JP5594435B2 - 超音波トランスデューサ - Google Patents
超音波トランスデューサ Download PDFInfo
- Publication number
- JP5594435B2 JP5594435B2 JP2013526823A JP2013526823A JP5594435B2 JP 5594435 B2 JP5594435 B2 JP 5594435B2 JP 2013526823 A JP2013526823 A JP 2013526823A JP 2013526823 A JP2013526823 A JP 2013526823A JP 5594435 B2 JP5594435 B2 JP 5594435B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric vibrator
- ultrasonic wave
- ultrasonic
- resonance
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 description 38
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 238000000605 extraction Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0603—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/004—Mounting transducers, e.g. provided with mechanical moving or orienting device
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/12—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
- G10K9/122—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/18—Details, e.g. bulbs, pumps, pistons, switches or casings
- G10K9/22—Mountings; Casings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
本発明は、超音波トランスデューサに関し、さらに詳しくは、温度音圧特性に優れた超音波トランスデューサに関する。
超音波センサなどに使用される超音波トランスデューサにおいては、温度音圧特性が極めて重要である。ある温度では十分な出力音圧を備えていても、温度が変化した場合に出力音圧が低下し、超音波が目的物にまで到達しなくなってしまうのでは、使用できる用途が限られてしまうからである。たとえば、温度音圧特性の悪い超音波トランスデューサは、過酷な温度環境への対応が求められる、車載用の距離測定用の超音波センサに使用することができなかった。
図16に、特許文献1(特開2001−258098号公報)に開示された、温度音圧特性の改善をはかった、従来の超音波トランスデューサ400を示す。超音波トランスデューサ400は、金属板101の裏面側に接着剤102を介して圧電振動子103が貼付され、金属板101の表面側に円錐漏斗状の共振子(ホーン)104が取付けられた構造からなる。圧電振動子103の裏面側に緩衝材105が設けられた上で、全体が、ベース部材106、カバー107からなるケース内に収容されている。
超音波トランスデューサ400においては、温度音圧特性の改善をはかるために、接着剤102の線膨張係数を圧電振動子103の線膨張係数よりも大きくし、かつ、金属板101の線膨張係数を圧電振動子103の線膨張係数よりも小さくしている。超音波トランスデューサ400においては、温度変化による接着剤102の膨張が金属板101により抑制され、この結果として、圧電振動子103が反るように変形させようとする応力が低減されているため、温度変化による周波数変化量が低減されて、温度音圧特性が改善されている。
上述した従来の超音波トランスデューサ400は、圧電振動子103と金属板101と両者を接着する接着剤102の線膨張係数の整合をはかり、圧電振動子103に対する応力の低減をはかったものであり、温度音圧特性の改善に幾分かの効果があるものと考えられる。しかしながら、超音波トランスデューサ400においては、圧電振動子103そのものの共振周波数や、機械的品質係数(Qm)、静電容量、圧電定数(d定数)などの温度特性に対する対策は行われていないため、抜本的な温度音圧特性の改善にはなっていなかった。
本発明は、上述した従来の超音波トランスデューサの有する課題を解決するためになされたものである。その手段として、本発明の超音波トランスデューサは、圧電振動子を有する超音波発生素子と、超音波放出孔を有し、超音波発生素子が収容されたケースと、超音波発生素子とケースとにより、圧電振動子から超音波放出孔に至る、空気を媒質とする音響経路が形成され、音響経路において、圧電振動子で発生した超音波により、超音波放出孔を開放端として空気の共鳴が発生する超音波トランスデューサであって、空気の共鳴における温度音圧特性と、圧電振動子の駆動周波数における温度振幅特性とが逆傾向となる駆動周波数で、圧電振動子が駆動されるようにした。空気の共鳴は、たとえば、λ/4の共鳴とすることができる。
圧電振動子の駆動周波数は、25℃における空気の共鳴の音圧がピークとなる周波数からずれていても良い。たとえば、常温である25℃で使用する場合、本来的には、圧電振動子の駆動周波数は、25℃における空気の共鳴の音圧がピークとなる周波数と一致することが効率的であるが、この効率を落としてでも、温度音圧特性の改善をはかるようにすることができる。
また、超音波発生素子は、枠体の一方の主面に接合された平板状の第1の圧電振動子と、他方の主面に接合された平板状の第2の圧電振動子からなり、第1の圧電振動子と第2の圧電振動子は、同じ周波数で互いに逆位相で振動する、座屈音叉振動モードにより駆動され、音響経路は、第1の圧電振動子から超音波放出孔に至る第1の音響経路と、第2の圧電振動子から超音波放出孔に至る第2の音響経路からなる構成するようにしても良い。かかる構成とすれば、第1の音響経路における空気の共鳴と、第2の音響経路における空気の共鳴が重なって出力されるため、出力音圧をより高くすることができる。
上述した構成からなる本発明の超音波トランスデューサは、空気の共鳴における温度音圧特性と、圧電振動子の駆動周波数における温度振幅特性とが逆傾向となる駆動周波数で、圧電振動子が駆動されるため、極めて優れた温度音圧特性を有している。したがって、本発明の超音波トランスデューサは、広い温度範囲において、安定した出力音圧を発現させることができる。
以下、本発明を実施するための形態について、図面を用いて説明する。
[第1実施形態]
図1、図2に、本発明の第1実施形態にかかる超音波トランスデューサ100を示す。ただし、図1は斜視図、図2は図1の鎖線X−X部分を示す断面図である。また、図3に、超音波トランスデューサ100に使用した超音波発生素子1を示す。ただし、図3は分解斜視図である。
図1、図2に、本発明の第1実施形態にかかる超音波トランスデューサ100を示す。ただし、図1は斜視図、図2は図1の鎖線X−X部分を示す断面図である。また、図3に、超音波トランスデューサ100に使用した超音波発生素子1を示す。ただし、図3は分解斜視図である。
超音波トランスデューサ100は、超音波発生素子1を備える。
超音波発生素子1は、枠体2と、第1の圧電振動子3と、第2の圧電振動子4とを備える。枠体2は、中央部に直径2.4mm程度の貫通孔2aが形成されており、厚み200μm程度のセラミックスなどからなる枠体2を備える。超音波発生素子1は、一辺の長さが2.8mmの正方形の平面形状であり、厚みは0.32mmである。
そして、枠体2の一方の主面(下側の主面)には、バイモルフ型の第1の圧電振動子3が接着剤5aにより取り付けられ、他方の主面(上側の主面)には、バイモルフ型の第2の圧電振動子4が接着剤5bにより取り付けられている。すなわち、枠体2の貫通孔2aは、第1のバイモルフ型圧電振動子3と、第2のバイモルフ型圧電振動子4とで塞がれた構造となっている。
第1の圧電振動子3は、たとえば、チタン酸ジルコン酸鉛(PZT)などからなり、矩形で平板状の圧電セラミックス3aを備える。そして、圧電セラミックス3aの内部には、Ag,Pdなどからなる内部電極3bが形成され、圧電セラミックス3aの両主面には、それぞれ、同じくAgなどからなる外部電極3c,3dが形成されている。内部電極3bは、圧電セラミックス3aの隣合う2つの角部に引出されている。一方、外部電極3c,3dは、内部電極3bが引出されていない、圧電セラミックス3aの隣合う2つの角部にそれぞれ引出されている。第1の圧電振動子3の厚みは、たとえば、60μm程度である。
第2の圧電振動子4も、第1の圧電振動子3と同様に、たとえば、PZTなどからなる矩形で平板状の圧電セラミックス4aを備え、圧電セラミックス4aの内部には、Ag,Pdなどからなる内部電極4bが形成され、圧電セラミックス4aの両主面には、それぞれ、Agなどからなる外部電極4c,4dが形成されている。そして、内部電極4bは、圧電セラミックス4aの隣合う2つの角部に引出されている。外部電極4c,4dは、内部電極4bが引出されていない、圧電セラミックス4aの隣合う2つの角部にそれぞれ引出されている。第2の圧電振動子4の厚みも、たとえば、60μm程度である。
第1の圧電振動子3の圧電セラミックス3a、および、第2の圧電振動子4の圧電セラミックス4aは、それぞれ、内部において分極されている。なお、圧電セラミックス3aにおいて、外部電極3cと内部電極3bとの間と、内部電極3bと外部電極3dとの間とは、分極方向が同じである。同様に、圧電セラミックス4aにおいて、外部電極4cと内部電極4bとの間と、内部電極4bと外部電極4dとの間とは、分極方向が同じである。一方、圧電セラミックス3aの外部電極3cと内部電極3bとの間、および内部電極3bと外部電極3dとの間と、圧電セラミックス4aの外部電極4cと内部電極4bとの間、および内部電極4bと外部電極4dとの間とは、分極方向が逆である。
超音波発生素子1の4つの角部には、それぞれ、引出電極6a,6b,6c,6dが形成されている。隣合う2つの引出電極6a,6bは、いずれも、それぞれ、圧電セラミックス3aの内部電極3b、および、圧電セラミックス4aの内部電極4bと電気的に接続されている。一方、残りの隣合う2つの引出電極6c,6dは、いずれも、それぞれ、圧電セラミックス3aの外部電極3c,3d、および、圧電セラミックス4aの外部電極4c,4dと電気的に接続されている。(引出電極6a,6dは図2に示されているが、引出電極6b,6cは図示を省略しており、いずれの図にも示されていない。)引出電極6a,6b,6c,6dは、たとえば、Agからなる。
次に、超音波トランスデューサ100の駆動状態について説明する。図4(A)、図4(B)は、超音波トランスデューサ100の超音波発生素子1に、所定の周波数の交流電流を印加した状態を示す。超音波トランスデューサ100において、超音波発生素子1を構成する第1の圧電振動子3および第2の圧電振動子4は、上述したとおり内部電極3b,4bと外部電極3c,3d,4c,4dとが形成され、上述したとおり分極されているため、交流電圧が印加されることにより、同じ周波数で相互に逆位相で振動し、図4(A)および図4(B)に示す状態を繰り返す。すなわち、超音波発生素子1は、座屈音叉振動モードにより駆動され、第1の圧電振動子3、および、第2の圧電振動子4から、それぞれ、超音波を放出する。なお、本実施形態においては、超音波発生素子1を構成する第1の圧電振動子3および第2の圧電振動子4の共振周波数は60kHzである。
超音波トランスデューサ100は、ガラスエポキシなどからなるベース部材7と、洋白などからなる蓋部材8とからなるケースを備える。
ベース部材7は、矩形で、平板状である。ベース部材7の上側の主面には、複数のランド電極(図示せず)が形成されており、それらのランド電極に、超音波発生素子1の4つの角部に形成された引出電極6a,6b,6c,6dが、音響経路に影響を与えないようになるべく小さく、導電性接着剤9によりそれぞれ接合されている。(図2において、導電性接着剤9は断面ではないが、見やすくするために模様を付している。)このようにして、ベース部材7に超音波発生素子1が搭載されている。ベース部材7は、一辺の長さが4.0mmの正方形の平面形状であり、厚みは0.3mmである。
蓋部材8には、超音波発生素子1を収容するための開口8aが形成され、さらに天板部分に、超音波が表出される超音波放出孔8bが形成されている。超音波放出孔8bの形状、個数は任意であるが、本実施形態においては、平面視で矩形の超音波放出孔8bが4個形成されている。蓋部材8は、開口8aに超音波発生素子1を収容したうえで、開口8aの周縁が、たとえば接着剤(図示せず)により、ベース部材7の上側の主面に接合されている。蓋部材8は、一辺の長さが3.6mmの正方形の平面形状であり、高さは0.65mmである。
超音波トランスデューサ100においては、超音波発生素子1と、ベース部材7および蓋部材8からなるケースとにより、空気を媒質とする音響経路が形成されている。具体的には、第1の圧電振動子3の振動面上の変位が最も大きな部分を共鳴の腹F1とし、超音波放出孔8bを共鳴の開放端として、λ/4の共鳴が発生する第1の音響経路R1が形成されている。また、第2の圧電振動子4の振動面上の変位が最も大きな部分を共鳴の腹F2とし、超音波放出孔8bを共鳴の開放端として、λ/4の共鳴が発生する第2の音響経路R2が形成されている。なお、図2においては、第1および第2の音響経路R1,R2を、破線矢印で示している。なお、本実施形態においては、蓋部材8に4個の超音波放出孔8bが形成されているため、第1および第2の音響経路R1,R2は、それぞれ、4方向に、4つの経路を備えていることになる。
第1および第2の音響経路R1,R2の音響特性は、音響経路の高さ(超音波発生素子1とベース部材7や蓋部材8の間隔)、音響経路の幅、音響経路の長さなどにより、自由に調整することができる。第1の音響経路R1と第2の音響経路R2は、長さが異なり、位相差が生じるが、音響経路の長さの差は、わずかに超音波発生素子1の厚みである320μm程度に過ぎず、音響特性に差はほとんどない。すなわち、超音波発生素子1により放出される超音波は60kHzであり、波長にして5.7mmであるのに対し、音響経路の長さの差は320μm程度であり、0.06λ以下であり、音響特性に差はほとんどない。
本実施形態においては、超音波発生素子1とベース部材7の間隔が30μm以上、好ましくは100〜200μmとされており、超音波発生素子1と蓋部材8の間隔が30μm以上、好ましくは100〜200μmとされている。このため、第1の圧電振動子3および第2の圧電振動子4から放出された超音波の音波位相をそろえ、音圧を高めることができる。
超音波トランスデューサ100において、超音波発生素子1(第1の圧電振動子3,第2の圧電振動子4)を駆動することにより、第1の音響経路R1および第2の音響経路R2において、それぞれ、第1の圧電振動子3から放出された超音波、および、第2の圧電振動子4から放出された超音波により、λ/4の空気の共鳴が発生する。そして、第1の音響経路R1における空気の共鳴と、第2の音響経路R2における空気の共鳴とが重なり、超音波放出孔8bから、出力音圧の高い超音波が放出される。なお、超音波発生素子1(第1の圧電振動子3,第2の圧電振動子4)を駆動する周波数と、第1の圧電振動子3、第2の圧電振動子4で発生する超音波の周波数はほぼ一致する。
空気の共鳴は音速に支配され、音速は温度により変化する(音速(m/s)=331.5+0.61t(tは摂氏温度))ため、λ/4の空気の共鳴における周波数音圧特性は、図5に示すように、温度ごとに固有の特性を示す。各温度の周波数音圧特性は、それぞれ、特定の周波数で音圧のピーク点をもつ。このピーク点を共鳴点とすると、共鳴点の温度周波数特性は、図6に示すように直線状になる。図6から分かるように、たとえば、25℃のときの共鳴点は62kHz付近であるため、超音波トランスデューサ100を25℃で使用する場合には、62kHz付近で圧電振動子1を駆動すれば、音圧が最も高くなり効率が良い。
図5に示した、温度ごとの周波数音圧特性から、特定の周波数での、λ/4の空気の共鳴における温度音圧特性を導き出すと、図7〜図9に示すようになる。ただし、図7は55kHzでの温度音圧特性を、図8は60kHzでの温度音圧特性を、図9は65kHzでの温度音圧特性をそれぞれ示す。
55kHzでのλ/4の空気の共鳴における温度音圧特性は、図7に示すように、温度が上がると音圧が低くなる。本明細書においては、便宜上、この傾向を「N(Negative)傾向」と定義する。
60kHzでのλ/4の空気の共鳴における温度音圧特性は、図8に示すように、所定の温度(20℃前後)までは、温度が上がると音圧が高くなり、上記所定の温度からは、温度が上がると音圧が低くなる。本明細書においては、便宜上、この傾向を「山傾向」と定義する。
65kHzでのλ/4の空気の共鳴における温度音圧特性は、図9に示すように、ほとんどの領域(0℃以下の低温から80℃付近までの領域)において、温度が上がると音圧が高くなる。本明細書においては、便宜上、この傾向を「P(Positive)傾向」と定義する。
一方、超音波発生素子1を構成する第1の圧電振動子3および第2の圧電振動子4は、駆動周波数ごと(駆動周波数を変更するごと)に、固有の温度振幅特性を示す。なお、駆動周波数が一定であれば、振幅が大きいほど、発生する超音波の音圧は高くなる。図10〜図12に、特定の駆動周波数における、第1の圧電振動子3および第2の圧電振動子4の温度振幅特性を示す。ただし、図10は駆動周波数が55kHzにおける温度振幅特性を、図11は駆動周波数が60kHzにおける温度振幅特性を、図12は駆動周波数が65kHzにおける温度振幅特性をそれぞれ示す。
駆動周波数が55kHzにおける温度振幅特性は、図10に示すように、温度が上がると振幅が大きくなる。本明細書においては、便宜上、この傾向を「P(Positive)傾向」と定義する。
駆動周波数が60kHzにおける温度振幅特性は、図11に示すように、所定の温度(25℃前後)までは、温度が上がると振幅が大きくなり、上記所定の温度からは、温度が上がると振幅が小さくなる。本明細書においては、便宜上、この傾向を「山傾向」と定義する。
駆動周波数が65kHzにおける温度振幅特性は、図12に示すように、温度が上がると振幅が小さくなる。本明細書においては、便宜上、この傾向を「N傾向(Negative)」と定義する。
本実施形態における超音波トランスデューサ100においては、図7〜図9に示した特定の周波数(55kHz、60kHz、65kHz)でのλ/4の空気の共鳴における温度音圧特性と、図10〜図12に示した特定の駆動周波数(55kHz、60kHz、65kHz)における第1の圧電振動子3および第2の圧電振動子4の温度振幅特性を考慮して、超音波発生素子1(第1の圧電振動子3,第2の圧電振動子4)の駆動周波数を65kHzに設定している。すなわち、超音波トランスデューサ100は、超音波発生素子1(第1の圧電振動子3,第2の圧電振動子4)の駆動周波数を65kHzに設定し、互いに逆傾向である図9に示した65kHzでのλ/4の空気の共鳴における温度音圧特性の「P傾向」と、図12に示した駆動周波数が65kHzにおける温度振幅特性の「N傾向」とを相殺させることにより、温度音圧特性を改善している。 図13に、本発明の第1実施形態にかかる超音波トランスデューサ100の温度音圧特性を示す。図13に示すように、超音波トランスデューサ100においては、−20℃付近から80℃付近まで、優れた温度音圧特性になっている。すなわち、超音波トランスデューサ100は、使用する温度環境が変化しても、出力音圧の変化が小さい。
なお、図7に示した55kHzでのλ/4の空気の共鳴における温度音圧特性の「N傾向」と、図10に示した駆動周波数が55kHzにおける温度振幅特性の「P傾向」とを相殺させ、超音波トランスデューサ100の温度音圧特性を改善することもできる。
かかる構造からなる超音波トランスデューサ100は、たとえば、次の方法で製造される。
まず、第1の圧電振動子3、および、第2の圧電振動子4を作製する。具体的には、所定の形状からなる複数枚の圧電セラミックグリーンシートを準備し、それらの表面に、内部電極3b,4b、外部電極3c,3d,4c,4dを形成するための、導電性ペーストを所定の形状に印刷する。次に、所定の圧電セラミックグリーンシートどうしを積層し、加圧したうえ、所定のプロファイルで焼成して、内部電極3b、外部電極3c,3dの形成された第1の圧電振動子3、および、内部電極4b、外部電極4c,4dの形成された第2の圧電振動子4を得る。なお、外部電極3c,3d,4c,4dは、積層した圧電セラミックグリーンシートを焼成した後に、印刷またはスパッタなどによって形成してもよい。
次に、予め所定の形状に作製された枠体2を準備し、枠体2の両主面に、第1の圧電振動子3と第2の圧電振動子4とを、接着剤5a、5bによりそれぞれ接合して、超音波発生素子1を得る。
次に、超音波発生素子1の4つの角部に、たとえば、スパッタリングなどの技術を用いて、引出電極6a,6b,6c,6dを形成する。
次に、予め所定の形状に作製されたベース部材7と蓋部材8とを準備し、導電性接着剤9を用いて、ベース部材7に超音波発生素子1を搭載したうえで、接着剤(図示せず)を用いて、ベース部材7の上側の主面に蓋部材8を接合し、超音波トランスデューサ100を完成させる。
以上、本発明の第1実施形態にかかる超音波トランスデューサ100の構造、製造方法の一例について説明した。しかしながら、本発明の超音波トランスデューサが上記の内容に限定されることはなく、発明の主旨に沿って、種々の変更をなすことができる。
たとえば、超音波トランスデューサ100では、超音波発生素子1を構成する第1の圧電振動子3および第2の圧電振動子4に、バイモルフ型圧電振動子を用いているが、これに代えて、たとえば、ユニモルフ型圧電振動子やマルチモルフ型圧電振動子など、他の種類の振動子を用いることもできる。なお、第1の圧電振動子3および第2の圧電振動子4がバイモルフ型圧電振動子やマルチモルフ型圧電振動子である場合、振動子の端面に形成した電極によって外部と接続することができるため、ボンディングワイヤを用いる必要がない。このため、ボンディングワイヤを接続するための空間が不要になり、小型化を実現することができるとともに、圧電振動子とベース部材または蓋部材とにより構成される隙間が小さくなり、振動子から放出された超音波がより圧縮されて、音圧をより高めることができる。また、バイモルフ型圧電振動子やマルチモルフ型圧電振動子は、圧電セラミックスに印加される電界が強いため、ユニモルフ型圧電振動子と比べて駆動力が大きい。このため、第1の圧電振動子3および第2の圧電振動子4がバイモルフ型圧電振動子やマルチモルフ型圧電振動子である場合、音圧をより高めることができる。
また、第1の圧電振動子3と第2の圧電振動子4とを有する超音波発生素子1に代えて、1つの圧電振動子を有する超音波発生素子を用いるようにしても良い。
また、ベース部材7や蓋部材8の形状、大きさなども任意であり、変更することができる。
さらに、蓋部材8に形成される超音波放出孔8bの形状、個数、形成位置なども任意であり、変更することができる。
[第2実施形態]
図14に、本発明の第2実施形態にかかる超音波トランスデューサ200を示す。ただし、図14は断面図である。
図14に、本発明の第2実施形態にかかる超音波トランスデューサ200を示す。ただし、図14は断面図である。
上述した第1実施形態の超音波トランスデューサ100では、超音波発生源として、第1の圧電振動子3と第2の圧電振動子4とを有する超音波発生素子1を用いているが、本実施形態の超音波トランスデューサ200においては、超音波発生源として、1つの圧電振動子13を有する超音波発生素子11を用いた。
超音波トランスデューサ200は、超音波発生素子11と、ガラスエポキシなどからなるベース部材17と、洋白などからなる蓋部材18とからなるケースを備える。超音波発生素子11は、台座12と、圧電振動子13とを備える。
台座12は、中央部に貫通孔が形成されており、枠状である。台座12の一方の主面(上側の主面)には、バイモルフ型の圧電振動子13が接着剤(図示せず)により取り付けられている。台座12の他方の主面(下側の主面)は、ベース部材17に接合されている。
圧電振動子13は、矩形で平板状の圧電セラミックス13aを備える。そして、圧電セラミックス13aの内部には内部電極13bが形成され、圧電セラミックス13aの両主面には外部電極13c,13dが形成されている。内部電極13bは、圧電セラミックス13aの隣合う2つの角部に引出されている。一方、外部電極13c,13dは、内部電極13bが引出されていない、圧電セラミックス13aの隣合う2つの角部にそれぞれ引出されている。圧電セラミックス13aは、内部において分極されている。圧電振動子13の4つの角部には、それぞれ、引出電極16a,16b,16c,16dが形成されている。
ベース部材17は、矩形で、平板状である。ベース部材17の上側の主面には、複数のランド電極(図示せず)が形成されており、それらのランド電極に、圧電振動子13の4つの角部に形成された引出電極16a,16b,16c,16dが、音響経路に影響を与えないようになるべく小さく、導電性接着剤19によりそれぞれ接合されている。(図14において、導電性接着剤19は断面ではないが、見やすくするために模様を付している。)このようにして、ベース部材17に超音波発生素子11が搭載されている。
蓋部材18には、超音波発生素子11を収容するための開口18aが形成され、さらに天板部分に、超音波放出孔18bが形成されている。蓋部材18は、開口18aに超音波発生素子11を収容したうえで、開口18aの周縁が、たとえば接着剤(図示せず)により、ベース部材17の上側の主面に接合されている。
超音波トランスデューサ200においては、超音波発生素子11と、ベース部材17および蓋部材18からなるケースとにより、空気を媒質とする音響経路が形成されている。具体的には、圧電振動子13の振動面上の変位が最も大きな部分を共鳴の腹Fとし、超音波放出孔18bを共鳴の開放端として、λ/4の共鳴が発生する音響経路Rが形成されている。なお、図14においては、音響経路Rを破線矢印で示している。
第2実施形態にかかる超音波トランスデューサ200においても、超音波発生素子11(圧電振動子13)は、λ/4の空気の共鳴における温度音圧特性と、圧電振動子13の駆動周波数における温度振幅特性とが逆傾向となり、λ/4の空気の共鳴における温度音圧特性と、圧電振動子13の駆動周波数における温度振幅特性とが相殺させるような駆動周波数で駆動される。したがって、超音波トランスデューサ200も、優れた温度音圧特性を備える。
[第3実施形態]
図15に、本発明の第3実施形態にかかる超音波トランスデューサ300を示す。ただし、図15は断面図である。
図15に、本発明の第3実施形態にかかる超音波トランスデューサ300を示す。ただし、図15は断面図である。
上述した第1実施形態の超音波トランスデューサ100では、超音波発生源として、第1の圧電振動子3と第2の圧電振動子4とを有する超音波発生素子1を用いているが、本実施形態の超音波トランスデューサ300においては、超音波発生源として、1つの圧電振動子23を有する超音波発生素子21を用いた。
超音波トランスデューサ300は、超音波発生素子21と、ガラスエポキシなどからなるベース部材27と、洋白などからなる蓋部材28とからなるケースを備える。超音波発生素子21は、キャビティ22と、圧電振動子23とを備える。
キャビティ22は、凹部22aが形成されている。キャビティ22の一方の主面(下側の主面)には、バイモルフ型の圧電振動子23が接着剤(図示せず)により取り付けられている。
圧電振動子23は、矩形で平板状の圧電セラミックス23aを備える。そして、圧電セラミックス23aの内部には内部電極23bが形成され、圧電セラミックス23aの両主面には外部電極23c,23dが形成されている。内部電極23bは、圧電セラミックス23aの隣合う2つの角部に引出されている。一方、外部電極23c,23dは、内部電極23bが引出されていない、圧電セラミックス23aの隣合う2つの角部にそれぞれ引出されている。圧電セラミックス23aは、内部において分極されている。圧電振動子23の4つの角部には、それぞれ、引出電極26a,26b,26c,26dが形成されている。
ベース部材27は、矩形で、平板状である。ベース部材27の上側の主面には、複数のランド電極(図示せず)が形成されており、それらのランド電極に、圧電振動子23の4つの角部に形成された引出電極26a,26b,26c,26dが、音響経路に影響を与えないようになるべく小さく、導電性接着剤29によりそれぞれ接合されている。(図15において、導電性接着剤29は断面ではないが、見やすくするために模様を付している。)このようにして、ベース部材27に超音波発生素子21が搭載されている。
蓋部材28には、超音波発生素子21を収容するための開口28aが形成され、さらに天板部分に、超音波放出孔28bが形成されている。蓋部材28は、開口28aに超音波発生素子21を収容したうえで、開口28aの周縁が、たとえば接着剤(図示せず)により、ベース部材27の上側の主面に接合されている。
超音波トランスデューサ300においては、超音波発生素子21と、ベース部材27および蓋部材28からなるケースとにより、空気を媒質とする音響経路が形成されている。具体的には、圧電振動子23の振動面上の変位が最も大きな部分を共鳴の腹Fとし、超音波放出孔28bを共鳴の開放端として、λ/4の共鳴が発生する音響経路Rが形成されている。なお、図15においては、音響経路Rを破線矢印で示している。
第3実施形態にかかる超音波トランスデューサ300においても、超音波発生素子21(圧電振動子23)は、λ/4の空気の共鳴における温度音圧特性と、圧電振動子13の駆動周波数における温度振幅特性とが逆傾向となり、λ/4の空気の共鳴における温度音圧特性と、圧電振動子13の駆動周波数における温度振幅特性とが相殺させるような駆動周波数で駆動される。したがって、超音波トランスデューサ300も、優れた温度音圧特性を備える。
1,11,21:超音波発生素子
2:枠体
2a:貫通孔
3:第1の圧電振動子
3a,4a,13a,23a:圧電セラミックス
3b,4b,13b,23b:内部電極
3c,3d,4c,4d,13c,13d,23c,23d:外部電極
4:第2の圧電振動子
5a,5b:接着剤
6a,6b,6c,6d,16a,16b,16c,16d,26a,26b,26c,26d:引出電極
7,17,27:ベース部材
8,18,28:蓋部材
8a,18a,28a:開口
8b,18b,28b:超音波放出孔
9,19,29:導電性接着剤
12:台座
13,23:圧電振動子
22:キャビティ
22a:凹部
100,200,300:超音波トランスデューサ
R1,R2,R:音響経路
F1,F2,F:λ/4の空気の共鳴の腹
2:枠体
2a:貫通孔
3:第1の圧電振動子
3a,4a,13a,23a:圧電セラミックス
3b,4b,13b,23b:内部電極
3c,3d,4c,4d,13c,13d,23c,23d:外部電極
4:第2の圧電振動子
5a,5b:接着剤
6a,6b,6c,6d,16a,16b,16c,16d,26a,26b,26c,26d:引出電極
7,17,27:ベース部材
8,18,28:蓋部材
8a,18a,28a:開口
8b,18b,28b:超音波放出孔
9,19,29:導電性接着剤
12:台座
13,23:圧電振動子
22:キャビティ
22a:凹部
100,200,300:超音波トランスデューサ
R1,R2,R:音響経路
F1,F2,F:λ/4の空気の共鳴の腹
Claims (4)
- 圧電振動子を有する超音波発生素子と、
超音波放出孔を有し、前記超音波発生素子が収容されたケースとを備え、
前記超音波発生素子と前記ケースとにより、前記圧電振動子から前記超音波放出孔に至る、空気を媒質とする音響経路が形成され、
前記音響経路において、前記圧電振動子で発生した超音波により、前記超音波放出孔を開放端として空気の共鳴が発生する超音波トランスデューサであって、
前記空気の共鳴における温度音圧特性と、前記圧電振動子の駆動周波数における温度振幅特性とが逆傾向となる駆動周波数で、前記圧電振動子が駆動される、超音波トランスデューサ。 - 前記空気の共鳴がλ/4の共鳴である、請求項1に記載された超音波トランスデューサ。
- 前記圧電振動子の前記駆動周波数が、25℃における前記空気の共鳴の音圧がピークとなる周波数からずれている、請求項1または2に記載された超音波トランスデューサ。
- 前記超音波発生素子は、枠体の一方の主面に接合された平板状の第1の圧電振動子と、他方の主面に接合された平板状の第2の圧電振動子からなり、
前記第1の圧電振動子と前記第2の圧電振動子は、同じ周波数で互いに逆位相で振動する、座屈音叉振動モードにより駆動され、
前記音響経路は、前記第1の圧電振動子から前記超音波放出孔に至る第1の音響経路と、前記第2の圧電振動子から前記超音波放出孔に至る第2の音響経路からなる、請求項1ないし3のいずれか1項に記載された超音波トランスデューサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013526823A JP5594435B2 (ja) | 2011-08-03 | 2012-07-24 | 超音波トランスデューサ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011170230 | 2011-08-03 | ||
JP2011170230 | 2011-08-03 | ||
JP2013526823A JP5594435B2 (ja) | 2011-08-03 | 2012-07-24 | 超音波トランスデューサ |
PCT/JP2012/068666 WO2013018579A1 (ja) | 2011-08-03 | 2012-07-24 | 超音波トランスデューサ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5594435B2 true JP5594435B2 (ja) | 2014-09-24 |
JPWO2013018579A1 JPWO2013018579A1 (ja) | 2015-03-05 |
Family
ID=47629106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013526823A Active JP5594435B2 (ja) | 2011-08-03 | 2012-07-24 | 超音波トランスデューサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9662680B2 (ja) |
JP (1) | JP5594435B2 (ja) |
CN (1) | CN103703794B (ja) |
WO (1) | WO2013018579A1 (ja) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103858442B (zh) * | 2011-10-03 | 2016-11-02 | 株式会社村田制作所 | 超声波发生装置 |
GB2513884B (en) | 2013-05-08 | 2015-06-17 | Univ Bristol | Method and apparatus for producing an acoustic field |
US9612658B2 (en) | 2014-01-07 | 2017-04-04 | Ultrahaptics Ip Ltd | Method and apparatus for providing tactile sensations |
TWI527471B (zh) * | 2014-03-14 | 2016-03-21 | 財團法人工業技術研究院 | 壓電電聲換能器 |
WO2015171224A1 (en) * | 2014-05-09 | 2015-11-12 | Chirp Microsystems, Inc. | Micromachined ultrasound transducer using multiple piezoelectric materials |
GB2530036A (en) | 2014-09-09 | 2016-03-16 | Ultrahaptics Ltd | Method and apparatus for modulating haptic feedback |
CN106575498A (zh) * | 2014-10-31 | 2017-04-19 | 株式会社村田制作所 | 发声装置 |
KR102524966B1 (ko) | 2015-02-20 | 2023-04-21 | 울트라햅틱스 아이피 엘티디 | 햅틱 시스템에서의 알고리즘 개선 |
US9841819B2 (en) | 2015-02-20 | 2017-12-12 | Ultrahaptics Ip Ltd | Perceptions in a haptic system |
US10818162B2 (en) | 2015-07-16 | 2020-10-27 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
US11189140B2 (en) | 2016-01-05 | 2021-11-30 | Ultrahaptics Ip Ltd | Calibration and detection techniques in haptic systems |
CN105665264A (zh) * | 2016-03-18 | 2016-06-15 | 昆山联滔电子有限公司 | 压电振动器 |
US10268275B2 (en) | 2016-08-03 | 2019-04-23 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
US10755538B2 (en) | 2016-08-09 | 2020-08-25 | Ultrahaptics ilP LTD | Metamaterials and acoustic lenses in haptic systems |
JP6234641B1 (ja) * | 2016-09-30 | 2017-11-22 | オリンパス株式会社 | 超音波トランスデューサ及び超音波トランスデューサの製造方法 |
US10943578B2 (en) | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
WO2018139194A1 (ja) * | 2017-01-25 | 2018-08-02 | 株式会社村田製作所 | 超音波装置 |
JP6984662B2 (ja) * | 2017-11-02 | 2021-12-22 | 株式会社村田製作所 | 超音波センサ |
US11531395B2 (en) | 2017-11-26 | 2022-12-20 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
JP7483610B2 (ja) | 2017-12-22 | 2024-05-15 | ウルトラハプティクス アイピー リミテッド | 触覚システムにおける不要な応答の最小化 |
WO2019122912A1 (en) | 2017-12-22 | 2019-06-27 | Ultrahaptics Limited | Tracking in haptic systems |
SG11202010752VA (en) * | 2018-05-02 | 2020-11-27 | Ultrahaptics Ip Ltd | Blocking plate structure for improved acoustic transmission efficiency |
US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
US11378997B2 (en) | 2018-10-12 | 2022-07-05 | Ultrahaptics Ip Ltd | Variable phase and frequency pulse-width modulation technique |
US11550395B2 (en) | 2019-01-04 | 2023-01-10 | Ultrahaptics Ip Ltd | Mid-air haptic textures |
JP7361473B2 (ja) * | 2019-01-21 | 2023-10-16 | Tdk株式会社 | 音響装置 |
US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
CN110572759B (zh) * | 2019-08-30 | 2020-12-15 | Oppo广东移动通信有限公司 | 电子设备 |
US11374586B2 (en) | 2019-10-13 | 2022-06-28 | Ultraleap Limited | Reducing harmonic distortion by dithering |
US11553295B2 (en) | 2019-10-13 | 2023-01-10 | Ultraleap Limited | Dynamic capping with virtual microphones |
WO2021090028A1 (en) | 2019-11-08 | 2021-05-14 | Ultraleap Limited | Tracking techniques in haptics systems |
US11537319B2 (en) | 2019-12-11 | 2022-12-27 | Advanced Micro Devices, Inc. | Content addressable memory with sub-field minimum and maximum clamping |
IT201900023943A1 (it) * | 2019-12-13 | 2021-06-13 | St Microelectronics Srl | Trasduttore mut comprendente un risuonatore di helmoltz accordabile |
US11715453B2 (en) | 2019-12-25 | 2023-08-01 | Ultraleap Limited | Acoustic transducer structures |
US11816267B2 (en) | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
WO2022058738A1 (en) | 2020-09-17 | 2022-03-24 | Ultraleap Limited | Ultrahapticons |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60134700A (ja) * | 1983-12-23 | 1985-07-17 | Nippon Denso Co Ltd | 発音装置 |
JP4415445B2 (ja) | 2000-03-09 | 2010-02-17 | 株式会社村田製作所 | 超音波トランスジューサ |
JP3991827B2 (ja) * | 2002-09-10 | 2007-10-17 | 日本電気株式会社 | 屈曲型送波器 |
EP1988741A4 (en) * | 2006-02-21 | 2014-11-05 | Murata Manufacturing Co | PIEZOELECTRIC SOUND BODY |
JP4494493B2 (ja) * | 2008-04-22 | 2010-06-30 | 株式会社デンソー | 超音波センサ |
DE102009017507B4 (de) * | 2008-04-18 | 2011-12-08 | Denso Corporation | Ultraschallsensor |
-
2012
- 2012-07-24 CN CN201280035312.5A patent/CN103703794B/zh active Active
- 2012-07-24 WO PCT/JP2012/068666 patent/WO2013018579A1/ja active Application Filing
- 2012-07-24 JP JP2013526823A patent/JP5594435B2/ja active Active
-
2014
- 2014-01-24 US US14/163,307 patent/US9662680B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103703794A (zh) | 2014-04-02 |
US9662680B2 (en) | 2017-05-30 |
WO2013018579A1 (ja) | 2013-02-07 |
CN103703794B (zh) | 2017-03-22 |
US20140139071A1 (en) | 2014-05-22 |
JPWO2013018579A1 (ja) | 2015-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594435B2 (ja) | 超音波トランスデューサ | |
JP5742954B2 (ja) | 超音波発生装置 | |
JP5556893B2 (ja) | 超音波発生装置 | |
JP5136644B2 (ja) | 圧電発電装置 | |
TWI508577B (zh) | Sound generator, sound generating device and electronic machine | |
WO2014103454A1 (ja) | 音響発生器およびそれを用いた電子機器 | |
JP5638170B2 (ja) | 音響発生器、音響発生装置及び電子機器 | |
US9853578B2 (en) | Ultrasonic generator | |
JP6107940B2 (ja) | 超音波発生装置 | |
JP6024655B2 (ja) | 発振装置、および電子機器 | |
WO2014174731A1 (ja) | 超音波発生装置 | |
JP2013088234A (ja) | 超音波発生デバイスおよび超音波発生装置 | |
JP5871753B2 (ja) | 音響発生器、音響発生装置および電子機器 | |
WO2013122048A1 (ja) | 超音波発生装置 | |
JP2022184499A (ja) | 音響デバイス | |
JP5491718B2 (ja) | 超音波モータ | |
JP6346075B2 (ja) | 音響発生器 | |
JP6595248B2 (ja) | 音響発生器 | |
JP2000115890A (ja) | 圧電発音体及びその製造方法 | |
JP6595280B2 (ja) | 音響発生器 | |
JP6382707B2 (ja) | 音響発生器およびこれを備えたスピーカー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140721 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5594435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |