たる目的は、生産効率がよぐ電気機械結合係数の値の 大き 、振動子およびその製造方法を提供することである。
課題を解決するための手段
[0008] 本願発明は、長手方向に延びる 4つの側面を有する四角柱状の振動体、振動体の 1つの側面の全面に形成される共通電極、および共通電極が形成された側面に対 向する側面において幅方向に分割されるように形成される分割電極を含み、振動体 は、電極の形成されていない側面から分割電極方向に分極された第 1分極部と、電 極の形成されて ヽな ヽ側面から共通電極方向に分極された第 2分極部とを有する、 振動子である。
[0009] また、本願発明にかかる振動子は、長手方向に延びる 4つの側面を有する四角柱 状の振動体、振動体の 1つの側面の全面に形成される共通電極、および共通電極が 形成された側面に対向する側面にぉ ヽて幅方向に分割されるように形成される分割 電極を含み、振動体は、電極の形成されていない側面から分割電極方向に分極され た第 1分極部と、第 1分極部以外の部分において分割電極カゝら共通電極方向に分極 された第 2分極部とを有する、振動子である。
上述した振動子は、接合層のない振動体の厚み方向の両側において、ほぼ逆向き の分極となって ヽるため、振動子の分割電極および共通電極に駆動信号を印加する ことにより、振動体の厚み方向の両側において逆向きの変位が発生する。
[0010] 本願発明にかかる音叉型振動子は、請求項 1または請求項 2に記載の振動子が 2 つ並んで配置され、 2つの振動子が連結部により連結される音叉型振動子であって、 2つの振動子の分割電極力 同一面上に形成されるように連結され、連結部は、 2つ の振動子の一方端において適宜な幅で連結されることにより形成される、音叉型振 動子である。
[0011] 本願発明にかかる H型振動子は、請求項 1または請求項 2に記載の振動子が 2つ 並んで配置され、 2つの振動子が連結部により連結される H型振動子であって、 2つ の振動子の分割電極が、同一面上に形成されるように連結され、連結部は、 2つの振 動子の略中央において適宜な幅で連結されることにより形成される、 H型振動子であ る。
[0012] また、本願発明にかかる振動子の製造方法は、基板の一方主面および他方主面に 電極を形成する第 1のステップ、基板の一方主面および他方主面に一定の間隔で溝 を入れる第 2のステップ、溝に電極を形成する第 3のステップ、溝に、溝より浅くかつ 幅の広い溝をさらに入れる第 4のステップ、一方主面の溝に形成された電極と一方主 面に形成された電極との間、および他方主面の溝が形成された電極と他方主面に形 成された電極との間に電圧を印加することにより、一方主面の溝に形成された電極か ら一方主面に向力つて分極し、他方主面の溝に形成された電極から他方主面に形 成された電極に向カゝつて分極する第 5のステップ、一方主面に分割電極を形成する 第 6のステップ、溝が形成された部分で基板を切断する第 7のステップを含む、振動 子の製造方法である。
この振動子の製造方法によれば、 1枚の基板力も上述のような構造の振動子を、同 時に複数個、得ることができる。
[0013] さらに、本願発明にかかる他の振動子の製造方法は、基板の一方主面および他方 主面に電極を形成する第 1のステップ、基板の一方主面から他方主面方向に分極す る第 2のステップ、基板の一方主面に一定の間隔で溝を入れる第 3のステップ、溝に 電極を形成する第 4のステップ、溝に、溝より浅くかつ幅の広い溝をさらに入れる第 5 のステップ、溝に形成された電極と一方主面に形成された電極との間に電圧を印加 することにより、溝に形成された電極力も一方主面に向力つて分極する第 6のステツ プ、一方主面に分割電極を形成する第 7のステップ、溝が形成された部分で基板を 切断する第 8のステップを含む、振動子の製造方法である。
この振動子の製造方法によれば、 1枚の基板力 上述のような構造の振動子を同 時に複数個、得ることができる。さらに、基板の一方主面に一定の間隔で溝を入れる 際において、その溝の深さを調整することによって、反転させる分極の部分の割合を 調整することができる。
[0014] 本願発明に力かる音叉型振動子の製造方法は、基板の一方主面および他方主面 に電極を形成する第 1のステップ、基板の一方主面および他方主面に一定の間隔で 溝を入れる第 2のステップ、溝に電極を形成する第 3のステップ、溝に、溝より浅くか つ幅の広い溝をさらに入れる第 4のステップ、一方主面の溝に形成された電極と一方 主面に形成された電極との間、および他方主面の溝が形成された電極と他方主面に 形成された電極との間に電圧を印加することにより、一方主面の溝に形成された電極 力 一方主面に向かって分極し、他方主面の溝に形成された電極力 他方主面に 形成された電極に向かって分極する第 5のステップ、一方主面に分極電極を形成す る第 6のステップ、溝が形成された部分のうち 1つおきに基板を切断する第 7のステツ プ、切断された基板の溝が形成された部分において、基板の一方端側を残して基板 を切断することにより、 2つの振動子と 2つの振動子の一方端を連結する連結部を形 成する第 8ステップを含む、音叉型振動子の製造方法である。
[0015] また、本願発明に力かる他の音叉型振動子の製造方法は、基板の一方主面および 他方主面に電極を形成する第 1のステップ、基板の一方主面から他方主面方向に分 極する第 2のステップ、基板の一方主面に一定の間隔で溝を入れる第 3のステップ、 溝に電極を形成する第 4のステップ、溝に、溝より浅くかつ幅の広い溝をさらに入れる 第 5のステップ、一方主面の溝に形成された電極と一方主面に形成された電極との 間に電圧を印加することにより、溝に形成された電極から一方主面に向かって分極 する第 6のステップ、一方主面に分割電極を形成する第 7のステップ、溝が形成され た部分のうち 1つおきに基板を切断する第 8のステップ、切断された基板の溝が形成 された部分において、基板の一方端側を残して基板を切断することにより、 2つの振 動子と 2つの振動子の一方端を連結する連結部を形成する第 9ステップを含む、音 叉型振動子の製造方法である。
[0016] 本願発明にかかる H型振動子の製造方法は、基板の一方主面および他方主面に 電極を形成する第 1のステップ、基板の一方主面および他方主面に一定の間隔で溝 を入れる第 2のステップ、溝に電極を形成する第 3のステップ、溝に、溝より浅くかつ 幅の広い溝をさらに入れる第 4のステップ、一方主面の溝に形成された電極と一方主 面に形成された電極との間、および他方主面の溝が形成された電極と他方主面に形 成された電極との間に電圧を印加することにより、一方主面の溝に形成された電極か ら一方主面に向力つて分極し、他方主面の溝に形成された電極から他方主面に形 成された電極に向かって分極する第 5のステップ、一方主面に分極電極を形成する 第 6のステップ、溝が形成された部分のうち 1つおきに基板を切断する第 7のステップ 、切断された基板の溝が形成された部分において、基板の中央部を残して基板を切 断することにより、 2つの振動子と 2つの振動子の中央部を連結する連結部を形成す る第 8ステップを含む、 H型振動子の製造方法である。
[0017] また、本願発明にかかる他の H型振動子の製造方法は、基板の一方主面および他 方主面に電極を形成する第 1のステップ、基板の一方主面から他方主面方向に分極 する第 2のステップ、基板の一方主面に一定の間隔で溝を入れる第 3のステップ、溝 に電極を形成する第 4のステップ、溝に、溝より浅くかつ幅の広い溝をさらに入れる第 5のステップ、一方主面の溝に形成された電極と一方主面に形成された電極との間 に電圧を印加することにより、溝に形成された電極から一方主面に向かって分極する 第 6のステップ、一方主面に分割電極を形成する第 7のステップ、溝が形成された部 分のうち 1つおきに基板を切断する第 8のステップ、切断された基板の溝が形成され た部分において、基板の中央部を残して基板を切断することにより、 2つの振動子と 2 つの振動子の中央部を連結する連結部を形成する第 9ステップを含む、 H型振動子 の製造方法である。
発明の効果
[0018] 本願発明によれば、振動体に接合層がないことから、従来のような 2枚の圧電体基 板を接合する工程が不要なため、製造工程の合理ィ匕ゃコスト削減を図ることができる また、本願発明にかかる振動子は、 1枚の振動体の厚み方向の両側において逆向 きの分極が形成されている。よって、分割電極および共通電極に駆動信号を印加す ることで、振動体の厚み方向の両側において逆向きの変位が発生することから、結果 、電気機械結合係数が大きくなる。
さらに、本願発明にかかる振動子は、接合層がないことから、温度変化などによる 接合層の状態変化がなぐ力かる変化による検出感度の劣化が小さい。
本願発明の製造方法によれば、溝に形成された電極を用いることにより、 1枚の振 動体の厚み方向の両側で異なる向きの分極が可能である。
したがって、 1枚の基板力 本願発明の構造の振動子を複数個得ることができる。 さらにまた、本願発明の製造方法によれば、上述した振動子の製造方法を応用す ることにより音叉型振動子や H型振動子といった振動子についても容易に製造するこ とが可能である。
[0019] この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う 以下の発明を実施するための最良の形態の説明から一層明ら力となろう。
図面の簡単な説明
[0020] [図 1]本願発明にかかる振動子を示す斜視図解図である。
[図 2]本願発明にかかる振動子を形成するための製造方法を示す図解図である。
[図 3]本願発明にかかる別の振動子を示す斜視図解図である。
[図 4]本願発明にかかる別の振動子を形成するための製造方法を示す図解図である
[図 5]本願発明にかかる音叉型振動子を示す斜視図解図である。
[図 6]本願発明にかかる音叉型振動子を形成するための製造方法を示す図解図であ る。
[図 7]本願発明にかかる別の音叉型振動子を示す斜視図解図である。
[図 8]本願発明にかかる別の音叉型振動子を形成するための製造方法を示す図解 図である。
[図 9]本願発明にかかる H型振動子を示す斜視図解図である。 [図 10]本願発明にかかる別の H型振動子を示す斜視図解図である。
[図 11]本願発明の背景となる従来の振動子を示す断面図解図である。
符号の説明
[0021] 20、 50 振動子
22a, 22b, 22c, 22d 側面
24 振動体
26 共通電極
28a, 28b 分割電極
30 第 1分極部
32 第 2分極部
34 基板
36、 38 全面電極
40a, 40b 第 1の溝
42a, 42b 電極
44a, 44b 第 2の溝
60 連結部
120, 150 音叉型振動子
220, 250 H型振動子
発明を実施するための最良の形態
[0022] 図 1は、本発明の一実施形態に力かる振動子を示す斜視図解図である。
振動子 20は、長手方向に延びる 4つの側面 22a, 22b, 22c, 22dを有する四角柱 状の振動体 24を含む。そして、振動体 24の 1つの側面 22aの全面には、共通電極 2 6が形成される。該共通電極 26が形成された側面 22aに対向する側面 22bの長手方 向に延びるようにして、側面 22bの幅方向における中央部で分割されるように分割電 極 28a, 28b力形成される。
[0023] 振動体 24には、第 1分極部 30および第 2分極部 32が形成される。第 1分極部 30 は、振動体 24の電極が形成されていない側面 22c, 22dから分割電極 28a, 28b形 成面 22bに向力つて分極するように形成される。また、第 2分極部 32は、振動体 24の 電極が形成されていない側面 22c, 22d力ら共通電極 26形成面 22aに向力つて分 極するように形成される。
[0024] 図 2は、振動子 20を形成するための製造方法を示した断面図解図である。
このような振動子 20を形成するために、まず、基板 34が準備される。
基板 34の一方主面および他方主面には、図 2 (a)に示すように、全面電極 36, 38 が形成される。
基板 34の一方主面および他方主面の両面の対向する位置において、図 2 (b)に示 すように、一定間隔で平行に第 1の溝 40a, 40bが形成される。基板 34の一方主面 および他方主面にそれぞれ形成された第 1の溝 40a, 40b〖こ電極 42a, 42bが形成さ れる。結果、全面電極 36, 38と電極 42a, 42bと力 ^接続される。なお、図 2 (b)にお!/、 て、電極 42a, 42bは、第 1の溝 40a, 40bに隙間なく完全に満たされた状態となって いるが、それに限るものではなぐ第 1の溝 40a, 40bの側面および底面に対して電 極 42a, 42bが全面的に接触していれば良い。
図 2 (c)に示すように、第 1の溝 40a, 40bに形成された電極 42a, 42bの部分にさら に第 1の溝 40a, 40bよりも幅が広くかつ浅い第 2の溝 44a, 44b力 S形成される。結果 、全面電極 36, 38と電極 42a, 42bと力 ^分離することとなる。
[0025] 基板 34の一方主面の第 1の溝 40aに形成された電極 42aと一方主面の全面電極 3 6との間、および基板 34の他方主面の第 1の溝 40bに形成された電極 42bと他方主 面の全面電極 38との間に電圧を印加することにより、図 2 (c)における矢印で示すよ うに、互いに逆の厚み方向に第 1分極部 30および第 2分極部 32が形成される。 図 2 (d)において、基板 34の一方主面の全面電極 36における溝 44a間の中心線 4 6上に沿って削られて、分割電極 28a, 28bが形成される。その後、図 2 (d)に示す点 線 48に示すように、幅広の第 2の溝 44a, 44bに沿って基板 34は切断されて、複数 の振動子 20が形成される。このとき、第 1の溝 40a, 40b内の電極 42a, 42bは除去さ れる。
[0026] このような振動子 20は、接合層を有しないことから、接合層を介して基板同士を接 着する工程が不要なため、製造工程の合理ィ匕ゃコスト削減を図ることができる。また、 振動子 20は、互いに逆の厚み方向に分極された振動体 24を含んでいることから、分 割電極 28a, 28bと共通電極 26に駆動信号を印加することで、バイモルフ振動をす るため、電気機械結合係数が大きな振動子 20を得ることができる。
さらに、上述した振動子 20の製造方法によると、第 1の溝 40aに形成された電極 42 aと全面電極 36との間、および第 1の溝 40bに形成された電極 42bと全面電極 38と の間に電圧を印加することにより、 1枚の振動体 24の厚み方向の両側で、異なる向き の第 1分極部 30および第 2分極部 32の形成が可能となる。また、単板から多数の振 動子 20を同時に得ることができる。
[0027] 図 3は、本発明の他の実施形態に力かる振動子を示す斜視図解図である。
振動子 50は、長手方向に延びる 4つの側面 22a, 22b, 22c, 22dを有する四角柱 状の振動体 24を含む。そして、振動体 24の 1つの側面 22aの全面には、共通電極 2 6が形成される。該共通電極 26が形成された側面 22aに対向する側面 22bには、そ の長手方向に延びるようにして、側面 22bの幅方向の中央部で分割されるように分割 電極 28a, 28bが形成される。
[0028] 振動体 24には、第 1分極部 30および第 2分極部 32が形成される。第 1分極部 30 は、振動体 24の電極が形成されていない側面 22c, 22dから分割電極 28a, 28b形 成面 22bに向力つて分極するように形成される。また、第 2分極部 32は、振動体 24の 第 1分極部 30以外の部分において、分割電極 28a, 28b形成面 22bから共通電極 2 6形成面 22aに向カゝつて分極するように形成される。
[0029] 図 4は、振動子 50を形成するための製造方法を示した断面図解図である。
このような振動子 50を形成するためには、まず、基板 34が準備される。 基板 34の一方主面および他方主面には、図 4 (a)に示すように、全面電極 36, 38 が形成される。そして、図 4 (a)の矢印に示すように、その基板 34は、厚み方向、すな わち、基板 34の一方主面力も他方主面の方向の全域にわたって分極される。
基板 34の一方主面において、図 4 (b)に示すように、一定間隔で平行に第 1の溝 4 Oaが形成される。基板 34の一方主面に形成された第 1の溝 40aには、電極 42aが形 成される。結果、全面電極 36と電極 42aとが接続される。なお、図 4 (b)において、電 極 42aは、第 1の溝 40aに隙間なく完全に満たされた状態となっている力 それに限 るものではなぐ第 1の溝 40aの側面および底面に対して電極 42aが全面的に接触し ていれば良い。
つづいて、図 4 (c)に示すように、基板 34の一方主面の第 1の溝 40aに形成された 電極 42aの部分にさらに第 1の溝 40aよりも幅が広くかつ浅い第 2の溝 44aが形成さ れる。結果、全面電極 36と電極 42aとが分離することとなる。
[0030] 基板 34の一方主面の第 1の溝 40aに形成された電極 42aと一方主面の全面電極 3 6との間に電圧を印加することにより、図 4 (d)における矢印で示すように第 1分極部 3 0が形成される。なお、基板 34の第 1分極部 30形成部以外の部分においては、基板 34の分極が残ることにより、第 2分極部 32が形成される。
図 4 (e)において、基板 34の一方主面の全面電極 36における溝 44a間の中心線 4 6上に沿って削られて、分割電極 28a, 28bが形成される。その後、図 4 (e)に示す点 線 48に示すように、幅広の第 2の溝 44a, 44bに沿って基板 34は切断されて、複数 の振動子 50が形成される。このとき、第 1の溝 40a内の電極 42aは除去される。
[0031] このような振動子 50でも、接合層を有しないことから、接合層を介して基板同士を 接着する工程が不要なため、製造工程の合理ィ匕ゃコスト削減を図ることができる。ま た、振動子 50は、互いに逆の厚み方向に分極された振動体 24を含んでいることから 、分割電極 28a, 28bと共通電極 26に駆動信号を印加することで、ノ ィモルフ振動を するため、電気機械結合係数が大きな振動子 50を得ることができる。
さら〖こ、上述した振動子 50の製造方法によると、全面電極 36と全面電極 38との間 に電圧を印加することで振動体 24の厚み方向に分極した後、第 1の溝 40aに形成さ れた電極 42aと全面電極 36との間に電圧を印加することにより、 1枚の振動体 24の 厚み方向の両側で、異なる向きの第 1分極部 30および第 2分極部 32の形成が可能 となる。
また、振動子 50の製造方法によると、第 1の溝 40aの深さを調整することで、第 1分 極部 30の範囲を調整することができる。それにより振動子のバイモルフ振動の状態 を調整することができる。さらに、該振動子 50を単板から多数同時に得ることができる
[0032] 図 5は、本発明の実施形態に力かる音叉型振動子を示す斜視図解図である。
音叉型振動子 120は、並んで配置される 2つの振動子 20を含む。これらの振動子 20の一方端側は、連結部 60で連結され、全体として音叉型に形成される。 2つの振 動子 20は、図 1に示す振動子 20と同様の構成であり、連結部 60は、振動子 20を構 成する振動体 24と同じ材料で形成される。連結部 60の対向部には、 2つの振動子 2 0に並んで延びるように、電極 42a, 42bが形成されているが、これらの電極 42a, 42 bは、音叉型振動子 120の製造工程において形成された電極 42a, 42bが残ったも のであり、音叉型振動子 120の動作には、関係のないものである。
[0033] 次に、音叉型振動子 120を形成するための製造方法について説明する。
音叉型振動子 120は、図 2 (a)力ゝら図 2 (c)に示す工程を含み、分極された基板 34 が形成される。次に、図 6に示すように、基板 34の一方主面の全面電極における溝 4 4a間の中心線 46上に沿って削られて、分割電極 28a, 28bが形成される。その後、 図 6の点線 48に示すように、溝が形成された部分のうち、 1つおきに基板 34が切断さ れ、中央部に溝を有する複数の基板が形成される。このようにして得られた基板の溝 部分において、基板の一方端側を残して、基板が切断される。これにより、 2つの振 動子 20と連結部 60とが形成され、音叉型振動子 120を得ることができる。
[0034] 図 7は、本発明の他の実施形態に力かる音叉型振動子を示す斜視図解図である。
音叉型振動子 150は、並んで配置される 2つの振動子 50を含む。これらの振動子 50の一方端側は、連結部 60で連結され、全体として音叉型に形成される。 2つの振 動子 50は、図 3に示す振動子 50と同様の構成であり、連結部 60は、振動子 50を構 成する振動体 24と同じ材料で形成される。連結部 60の対向部には、 2つの振動子 5 0に並んで延びるように、電極 42aが形成されているが、この電極 42aは、音叉型振 動子 150の製造工程において形成された電極 42aが残ったものであり、音叉型振動 子 150の動作には、関係のないものである。
[0035] 音叉型振動子 150を形成するための製造方法について説明する。
音叉型振動子 150は、図 4 (a)から図 4 (d)に示す工程を含み、分極された基板 34 が形成される。次に、図 8に示すように、基板 34の一方主面の全面電極における溝 4 4a間の中心線 46上に沿って削られて、分割電極 28a, 28bが形成される。その後、 図 8の点線 48に示すように、溝が形成された部分のうち、 1つおきに基板 34が切断さ れ、中央部に溝を有する複数の基板が形成される。このようにして得られた基板の溝 部分において、基板の一方端側を残して、基板が切断される。これにより、 2つの振 動子 50と連結部 60とが形成され、音叉型振動子 150を得ることができる。
[0036] 図 9は、本発明の実施形態に力かる H型振動子を示す斜視図解図である。
H型振動子 220は、並んで配置される 2つの振動子 20を含む。これらの振動子 20 の中央部は、連結部 60で連結され、全体として H型に形成される。 2つの振動子 20 は、図 1に示す振動子 20と同様の構成であり、連結部 60は、振動子 20を構成する 振動体 24と同じ材料で形成される。連結部 60の対向部には、 2つの振動子 20に並 んで延びるように、電極 42a, 42bが形成されている力 これらの電極 42a, 42bは、 H型振動子 220の製造工程において形成された電極 42a, 42bが残ったものであり、 H型振動子 220の動作には、関係のな!、ものである。
[0037] 次に、 H型振動子 220の製造方法について説明する。
H型振動子 220は、図 2 (a)から図 2 (d)に示す工程を含み、分極された基板 34が 形成される。次に、図 6に示すように、基板 34の一方主面の全面電極における溝 44a 間の中心線 46上に沿って削られて、分割電極 28a, 28bが形成される。その後、図 6 の点線 48に示すように、溝が形成された部分のうち、 1つおきに基板 34が切断され、 中央部に溝を有する複数の基板が形成される。このようにして得られた基板の溝部 分において、基板の中央部を残して、基板が切断される。これにより、 2つの振動子 2 0と連結部 60とが形成され、 H型振動子 220を得ることができる。
[0038] 図 10は、本発明の他の実施形態に力かる H型振動子を示す斜視図解図である。
H型振動子 250は、並んで配置される 2つの振動子 50を含む。これらの振動子 50 の中央部は、連結部 60で連結され、全体として H型に形成される。 2つの振動子 50 は、図 3に示す振動子 50と同様の構成であり、連結部 60は、振動子 50を構成する 振動体 24と同じ材料で形成される。連結部 60の対向部には、 2つの振動子 50に並 んで延びるように、電極 42aが形成されている力 この電極 42aは、 H型振動子 250 の製造工程において形成された電極 42aが残ったものであり、 H型振動子 250の動 作には、関係のないものである。
[0039] 次に、 H型振動子 250の製造方法について説明する。
H型振動子 250は、図 4 (a)から図 4 (d)に示す工程を含み、分極された基板 34が 形成される。次に、図 8に示すように、基板 34の一方主面の全面電極における溝 44a 間の中心線 46上に沿って削られて、分割電極 28a, 28bが形成される。その後、図 8 の点線 48に示すように、溝が形成された部分のうち、 1つおきに基板 34が切断され、 中央部に溝を有する複数の基板が形成される。このようにして得られた基板の溝部 分において、基板の中央部を残して、基板が切断される。これにより、 2つの振動子 5 0と連結部 60とが形成され、 H型振動子 250を得ることができる。

Claims

請求の範囲
[1] 長手方向に延びる 4つの側面を有する四角柱状の振動体、
前記振動体の 1つの側面の全面に形成される共通電極、および
前記共通電極が形成された側面に対向する側面にぉ ヽて幅方向に分割されるよう に形成される分割電極を含み、
前記振動体は、電極の形成されて!ヽな ヽ側面から前記分割電極方向に分極され た第 1分極部と、電極の形成されて!ヽな ヽ側面から前記共通電極方向に分極された 第 2分極部とを有する、振動子。
[2] 長手方向に延びる 4つの側面を有する四角柱状の振動体、
前記振動体の 1つの側面の全面に形成される共通電極、および
前記共通電極が形成された側面に対向する側面にぉ ヽて幅方向に分割されるよう に形成される分割電極を含み、
前記振動体は、電極の形成されて!ヽな ヽ側面から前記分割電極方向に分極され た第 1分極部と、前記第 1分極部以外の部分において前記分割電極から前記共通 電極方向に分極された第 2分極部とを有する、振動子。
[3] 請求項 1または請求項 2に記載の振動子が 2つ並んで配置され、前記 2つの振動子 が連結部により連結される音叉型振動子であって、
前記 2つの振動子の分割電極が、同一面上に形成されるように連結され、 前記連結部は、前記 2つの振動子の一方端において適宜な幅で連結されることに より形成される、音叉型振動子。
[4] 請求項 1または請求項 2に記載の振動子が 2つ並んで配置され、前記 2つの振動子 が連結部により連結される H型振動子であって、
前記 2つの振動子の分割電極が、同一面上に形成されるように連結され、 前記連結部は、前記 2つの振動子の略中央において適宜な幅で連結されることに より形成される、 H型振動子。
[5] 基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面および前記他方主面に一定の間隔で溝を入れる第 2の ステップ、 前記溝に電極を形成する第 3のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 4のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間、お よび前記他方主面の溝が形成された電極と前記他方主面に形成された電極との間 に電圧を印加することにより、前記一方主面の溝に形成された電極力 前記一方主 面に向力つて分極し、前記他方主面の溝に形成された電極力 前記他方主面に形 成された電極に向力つて分極する第 5のステップ、
前記一方主面に分割電極を形成する第 6のステップ、
前記溝が形成された部分で前記基板を切断する第 7のステップを含む、振動子の 製造方法。
[6] 基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面から前記他方主面方向に分極する第 2のステップ、 前記基板の前記一方主面に一定の間隔で溝を入れる第 3のステップ、 前記溝に電極を形成する第 4のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 5のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間に 電圧を印加することにより、前記溝に形成された電極力 前記一方主面に向かって 分極する第 6のステップ、
前記一方主面に分割電極を形成する第 7のステップ、
前記溝が形成された部分で前記基板を切断する第 8のステップを含む、振動子の 製造方法。
[7] 基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面および前記他方主面に一定の間隔で溝を入れる第 2の ステップ、
前記溝に電極を形成する第 3のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 4のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間、お よび前記他方主面の溝が形成された電極と前記他方主面に形成された電極との間 に電圧を印加することにより、前記一方主面の溝に形成された電極力 前記一方主 面に向力つて分極し、前記他方主面の溝に形成された電極力 前記他方主面に形 成された電極に向力つて分極する第 5のステップ、
前記一方主面に分極電極を形成する第 6のステップ、
前記溝が形成された部分のうち 1つおきに前記基板を切断する第 7のステップ、 切断された前記基板の前記溝が形成された部分にお!ヽて、前記基板の一方端側 を残して前記基板を切断することにより、 2つの振動子と前記 2つの振動子の一方端 を連結する連結部を形成する第 8ステップを含む、音叉型振動子の製造方法。
[8] 基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面から前記他方主面方向に分極する第 2のステップ、 前記基板の前記一方主面に一定の間隔で溝を入れる第 3のステップ、 前記溝に電極を形成する第 4のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 5のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間に 電圧を印加することにより、前記溝に形成された電極力 前記一方主面に向かって 分極する第 6のステップ、
前記一方主面に分割電極を形成する第 7のステップ、
前記溝が形成された部分のうち 1つおきに前記基板を切断する第 8のステップ、 切断された前記基板の前記溝が形成された部分にお!ヽて、前記基板の一方端側 を残して前記基板を切断することにより、 2つの振動子と前記 2つの振動子の一方端 を連結する連結部を形成する第 9ステップを含む、音叉型振動子の製造方法。
[9] 基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面および前記他方主面に一定の間隔で溝を入れる第 2の ステップ、
前記溝に電極を形成する第 3のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 4のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間、お よび前記他方主面の溝が形成された電極と前記他方主面に形成された電極との間 に電圧を印加することにより、前記一方主面の溝に形成された電極力 前記一方主 面に向力つて分極し、前記他方主面の溝に形成された電極力 前記他方主面に形 成された電極に向力つて分極する第 5のステップ、
前記一方主面に分極電極を形成する第 6のステップ、
前記溝が形成された部分のうち 1つおきに前記基板を切断する第 7のステップ、 切断された前記基板の前記溝が形成された部分にお!、て、前記基板の中央部を 残して前記基板を切断することにより、 2つの振動子と前記 2つの振動子の中央部を 連結する連結部を形成する第 8ステップを含む、 H型振動子の製造方法。
基板の一方主面および他方主面に電極を形成する第 1のステップ、
前記基板の前記一方主面から前記他方主面方向に分極する第 2のステップ、 前記基板の前記一方主面に一定の間隔で溝を入れる第 3のステップ、 前記溝に電極を形成する第 4のステップ、
前記溝に、前記溝より浅くかつ幅の広い溝をさらに入れる第 5のステップ、 前記一方主面の溝に形成された電極と前記一方主面に形成された電極との間に 電圧を印加することにより、前記溝に形成された電極力 前記一方主面に向かって 分極する第 6のステップ、
前記一方主面に分割電極を形成する第 7のステップ、
前記溝が形成された部分のうち 1つおきに前記基板を切断する第 8のステップ、 切断された前記基板の前記溝が形成された部分にお!、て、前記基板の中央部を 残して前記基板を切断することにより、 2つの振動子と前記 2つの振動子の中央部を 連結する連結部を形成する第 9ステップを含む、 H型振動子の製造方法。
PCT/JP2006/323086 2005-11-21 2006-11-20 振動子およびその製造方法 WO2007058343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007509782A JP4636086B2 (ja) 2005-11-21 2006-11-20 振動子およびその製造方法
CN2006800322263A CN101258382B (zh) 2005-11-21 2006-11-20 振动器及其制作方法
EP20060823473 EP1953498B1 (en) 2005-11-21 2006-11-20 Oscillator and method for manufacturing the same
US12/101,227 US7579760B2 (en) 2005-11-21 2008-04-11 Vibrator and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-335439 2005-11-21
JP2005335439 2005-11-21
JP2006-310882 2006-11-17
JP2006310882 2006-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/101,227 Continuation US7579760B2 (en) 2005-11-21 2008-04-11 Vibrator and production method therefor

Publications (1)

Publication Number Publication Date
WO2007058343A1 true WO2007058343A1 (ja) 2007-05-24

Family

ID=38048721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323086 WO2007058343A1 (ja) 2005-11-21 2006-11-20 振動子およびその製造方法

Country Status (5)

Country Link
US (1) US7579760B2 (ja)
EP (1) EP1953498B1 (ja)
JP (1) JP4636086B2 (ja)
CN (1) CN101258382B (ja)
WO (1) WO2007058343A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081294A1 (ja) * 2010-12-16 2012-06-21 株式会社村田製作所 音片型圧電振動子及び音叉型圧電振動子
JP6164044B2 (ja) * 2013-10-30 2017-07-19 セイコーエプソン株式会社 圧電モーター、ロボットハンド、ロボット、指アシスト装置、電子部品搬送装置、電子部品検査装置、送液ポンプ、印刷装置、電子時計、投影装置
CN111778942B (zh) * 2020-07-28 2022-02-11 华北水利水电大学 一种针对大坝结冰的大范围自动破冰装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396807A (ja) * 1989-09-11 1991-04-22 Akai Electric Co Ltd 振動ジャイロ
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08178666A (ja) * 1994-12-22 1996-07-12 Tokin Corp 圧電振動ジャイロ
JPH1194555A (ja) * 1997-09-18 1999-04-09 Murata Mfg Co Ltd 振動ジャイロ
US5942839A (en) 1995-08-31 1999-08-24 Alps Electric Co., Ltd. Piezoelectric vibrator and vibratory gyroscope using the same
JP2000314629A (ja) * 1999-04-30 2000-11-14 Murata Mfg Co Ltd 振動子およびその製造方法並びに振動ジャイロ
JP2001021359A (ja) 1999-07-07 2001-01-26 Sony Corp 圧電振動角速度センサー及びその振動子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49131088A (ja) * 1973-04-16 1974-12-16 Suwa Seikosha Kk
FR2467487A1 (fr) * 1979-10-15 1981-04-17 Ebauches Sa Resonateur piezoelectrique
JPS59117814A (ja) * 1982-12-24 1984-07-07 Murata Mfg Co Ltd 圧電磁器共振子
JPS60170472A (ja) * 1984-02-10 1985-09-03 Canon Inc 振動波モ−タ
JPH0660896B2 (ja) * 1984-11-02 1994-08-10 株式会社日立製作所 超音波探触子
JP2780643B2 (ja) 1994-06-03 1998-07-30 株式会社村田製作所 振動ジャイロ
JPH08189833A (ja) * 1995-01-09 1996-07-23 Akai Electric Co Ltd 振動ジャイロ
JP3285140B2 (ja) * 1997-09-04 2002-05-27 株式会社村田製作所 振動ジャイロの調整方法
JPH1183496A (ja) 1997-09-12 1999-03-26 Nikon Corp 圧電振動子およびこの圧電振動子を用いた圧電振動角速度計
JP3958741B2 (ja) * 2003-12-24 2007-08-15 Necトーキン株式会社 圧電振動ジャイロ用振動子
JP4258466B2 (ja) * 2004-12-16 2009-04-30 セイコーエプソン株式会社 圧電ジャイロ素子及び圧電ジャイロスコープ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396807A (ja) * 1989-09-11 1991-04-22 Akai Electric Co Ltd 振動ジャイロ
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08178666A (ja) * 1994-12-22 1996-07-12 Tokin Corp 圧電振動ジャイロ
US5942839A (en) 1995-08-31 1999-08-24 Alps Electric Co., Ltd. Piezoelectric vibrator and vibratory gyroscope using the same
JPH1194555A (ja) * 1997-09-18 1999-04-09 Murata Mfg Co Ltd 振動ジャイロ
JP2000314629A (ja) * 1999-04-30 2000-11-14 Murata Mfg Co Ltd 振動子およびその製造方法並びに振動ジャイロ
JP2001021359A (ja) 1999-07-07 2001-01-26 Sony Corp 圧電振動角速度センサー及びその振動子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1953498A4

Also Published As

Publication number Publication date
EP1953498A4 (en) 2011-05-18
CN101258382B (zh) 2011-03-30
JPWO2007058343A1 (ja) 2009-05-07
JP4636086B2 (ja) 2011-02-23
EP1953498A1 (en) 2008-08-06
US20080185939A1 (en) 2008-08-07
US7579760B2 (en) 2009-08-25
CN101258382A (zh) 2008-09-03
EP1953498B1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5594435B2 (ja) 超音波トランスデューサ
EP3134925B1 (en) Piezoelektric actuator
WO2007058343A1 (ja) 振動子およびその製造方法
JP3953017B2 (ja) 振動ジャイロ用圧電振動子
US7877848B2 (en) Method for fabricating an angular velocity sensor
CN101495836B (zh) 音片型振子以及使用了该音片型振子的振动陀螺仪
JPS62188975A (ja) 圧電体角速度センサ−
JPH11307835A (ja) 積層構造の剪断型圧電素子の製造方法
JPH10221087A (ja) 振動子、振動型ジャイロスコープ、その製造方法、振動子を励振する方法および振動子の振動を検出する方法
JP3783894B2 (ja) 圧電振動角速度計用振動子
JP3770425B2 (ja) 圧電振動角速度計用振動子
US20230038607A1 (en) Piezoelectric device
JPH10239062A (ja) 圧電振動角速度計用振動子及びその製造方法
JPH08114457A (ja) 圧電ジャイロ及びその製造方法
JP2007107990A (ja) 加速度センサ
WO2007091376A1 (ja) 圧電振動子
JP3684873B2 (ja) 角速度センサ
JP3511243B2 (ja) 圧電振動ジャイロ
JP5561377B2 (ja) 音片型圧電振動子及び音叉型圧電振動子
JP3819339B2 (ja) 圧電振動ジャイロ用柱状振動子
JP2000193458A (ja) 振動ジャイロおよびその製造方法
JP2002286746A (ja) 圧電センサの製造方法
JP2000304543A (ja) 角速度センサー
JPH03293979A (ja) 超音波モータ
JPH10267662A (ja) 角速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032226.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007509782

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006823473

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE