WO2007058196A1 - 固定子鉄心緩み診断装置および固定子鉄心緩み診断方法 - Google Patents

固定子鉄心緩み診断装置および固定子鉄心緩み診断方法 Download PDF

Info

Publication number
WO2007058196A1
WO2007058196A1 PCT/JP2006/322728 JP2006322728W WO2007058196A1 WO 2007058196 A1 WO2007058196 A1 WO 2007058196A1 JP 2006322728 W JP2006322728 W JP 2006322728W WO 2007058196 A1 WO2007058196 A1 WO 2007058196A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
vibration
mode
looseness
natural frequency
Prior art date
Application number
PCT/JP2006/322728
Other languages
English (en)
French (fr)
Inventor
Yutaka Hashiba
Norio Takahashi
Masayuki Ichimonji
Hitoshi Katayama
Takaharu Tani
Tatsuo Taniguchi
Masayuki Takahashi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP06832659A priority Critical patent/EP1950869A4/en
Priority to CN2006800428605A priority patent/CN101310427B/zh
Priority to JP2007545258A priority patent/JP4869249B2/ja
Publication of WO2007058196A1 publication Critical patent/WO2007058196A1/ja
Priority to US12/122,348 priority patent/US7854167B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4418Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a model, e.g. best-fit, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines

Definitions

  • the present invention relates to a diagnostic apparatus for diagnosing looseness of a stator core of a rotating electrical machine and a diagnostic method therefor.
  • a stator of a rotating electric machine such as a generator or an electric motor
  • thin electromagnetic steel sheets having a space in which a coil is inserted are laminated on the inner diameter side, and the laminated electromagnetic steel sheets are tightened in the axial direction.
  • the stator core Then, the coil is inserted into the coil insertion space on the inner diameter side, and the coil is connected outside the iron core.
  • stator core configured as described above, if the iron core is weakly tightened, the tightening surface pressure of the laminated electromagnetic steel plates is reduced, and the electromagnetic steel plates vibrate and the electromagnetic steel plates vibrate and rub against each other.
  • the insulation layer applied to the surface of the steel sheet peels off, the electrical steel sheets are electrically connected, eddy currents flow, and in the worst case, the iron core melts down. Therefore, it was necessary to regularly check and inspect the plant during operation as well as to assemble it while controlling the iron core surface pressure during the manufacturing process.
  • Patent Document 1 discloses a method for quantitatively evaluating the degree of iron core tightening.
  • a torque wrench is inserted into the air duct part that is usually provided, and the torque value indicated by the torque wrench when the iron core is squeezed with the torque wrench and the iron core or torque wrench The displacement is measured and the iron core surface pressure is evaluated numerically.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-354353
  • the tightening force of the iron core that can be evaluated is only a small part of the iron core, and the surface pressure is relatively low. It is limited to the vicinity of the outer surface. For this reason, it is necessary to measure a large number of locations, and the surface pressure is evaluated to be lower than the average surface pressure of the iron core, and there is a problem that the iron core is tightened more than necessary. Furthermore, in the diagnosis of existing plants, there was a problem that even machines without problems were judged as abnormal.
  • the present invention has been made to solve the above-described problem, and a stator core looseness diagnostic apparatus that can easily determine the amount of tightening of the entire core of a stator of a rotary machine and quantitatively determine the force, and its device
  • An object is to provide a diagnostic method.
  • the present invention is for achieving the above object, and the stator core looseness diagnostic device according to the present invention is coated with an insulating film on both sides or one side and has a space for inserting a coil on the inner diameter side.
  • a stator for a rotating electrical machine in which electrical steel sheets are laminated in the axial direction, the laminated electrical steel sheets are tightened in the axial direction, a coil is inserted into the coil insertion space on the inner diameter side, and the coil is connected externally.
  • the vibration means for vibrating the stator core in the radial direction, the vibration detection means for detecting vibration in the radial direction of the stator core, and the vibration means Means for extracting a measurement natural vibration mode of the annular mode of the stator core by frequency-analyzing the output signal detected by the vibration detection means when vibration is generated in the stator core when the stator core is vibrated; , Stator iron Shape data force of the stator core
  • the estimated natural vibration mode of the annular mode of the stator core, the comparison force between the measured natural vibration mode and the criterion obtained based on the estimated natural vibration mode Determination means for determining the tightening degree It is characterized by.
  • stator core looseness diagnostic apparatus Another aspect of the stator core looseness diagnostic apparatus according to the present invention is that a magnetic steel sheet having an insulating film force S coating on both sides or one side and having a space for inserting a coil on the inner diameter side is laminated in the axial direction.
  • the diagnostic device for diagnosing looseness of the stator iron core of a rotating electrical machine that is configured by tightening the magnetic steel sheet in the axial direction, inserting a coil in the coil insertion space on the inner diameter side, and connecting the coil outside Vibration means for exciting the core in the lateral direction, vibration detection means for detecting respective radial vibrations at a plurality of different positions in the axial direction of the stator core, and the stator by the vibration means Means for frequency-analyzing the output signal detected by the vibration detection means when the iron core is vibrated and extracting the measured natural frequency of the transverse vibration mode of the stator core; Fixed Means for estimating an estimated natural frequency of a transverse vibration mode of a stator core from shape data of the iron core, means for creating a determination value based on the estimated natural frequency, the measured natural frequency, and the determination value And a determination means for determining the degree of tightening of the stator core.
  • electromagnetic steel sheets having a coating space on both sides or one side and having a space for inserting a coil on the inner diameter side are laminated in the axial direction.
  • the diagnosis method for diagnosing looseness of a stator core of a rotating electric machine configured by tightening a magnetic steel sheet in an axial direction, inserting a coil in a coil insertion space on the inner diameter side, and connecting the coil to the outside, the stator A vibration step for vibrating the iron core in a radial direction, a vibration detection step for detecting vibration generated in the stator core when the stator core is vibrated in the vibration step, and the vibration detection means.
  • the measurement natural vibration mode extraction process that extracts the measured natural vibration mode of the stator core's ring mode by praying the detected output signal for frequency, and the shape data force of the stator core.
  • Estimated natural vibration A natural vibration mode estimation step for estimating a mode, a determination step for determining a tightening degree of the stator core from a comparison between the measurement natural vibration mode and a determination criterion obtained based on the estimated natural vibration mode. It is characterized by having.
  • Another aspect of the stator core looseness diagnosis method is that an electromagnetic steel sheet having an insulating film force S coating on both sides or one side and having a space for inserting a coil on the inner diameter side in the axial direction. Diagnostic method for diagnosing looseness of a stator core of a rotating electrical machine that is constructed by laminating and tightening laminated magnetic steel sheets in the axial direction, inserting a coil into the coil insertion space on the inner diameter side, and connecting the coil externally The vibration of the stator core when the stator core is vibrated when the stator core is vibrated in the vibration step.
  • Vibration detection step for detecting at a plurality of different positions, and a measurement natural frequency extraction step for extracting the measurement natural frequency of the transverse vibration mode of the stator core by analyzing the frequency of the output signal detected in the vibration detection step.
  • a natural frequency estimating step for estimating the estimated natural frequency of the transverse vibration mode of the stator core from the shape data of the stator core, the measured natural frequency, and the estimated natural frequency From comparison with judgment criteria
  • FIG. 1 is a schematic longitudinal sectional view showing a first embodiment of a stator core and a stator core looseness diagnostic apparatus for a rotating electrical machine according to the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the signal processing means in FIG. 1.
  • FIG. 3 Conceptual diagram of natural vibration modes of the same phase in the secondary axial direction of the stator core ring of a general rotating electrical machine.
  • FIG. 4 Conceptual diagram of the natural vibration mode of the stator core ring of a general rotating electrical machine with the secondary axis direction opposite phase.
  • FIG. 5 Conceptual diagram of natural vibration modes of the same phase in the third axial direction of a stator core ring of a general rotating electrical machine.
  • FIG. 6 Conceptual diagram of the natural vibration mode of the stator core ring of the general rotating electrical machine with the third-order axially opposite phase.
  • FIG. 7 Conceptual diagram of the natural vibration mode of U-bending in the secondary axial direction of the stator core ring of a typical rotating electrical machine.
  • 8 A graph showing the concept of the relationship between the core surface pressure and the natural frequency of the annular mode for explaining the signal processing in the first embodiment of the stator core looseness diagnostic apparatus according to the present invention.
  • the result of frequency analysis of vibration data is a diagram illustrating a general method for obtaining the damping coefficient ratio, with the frequency on the horizontal axis and the vibration level on the vertical axis.
  • FIG. 11 is a graph showing the concept of the relationship between the iron core surface pressure and the damping coefficient ratio of the ring natural vibration mode for explaining the signal processing in the first embodiment of the stator core loosening diagnostic apparatus according to the present invention. .
  • FIG. 12 is a schematic longitudinal sectional view showing a second embodiment of a stator core of a rotating electrical machine and a stator core looseness diagnostic apparatus according to the present invention.
  • FIG. 13 is a block diagram showing a specific configuration of the signal processing means and the vibration 'vibration force detection means of FIG.
  • FIG. 14 is a schematic longitudinal sectional view showing a third embodiment of a stator core of a rotating electrical machine and a stator core looseness diagnostic apparatus according to the present invention.
  • FIG. 15 is a schematic longitudinal sectional view showing a fourth embodiment of a stator core and a stator core looseness diagnostic apparatus for a rotating electrical machine according to the present invention.
  • FIG. 16 is a block diagram showing a specific configuration of the signal processing means in FIG.
  • FIG. 17 is a diagram schematically showing a vibration mode of a transverse vibration of a beam, which is a determination criterion in the fourth embodiment of the stator core and stator core looseness diagnosis device of the rotating electrical machine according to the present invention.
  • FIG. 19 is a schematic longitudinal sectional view showing a fifth embodiment of a stator core and stator core looseness diagnostic apparatus for a rotating electrical machine according to the present invention.
  • 20 is a block diagram showing a specific configuration of the signal processing means in FIG.
  • Conversion means to frequency domain data 42 ⁇ ⁇ Natural frequency extraction means for transverse vibration mode, 4 4 ⁇ Shape data input means, 45 ⁇ Calculation coefficient calculation means, ⁇ , 48 ...
  • reference numeral 1 denotes a stator core, which is formed by laminating thin steel electromagnetic steel sheets having a space in which a coil 2 is inserted on the inner diameter side thereof, and pressing the laminated electromagnetic steel sheets provided at both axial ends.
  • the rib nuts 5 are screwed and tightened to the male threaded portions at both ends of the rib bars 4 arranged on the outer diameter side of the electrical steel sheet. Connect the coil 2 outside the stator core 1 in the axial direction.
  • a vibration sensor (vibration detecting means) 6 is arranged in the circumferential direction and in the axial direction including both end portions in the axial direction so as to detect the radial vibration of the stator core 1 on the outer diameter side of the stator core 1. A plurality of each is attached.
  • the vibration means 7 is, for example, a no-mmer, and can vibrate by striking the stator core 1 in the radial direction.
  • the output signal of the vibration sensor 6 force is processed by the signal processing means 8.
  • FIG. 2 shows an example of the configuration of the signal processing means 8, and the output signal from the vibration sensor 6 is
  • the frequency domain data is converted into frequency domain data by the frequency domain data conversion means 21, and the ring mode vibration is extracted by the annular natural vibration mode extraction means 22. Further, parameters are extracted by the parameter extracting means 23.
  • shape data is input by the shape data input means 25, and the natural vibration mode is estimated by the natural vibration mode estimation means 26 based on this shape data.
  • the judgment value creating means 27 creates a judgment value. Then, based on the parameter extracted by the parameter extraction unit 23 and the determination value generated by the determination value generation unit 27, determination evaluation is performed by the determination evaluation unit 28. The result of this judgment evaluation is outputted by the judgment result output means 29.
  • FIGS. 1 and 7 are diagrams conceptually showing the deformation of the stator core 1 when the stator core 1 vibrates in the natural mode of the annular mode, and are used for numerical analysis using the finite element method (FEM). Therefore, it is an example obtained.
  • FEM finite element method
  • Reference numeral 70 in the figure denotes a slot (insertion space) into which the coil 2 is inserted, which is formed on the inner diameter side of the stator core 1 and extends in the axial direction.
  • FIG. 3 shows the deformation of the stator core 1 in a circular secondary (elliptical) and axial in-phase mode
  • Fig. 4 shows the stator core 1 in a circular secondary (elliptical) and axial anti-phase mode 1
  • Fig. 5 shows the deformation state of the stator core 1 in the annular third order (trefoil type) and axial in-phase mode
  • Fig. 6 shows the third order (trefoil type) and axial reverse phase of the ring.
  • the deformation state of the stator core 1 in the mode is shown
  • FIG. 7 shows the deformation state of the stator core 1 in the circular secondary (elliptical) and axial bending (U-shaped) modes.
  • annular vibration modes include an axial S-shaped mode and an M-shaped (W-shaped) mode.
  • the vibration sensor 6 is attached at a position where the vibration of the target vibration mode can be measured, and therefore detects the vibration waveform of the target vibration mode.
  • the vibration signal detected by the vibration sensor 6 is sent to the signal processing means 8, where it is Fourier transformed by the conversion means 21 to the frequency domain data in the signal processing means 8, and the frequency domain data Is converted to Then, the individual modes of the ring are extracted from the amplitude and phase relationship of the vibration sensors 6 attached to the stator core 1 and the deformation characteristics of the stator core 1 shown in FIGS. Input to the natural vibration mode extraction means 22 of the ring.
  • the stator core 1 of the stator core 1 is calculated by numerical calculation using the finite element method or the like from the dimension data of the stator core 1 of the target rotating electric machine. Estimate the natural mode of the ring mode. Then, the result is inputted to the judgment value creating means 27, and a judgment value corresponding to the vibration parameter which is the output of the signal processing means is created.
  • the relationship between each parameter and the iron core surface pressure is roughly as shown in Fig. 8, Fig. 9 and Fig. 11. The actual measured force The parameter value obtained and the judgment value obtained from the dimension data were compared and evaluated. Output the judgment result.
  • the damping coefficient ratio is obtained from the vibration frequency domain data by the method shown in FIG.
  • the horizontal axis is frequency [Hz], and the vertical axis is the vibration level.
  • ⁇ ⁇ is the angular velocity of the natural vibration
  • CO O 2 FO, where the natural frequency is FO.
  • ⁇ ⁇ is the width of the angular velocity when the amplitude is 1Z 2 at the time of ⁇ ⁇ , and ⁇ is the damping coefficient ratio.
  • the residual surface pressure of the stator core can be quantitatively grasped by measuring the vibration of the annular mode of the stator core 1.
  • each of the natural vibration modes of the annular mode of the stator core is compared by comparing the judgment value from the dimension data of the machine to be diagnosed with the parameter of the actually measured data force of the vibration. From the parameters, the remaining surface pressure of the current iron core can be quantitatively determined. As a result, it is possible to accurately determine and diagnose the looseness and looseness of the iron core with no difference between the individual inspectors who need the proficiency level of the inspector.
  • Excitation ⁇ Excitation force detection means 9 is composed of excitation means 30 and excitation force detection means 31, and is firmly fixed to the outer diameter surface of the stator core 1, and the stator core 1 is arranged in the radial direction. Vibrate.
  • the excitation force of the oscillating force detection means 9 can be a single sine wave, a waveform in which a plurality of sine waves are superimposed, or a sine wave, triangle wave or rectangular wave that sweeps a certain frequency band, Alternatively, it is vibrated with a random wave.
  • the excitation force of the excitation means 30 is detected by the excitation force detection means 31, and a plurality of vibration forces are installed on the stator core 1 to detect the radial vibration of the stator core 1.
  • the signal is sent to the signal processing means 10 together with the signal.
  • the vibration of the annular mode detected by the vibration sensor 6 always mounted inside the rotating electrical machine.
  • the excitation force waveform data detected by the excitation force detection means 31 that is always installed inside the rotating electrical machine are both converted to frequency domain data in the signal processing means 10 21.
  • the vibration data is converted into a transfer function based on the excitation force, and the vibration of the annular mode is extracted by the natural vibration mode extraction means 22 of the ring.
  • the surface pressure of the stator core can be accurately grasped without being affected by the strength of the excitation force.
  • the vibration / vibration detection means 9 and vibration sensor 6 are always installed in the rotating electrical machine, it is possible to constantly monitor and regularly diagnose the remaining surface pressure of the stator core 1 without disassembling the rotating electrical machine. Become. Further, by exciting the vibration means 30 with the natural frequency of the annular mode obtained in advance, the determination can be made with high sensitivity when the amplitude or amplitude ratio is used as a parameter. In addition, by superimposing a plurality of natural frequencies, it is possible to vibrate a plurality of natural frequencies with high sensitivity.
  • the vibration 'vibration force detection means 9 and the vibration detection sensor 6 are permanently installed on the stator core 1 in the rotating electric machine so as not to interfere with the original functions of the rotating electric machine. Without disassembling the rotating electrical machine, it can be constantly monitored or regularly diagnosed during operation. As a result, failure of the stator core 1 can be prevented in advance, and looseness diagnosis of the stator core 1 can be easily performed.
  • the vibration signal for exciting the signal By variously setting the vibration signal for exciting the signal as described above, it is possible to improve the determination sensitivity and perform the determination in a wide range of modes.
  • FIG. 14 denotes an acoustic or displacement sensor, which has a gap with respect to the stator core 1 of the rotating electric machine and is fixedly attached from the outside, and is a sound generated when the stator core 1 vibrates.
  • the displacement amount is detected, and the detected signal is sent to the signal processing means 10.
  • the vibration of the natural mode of the annular mode of the stator core 1 is acoustically or displaced. Detected by the sensor 11 and sent to the signal processing device 10 to perform the same signal processing as in the first or second embodiment, determine the remaining surface pressure of the stator core, and loosen the stator core 1 Make a diagnosis. At this time, by using the acoustic or displacement sensor 11, the vibration in the natural mode of the annular mode of the stator core 1 can be detected as in the case of using the vibration sensor 6.
  • the acoustic or displacement sensor 11 instead of the vibration sensor 6, the natural vibration mode of the annular mode of the stator core 1 is changed. Detect vibration.
  • the acoustic or vibration sensor 11 can be installed without contact with the stator core 1 without being insulative and is not fixed directly to the stator core 1, so that the mounting position of the sound or displacement sensor 11 can be easily moved. It is. [0039] [Fourth embodiment]
  • FIG. 15 and FIG. 15 A fourth embodiment of a stator core looseness diagnostic apparatus for a rotating electrical machine and a rotating electrical machine incorporating the same according to the present invention will be described with reference to FIG. 15 and FIG. Note that the same or similar components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the first to third embodiments attention is paid to the vibration of the stator core ring mode of the rotating electrical machine, but the fourth embodiment focuses on the transverse vibration mode of the stator core.
  • a plurality of vibration sensors 6 are attached in the axial direction so as to detect vibration in the excitation direction of the stator core 1 on the outer diameter side of the stator core 1. It has been.
  • the signal from the vibration sensor 6 is taken into the signal processing means 38 and processed.
  • the signal processing means 38 includes a conversion means 41 to frequency domain data, a natural frequency extraction means 42 in the transverse vibration mode, a calculation coefficient calculation means 45, a natural frequency in the transverse vibration mode.
  • An estimation unit 46, a judgment value creation unit 47, and a judgment evaluation unit 48 are included.
  • the output signal from the vibration sensor 6 is converted into frequency domain data by the frequency domain data converting means 41, and the natural frequency in the transverse vibration mode is extracted by the natural frequency extracting means 42 in the transverse vibration mode. .
  • shape data is input by the shape data input means 44, and a calculation coefficient is calculated by the calculation coefficient calculation means 45 based on this shape data.
  • the estimated natural frequency of the transverse vibration is estimated by the natural frequency estimating means 46 of the transverse vibration mode based on this calculation coefficient.
  • a judgment value is created by the judgment value creating means 47.
  • judgment evaluation is performed by the judgment evaluation means 48.
  • the result of judgment evaluation is output by the judgment result output means 29.
  • the stator core 1 is vibrated and vibrated by the vibration means 7 so that the stator core 1 has a natural frequency of transverse vibration, for example, as shown in FIG. It will vibrate in the transverse vibration mode 80 that vibrates in a U shape in the proper axial direction.
  • Fig. 17 is a diagram conceptually illustrating the deformation of the stator core 1 when the stator core 1 vibrates at the natural frequency of transverse vibration, and is an example obtained by numerical analysis. As shown in this figure, The main modes include vibration modes with primary, secondary and tertiary natural frequencies.
  • First-order natural frequency vibration mode 80 is deformed in a U shape
  • second-order natural frequency vibration mode 81 is deformed in an S shape
  • third-order natural frequency vibration mode 82 is in a W shape. It is a vibration that transforms into an (M-shaped) shape.
  • Equation (1) The natural frequency F in the vibration mode of the general transverse vibration of the beam can be obtained by Equation (1).
  • a plurality of vibration sensors 6 are attached in the axial direction so that vibrations in the target vibration mode can be measured, so that the vibration waveform in the target vibration mode is detected.
  • the vibration signal detected by the vibration sensor 6 is sent to the signal processing means 38, and is converted by the Fourier transform by the conversion means 41 to the frequency domain data in the signal processing means 38 into the frequency domain data.
  • the transverse vibration that extracts the individual vibration modes of the transverse vibration from the amplitude and phase relationship of the vibration sensors 1 and 6 attached to the stator core 1 and the deformation characteristics of the stator core 1 shown in Fig. 18. This is input to the natural frequency extraction means 42 of the mode, and one or a plurality of frequencies out of the frequencies of the natural frequency of the lateral vibration are extracted.
  • the shape of the stator core 1 of the target rotating electrical machine is changed.
  • Dimensional shape data is input from the data input means 44, the shape correction coefficient kl and the support condition correction coefficient k2 are calculated by the calculation coefficient calculation means 45, and obtained in advance by the natural frequency estimation means 46 of the transverse vibration mode.
  • the relational force between the iron core surface pressure and the equivalent longitudinal elastic modulus E is obtained as the natural frequency of each transverse vibration mode.
  • the judgment value creation means 47 determines the judgment value for the past actual pressure as well.
  • the shape correction coefficient kl depends on support conditions such as the number of support points, position, and panel constant.
  • the support condition correction coefficient k2 depends on the inner / outer diameter ratio of the stator core 1 and the ratio between the axial length and the outer diameter (or inner diameter).
  • the above-mentioned shape correction factor kl and support condition correction factor k2 are taken into account.
  • F ⁇ kl 'k2' 2Z (2 TU L2) ⁇ ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ ) ⁇ (2)
  • kl is a shape correction factor
  • k2 is a support condition correction factor
  • the determination value obtained by the determination value creating means 47 is generally a determination value as shown in FIG.
  • the determination evaluation means 48 compares the measured value of the natural frequency obtained by the natural frequency extraction means 42 in the transverse vibration mode 42 with the determination value of FIG. A determination is made as to whether or not the iron core 1 is tightened, and the determination result output means 29 outputs the determination result.
  • the tightening surface pressure of the stator core 1 can be quantitatively grasped by measuring the natural frequency of the transverse vibration mode of the stator core 1.
  • the current core tightening can be obtained from the natural frequency of the transverse vibration mode of the stator core. Since the surface pressure can be determined quantitatively, it is possible to accurately judge and diagnose the degree of tightening of the iron core, in other words, the degree of looseness, with no difference between the individual inspectors who need the skill of the inspector.
  • the reference judgment value can be calculated by hand calculation or simple calculation at the spreadsheet level, there is no need for numerical analysis such as the finite element method. Therefore, it does not require a high-performance computer (computer), and the time required for analysis is also analyzed. Advanced technology is not required. Therefore, anyone can easily determine the iron core surface pressure in a short time and, moreover, diagnose the looseness of the iron core. In particular, in-situ determination is possible in the diagnosis of existing machines.
  • a fifth embodiment of a stator core looseness diagnostic apparatus for a rotating electrical machine and a rotating electrical machine incorporating the same according to the present invention will be described with reference to FIG. 19 and FIG. Note that the same or similar components as those in the fourth embodiment are denoted by the same reference numerals, and redundant description is omitted. As in the fourth embodiment, the fifth embodiment focuses on the transverse vibration mode of the stator core.
  • 69 is a multi-point excitation means, and an arbitrary excitation force can be obtained by inputting a signal to an actuator such as an electromagnetic vibrator or a hydraulic vibrator, and the stator core 1 A plurality of stator cores 1 are firmly fixed to the outer diameter surface in the axial direction, and the stator core 1 is vibrated in the radial direction.
  • the multi-point excitation means 69 is a single sine wave, a waveform in which a plurality of sine waves are superimposed, a sine wave, a triangular wave, a rectangular wave, or a random wave that sweeps a certain frequency band.
  • the frequency 'mode setting means 51 and the vibration signal generation means 52 make the phase of the vibration force of each vibration means in reverse phase or in phase or vibration. Adjust the force amplitude and vibrate.
  • the signal processing means 40 of this embodiment includes a frequency ′ mode setting means 51 and an excitation in addition to the components of the signal processing means 38 (FIG. 16) in the fourth embodiment.
  • Signal generation means 52 is provided.
  • the necessary natural frequency of the transverse vibration mode is sent from the frequency ′ mode setting means 51 to the excitation signal generating means 52, as well as the judgment value creating means 47 and the transverse vibration mode. Is also sent to the natural frequency extraction means 42 for making it easy to generate a judgment value and extract the measured natural frequency, respectively.
  • the excitation signal generated by the excitation signal generation means 52 is sent to the multipoint excitation means 69. Further, when a specific vibration mode is excited by the multipoint excitation means 69, the vibration sensor 6 detects the vibration in the excitation direction of the stator core 1.
  • the vibration sensor 6 is identified by the vibration mode excited by the multipoint excitation means 69, it is not necessary to provide a plurality of vibration sensors 6 in the axial direction, and at least one vibration sensor 6 is provided. Setting You just need to do it.
  • the determination process in the signal processing means 40 after detection by the vibration sensor 6 is the same as that of the fourth embodiment except that the natural frequency extracted by the frequency / mode setting means 51 is determined.
  • the multipoint excitation means 69 that vibrates radially on the outer diameter side of the stator core 1 is provided. Multiple points are installed in the axial direction, and multi-point excitation means 69 so that the mode of transverse vibration is excited 69 The phase of each excitation signal is adjusted, the amplitude is adjusted, and there is a single! /, Is random In some cases, since SWEEP excitation is performed, vibration in a specific transverse vibration mode required is excited, and the stator core 1 vibrates in that mode (for example, U-shaped transverse vibration mode 80 in FIG. 19).
  • the vibration signal detected by the vibration sensor 6 is only the vibration signal of the required transverse vibration mode, and the natural vibration of the transverse vibration mode in the natural frequency extraction means 42 in the transverse vibration mode.
  • the frequency extraction becomes easy, and in some cases, the natural frequency extraction means 42 in the transverse vibration mode can be omitted.
  • the multi-point excitation means 69 and the vibration sensor 6 can be always installed in the rotating electrical machine, allowing continuous monitoring and periodic diagnosis of the remaining surface pressure of the stator core 1 without disassembling the rotating electrical machine. It becomes.
  • the vibration signal of the necessary vibration mode can be detected and determined with high sensitivity by exciting the vibration means at the frequency of the natural frequency of the transverse vibration mode obtained in advance.
  • vibration can be performed at the natural frequency of the desired transverse vibration mode even if the natural frequency slightly shifts, and the mode can be clearly understood. It is.
  • the vibration sensor 6 can be fixed because the multi-point excitation means 69 provided in the axial direction of the stator core 1 can be arbitrarily excited at a specific vibration mode natural frequency. There is no need to extract a specific vibration mode by providing a plurality of vibration forces in the axial direction of the outer peripheral surface of the core 1 and determining the vibration force of the obtained vibration sensor 6. Data force of limited measurement points Generally, it is necessary to determine and extract the vibration mode by using a large number of databases. If it is not necessary to determine and extract the vibration mode as in this embodiment, the signal processing means Can be simplified and the number of measurement points can be reduced, so that the time required for measurement can be shortened and the time required for determination can be shortened. [0062] [Other Embodiments]
  • the acoustic or displacement sensor 11 of the third embodiment can be replaced with the vibration sensor 6 of the fourth or fifth embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 絶縁皮膜付き電磁鋼板を積層して軸方向に締め付け、内側のコイル挿入空間にコイル2を挿入し、コイル2を外部で接続して構成する固定子鉄心1の緩みを診断する診断装置である。固定子鉄心1を半径方向に加振する加振手段7と、固定子鉄心1の半径方向の振動を検出する振動検出センサー6と、加振手段7により固定子鉄心1を加振したときに固定子鉄心1に発生する振動を振動検出センサー6により検出した振動検出センサー6の出力信号を周波数分析して固定子鉄心の円環モードの測定固有振動モードを抽出する固有振動モード抽出手段22と、固定子鉄心1の形状データから固定子鉄心の円環モードの推定固有振動モードを推定する固有振動モード推定手段26と、測定固有振動モードと、推定固有振動モードに基づいて得られた判定基準との比較から固定子鉄心1の締め付け具合を判定する判定結果出力手段29と、を有する。

Description

明 細 書
固定子鉄心緩み診断装置および固定子鉄心緩み診断方法
技術分野
[0001] 本発明は、回転電機の固定子鉄心緩みを診断する診断装置およびその診断方法 に関する。
背景技術
[0002] 一般に、発電機や電動機などの回転電機の固定子では、その内径側にコイルが挿 入される空間を有する薄 ヽ電磁鋼板を積層し、積層された電磁鋼板を軸方向に締め 付けて、固定子鉄心を構成している。そして、内径側のコイル挿入空間にコイルを挿 入し、当該コイルを鉄心の外部で接続する。
[0003] このように構成された固定子鉄心では、鉄心の締め付けが弱いと、積層した電磁鋼 板の締め付け面圧が低下し、電磁鋼板が振動して電磁鋼板同士のこすれやたたき 合いによって電磁鋼板の表面に塗布した絶縁層が剥離し、電磁鋼板間が電気的に 接続し、渦電流が流れて最悪の場合は鉄心が溶損する事故が発生する。そこで、製 造工程において鉄心面圧を管理して組み立てることはもちろんのこと、運転中のプラ ントにおいても定期的に点検 ·検査する必要があった。この検査方法については、電 磁鋼板間の隙間に薄いナイフ状の治具を差し込んでその入り具合によって感覚的に 鉄心の締り具合を判断してきたが、判断基準が検査員個人の感覚に依存し、判定に 熟練を要したり、判定員個々人によって判定に相違があったりして、品質が一定とな らな 、などの問題があった。
[0004] これに対し特許文献 1には、鉄心締り具合を定量的に評価する方法が開示されて いる。この方法では、回転電機の固定子鉄心の冷却のために、通常設けられるエア ダクト部分にトルクレンチを挿入し、トルクレンチで鉄心をこじるときのトルクレンチが示 すトルク値と鉄心あるいはトルクレンチの変位量を測定して鉄心面圧を数値的に評価 するものである。
特許文献 1:特開 2000— 354353号公報
発明の開示 発明が解決しょうとする課題
[0005] 特許文献 1の方法においては、エアダクト部分にトルクレンチを挿入しなければなら ないが、通常この種のエアダクトは幅が小さぐ極めて薄い構造のトルクレンチでなけ れば挿入することができない。一方、鉄心の締め付け面圧は極めて高ぐこのような 薄 、トルクレンチではトルクレンチ自体が変形してしま 、、鉄心に対して十分な外力 を加えることができず、実用的な鉄心締め付け力を評価することはできない。
[0006] また、トルクレンチが鉄心に対して外力をカ卩えられる部分は鉄心のごく一部分である ので、評価できる鉄心の締め付け力も鉄心のごく一部分で、比較的に面圧が低くなる 鉄心の外表面付近に限定されてしまう。このため、数多くの箇所を測定しなければな らず、また、鉄心の平均面圧よりも低い面圧と評価され、必要以上に鉄心を締め付け てしまう問題がある。さらに、既存のプラントの診断では、問題ない機械まで異常と判 断してしまう問題があった。
[0007] そこで本発明は、上述した問題を解決するためになされたもので、回転機械の固定 子鉄心全体の鉄心締め付け具合を簡単にし力も定量的に判定できる固定子鉄心緩 み診断装置およびその診断方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明は上記目的を達成するためのものであって、本発明に係る固定子鉄心緩み 診断装置は、両面又は片面に絶縁皮膜がコーティングされ、内径側にコイルを挿入 する空間を有する電磁鋼板を軸方向に積層し、積層された電磁鋼板を軸方向に締 め付け、内径側のコイル挿入空間にコイルを挿入し、当該コイルを外部で接続して構 成する回転電機の固定子鉄心の緩みを診断する診断装置において、前記固定子鉄 心を半径方向に加振する加振手段と、前記固定子鉄心の半径方向の振動を検出す る振動検出手段と、前記加振手段により前記固定子鉄心を加振したときに前記固定 子鉄心に発生する振動を前記振動検出手段により検出した出力信号を周波数分析 して固定子鉄心の円環モードの測定固有振動モードを抽出する手段と、固定子鉄心 の形状データ力 固定子鉄心の円環モードの推定固有振動モードを推定する手段 と、前記測定固有振動モードと、前記推定固有振動モードに基づいて得られた判定 基準との比較力 固定子鉄心の締め付け具合を判定する判定手段と、を有すること を特徴とする。
[0009] 本発明に係る固定子鉄心緩み診断装置の他の態様は、両面又は片面に絶縁皮膜 力 Sコーティングされ、内径側にコイルを挿入する空間を有する電磁鋼板を軸方向に 積層し、積層された電磁鋼板を軸方向に締め付け、内径側のコイル挿入空間にコィ ルを挿入し、当該コイルを外部で接続して構成する回転電機の固定子鉄心の緩みを 診断する診断装置において、前記固定子鉄心を横方向に加振する加振手段と、前 記固定子鉄心の軸方向に異なる複数の位置におけるそれぞれの半径方向の振動を 検出する振動検出手段と、前記加振手段により前記固定子鉄心を加振したときに前 記固定子鉄心に発生する振動を前記振動検出手段により検出した出力信号を周波 数分析して固定子鉄心の横振動モードの測定固有振動数を抽出する手段と、固定 子鉄心の形状データから固定子鉄心の横振動モードの推定固有振動数を推定する 手段と、前記推定固有振動数に基づいて判定値を作成する手段と、前記測定固有 振動数と、前記判定値との比較力 固定子鉄心の締め付け具合を判定する判定手 段と、を有することを特徴とする。
[0010] また、本発明に係る固定子鉄心緩み診断方法は、両面又は片面に絶縁皮膜がコ 一ティングされ、内径側にコイルを挿入する空間を有する電磁鋼板を軸方向に積層 し、積層された電磁鋼板を軸方向に締め付け、内径側のコイル挿入空間にコイルを 挿入し、当該コイルを外部で接続して構成する回転電機の固定子鉄心の緩みを診 断する診断方法において、前記固定子鉄心を半径方向に加振する加振工程と、前 記加振工程で前記固定子鉄心を加振したときに前記固定子鉄心に発生する振動を 検出する振動検出工程と、前記振動検出手段により検出した出力信号を周波数分 祈して固定子鉄心の円環モードの測定固有振動モードを抽出する測定固有振動モ ード抽出工程と、固定子鉄心の形状データ力 固定子鉄心の円環モードの推定固 有振動モードを推定する固有振動モード推定工程と、前記測定固有振動モードと、 前記推定固有振動モードに基づいて得られた判定基準との比較から固定子鉄心の 締め付け具合を判定する判定工程と、を有することを特徴とする。
[0011] 本発明に係る固定子鉄心緩み診断方法の他の態様は、両面又は片面に絶縁皮膜 力 Sコーティングされ、内径側にコイルを挿入する空間を有する電磁鋼板を軸方向に 積層し、積層された電磁鋼板を軸方向に締め付け、内径側のコイル挿入空間にコィ ルを挿入し、当該コイルを外部で接続して構成する回転電機の固定子鉄心の緩みを 診断する診断方法において、前記固定子鉄心を横方向に加振する加振工程と、前 記加振工程で前記固定子鉄心を加振したときに前記固定子鉄心に発生する振動を 前記固定子鉄心の軸方向に異なる複数の位置で検出する振動検出工程と、前記振 動検出工程で検出した出力信号を周波数分析して固定子鉄心の横振動モードの測 定固有振動数を抽出する測定固有振動数抽出工程と、固定子鉄心の形状データか ら固定子鉄心の横振動モードの推定固有振動数を推定する固有振動数推定工程と 、前記測定固有振動数と、前記推定固有振動数に基づいて得られた判定基準との 比較から固定子鉄心の締め付け具合を判定する判定工程と、を有することを特徴と する。
発明の効果
[0012] 本発明によれば、回転機械の固定子鉄心の締め付け具合を簡単にし力も定量的 に判定することができる。
図面の簡単な説明
[0013] [図 1]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 1 の実施形態を示す模式的縦断面図である。
[図 2]図 1の信号処理手段の具体的構成を示すブロック図である。
[図 3]—般的な回転電機の固定子鉄心円環 2次 軸方向同相の固有振動モードの 概念図である。
[図 4]一般的な回転電機の固定子鉄心円環 2次 軸方向逆相の固有振動モードの 概念図である。
[図 5]—般的な回転電機の固定子鉄心円環 3次 軸方向同相の固有振動モードの 概念図である。
[図 6]—般的な回転電機の固定子鉄心円環 3次 軸方向逆相の固有振動モードの 概念図である。
[図 7]—般的な回転電機の固定子鉄心円環 2次 軸方向 U字曲げの固有振動モー ドの概念図である。 圆 8]本発明に係る固定子鉄心緩み診断装置の第 1の実施形態における信号処理を 説明するための、鉄心面圧と円環モードの固有振動数の関係の概念を示すグラフで ある。
圆 9]本発明に係る固定子鉄心緩み診断装置の第 1の実施形態における信号処理を 説明するための、鉄心面圧と、軸方向同相モードと逆相モードの固有振動数の比と の関係の概念を示すグラフである。
圆 10]振動データの周波数分析した結果力も減衰係数比を求める一般的な方法を 説明する図であって、周波数を横軸とし、振動のレベルを縦軸とするグラフである。 圆 11]本発明に係る固定子鉄心緩み診断装置の第 1の実施形態における信号処理 を説明するための、鉄心面圧と円環固有振動モードの減衰係数比の関係の概念を 示すグラフである。
[図 12]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 2 の実施形態を示す模式的縦断面図である。
圆 13]図 12の信号処理手段および加振'加振力検出手段などの具体的構成を示す ブロック図である。
[図 14]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 3 の実施形態を示す模式的縦断面図である。
圆 15]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 4 の実施形態を示す模式的縦断面図である。
[図 16]図 15の信号処理手段の具体的構成を示すブロック図である。
圆 17]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 4 の実施形態において判定基準となる梁の横振動の振動モードを模式的に示す図で ある。
圆 18]本発明に係る固定子鉄心緩み診断装置の第 4の実施形態における信号処理 を説明するための、鉄心面圧と、固有振動の周波数との関係の概念を示すグラフで あって、各設計値に対する相対値で示す。
[図 19]本発明に係る回転電機の固定子鉄心および固定子鉄心緩み診断装置の第 5 の実施形態を示す模式的縦断面図である。 [図 20]図 19の信号処理手段の具体的構成を示すブロック図である。
符号の説明
[0014] 1…固定子鉄心、 2…固定子コイル、 3…押え板、 4···リブ棒、 5···リブナット、 6…振動 センサー、 7···加振手段、 8…信号処理手段、 9···加振'加振力検出手段、 10···信 号処理手段、 11···音響または変位センサー、 21···変換手段、 22···円環の固有振 動モード抽出手段、 23···パラメータ抽出手段、 25···形状データ入力手段、 26···固 有振動モード推定手段、 27···判定値作成手段、 28···判定評価手段、 29···判定結 果出力手段、 30···加振手段、 31···加振力検出手段、 38, 40···信号処理手段、 41 …周波数領域データへの変換手段、 42···横振動モードの固有振動数抽出手段、 4 4…形状データ入力手段、 45···計算係数算出手段、 46···横振動モードの固有振動 数推定手段、 47···判定値作成手段、 48···判定評価手段、 51···周波数,モード設定 手段、 52···加振信号生成手段、 69···多点加振手段、 70···スロット、 80, 81, 82··· 振動モード
発明を実施するための最良の形態
[0015] 以下、本発明に係る回転電機の固定子鉄心の緩み診断装置および緩み診断方法 の実施形態について、図面を参照して説明する。
[0016] [第 1の実施形態]
図 1および図 2において第 1の実施形態を説明する。図 1において、 1は固定子鉄 心であり、その内径側にコイル 2が挿入される空間を有する薄 ヽ電磁鋼板を積層し、 積層された電磁鋼板を軸方向両端部に設けられた押え板 3を介して、電磁鋼板の外 径側に複数本配置したリブ棒 4の両端の雄ねじ部にリブナット 5を螺合して締め付け る。固定子鉄心 1の軸方向外部でコイル 2を接続する。
[0017] 固定子鉄心 1の外径側に固定子鉄心 1の半径方向の振動を検出するように、円周 方向、かつ軸方向両端部を含む軸方向に、振動センサー (振動検出手段) 6がそれ ぞれ複数個取り付けられている。加振手段 7は、たとえばノ、ンマーであって、固定子 鉄心 1をその半径方向に打振することによって加振することができる。振動センサー 6 力 の出力信号は信号処理手段 8で処理される。
[0018] 図 2は信号処理手段 8の構成例を示すもので、振動センサー 6からの出力信号は、 周波数領域のデータへの変換手段 21によって周波数領域のデータへ変換され、さ らに、円環の固有振動モード抽出手段 22によって円環モードの振動が抽出される。 そしてさらに、パラメータ抽出手段 23によってパラメータが抽出される。
[0019] 一方、形状データ入力手段 25によって、形状データが入力され、この形状データ に基いて、固有振動モード推定手段 26によって、固有振動モードが推定される。こ の推定固有振動モードに基いて、判定値作成手段 27により、判定値が作成される。 そして、パラメータ抽出手段 23によって抽出されたパラメータと、判定値作成手段 27 によって作成された判定値とに基いて、判定評価手段 28により判定評価がなされる 。この判定評価の結果は判定結果出力手段 29によって出力される。
[0020] このように構成された第 1の実施形態において、固定子鉄心 1を加振手段 7によつ て打振加振すると、固定子鉄心 1は円環モードの固有振動モードで振動することにな る。図 3〜図 7は固定子鉄心 1が円環モードの固有振動モードで振動したときの固定 子鉄心 1の変形を概念的に示した図で、有限要素法 (FEM)を用いた数値解析によ つて求めた例である。ただし、図 3〜図 7では、半径方向の変形を誇張して示している 。また、図中の符号 70はコイル 2が挿入されるスロット (挿入空間)であって、固定子 鉄心 1の内径側に形成され、軸方向に延びて!/、る。
[0021] 図 3は円環 2次 (楕円)、軸方向同相モードの固定子鉄心 1の変形状況を示し、図 4 は円環 2次 (楕円)、軸方向逆相モードの固定子鉄心 1の変形状況を示し、図 5は円 環 3次(三つ葉型)、軸方向同相モードの固定子鉄心 1の変形状況を示し、図 6は、 円環 3次(三つ葉型)、軸方向逆相モードの固定子鉄心 1の変形状況を示し、図 7は 、円環 2次 (楕円)、軸方向曲げ (U字)モードの固定子鉄心 1の変形状態を示してい る。
[0022] なお、図示は省略するが、その他の円環振動モードとして、軸方向 S字状モードや M字状 (W字状)モードもある。
[0023] この実施形態で、振動センサー 6は対象とする振動モードの振動が測定できる位置 に取り付けられるので、対象とする振動モードの振動波形を検出する。振動センサー 6によって検出された振動信号は信号処理手段 8に送られ、信号処理手段 8内の周 波数領域のデータへの変換手段 21よって、フーリエ変換され、周波数領域のデータ に変換される。そして、固定子鉄心 1に複数個取り付けられた振動センサー 6の振幅 と位相関係と、図 3〜図 7に示す固定子鉄心 1の変形の特徴から円環の個々のモー ドを抽出するように円環の固有振動モード抽出手段 22に入力する。
[0024] 円環の固有振動モード抽出手段 22によって抽出された円環モードの振動から、パ ラメータ抽出手段 23によって、固定子鉄心 1の残存面圧と相関のある振動のパラメ一 タ、たとえば、固有振動数あるいは複数の固有振動数の比あるいは固有振動の減衰 係数比あるいは振幅比あるいは伝達関数に変換する。
[0025] また、信号処理手段 8の固有振動モード推定手段 26において、対象とする回転電 機の固定子鉄心 1の寸法データより、有限要素法などを用いた数値計算により、固定 子鉄心 1の円環モードの固有振動モードを推定する。そして、その結果を判定値作 成手段 27に入力し、前記信号処理手段の出力である振動のパラメータに相当する 判定値を作成する。各パラメータの鉄心面圧との関係は、概ね図 8、図 9と図 1 1に示 す通りであり、実測力 得られたパラメータの値と寸法データから求めた判定値と比 較判定評価して判定結果を出力する。
[0026] 減衰係数比は、振動の周波数領域のデータから図 10の手法によって求められる。
この図で、横軸は周波数 [Hz]、縦軸は、振動のレベルである。また、 ω θは固有振動 の角速度であり、固有振動数を FOとすると CO O = 2 FOである。また、 Δ ωは ω θのと きの振幅の 1Z 2の振幅のときの角速度の幅であり、 ζは減衰係数比である。
[0027] ζ = Δ ω /2 ω 0
と表される。
[0028] このようにして、固定子鉄心の残存面圧は、固定子鉄心 1の円環モードの振動を測 定することにより、定量的に把握することが可能となる。
[0029] 本実施形態によれば、診断の対象機械の寸法データからの判定値と振動の実測 データ力 のパラメータとを比較することにより、固定子鉄心の円環モードの固有振 動モードの各パラメータから、現状の鉄心の残存面圧を定量的に判定できる。これに より、検査員の熟練度が必要なぐ検査員の個々人の差もなく精度よく鉄心の緩み緩 み具合を判定'診断できる。
[0030] [第 2の実施形態] 次に、本発明に係る回転電機の固定子鉄心の緩み診断装置およびこれを内蔵す る回転電機の第 2の実施形態を、図 12および図 13を参照して説明する。なお、第 1 の実施形態と同一または類似の構成部分には同一の符号を付し、重複する説明は 省略する。
[0031] 加振 ·加振力検出手段 9は加振手段 30と加振力検出手段 31とで構成され、固定 子鉄心 1の外径面に強固に固定され、固定子鉄心 1を半径方向に加振する。またカロ 振'加振力検出手段 9の加振力は、単一の正弦波、または複数の正弦波を重畳した 波形、あるいはある一定の周波数帯域を SWEEPする正弦波または三角波または矩 形波、またあるいはランダム波で加振される。
[0032] 加振手段 30による加振力は、加振力検出手段 31により検出され、固定子鉄心 1に 複数個設置され、固定子鉄心 1の半径方向の振動を検出する振動センサー 6の出力 信号と共に信号処理手段 10に送られる。
[0033] このように構成された第 2の実施形態の回転電機の固定子鉄心の緩み診断装置で は、回転電機内部に常時取り付けられた振動センサー 6によって検出された円環モ ードの振動波形データと振動センサー 6同様に回転電機の内部に常時取り付けられ た加振力検出手段 31により検出された加振力波形データは、共に信号処理手段 10 内の周波数領域のデータへの変換手段 21によって周波数領域のデータに変換され 、さらに、振動データは加振力を基準とした伝達関数に変換され、円環の固有振動 モード抽出手段 22により円環モードの振動を抽出する。
[0034] これにより、加振力の強弱の影響を受けることなく精度良く固定子鉄心の面圧を把 握することができる。また、加振 ·振動検出手段 9や振動センサー 6を回転電機内に 常時取り付けてあるので、回転電機を分解することなぐ固定子鉄心 1の残存面圧の 常時監視や定期的な診断が可能となる。また、加振手段 30を予め求めた円環モード の固有振動数で加振することにより、振幅あるいは振幅比をパラメータとする場合に 感度良く判定できる。また、複数の固有振動数を重畳して加振することにより、複数の 固有振動数が感度良く加振できる。また、ランダム波やスウィープ加振を行なうこと〖こ より、多少固有振動数がずれても目的とする円環モードの固有振動数を加振すること ができ、モードを明確に把握することが可能である。 [0035] 加振'加振力検出手段 9および振動検出センサー 6は、回転電機内の固定子鉄心 1に常設で回転電機本来の機能に支障をきたさな 、ように取り付けられて 、るので、 当該回転電機を分解することなく運転中の常時監視あるいは定期的に診断できる。 このため、固定子鉄心 1の故障を未然に防ぐことが可能となるほか、固定子鉄心 1の 緩み診断が容易に行なえるようになる。また、加振力を検出して加振力による伝達関 数を算出することにより、加振力の大きさによる影響を除去することができ、診断結果 の信頼性が向上し、固定子鉄心 1を加振する加振信号を前記の通り種々に設定する ことにより、判定感度の向上や広範囲のモードでの判定が可能となる。
[0036] [第 3の実施形態]
次に、本発明に係る回転電機の固定子鉄心の緩み診断装置およびこれを内蔵す る回転電機の第 3の実施形態を、図 14を参照して説明する。なお、第 1の実施形態 あるいは第 2の実施形態と同一または類似の構成部分には同一の符号を付し、重複 する説明は省略する。図 14において、 11は音響または変位センサーであり、回転電 機の固定子鉄心 1に対し空隙を有して、外部より固定されて取り付けられており、固 定子鉄心 1が振動することによって発する音または変位量を検出し、信号処理手段 1 0へその検出した信号を送付する。
[0037] このように構成された、本発明の第 3の実施形態の回転電機の固定子鉄心の緩み 診断装置では、固定子鉄心 1の円環モードの固有振動モードの振動を、音響または 変位センサー 11で検出し、信号処理装置 10に送り、第 1の実施形態または第 2の実 施形態と同様の信号処理を行ない、固定子鉄心の残存面圧を判定し、固定子鉄心 1 の緩み診断を行なう。このとき、音響または変位センサー 11を用いることにより前記 振動センサー 6を用いる場合と同様に、固定子鉄心 1の円環モードの固有振動モー ドの振動を検出できる。
[0038] 以上説明したように、本発明の第 3の実施形態では、振動センサー 6に代えて、音 響または変位センサー 11を用いることにより、固定子鉄心 1の円環モードの固有振動 モードの振動を検出する。これにより、固定子鉄心 1に対し非接触で絶縁の必要がな く音響または振動センサー 11を設置でき、固定子鉄心 1に直接固定しないので、音 響または変位センサー 11の取り付け位置の移動が容易である。 [0039] [第 4の実施形態]
本発明に係る回転電機の固定子鉄心の緩み診断装置およびこれを内蔵する回転 電機の第 4の実施形態を、図 15および図 16を参照して説明する。なお、第 1の実施 形態と同一または類似の構成部分には同一の符号を付し、重複する説明は省略す る。第 1〜第 3の実施形態では回転電機の固定子鉄心円環モードの振動に注目する ものであるが、第 4の実施形態は固定子鉄心の横振動モードに注目するものである。
[0040] 図 15に示すように、この実施形態では、振動センサー 6が、固定子鉄心 1の外径側 に固定子鉄心 1の加振方向の振動を検出するように軸方向に複数個取り付けられて いる。振動センサー 6からの信号は、信号処理手段 38に取り込まれて処理される。
[0041] 図 16に示すように、信号処理手段 38は、周波数領域データへの変換手段 41、横 振動モードの固有振動数抽出手段 42、計算係数算出手段 45、横振動モードの固 有振動数推定手段 46、判定値作成手段 47および判定評価手段 48を有する。振動 センサー 6からの出力信号は、周波数領域データへの変換手段 41によって周波数 領域のデータに変換され、さらに、横振動モードの固有振動数抽出手段 42によって 横振動モードの固有振動数が抽出される。
[0042] 一方、形状データ入力手段 44によって、形状データが入力され、この形状データ に基づいて、計算係数算出手段 45によって計算係数が算出される。さらに、この計 算係数に基づいて、横振動モードの固有振動数推定手段 46により、横振動の推定 固有振動数が推定される。この横振動の推定固有振動数に基づいて、判定値作成 手段 47により判定値が作成される。そして、この判定値と、横振動モードの固有振動 数抽出手段 42によって抽出された固有振動数とに基づいて、判定評価手段 48によ り判定評価がなされる。判定評価の結果は判定結果出力手段 29によって出力される
[0043] 上記構成の第 4の実施形態において、固定子鉄心 1を加振手段 7によって、打振加 振することによって、固定子鉄心 1は横振動の固有振動数、たとえば図 15に示すよう な軸方向に U字状に振動するような横振動モード 80で振動することになる。図 17は 固定子鉄心 1が横振動の固有振動数で振動したときの固定子鉄心 1の変形を概念 的に説明した図で、数値解析によって求めた例である。この図に示すように、横振動 のおもなモードには、 1次、 2次、 3次の固有振動数の振動モードがある。 1次の固有 振動数の振動モード 80は U字状に変形し、 2次の固有振動数の振動モード 81は S 字状に変形し、 3次の固有振動数の振動モード 82は W字状 (M字状)に変形する振 動である。
[0044] 一般的な梁の横振動の振動モードにおける固有振動数 Fは式(1)で求めることが できる。
[0045] F= { 2/ (2 L2) }^ {E 'Ig/ ( y Ά) } (1)
ただし、
F:棒の横振動の固有振動数
λ:モードの次数による振動係数
1次: 4. 730、 2次: 7. 853、 3次: 10. 996
L:棒の長さ
Ε:棒の材料の縦弾性係数 (Ε = k X Ρ)
P :鉄心面圧
k:縦弾性係数と鉄心面圧の係数
I:棒の断面二次モーメント
γ :質量密度
Α:断面積
g :重力加速度
このとき、振動センサー 6は対象とする振動モードの振動が測定できるように、軸方 向に複数個取り付けられるので、対象とする振動モードの振動波形を検出する。振 動センサー 6によって検出された振動信号は信号処理手段 38に送られ、信号処理 手段 38内の周波数領域データへの変換手段 41よって、フーリエ変換され周波数領 域のデータに変換される。次に、固定子鉄心 1に複数個取り付けられた振動センサ 一 6の振幅と位相関係と図 18に示す固定子鉄心 1の変形の特徴から、横振動の個 々の振動モードを抽出する横振動モードの固有振動数抽出手段 42に入力し、横振 動の固有振動数の周波数の内の一つまたは複数の周波数を抽出する。
[0046] また、信号処理手段 38の一方では、対象とする回転電機の固定子鉄心 1の形状デ ータ入力手段 44より寸法形状データを入力し、計算係数算出手段 45で形状補正係 数 klと支持条件補正係数 k2を算出し、横振動モードの固有振動数推定手段 46によ つて、予め求めた鉄心面圧と等価縦弾性係数 Eの関係力 各横振動モードの固有振 動数を求める。そして、判定値作成手段 47によって過去の実績力も面圧に対する判 定値を定める。
[0047] ここで、形状補正係数 klは、支持点の数、位置、パネ定数等の支持条件に依存す る。
[0048] また、支持条件補正係数 k2は、固定子鉄心 1の内外径比および、軸方向長さと外 径 (または内径)との比に依存する。
[0049] 式(1)における縦弾性係数 Eは、 E=k X Pと表わすことができる力 実際には前記 形状補正係数 klおよび支持条件補正係数 k2を加味し、 (2)式によって固有振動数
Fが計算される。
[0050] F= {kl 'k2' 2Z(2 TU L2) } {Ε· Ζ( Ύ ·Α) } (2)
ただし、 klは形状補正係数であり、 k2は支持条件補正係数である。
[0051] 判定値作成手段 47によって求められた判定値は概ね図 18のような判定値となる。
判定評価手段 48によって、前記横振動モードの固有振動数抽出手段 42で得られた 固有振動数の周波数の実測値と判定値生成手段 47の出力である図 18の判定値と 比較して固定子鉄心 1の締め付け具合の良否を判定し、判定結果出力手段 29によ り、判定結果が出力される。
[0052] したがって、固定子鉄心 1の締め付け面圧は、固定子鉄心 1の横振動モードの固有 振動数を測定することにより、定量的に把握することが可能となる。
[0053] 本実施形態によれば、診断の対象機械の寸法データからの判定値と振動の実測 データを比較することにより、固定子鉄心の横振動モードの固有振動数から、現状の 鉄心の締め付け面圧を定量的に判定できるので、検査員の熟練度が必要なぐ検査 員の個々人の差もなく精度よく鉄心の締め付け具合、言い換えれば緩み具合を判定 •診断できる。また、基準となる判定値は手計算や表計算レベルの簡易計算によって 行なうことができるので、有限要素法等の数値解析をする必要がない。したがって、 高機能計算機 (コンピュータ)を必要とせず、解析に要する時間もまた解析を実施す る高度な技術も必要としない。ゆえに誰でも簡単に短時間に鉄心面圧の判定、強い ては鉄心の緩み診断が可能となる。特に、既設の機械の診断においては、その場で の判定が可能となる。
[0054] [第 5の実施形態]
本発明に係る回転電機の固定子鉄心の緩み診断装置およびこれを内蔵する回転 電機の第 5の実施形態を、図 19および図 20を参照して説明する。なお、第 4の実施 形態と同一または類似の構成部分には同一の符号を付し、重複する説明は省略す る。第 5の実施形態は、第 4の実施形態と同様に、固定子鉄心の横振動モードに注 目するものである。
[0055] 図 19において、 69は多点加振手段であり、電磁加振器や油圧加振器等のァクチ ユエータに信号を入力することによって任意の加振力が得られ、固定子鉄心 1の外径 面に軸方向に対して複数個、強固に固定され、固定子鉄心 1を半径方向に加振する 。また多点加振手段 69は、単一の正弦波、または複数の正弦波を重畳した波形、あ るいはある一定の周波数帯域を SWEEPする正弦波または三角波または矩形波、ま たあるいはランダム波で加振され、かつ各振動モードが励振されやすいように、周波 数'モード設定手段 51および加振信号生成手段 52によって、各加振手段の加振力 の位相を逆相または同相にまたは加振力の振幅を調整して加振する。
[0056] 図 20に示すように、この実施形態の信号処理手段 40は、第 4の実施形態における 信号処理手段 38 (図 16)の構成要素に加えて、周波数'モード設定手段 51と加振信 号生成手段 52を有する。
[0057] この実施形態では、必要とする横振動モードの固有振動数は、周波数'モード設定 手段 51より、加振信号生成手段 52へ送られるほか、判定値作成手段 47と横振動モ ードの固有振動数抽出手段 42にも送られ、それぞれ判定値の生成と実測固有振動 数の抽出を容易にする。加振信号生成手段 52で生成された加振信号は、多点加振 手段 69に送られる。また、多点加振手段 69で特定の振動モードを励振しているとき に振動センサー 6で固定子鉄心 1の加振方向の振動を検出する。このとき、振動セン サー 6は多点加振手段 69によって励振される振動モードが特定されているので、振 動センサー 6は軸方向に複数個設ける必要がなく最低限 1個の振動センサー 6を設 けるだけでよい。振動センサー 6で検出した後の信号処理手段 40内の判定処理は、 周波数 ·モード設定手段 51によって抽出される固有振動数が決まっているほかは第 4の実施形態と同様である。
[0058] このように構成された第 5の実施形態の回転電機の固定子鉄心の緩み診断装置で は、固定子鉄心 1の外径側に半径方向に加振する多点加振手段 69が軸方向に複 数個設置され、横振動のモードが励振されるように多点加振手段 69個々の加振信 号の位相ある 、は振幅を調整して、単一ある!/、はランダムある 、は SWEEP加振する ので、必要とする特定の横振動モードの振動が励振され、固定子鉄心 1がそのモー ド (たとえば図 19の U字状横振動モード 80)で振動する。
[0059] したがって、振動センサー 6によって検出された振動信号は、必要とする横振動モ ードの振動信号だけとなり、横振動モードの固有振動数抽出手段 42での横振動モ ードの固有振動数抽出が容易となり、場合によっては横振動モードの固有振動数抽 出手段 42を省略することも可能である。さらに、多点加振手段 69や振動センサー 6 を回転電機内に常時取り付けることも可能であり、回転電機を分解することなぐ固定 子鉄心 1の残存面圧の常時監視や定期的な診断が可能となる。
[0060] また、加振手段を予め求めた横振動モードの固有振動数の周波数で加振すること により、必要な振動モードの振動信号を感度良く検出しかつ判定できる。さらに、ラン ダム波や SWEEP加振を行うことにより、多少固有振動数がずれても目的とする横振 動モードの固有振動数で加振することができ、モードを明確に把握することが可能で ある。
[0061] この実施形態によれば、固定子鉄心 1の軸方向に複数個設けられた多点加振手段 69によって、特定の振動モード固有振動数で任意に励振できるので、振動センサー 6を固定子鉄心 1の外周面の軸方向に複数個設け、かつ、得られた振動センサー 6 の信号力も振動モードを判定して、特定の振動モードを抽出する必要がない。一般 的に限られた測定箇所のデータ力 振動モードを判定し抽出するのは、多くのデー タベースが必要であり、本実施形態のように振動モードの判定と抽出が必要なくなれ ば、信号処理手段の簡素化が図れ、かつ測定点を少なくできるので、測定に必要な 時間が短くなり、判定に要する時間が短縮できる。 [0062] [他の実施形態]
以上、種々の実施形態について説明したが、これらは単なる例示であって、本発明 はこれらに限定されるものではない。
[0063] たとえば、第 1〜第 3の実施形態の円環振動モードを用いた緩み判定と第 4および 第 5の実施形態の横振動モードを用いた緩み判定とを組み合わせて、より信頼性の 高 、緩み判定を行なうこともできる。
[0064] また、第 3の実施形態の音響または変位センサー 11を第 4または第 5の実施形態に おける振動センサー 6に置換することもできる。

Claims

請求の範囲
[1] 両面又は片面に絶縁皮膜がコーティングされ、内径側にコイルを挿入する空間を 有する電磁鋼板を軸方向に積層し、積層された電磁鋼板を軸方向に締め付け、内 側のコイル挿入空間にコイルを挿入し、当該コイルを外部で接続して構成する回転 電機の固定子鉄心の緩みを診断する診断装置において、
前記固定子鉄心を半径方向に加振する加振手段と、
前記固定子鉄心の半径方向の振動を検出する振動検出手段と、
前記加振手段により前記固定子鉄心を加振したときに前記固定子鉄心に発生する 振動を前記振動検出手段により検出した振動検出手段の出力信号を周波数分析し て固定子鉄心の円環固有振動モードの測定固有振動モードを抽出する手段と、 固定子鉄心の形状データから固定子鉄心の円環固有振動モードを推定する手段 と、
前記測定固有振動モードと、前記推定固有振動モードに基づいて得られた判定基 準との比較から固定子鉄心の締め付け具合を判定する判定手段と、
を有することを特徴とする固定子鉄心緩み診断装置。
[2] 前記判定手段は、前記測定固有振動モードのうち、半径断面のモード形状が同じ で軸方向モードが同相の固有振動数と逆相の各固有振動数もしくは、軸方向 U字状 、 S字状もしくは W字状の振動モードの固有振動数、あるいはこれらの固有振動数の 比、伝達関数あるいは固有振動数の変化を求め、前記推定固有振動数より同様にし て求めた固有振動数、あるいはこれらの固有振動数の比、伝達関数あるいは固有振 動数の変化と鉄心面圧の関係力 成る判定基準とを比較して、固定子鉄心の締め付 け具合を判定するものであることを特徴とする請求項 1に記載の固定子鉄心緩み診 断装置。
[3] 前記判定手段は、前記測定固有振動モードから減衰係数比を算出し、予め形状デ 一タカ 推定した減衰係数比と鉄心面圧の関係力 成る判定基準とを比較判定して 、固定子鉄心の締め付け具合を判定するものであることを特徴とする請求項 1に記載 の固定子鉄心緩み診断装置。
[4] 前記振動検出手段は、前記固定子鉄心の軸方向両端に取り付けた振動センサー を含み、
前記判定手段は、前記測定固有振動モードの振幅比あるいは伝達関数を求め、予 め形状データ力も推定された軸方向両端の振動の振幅比あるいは伝達関数と鉄心 面圧の関係から成る判定基準と比較判定して、固定子鉄心の締め付け具合を判定 するちのであること、
を特徴とする請求項 1に記載の固定子鉄心緩み診断装置。
[5] 前記判定手段は、前記測定固有振動モードから、固有振動数または固有振動数 比または振幅または減衰係数比または軸方向両端の振幅比あるいは伝達関数等の 振動パラメータの内、複数のパラメータを組み合わせて判定基準と比較判定して、固 定子鉄心の締付具合を判定するものであることを特徴とする請求項 1に記載の固定 子鉄心緩み診断装置。
[6] 両面又は片面に絶縁皮膜がコーティングされ、内径側にコイルを挿入する空間を 有する電磁鋼板を軸方向に積層し、積層された電磁鋼板を軸方向に締め付け、内 径側のコイル挿入空間にコイルを挿入し、当該コイルを外部で接続して構成する回 転電機の固定子鉄心の緩みを診断する診断装置において、
前記固定子鉄心を横方向に加振する加振手段と、
前記固定子鉄心の軸方向に異なる複数の位置におけるそれぞれの加振方向の振 動を検出する振動検出手段と、
前記加振手段により前記固定子鉄心を加振したときに前記固定子鉄心に発生する 振動を前記振動検出手段により検出した出力信号を周波数分析して固定子鉄心の 横振動モードの測定固有振動数を抽出する手段と、
固定子鉄心の形状データから固定子鉄心の横振動モードの推定固有振動数を推 定する手段と、
前記推定固有振動数に基づいて判定値を作成する手段と、
前記測定固有振動数と、前記判定値との比較から固定子鉄心の締め付け具合を 判定する判定手段と、
を有することを特徴とする固定子鉄心緩み診断装置。
[7] 前記固定子鉄心の締め付け具合を判定する横振動モードの固有振動数は、両端 自由の 1次モード、 2次モードおよび 3次モードから選択された一つの振動モードの 固有振動数とすること、を特徴とする請求項 6に記載の固定子鉄心緩み診断装置。
[8] 前記固定子鉄心の締め付け具合を判定する横振動モードの固有振動数は、両端 自由の 1次モード、 2次モードおよび 3次モードから選択された複数の振動モードの 固有振動数とすること、を特徴とする請求項 6に記載の固定子鉄心緩み診断装置。
[9] 前記固定子鉄心の形状データから固定子鉄心の横振動モードの推定固有振動数 を推定する手段は、当該固定子鉄心を両端自由の梁とみなし、その梁の横振動の計 算式によって推定固有振動数を求めること、を特徴とする請求項 6な ヽし請求項 8の いずれか一項に記載の固定子鉄心緩み診断装置。
[10] 前記梁の横振動の計算式にお!、て、梁の横振動の計算式における等価な縦弾性 係数を変化させることによって鉄心の面圧を代表させること、を特徴とする請求項 9に 記載の固定子鉄心緩み診断装置。
[11] 前記梁の横振動の計算式において、前記固定子鉄心の外径と内径との比と、外径 あるいは内径と軸方向長さとの比と、を求め、これらの比に基づいてあら力じめ作成し ておいた形状補正係数により前記梁の横振動の計算式を補正することを特徴とする 請求項 9または請求項 10に記載の固定子鉄心緩み診断装置。
[12] 前記梁の横振動の計算式において、前記固定子鉄心の支持条件に基づいてあら 力じめ作成しておいた支持条件補正係数により前記梁の横振動の計算式を補正す ること、を特徴とする請求項 9ないし請求項 11のいずれか一項に記載の固定子鉄心 緩み診断装置。
[13] 前記加振手段は、前記固定子鉄心の軸方向の複数箇所で加振するものであり、各 加振位置での加振力の振動数、振幅および位相を制御可能であること、を特徴とす る請求項 9ないし請求項 12のいずれか一項に記載の固定子鉄心緩み診断装置。
[14] 前記加振手段および振動検出手段は前記回転電機の内部に組み込まれており、 前記固定子鉄心の緩み状況を常時監視あるいは定期的に診断できるように構成さ れて ヽること、
を特徴とする請求項 1ないし請求項 13のいずれか一項に記載の固定子鉄心緩み 診断装置。
[15] 前記加振手段は、前記固定子鉄心に特定単一周波数の正弦波または複数の周波 数を重畳させた波形の加振力を加えるものであることを特徴とする請求項 1ないし請 求項 14のいずれか一項に記載の固定子鉄心緩み診断装置。
[16] 前記加振手段は前記固定子鉄心に正弦波の SWEEP加振力を加えるものであるこ とを特徴とする請求項 1ないし請求項 14のいずれか一項に記載の固定子鉄心緩み 診断装置。
[17] 前記加振手段は前記固定子鉄心にランダム加振力を加えるものであることを特徴と する請求項 1ないし請求項 14のいずれか一項に記載の固定子鉄心緩み診断装置。
[18] 前記加振手段は、前記固定子鉄心に衝撃力を加えるものであることを特徴とする請 求項 1ないし請求項 12のいずれか一項に記載の固定子鉄心緩み診断装置。
[19] 前記加振手段によって加振された加振力を検出する手段をさらに有し、
前記判定手段は、前記測定固有振動モードから、固有振動数または振幅または減 衰係数比の大きさと加振力との比あるいは伝達関数を算出し、予めそれらのパラメ一 タと加振力の比あるいは伝達関数と鉄心面圧の関係力 成る判定基準とを比較判定 して、固定子鉄心の締め付け具合を判定するものであること、
を特徴とする請求項 1ないし請求項 18のいずれか一項に記載の固定子鉄心緩み 診断装置。
[20] 前記振動検出手段は変位センサーであることを特徴とする請求項 1な!、し請求項 1
9のいずれか一項に記載の固定子鉄心緩み診断装置。
[21] 前記振動検出手段は音響センサーであることを特徴とする請求項 1ないし請求項 1
9のいずれか一項に記載の固定子鉄心緩み診断装置。
[22] 両面又は片面に絶縁皮膜がコーティングされ、内径側にコイルを挿入する空間を 有する電磁鋼板を軸方向に積層し、積層された電磁鋼板を軸方向に締め付け、内 径側のコイル挿入空間にコイルを挿入し、当該コイルを外部で接続して構成する回 転電機の固定子鉄心の緩みを診断する診断方法において、
前記固定子鉄心を半径方向に加振する加振工程と、
前記加振工程で前記固定子鉄心を加振したときに前記固定子鉄心に発生する振 動を検出する振動検出工程と、 前記振動検出手段により検出した出力信号を周波数分析して固定子鉄心の円環 モードの測定固有振動モードを抽出する測定固有振動モード抽出工程と、 固定子鉄心の形状データから固定子鉄心の円環モードの推定固有振動モードを 推定する固有振動モード推定工程と、
前記測定固有振動モードと、前記推定固有振動モードに基づいて得られた判定基 準との比較力 固定子鉄心の締め付け具合を判定する判定工程と、
を有することを特徴とする固定子鉄心緩み診断方法。
両面又は片面に絶縁皮膜がコーティングされ、内径側にコイルを挿入する空間を 有する電磁鋼板を軸方向に積層し、積層された電磁鋼板を軸方向に締め付け、内 径側のコイル挿入空間にコイルを挿入し、当該コイルを外部で接続して構成する回 転電機の固定子鉄心の緩みを診断する診断方法において、
前記固定子鉄心を横方向に加振する加振工程と、
前記加振工程で前記固定子鉄心を加振したときに前記固定子鉄心に発生する振 動を前記固定子鉄心の軸方向に異なる複数の位置で検出する振動検出工程と、 前記振動検出工程で検出した出力信号を周波数分析して固定子鉄心の横振動モ ードの測定固有振動数を抽出する測定固有振動数抽出工程と、
固定子鉄心の形状データから固定子鉄心の横振動モードの推定固有振動数を推 定する固有振動数推定工程と、
前記測定固有振動数と、前記推定固有振動数に基づ 、て得られた判定基準との 比較から固定子鉄心の締め付け具合を判定する判定工程と、
を有することを特徴とする固定子鉄心緩み診断方法。
PCT/JP2006/322728 2005-11-16 2006-11-15 固定子鉄心緩み診断装置および固定子鉄心緩み診断方法 WO2007058196A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06832659A EP1950869A4 (en) 2005-11-16 2006-11-15 STATOR CORE DISSOLVING DIAGNOSTIC DEVICE AND STATOR CORE DISSOLVING DIAGNOSTIC METHOD
CN2006800428605A CN101310427B (zh) 2005-11-16 2006-11-15 定子铁心松动诊断装置及定子铁心松动诊断方法
JP2007545258A JP4869249B2 (ja) 2005-11-16 2006-11-15 固定子鉄心緩み診断装置および固定子鉄心緩み診断方法
US12/122,348 US7854167B2 (en) 2005-11-16 2008-05-16 Stator core loosening diagnosis device and stator core loosening diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-330993 2005-11-16
JP2005330993 2005-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/122,348 Continuation-In-Part US7854167B2 (en) 2005-11-16 2008-05-16 Stator core loosening diagnosis device and stator core loosening diagnosis method

Publications (1)

Publication Number Publication Date
WO2007058196A1 true WO2007058196A1 (ja) 2007-05-24

Family

ID=38048581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322728 WO2007058196A1 (ja) 2005-11-16 2006-11-15 固定子鉄心緩み診断装置および固定子鉄心緩み診断方法

Country Status (6)

Country Link
US (1) US7854167B2 (ja)
EP (1) EP1950869A4 (ja)
JP (1) JP4869249B2 (ja)
CN (1) CN101310427B (ja)
WO (1) WO2007058196A1 (ja)
ZA (1) ZA200805088B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078681A (ja) * 2017-10-26 2019-05-23 三菱日立パワーシステムズ株式会社 回転電機及びその診断方法
CN110095530A (zh) * 2018-01-31 2019-08-06 赫克斯冈技术中心 对通过增材制造生产的物体的振荡分析

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874215B2 (en) * 2008-09-29 2011-01-25 General Electric Company Accelerometer including diaphragm and power generator and motor including same
US8295983B2 (en) * 2008-11-10 2012-10-23 Silent Printer Holdings, Llc Apparatus and method for characterization and control of usage disturbances in a usage environment of printers and other dynamic systems
EP2363699A1 (en) * 2010-03-02 2011-09-07 Siemens Aktiengesellschaft Vibration monitoring of a magnetic element in an electrical machine
US8531147B2 (en) * 2011-01-14 2013-09-10 Remy Technologies, L.L.C. Electric machine having an integrated vibration sensor
JP5955564B2 (ja) * 2012-01-11 2016-07-20 三菱日立パワーシステムズ株式会社 固定力測定装置および測定方法
US8745834B2 (en) * 2012-04-06 2014-06-10 Siemens Energy, Inc. Stator coil removal method
US9257873B2 (en) * 2013-02-15 2016-02-09 Siemens Energy, Inc. Method and apparatus for generator stator core separation
JP6066195B2 (ja) 2013-03-15 2017-01-25 三菱日立パワーシステムズ株式会社 固定力測定装置および固定力測定方法
FR3030148B1 (fr) * 2014-12-16 2017-07-28 Electricite De France Procede de reduction des vibrations resonnantes d'un stator
US10024825B2 (en) * 2014-12-26 2018-07-17 Axcelis Technologies, Inc. Wafer clamp detection based on vibration or acoustic characteristic analysis
CN105987801B (zh) * 2015-02-04 2018-06-22 宁夏巨能机器人系统有限公司 一种数控机床的异常振动检测装置及其方法
US20160294261A1 (en) * 2015-04-06 2016-10-06 Ge Energy Power Conversion Technology Ltd. Controlled assembly of permanent magnet machines
PL3171167T3 (pl) * 2015-11-20 2021-12-27 General Electric Technology Gmbh Sposób i układ do pomiaru szczelności rdzenia w maszynie elektrycznej
CN106338548B (zh) * 2016-11-11 2023-05-12 福建工程学院 超声电机定子压电陶瓷粘帖检测装置及其检测方法
CN109149878B (zh) * 2017-06-15 2023-08-08 辽宁启明汽车电器有限公司 半径可调的发电机定子铁心的制作方法及压制模具
CN110146772B (zh) * 2019-05-31 2021-05-04 国网江苏省电力有限公司宿迁供电分公司 一种基于振动频谱矩阵的变压器铁心松散缺陷诊断方法
CN110687447B (zh) * 2019-09-30 2022-08-19 华能四川水电有限公司 一种定子铁芯松动的诊断方法、装置、存储介质及设备
DE102019218809A1 (de) * 2019-12-03 2021-06-10 MTU Aero Engines AG Verfahren und Vorrichtung zum Erfassen mindestens eines mechanischen Parameters eines mechanischen Objekts
JP7287358B2 (ja) * 2020-07-16 2023-06-06 トヨタ自動車株式会社 固着力評価方法
CN114778103B (zh) * 2022-06-17 2022-10-28 深圳市永达电子信息股份有限公司 一种检测部件结构紧密度的自动化测试装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151850A (en) 1981-03-16 1982-09-20 Yaskawa Electric Mfg Co Ltd Diagnosis of coil deterioration and its device
JPS57168977U (ja) * 1981-04-17 1982-10-25
US4419897A (en) 1980-05-06 1983-12-13 Nippon Seiko Kabushiki Kaisha Apparatus for harmonic oscillation analysis
JPS5961449A (ja) 1982-09-30 1984-04-07 Toshiba Corp 回転電機の固定子の検査装置
JPH01218338A (ja) 1988-02-26 1989-08-31 Hitachi Ltd 鉄心ゆるみの検査装置およびその検査方法
US5295388A (en) 1992-01-30 1994-03-22 Westinghouse Electric Corp. Apparatus and method for inpact testing for electric generator stator wedge tightness
JPH1082714A (ja) * 1996-09-05 1998-03-31 Toshiba Corp ゆるみ測定装置
JP2000354353A (ja) * 1999-06-09 2000-12-19 Toshiba Corp 回転電機固定子鉄心のゆるみ検査方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168977A (en) * 1981-04-11 1982-10-18 Enkuraa Bijinesu:Kk Chlorine dioxide releasing compositon
US4425523A (en) * 1982-06-04 1984-01-10 Westinghouse Electric Corp. Core spring support system for a dynamoelectric machine
CH665507A5 (de) * 1984-06-12 1988-05-13 Bbc Brown Boveri & Cie Horizontalachsige elektrische maschine mit einer einrichtung zur statorblechpaketbefestigung.
DE3517330A1 (de) * 1985-05-14 1986-11-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur geraeuschreduzierung bei elektrischen maschinen und geraeuschreduzierte elektrische maschine, insbesondere (dreh)stromgenerator
DD252287A3 (de) * 1985-06-20 1987-12-16 Leipzig Chemieanlagen Verfahren zum anziehen oder loesen schraubbarer verbindungen
NL8503294A (nl) * 1985-11-28 1987-06-16 Skf Ind Trading & Dev Werkwijze en inrichting voor het detecteren van fouten of defecten in bewegende machine-onderdelen.
JPH01214244A (ja) * 1988-02-22 1989-08-28 Toshiba Corp 楔計測装置
US4887474A (en) * 1989-02-06 1989-12-19 Westinghouse Electric Corp. Clamp tightness tool for stator cores
JPH02298825A (ja) * 1989-05-13 1990-12-11 Nippondenso Co Ltd 回転機のための異常検査装置
US5615575A (en) * 1993-05-14 1997-04-01 Goodwin; Jerry J. Drive tool with sensor for fastener deflection during tightening and clamping force validator
US5493894A (en) * 1995-04-07 1996-02-27 Westinghouse Electric Corporation System and method for impact testing wedge tightness in an electrical generator
US6087796A (en) * 1998-06-16 2000-07-11 Csi Technology, Inc. Method and apparatus for determining electric motor speed using vibration and flux
DE10107401A1 (de) * 2001-02-14 2002-08-29 Alstom Switzerland Ltd Vorrichtung zur Generatordiagnose bei eingebautem Rotor
US7741854B2 (en) * 2008-03-26 2010-06-22 Siemens Energy, Inc. Method of in slot tightness measuring of stator coil
US7743675B2 (en) * 2008-06-04 2010-06-29 Siemens Energy, Inc. Apparatus for impact testing for electric generator stator wedge tightness

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419897A (en) 1980-05-06 1983-12-13 Nippon Seiko Kabushiki Kaisha Apparatus for harmonic oscillation analysis
JPS57151850A (en) 1981-03-16 1982-09-20 Yaskawa Electric Mfg Co Ltd Diagnosis of coil deterioration and its device
JPS57168977U (ja) * 1981-04-17 1982-10-25
JPS5961449A (ja) 1982-09-30 1984-04-07 Toshiba Corp 回転電機の固定子の検査装置
JPH01218338A (ja) 1988-02-26 1989-08-31 Hitachi Ltd 鉄心ゆるみの検査装置およびその検査方法
US5295388A (en) 1992-01-30 1994-03-22 Westinghouse Electric Corp. Apparatus and method for inpact testing for electric generator stator wedge tightness
JPH1082714A (ja) * 1996-09-05 1998-03-31 Toshiba Corp ゆるみ測定装置
JP2000354353A (ja) * 1999-06-09 2000-12-19 Toshiba Corp 回転電機固定子鉄心のゆるみ検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950869A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078681A (ja) * 2017-10-26 2019-05-23 三菱日立パワーシステムズ株式会社 回転電機及びその診断方法
JP6994350B2 (ja) 2017-10-26 2022-01-14 三菱パワー株式会社 回転電機及びその診断方法
CN110095530A (zh) * 2018-01-31 2019-08-06 赫克斯冈技术中心 对通过增材制造生产的物体的振荡分析

Also Published As

Publication number Publication date
JPWO2007058196A1 (ja) 2009-04-30
JP4869249B2 (ja) 2012-02-08
CN101310427A (zh) 2008-11-19
US20080282803A1 (en) 2008-11-20
ZA200805088B (en) 2009-06-24
US7854167B2 (en) 2010-12-21
EP1950869A4 (en) 2010-09-08
EP1950869A1 (en) 2008-07-30
CN101310427B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4869249B2 (ja) 固定子鉄心緩み診断装置および固定子鉄心緩み診断方法
JP6362625B2 (ja) 時間的に変化する熱機械応力および/または応力勾配を金属物体の壁厚越しに検出する方法
Zonzini et al. Vibration-based SHM with upscalable and low-cost sensor networks
JP6037302B2 (ja) 風力発電装置
JP6519810B2 (ja) 変圧器内部異常および劣化の診断方法と診断装置
KR101674686B1 (ko) 구조적 완전성 감시 시스템
EP3754331A1 (en) Method and system for analysing a test piece using a vibrational response signal
JP2001304954A (ja) 故障診断方法及びその装置
JP5556678B2 (ja) 疲労試験装置
Trajin et al. Comparison between vibration and stator current analysis for the detection of bearing faults in asynchronous drives
JP2008249664A (ja) 転がり軸受ユニットの剛性評価装置及び評価方法
JP4542957B2 (ja) 電気機器の積層鉄板鉄心のゆるみ検出方法および装置
EP3853575B1 (en) Signal processing
JP2013525803A (ja) 超音波による非破壊材料試験のための方法及びデバイス
KR20110014767A (ko) 다채널 초음파를 이용한 배관 검사장치와 그 검사방법
JP4730166B2 (ja) 機械設備の異常診断装置及び異常診断方法
JP2010151773A (ja) 回転機器状態監視用複合センサ
JP2012098226A (ja) 配管検査方法、配管検査装置および電磁超音波センサ
KR101825054B1 (ko) 용접 구조물의 용접 결합력 측정 장치 및 방법
KR101210472B1 (ko) 초음파공명의 비선형특성을 이용한 미세균열 탐지장치 및 그 방법
WO2007020767A1 (ja) 音響センサ装置,音響解析診断装置および音響解析診断装置の製造方法
JP7023360B2 (ja) 蓄圧器の製造方法
KR101159233B1 (ko) 진동을 이용한 기계 안정도 진단 시스템 및 방법
JP2001324420A (ja) 回転機械の翼の振動予測方法及びその装置
JP2002139374A (ja) 回転捩り振動計測方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042860.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007545258

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2006832659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006832659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE