WO2007058148A1 - 耐食性に優れたアルミニウム部材又はアルミニウム合金部材 - Google Patents

耐食性に優れたアルミニウム部材又はアルミニウム合金部材 Download PDF

Info

Publication number
WO2007058148A1
WO2007058148A1 PCT/JP2006/322586 JP2006322586W WO2007058148A1 WO 2007058148 A1 WO2007058148 A1 WO 2007058148A1 JP 2006322586 W JP2006322586 W JP 2006322586W WO 2007058148 A1 WO2007058148 A1 WO 2007058148A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
film
aluminum alloy
corrosion resistance
hardness
Prior art date
Application number
PCT/JP2006/322586
Other languages
English (en)
French (fr)
Inventor
Jun Hisamoto
Koji Wada
Takayuki Tsubota
Hirotaka Ito
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to DE112006002987T priority Critical patent/DE112006002987T5/de
Priority to US12/090,552 priority patent/US20090233113A1/en
Publication of WO2007058148A1 publication Critical patent/WO2007058148A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • Aluminum member or aluminum alloy member with excellent corrosion resistance Aluminum member or aluminum alloy member with excellent corrosion resistance
  • the present invention relates to an aluminum member or aluminum alloy member having excellent gas corrosion resistance and plasma resistance, and more particularly to corrosive components such as devices for manufacturing electronic products and equipment such as semiconductors and liquid crystals.
  • a vacuum chamber or reaction chamber (hereinafter referred to as "chamber one") used in CVD equipment, PVD equipment, dry etching equipment, etc., there are CI, F, Br etc. Since a corrosive gas containing a halogen element is introduced, corrosion resistance against the corrosive gas (hereinafter referred to as gas corrosion resistance) is required. In addition, in the above chamber, in addition to the corrosive gas, halogen-based plasma is often generated, so corrosion resistance to plasma (hereinafter referred to as plasma resistance) is regarded as important.
  • plasma resistance corrosion resistance to plasma
  • Patent Document 1 discloses that an anodic oxide film of 0.5 to 20 m is formed and then heat-dried at 100 to 150 ° C in vacuum. A technique to evaporate and remove the moisture adsorbed in the film is proposed! Patent Document 2 proposes a technique in which an A1 alloy containing 0.05 to 4.0% of copper is subjected to an anodic acid treatment in a oxalic acid electrolytic solution, and then the voltage is further lowered in the electrolytic solution. Yes.
  • these anodized films are also resistant to the gas and plasma depending on the film quality. Since the corrosion resistance differs greatly, depending on the usage environment as a semiconductor manufacturing member, these corrosion resistance requirements cannot be satisfied. In addition, the electrical physical properties become unstable due to corrosion, and in the process using plasma, the stability cannot be maintained, and the quality control of the product may be hindered.
  • Patent Documents 5 and 6 disclose examples in which a ceramic film is further provided on the anodized film.
  • a particular problem in this case is that the adhesion between the anodized film and the ceramic film is poor.
  • the semiconductor and liquid crystal manufacturing apparatus members are in a severe use environment where they undergo many thermal cycles depending on the process conditions of the semiconductor and liquid crystal manufacturing. For this reason, in semiconductor and liquid crystal manufacturing equipment components, peeling between the anodized film and the A1 alloy substrate, and the anodized film and ceramic film occurs even under high-temperature thermal cycling and in a corrosive environment of gas or plasma. Adhesion is required.
  • Patent Document 5 described above includes a boron carbide layer coated on an aluminum-based substrate, and an anodized oxide layer formed between the substrate and the boron carbide layer.
  • a structure is disclosed, and it has been proposed to roughen the surface of the anodized film to improve the adhesion to the anodized film.
  • Boron carbide is a ceramic with excellent gas corrosion resistance and plasma resistance, but the adhesion is not sufficient simply by roughening the surface, which has poor adhesion to the anodized film. For this reason, cracking and peeling occur, and sufficient gas corrosion resistance and plasma resistance cannot be obtained.
  • Patent Document 6 one type selected from C, N, P, F, B, and S in the anodized film was used to improve the adhesion between the ceramic film and the anodized film. Or two or more elements It is proposed to contain more than 0.1%. However, the effect of improving adhesion is insufficient, and further gas corrosion resistance and plasma resistance are required.
  • Patent Document 1 Japanese Patent Publication No. 5-53870
  • Patent Document 2 JP-A-3-72098
  • Patent Document 3 Japanese Patent Publication No. 5-53872
  • Patent Document 4 Japanese Patent Publication No. 5-53871
  • Patent Document 5 Japanese Patent Laid-Open No. 10-251871
  • Patent Document 6 JP 2000-119896 A
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to form an aluminum member or aluminum in which an anodized film having excellent gas corrosion resistance and plasma resistance and excellent adhesion is formed.
  • Providing an alloy member, and a vacuum device member for example, a vacuum vessel (vacuum chamber), a reaction vessel (reaction chamber), and an aluminum member or an aluminum alloy member having excellent corrosion resistance)
  • Providing other members installed in the container e.g., electrodes, plates and members for gas diffusion, shields to prevent material scattering, rings for uniforming and stabilizing plasma and gas, etc.
  • Another object of the present invention is to provide a member having sufficient voltage resistance in order to stably maintain the plasma state in a process using plasma.
  • the present invention provides:
  • an aluminum member or aluminum alloy member to form an anode Sani ⁇ film on the surface you said anode Sani ⁇ impedance of the membrane frequency 10- 2 Hz, der least 10 7 Omega Te is, and Aluminum member or aluminum alloy member characterized in that film hardness is 400 or more in terms of Vickers hardness (Hv)
  • an aluminum member or aluminum alloy member to form an anode Sani ⁇ film on the surface the anode Sani ⁇ film Contact impedance frequency 10- 2 Hz of, der least 10 8 Omega Te is, and Aluminum member or aluminum alloy member characterized in that the film hardness is 350 or more in terms of Vickers hardness (Hv)
  • a vacuum device member comprising the aluminum member or aluminum alloy member according to (1) to (3),
  • the impedance of the anodic acid coating formed on the surface of the aluminum member or the aluminum alloy member is 10 7 ⁇ or more at a frequency of 10 to 2 Hz
  • the hardness of the anodic oxide coating is With a Vickers hardness ( ⁇ ) of 400 or more, an impedance of 10 8 ⁇ or more and a Vickers hardness ( ⁇ ) of 350 or more, gas corrosion resistance and plasma resistance are excellent.
  • An aluminum member or an aluminum alloy member provided with a film having excellent adhesion can be obtained.
  • an aluminum member or an aluminum alloy member having excellent corrosion resistance suitable for a vacuum device member such as a vacuum chamber of a CVD device, a PVD device, and a dry etching device can be provided.
  • sulfuric acid content of the anode oxidation coating of the impedance is 10 8 Omega over the frequency 10- 2 ⁇ (as 98% sulfuric acid stock concentration) that that form with the following aqueous solution 50 g / l Therefore, it is possible to combine high corrosion resistance and voltage resistance.
  • the inventors of the present invention have made various studies and analyzes on the problems of the above-described conventional anodic oxide coatings to achieve the object of the present invention.
  • the impedance and hardness of the film are important governing factors in relation to the gas corrosion resistance, plasma resistance, and film adhesion. By maintaining these values within a certain range, the gas corrosion resistance and plasma resistance as well as the adhesion of the film are excellent. It was found that the anodized film can be improved.
  • impedance values at low frequencies are dominant, and it has become possible to set values necessary to obtain stable performance.
  • the above (2) value is more than 350 in Vickers hardness (Hv) It is preferable that More preferably, 10 8 Omega than in the impedance frequency 10- 2 ⁇ coating is and hardness of the coating Vickers hardness (Hv) at 400 or more.
  • the strong anodic acid coating has a low consumption rate in chlorine plasma (BC1 + C1).
  • Saga also exhibits excellent properties in corrosion resistance (evaluated by the time until hydrogen generation due to corrosion) in hydrochloric acid (7% HC1 solution). Sarakuko has high and stable voltage resistance even in the corrosive environment used.
  • an anodized film satisfying the above-described impedance and hardness can be easily understood by the examples described later, but the conditions for anodizing and subsequent hydration (sealing treatment) are appropriately set. By selecting, it can be formed on the surface of an aluminum alloy (or aluminum) member.
  • a mixed solution of sulfuric acid and oxalic acid is used as an electrolytic solution in the anodizing treatment, and the mixing ratio of oxalic acid is increased so that the impedance value can be increased and adjusted to the lower limit of the present invention.
  • Impedance values can also be satisfied by increasing the temperature and pressure of the hydration treatment.
  • the mixing ratio of succinic acid was increased as described above, and It is possible to increase beyond the limit.
  • the temperature can be adjusted to the range of the present invention by keeping the temperature slightly lower. Therefore, adjusting both the impedance and the hardness within the specific range of the present invention can be easily performed by those skilled in the art by taking into account the effects on these values such as the processing conditions described above, and confirming by experiment if necessary. Can be implemented and reproduced.
  • the anodized solution it is more effective to use a mixed solution containing 50 g / l or less of sulfuric acid and 5 g / l or more, preferably 10 mg / l or more of oxalic acid.
  • the sulfuric acid content (gZL) refers to the content of sulfuric acid stock solution (concentration: 98%) in 1 liter.
  • the voltage at the time of electrolysis can be used properly depending on the purpose.
  • the initial value is 10 to 50 V, and the final value is 30 to: LOOV.
  • the effect of the invention can be enhanced.
  • the liquid temperature is preferably 5 ° C. or less, particularly from the viewpoint of improving plasma resistance (erosion resistance due to plasma).
  • V and liquid temperatures are preferably higher than 10 ° C! /.
  • a mixed solution in which sulfuric acid is 50 g / l or less and oxalic acid is added at 10 g / l or more, preferably 20 g / l or more is effective.
  • the voltage at the time of electrolysis can be used properly according to the purpose.
  • the effect of the invention can be enhanced by setting the initial value to 20 to 60 V and the final value to 30 to LOOV.
  • the liquid temperature is preferably ⁇ 2 to 25 ° C. from the viewpoint of this withstand voltage, and the range of 5 to 18 ° C. is particularly effective.
  • the compound containing Si as an inorganic ion is preferably 15 ppm or less, preferably 10 ppm or less.
  • the treatment method is performed by immersing the target in the water.
  • the liquid temperature is 60 ° C or higher, and the treatment time is 20 minutes or longer. Particularly, in order to obtain the effects of the present invention, the liquid temperature is 90 ° C or higher, preferably 95 ° C or higher. Moreover, it is used conventionally. It is also possible by exposing the target object to pressurized steam, and it is recommended to control within the range of normal pressure to twice the normal pressure.
  • the temperature is preferably 90 ° C or higher as described above. However, when the pressure is applied in a region exceeding the normal pressure, the effect is exhibited even at 80 to 85 ° C or higher.
  • the liquid temperature in the hydrolysis treatment is 60 ° C or more, the treatment time is 20 minutes or more, preferably 30 minutes or more, particularly to obtain the effects of the present invention.
  • the liquid temperature should be 70-90 ° C. It can also be achieved by exposing the object to pressurized steam that has been used in the past, and it is recommended that the pressure be controlled in the range of normal pressure to twice the normal pressure.
  • the temperature is preferably 70 to 90 ° C as described above. However, when the pressure is applied in a region exceeding the normal pressure, the effect is exhibited even at 65 to 85 ° C.
  • plasma gas was irradiated to the aluminum alloy plate on which the anodized film was formed (gas: BC1 / 50% + Cl / 50% sccm, ICP: 800-1000
  • Table 1 shows the details of the formation and treatment conditions of each anode coating
  • Table 2 shows the details of each anode coating obtained. The measurement results of impedance value, hardness, plasma etching rate, and H foaming time when immersed in HC1 are shown.
  • the dielectric breakdown voltage was measured using a DC power source.
  • Table 3 shows the details of the formation and treatment conditions of each anode coating
  • Table 4 shows the impedance value, hardness, and H foaming time when immersed in HC1, and withstand voltage (dielectric breakdown voltage).
  • the anodized film formed on this surface is excellent in both plasma resistance and gas corrosion resistance, and has high corrosion resistance.
  • a constituent material for vacuum vessels one vacuum chamber
  • reaction vessels one reaction chamber
  • members installed in a vacuum device such as a CVD device, PVD device, or dry etching device Applicable to

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 本発明は、耐ガス腐食性及び耐プラズマ性が優れると共に密着性の優れた陽極酸化皮膜を形成したアルミニウム部材又はアルミニウム合金部材、及びかかる耐食性に優れたアルミニウム部材又はアルミニウム合金部材によって構成された真空装置用部材を提供することを目的とする。また、本発明は、プラズマを利用するプロセスにおいて、プラズマ状態を安定に保持するため、十分な耐電圧性を有する部材を提供することを目的とする。  この目的は、以下の手段により達成される。 (1)陽極酸化皮膜のインピーダンスが周波数10-2Hzにおいて107Ω以上であり、且つ皮膜硬さがビッカース硬さ(Hv)で400以上であるアルミニウム部材又はアルミニウム合金部材、又は (2)陽極酸化皮膜のインピーダンスが周波数10-2Hzにおいて108Ω以上であり、且つ皮膜硬さがビッカース硬さ(Hv)で350以上であるアルミニウム部材又はアルミニウム合金部材。

Description

耐食性に優れたアルミニウム部材又はアルミニウム合金部材 技術分野
[0001] 本発明は、耐ガス腐食性と耐プラズマ性に優れたアルミニウム部材又はアルミ-ゥ ム合金部材に関し、特に半導体や液晶などの電子製品や機器を製造する装置など、 腐食性の成分や元素を含むガスやプラズマが用いられる装置材料に適したアルミ- ゥム部材又はアルミニウム合金部材、及びこれによつて構成された真空容器 (真空チ ヤンバー)、反応容器 (反応チャンバ一)、または容器内に設置される部材に関する。 背景技術
[0002] CVD装置、 PVD装置、ドライエッチング装置などに用いられる真空チャンバ一や 反応チャンバ一(以下チャンバ一)の内部には、反応ガス、エッチングガス、タリー- ングガスとして CI, F, Br等のハロゲン元素を含む腐食性ガスが導入されることから、 腐食性ガスに対する耐食性 (以下、耐ガス腐食性という)が要求されている。また上記 のチャンバ一の中では、上記腐食性ガスに加えて、ハロゲン系のプラズマを発生させ ることが多いのでプラズマに対する耐食性 (以下、耐プラズマ性という)が重要視され ている。近年このような用途には、軽量でしかも熱伝導性に優れているアルミニウムま たはアルミニウム合金製の真空チャンバ一や反応チャンバ一が採用され、さらにチヤ ンバー内に設置される部材につ 、ても、同様に使用が拡大して 、る。
[0003] し力しながらアルミニウムまたはアルミニウム合金は十分な耐ガス腐食性及び耐プラ ズマ性を有していないため、これらに対する特性を向上させるため表面改質技術が 種々提案されている。
[0004] 耐ガス腐食性及び耐プラズマ性を向上させる技術としては、例えば特許文献 1には 0.5〜20 mの陽極酸化皮膜を形成した後、真空中において 100〜150°Cで加熱乾燥 処理して皮膜中に吸着して ヽる水分を蒸発除去する技術が提案されて!ヽる。また、 特許文献 2には、銅を 0.05〜4.0%含有させた A1合金をしゆう酸電解液中で陽極酸ィ匕 処理した後、更に該電解液中で電圧を降下させる技術が提案されている。
ただ、これらの陽極酸化皮膜も、皮膜の膜質によって、前記ガスやプラズマに対す る耐食性が大きく異なるため、半導体製造部材としての使用環境によっては、これら の耐食性の要求を満足することができない。また、腐食によって電気的な物性も不安 定になり、プラズマを用いるプロセスにおいては、その安定性を保持することができず 、製品の品質管理に支障を生じる場合もある。
[0005] 一方、上記のような陽極酸ィ匕皮膜を設けた材料の他に、前記腐食性のガスやブラ ズマに対する耐食性が優れるものとして、酸化物、窒化物、炭窒化物、ホウ化物、ケ ィ化物などのセラミックス皮膜を用いた材料がある。そして、これらセラミックス皮膜を 、アークイオンプレーティングや、スパッタリング、溶射、 CVD等により直接 A1合金表 面に設けた例が、特許文献 3、特許文献 4などに見られる。しかしこれらの皮膜も、一 応ハロゲンガスやプラズマに対する耐食性に優れるものの、陽極酸化皮膜を設けた 場合と同様に、前記評価が厳しくなつて 、る前記ガスやプラズマに対する耐食性の 要求には応えられない。
[0006] 更に、特許文献 5、特許文献 6には、陽極酸化皮膜の上に、更にセラミックス皮膜を 設けた例が開示されている。しかし、この場合に特に問題となるのは、陽極酸化皮膜 とセラミックス皮膜との密着性が悪いという点である。特に、前記半導体や液晶の製 造装置部材では、半導体や液晶の製造のプロセス条件により、熱サイクルを数多く受 けるという厳しい使用環境下にある。このため、半導体や液晶の製造装置部材では、 高温熱サイクル下、ガスやプラズマの腐食環境下であっても、陽極酸化皮膜と A1合 金基材、陽極酸ィ匕皮膜とセラミックス皮膜との剥離が生じな 、密着性が要求される。
[0007] 上記特許文献 5には、アルミニウムベースの基板上にコーティングされた炭化ホウ 素の層と、基板と炭化ホウ素の層の間に形成された陽極酸ィ匕物の層を備えている構 造体が開示されており、陽極酸ィ匕皮膜との密着性改善のために陽極酸ィ匕皮膜表面 を粗くすることが提案されて ヽる。炭化ホウ素は耐ガス腐食性及び耐プラズマ性に優 れたセラミックスであるが、特に陽極酸化皮膜との密着性が悪ぐ表面を粗くするだけ では密着性が十分ではない。そのため、割れや剥離が生じて、十分な耐ガス腐食性 、耐プラズマ性が得られない。
[0008] また、特許文献 6ではセラミックス皮膜と陽極酸ィ匕皮膜との密着性改善のために、 陽極酸化皮膜中に C, N, P, F, B, Sの内から選択された 1種又は 2種以上の元素を 0.1%以上含有させることを提案している。しかし、密着性の改善効果としては不十分 であり、一層の耐ガス腐食性、耐プラズマ性が要求されている。
特許文献 1:特公平 5-53870号公報
特許文献 2:特開平 3-72098号公報
特許文献 3:特公平 5-53872号公報
特許文献 4:特公平 5-53871号公報
特許文献 5 :特開平 10-251871号公報
特許文献 6:特開 2000-119896号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明の目的は、上述した従来技術の問題点を解消し、耐ガス腐食性及び耐プラ ズマ性が優れると共に密着性の優れた陽極酸ィ匕皮膜を形成したアルミニウム部材又 はアルミニウム合金部材を提供すること、並びに、力かる耐食性に優れたアルミ-ゥ ム部材又はアルミニウム合金部材によって構成された真空装置用部材 (例えば、真 空容器 (真空チャンバ一)、反応容器 (反応チャンバ一)、その他、容器内に設置され る部材 (例えば、電極、ガス拡散を目的とした板や部材、物質の飛散を抑止するシー ルド、プラズマやガスの均一化、安定ィ匕を図るリングなど))を提供することである。 また、プラズマを利用するプロセスにおいて、プラズマ状態を安定に保持するため、 十分な耐電圧性を有する部材を提供することも目的とする。
課題を解決するための手段
[0010] そして、上記課題を達成すべく本発明者らが鋭意研究を行った結果、その有効な 対策として、ここに以下のような耐食性に優れたアルミニウム部材またはアルミニウム 合金部材 (請求項 1〜4)を提案する。
[0011] すなわち、本発明は、
(1)表面に陽極酸ィ匕皮膜を形成したアルミニウム部材又はアルミニウム合金部材で あって、前記陽極酸ィ匕皮膜のインピーダンスが周波数 10— 2Hzにお 、て 107 Ω以上であ り、且つ皮膜硬さがビッカース硬さ(Hv)で 400以上であることを特徴とするアルミ-ゥ ム部材又はアルミニウム合金部材、 (2)表面に陽極酸ィ匕皮膜を形成したアルミニウム部材又はアルミニウム合金部材で あって、前記陽極酸ィ匕皮膜のインピーダンスが周波数 10— 2Hzにお 、て 108 Ω以上であ り、且つ皮膜硬さがビッカース硬さ(Hv)で 350以上であることを特徴とするアルミ-ゥ ム部材又はアルミニウム合金部材、
(3)前記陽極酸化皮膜が、硫酸含有量 (硫酸原液濃度を 98%として)が 50g/l以下の 水溶液を用いて形成されたものである(2)に記載のアルミニウム部材又はアルミ-ゥ ム合金部材、
(4) (1)〜(3)に記載のアルミニウム部材又はアルミニウム合金部材により構成された 真空装置用部材、
を提案するものである。
発明の効果
[0012] 本発明によれば、アルミニウム部材又はアルミニウム合金部材の表面に形成される 陽極酸ィ匕皮膜のインピーダンスを周波数 10— 2Hzにおいて 107 Ω以上とし、かつ同陽極 酸ィ匕皮膜の硬さがビッカース硬さ(Ην)で 400以上とする力、インピーダンスを 108 Ω以 上とし、かつビッカース硬さ(Ην)を 350以上することにより、耐ガス腐食性及び耐プラ ズマ性が優れると共に密着性の優れた皮膜を供えたアルミニウム部材又はアルミ-ゥ ム合金部材が得られる。これにより、例えば CVD装置、 PVD装置及びドライエッチング 装置の真空チャンバ一のような真空装置用部材に好適な、優れた耐食性を有するァ ルミ-ゥム部材又はアルミニウム合金部材を提供できる。
さらには、インピーダンスが周波数 10— 2Ηζにおいて 108 Ω以上である前記の陽極酸 化皮膜を硫酸含有量 (硫酸原液濃度を 98%として)が 50g/l以下の水溶液を用いて形 成することにより、高い耐食性と耐電圧性を兼備することができる。
発明を実施するための最良の形態
[0013] 本発明者らは、本発明の課題を達成すベぐ前述した従来の陽極酸化皮膜の問題 点を種々研究、解析を行った。その結果、後述の実施例からも明らかなように、皮膜 のインピーダンスと硬さが、前記耐ガス腐食性及び耐プラズマ性さらには皮膜の密着 性との関係において重要な支配因子となっていること、そしてこれらの値を一定の範 囲に維持することにより耐ガス腐食性及び耐プラズマ性さらには皮膜の密着性に優 れた陽極酸ィ匕皮膜として改善きることを見出した。
また、耐電圧性においては、特に低周波数におけるインピーダンス値が支配的で、 安定性能を得るために必要な値を設定できるに至った。
[0014] 具体的には、陽極酸ィ匕皮膜のインピーダンス及び硬さを下記(1)又は(2)のいず れかの値に設定することが必要である。
(1)皮膜のインピーダンスが周波数 10— 2Hzにおいて 107 Ω以上、且つ皮膜の硬さがビ ッカース硬さ(Ην)で 400以上。
(2)皮膜のインピーダンスが周波数 10— 2Ηζにおいて 108 Ω以上、且つ皮膜の硬さがビ ッカース硬さ(Ην)で 350以上。
なお、十分な耐電圧性を有するためには、上記(2)の値 (インピーダンスが周波数 1 0 2 Hzにお 、て 108 Ω以上、且つ皮膜の硬さがビッカース硬度(Hv)で 350以上)である ことが好ましい。また、より好ましくは、皮膜のインピーダンスが周波数 10— 2Ηζにおいて 108 Ω以上、且つ皮膜の硬さがビッカース硬さ(Hv)で 400以上である。
その際、皮膜を安定にするためには、硫酸含有量が 50g/l以下の水溶液を用いて 形成することが効果的である。
[0015] すなわち、力かる陽極酸ィ匕皮膜は、塩素系プラズマ (BC1 +C1 )中で消耗速度が小
3 2
さぐまた塩酸 (7%HC1溶液)中での耐食性 (腐食による水素発生までの時間で評価 )においても優れた特性を示す。さら〖こは、使用される腐食環境においても、高く安 定な耐電圧性を有するものである。
[0016] また、上記のインピーダンス及び硬さを満たす陽極酸ィ匕皮膜は、後述の実施例によ つて容易に理解できるが、陽極酸化及びその後の加水処理 (封孔処理)の条件を適 宜選定することによりアルミニウム合金 (またはアルミニウム)部材の表面に形成するこ とが可能である。
インピーダンスについては例えば陽極酸ィ匕処理における電解液として硫酸と蓚酸 の混合液を用い、蓚酸の混合割合を増加するこことにより、インピーダンス値を高め て本発明の下限以上に調整することができる。加水処理の温度や圧力を高めること によってもインピーダンス値を満足させることができる。
皮膜の硬さについては上記と同様に蓚酸の混合割合を増カロしてやはり本発明の下 限以上に高めることが可能である。また、加水処理ではその温度を少し低く目に抑え ることに本発明の範囲に調整することができる。従って、インピーダンスと硬さを共に 本発明の特定範囲に調整することは、上記の処理条件などのこれらの値に対する影 響を加味し、また必要に応じて実験により確認することにより当業者が容易に実施、 再現できるものである。
[0017] 陽極酸ィ匕処理液としては、硫酸は 50g/l以下がよぐさらには蓚酸を 5g/l以上、好ま しくは lOg/1以上加えた混合溶液とするほうが効果的である。なお、本明細書におい て、硫酸含有量 (gZL)とは、 1リットル中の硫酸原液 (濃度: 98%)の含有量をいう。 電解時の電圧は、目的によって使い分けることができる力 初期値として 10〜50V 、最終値として 30〜: LOOVとすることで、発明の効果を高めることができる。
液温については、特に、耐プラズマ性 (プラズマによる耐エロージョン)を高める観 点では 5°C以下が好ましい。また、特に、耐ガス腐食性をさらに向上させる観点にお V、ては、液温は 10°Cを超える高温が好まし!/、。
[0018] また耐電圧性には、硫酸は 50g/l以下がよぐ蓚酸を lOg/1以上、好ましくは 20g/l以 上加えた混合溶液が効果的である。電解時の電圧は、目的によって使い分けること ができる力 初期値として 20〜60V、最終値として 30〜: LOOVとすることで、発明の効 果を高めることができる。液温は、この耐電圧性の観点では、— 2〜25°Cが好ましぐ 特に 5〜18°Cの範囲が効果的である。
[0019] なお、この陽極酸化処理液の液温は上記のごとくその目的の観点により好ま ヽ範 囲が異なってくるものであり、従って、実施に当たってはその際要求される目的の観 点に応じて適宜選択すれば良 、ことは 、うまでもな!/、。
[0020] 加水処理には、イオン交換を行ったものを用いる。これは、半導体デバイスなどの 誤作動を起こす可能性がある金属イオンを極小化するためである。また、無機イオン として、 Siを含有する化合物は 15ppm以下、好ましくは lOppm以下とすることが好まし い。
処理方法は、対象となるものを上記水に浸漬して行う。
液温は 60°C以上、処理時間は 20分以上である力 特に本発明の効果を得るため には、液温を 90°C以上、好ましくは 95°C以上とすることがよい。また、従来より用いら れている加圧水蒸気中に対象物を暴露する方法によっても可能であり、常圧〜常圧 の 2倍程度の範囲で制御することが推奨される。温度は、前述と同じく 90°C以上が好 ましいが、圧力を常圧を超えた領域で印加する場合には、 80〜85°C以上でも効果 を発現する。
[0021] また、耐電圧性を付与するためには、加水処理における液温は 60°C以上、処理時 間は 20分以上、好ましくは 30分以上である力 特に本発明の効果を得るためには、 液温を 70〜90°Cとすることがよい。また、従来より用いられている加圧水蒸気中に対 象物を暴露する方法によっても可能であり、常圧〜常圧の 2倍程度の範囲で制御す ることが推奨される。温度は、前述と同じく 70〜90°Cが好ましいが、圧力を常圧を超 えた領域で印加する場合には、 65〜85°Cでも効果を発現する。
[0022] 陽極皮膜のインピーダンス及び硬さを上記条件範囲に特定することにより、本発明 の前記効果を達成できることを、以下、具体的な実施例を挙げて実証することにする 。しかし、本発明は、以下の実施例に限定されるものではない。
実施例
[0023] (実施例 1)
JIS 6061A1合金板または 5052A1合金板(50〜100mm X 50〜: LOOmm)を対象に 最終の電解電圧: 30〜: LOOV、処理時間: 20〜200分で陽極酸化処理を行い、さら に加水処理 (封孔処理)を実施して A1合金板の表面に各種の陽極酸化皮膜 (膜厚: 2 5〜80 μ m)を形成した。これらの皮膜のインピーダンス(10— 2Hz時の Zの値)を測定し た。このインピーダンスは 10— 3Hzから 105Hzまで測定し、 10— 2Hz時点での値を膜の安定 性の指標として選定した。また同皮膜の硬さをマイクロビッカース硬度計により測定し た。
[0024] 次いで、耐プラズマ性を確認するための試験として、陽極酸化皮膜を形成したアル ミニゥム合金板にプラズマガスを照射(ガス: BC1 /50%+Cl /50%sccm、 ICP:800- 1000
3 2
W、バイアス: 30-120W、ガス圧: 2mT、温度: 30-80°C)して皮膜のエッチングを行ない 、このときのエッチング速度を調査した。さらに、耐食性の試験として、これらのアルミ -ゥム合金板を HC1 (7%水溶液)に浸漬して H発泡までの時間を測定した。
2
[0025] 表 1に各陽極皮膜の形成、処理条件の詳細を、また表 2に得られた各陽極皮膜の インピーダンス値、硬さ及びプラズマエッチング速度、 HC1浸漬時の H発泡時間の測 定結果をそれぞれ示す。
[表 1]
Figure imgf000009_0001
(表 1の続き)
Figure imgf000010_0001
本発明例 インピ-タ 'ンス BCI3+CI2 HC 曼滾による
No または 10一2 Hz時の 皮膜硬さ ラス'マ Iツチンゲ速度 H2発泡時間
比較例 Z値 (Ω) (Hv) (i m) (min)
1 比較例 9x105 380 0.46 3
2 本発明例 4x107 410 0.25 40
3 比較例 2x107 364 0.29 7
4 〃 8x107 380 0.26 10
5 〃 1 χΐθ6 390 0.48 3
6 本発明例 2x107 405 0.24 35
7 比較例 1 xlO7 372 0.30 10
8 〃 4 107 370 0.24 10
9 2x107 380 0.25 7
10 本発明例 7x107 405 0.20 45
11 比較例 5x106 394 0.36 3
12 〃 5x108 380 0.30 3
13 〃 4x107 II 0.22 10
14 本発明例 4x107 410 0.15 15
15 〃 2x108 405 0.15 30
16 〃 2x107 405 0.18 12
17 〃 3x10B 405 0.15 40
18 比較例 2x107 390 0.34 15
19 本発明例 1 lO7 410 0.20 II
20 // 2x107 415 0.19 12
21 II 5x107 410 0.20 35
22 II 3x107 415 0.12 12
23 〃 4 107 410 0.19 15
24 // 2 xlO8 405 0.20 40
25 /, 2 xlO7 410 0.22 15
26 // 1 xlO7 415 0.25 15
27 // 3 xlO7 410 0.15 20
28 // 4 xlO7 0.12 II
29 II 7 107 400 0.16 40
30 II 2x108 400 0.16 50
31 比較例 2 xlO6 390 0.37 10
32 II 8 xlO6 380 0.30 II
33 II 1 lO7 II 0.28 7
34 本発明例 7 xlO7 405 0.22 30
35 〃 5 xlO7 400 0.25 45
36 比較例 6 xlO7 360 0.35 7
37 本発明例 2 xlO8 380 0.22 30 表 2力ら、本発明の範囲に含まれる No.2、 6、 10、 14〜17、 19〜30、 34、 35、 37、す なわち陽極酸ィ匕皮膜の周波数 10— 2Hzにおけるインピーダンス値が 107Ω以上で、か つ同皮膜の硬さが 400 (Hv)以上の場合は、プラズマエッチング速度が 0.25 μ m以下 でかつ HC1浸漬時の H発泡時間が 12min以上となっており、優れた結果が得られて
2
いることがわ力る。一方、これらの条件を同時に満足しない比較例に相当する Nol、 3 〜5、 7〜9、 11〜13、 18、 31〜33、 36は、本発明例より耐ガス腐食性及び耐プラズマ '性が劣って!/ヽることがゎカゝる。
[0029] (実施例 2)
JIS 6061A1合金板または 5052A1合金板(50〜100mm X 50〜: LOOmm)を対象に 最終の電解電圧: 30〜60V、処理時間: 60〜200分で陽極酸化処理を行い、さらに 加水処理 (封孔処理)を実施して A1合金板の表面に各種の陽極酸化皮膜 (膜厚:10 〜60)を形成した。これらの皮膜のインピーダンス(10— 2Hz時の Zの値)を測定した。こ のインピーダンスは 10— 3Hzから 105Hzまで測定し、 10— 2Hz時点での値を膜の安定性の 指標として選定した。また同皮膜の硬さをマイクロビッカース硬度計により測定した。
[0030] またアルミニウム合金板を HC1 (7%水溶液)に浸漬して H発泡までの時間を測定し
2
た。さらに直流電源を用い、絶縁破壊電圧を測定した。
[0031] 表 3に各陽極皮膜の形成、処理条件の詳細を、また表 4に得られた各陽極皮膜の インピーダンス値、硬さ及び HC1浸漬時の H発泡時間、耐電圧 (絶縁破壊電圧)の測
2
定結果をそれぞれ示す。
[0032] [表 3]
Figure imgf000013_0001
本発明例 インピ -タ"ンス 耐電圧 HGI浸潰による
No または 102 Hz時の 皮膜硬さ 絶縁破壊電圧 H2発泡時間
比較例 Z値 (Ω) (Ην) (V/10^m) (min)
1 比較例 9χ105 380 200 3
2 II 2χ107 364 170 7
3 // 8 107 380 140 10
4 11 1 106 390 170 3
5 II 1 χΐθ7 372 170 10
6 II 5χ106 394 140 3
7 It 5χ106 380 140 3
8 本発明例 5χ108 360 270 150
9 II 3χ108 370 240 200
10 19 1 χΐθ8 390 230 120
11 II 2χ108 410 210 90
12 // 1 χ108 400 210 80
13 II 3χ108 380 270 180
14 // 2χ108 380 275 180
15 // 1 ΐθ8 360 270 150
16 // 3χ108 370 250 120
17 II 2χ108 360 210 90
18 比較例 8χ106 390 180 15
19 II 5χ106 380 185 15 表 4から、本発明例の範囲に含まれる No.8〜17、すなわち陽極酸化皮膜の周波数 102 Hzにおけるインピーダンス値が 108 Ω以上で、かつ同皮膜の硬さが 350 (Hv)以 上の場合は、 HC1浸漬時の Η発泡時間が 60min以上で、耐電圧は 21OV/10 m以 上となっており、明らかに優れた結果が得られていることがわかる。一方、これらの条 件を同時に満足しない比較例に相当する Nol〜7、 18〜19は、本発明例より耐ガス腐 食性及び耐プラズマ性が劣っていることがわかる。 このように、本発明に係るアルミニウム部材又はアルミニウム合金部材は、この表面 に形成された陽極酸ィ匕皮膜が耐プラズマ性と耐ガス腐食性の両特性において優れ ており、高耐食性を有するため、 CVD装置、 PVD装置、ドライエッチング装置のような 真空装置に用いられる真空容器 (真空チャンバ一)、反応容器 (反応チャンバ一)、ま たは容器内に設置される部材の構成材料として非常に有利に適用できるものである

Claims

請求の範囲
[1] 表面に陽極酸ィ匕皮膜を形成したアルミニウム部材又はアルミニウム合金部材であつ て、前記陽極酸ィ匕皮膜のインピーダンスが周波数 10— 2Hzにおいて 107 Ω以上であり、 且つ皮膜硬さがビッカース硬さ(Ην)で 400以上であることを特徴とするアルミニウム部 材又はアルミニウム合金部材。
[2] 表面に陽極酸ィ匕皮膜を形成したアルミニウム部材又はアルミニウム合金部材であつ て、前記陽極酸ィ匕皮膜のインピーダンスが周波数 10— 2Ηζにおいて 108 Ω以上であり、 且つ皮膜硬さがビッカース硬さ(Ην)で 350以上であることを特徴とするアルミニウム部 材又はアルミニウム合金部材。
[3] 前記陽極酸化皮膜が、硫酸含有量 (硫酸原液濃度を 98%として)が 50g/l以下の水 溶液を用いて形成されたものである請求項 2に記載のアルミニウム部材又はアルミ- ゥム合金部材。
[4] 請求項 1〜3に記載のアルミニウム部材又はアルミニウム合金部材により構成された 真空装置用部材。
PCT/JP2006/322586 2005-11-17 2006-11-13 耐食性に優れたアルミニウム部材又はアルミニウム合金部材 WO2007058148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006002987T DE112006002987T5 (de) 2005-11-17 2006-11-13 Aluminiumlegierungselement mit hervorragender Korrosionsbeständigkeit
US12/090,552 US20090233113A1 (en) 2005-11-17 2006-11-13 Aluminum member or aluminum alloy member with excellent corrosion resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005333281 2005-11-17
JP2005-333281 2005-11-17
JP2006241933A JP4796464B2 (ja) 2005-11-17 2006-09-06 耐食性に優れたアルミニウム合金部材
JP2006-241933 2006-09-06

Publications (1)

Publication Number Publication Date
WO2007058148A1 true WO2007058148A1 (ja) 2007-05-24

Family

ID=38048534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322586 WO2007058148A1 (ja) 2005-11-17 2006-11-13 耐食性に優れたアルミニウム部材又はアルミニウム合金部材

Country Status (6)

Country Link
US (1) US20090233113A1 (ja)
JP (1) JP4796464B2 (ja)
KR (1) KR20080046273A (ja)
DE (1) DE112006002987T5 (ja)
TW (1) TW200732495A (ja)
WO (1) WO2007058148A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117042A (ja) * 2009-12-03 2011-06-16 Kobe Steel Ltd 表面処理部材
JP2011157624A (ja) * 2010-01-07 2011-08-18 Kobe Steel Ltd 高耐電圧性を有する表面処理アルミニウム部材およびその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064935B2 (ja) * 2007-08-22 2012-10-31 株式会社神戸製鋼所 耐久性と低汚染性を兼備した陽極酸化処理アルミニウム合金
JP5284740B2 (ja) * 2008-09-25 2013-09-11 株式会社神戸製鋼所 陽極酸化皮膜の形成方法とそれを用いたアルミニウム合金部材
WO2016032536A1 (en) 2014-08-29 2016-03-03 Apple Inc. Process to mitigate spallation of anodic oxide coatings from high strength substrate alloys
WO2016111693A1 (en) 2015-01-09 2016-07-14 Apple Inc. Processes to reduce interfacial enrichment of alloying elements under anodic oxide films and improve anodized appearance of heat treatable alloys
US20160289858A1 (en) * 2015-04-03 2016-10-06 Apple Inc. Process to mitigate grain texture differential growth rates in mirror-finish anodized aluminum
WO2016160036A1 (en) 2015-04-03 2016-10-06 Apple Inc. Process for evaluation of delamination-resistance of hard coatings on metal substrates
US10760176B2 (en) 2015-07-09 2020-09-01 Apple Inc. Process for reducing nickel leach rates for nickel acetate sealed anodic oxide coatings
US9970080B2 (en) 2015-09-24 2018-05-15 Apple Inc. Micro-alloying to mitigate the slight discoloration resulting from entrained metal in anodized aluminum surface finishes
US10711363B2 (en) 2015-09-24 2020-07-14 Apple Inc. Anodic oxide based composite coatings of augmented thermal expansivity to eliminate thermally induced crazing
US10174436B2 (en) 2016-04-06 2019-01-08 Apple Inc. Process for enhanced corrosion protection of anodized aluminum
US11352708B2 (en) 2016-08-10 2022-06-07 Apple Inc. Colored multilayer oxide coatings
KR101859527B1 (ko) 2016-11-29 2018-06-28 한국해양과학기술원 내식성능 향상을 위한 알루미늄의 화학적 표면개질 방법 및 이에 의해 표면개질한 알루미늄 소재
US11242614B2 (en) 2017-02-17 2022-02-08 Apple Inc. Oxide coatings for providing corrosion resistance on parts with edges and convex features
US20180347037A1 (en) * 2017-06-05 2018-12-06 Applied Materials, Inc. Selective in-situ cleaning of high-k films from processing chamber using reactive gas precursor
US20180350571A1 (en) * 2017-06-05 2018-12-06 Applied Materials, Inc. Selective in-situ cleaning of high-k films from processing chamber using reactive gas precursor
KR20200039827A (ko) * 2017-09-11 2020-04-16 어플라이드 머티어리얼스, 인코포레이티드 반응성 가스 전구체를 사용한 프로세싱 챔버로부터의 하이-k 막들의 선택적 인-시튜 세정
KR102443973B1 (ko) * 2017-12-11 2022-09-16 (주)코미코 내부식성 및 절연특성이 우수한 양극산화된 알루미늄 또는 알루미늄 합금 부재의 제조방법 및 표면처리된 반도체 장치
CN108582924A (zh) * 2018-07-06 2018-09-28 嘉兴市皇能厨卫科技有限公司 一种带灭蚊的铝板
US11549191B2 (en) 2018-09-10 2023-01-10 Apple Inc. Corrosion resistance for anodized parts having convex surface features

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229185A (ja) * 1998-02-13 1999-08-24 Kobe Steel Ltd 耐熱割れ性および耐食性に優れたAl材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103380A (ja) 1985-10-29 1987-05-13 Showa Alum Corp Cvd装置およびドライ・エツチング装置における真空チヤンバの製造方法
JPS62103379A (ja) 1985-10-29 1987-05-13 Showa Alum Corp Cvd装置およびドライ・エツチング装置における真空チヤンバの製造方法
JPS62103377A (ja) 1985-10-29 1987-05-13 Showa Alum Corp Cvd装置およびドライ・エツチング装置における真空チヤンバの製造方法
JPH0372098A (ja) 1989-08-10 1991-03-27 Showa Alum Corp 真空用アルミニウム材の製造方法
KR100473691B1 (ko) * 1994-11-16 2005-04-14 가부시키가이샤 고베 세이코쇼 Al또는Al합금제진공챔버부재
US6120640A (en) 1996-12-19 2000-09-19 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
JPH11140690A (ja) * 1997-11-14 1999-05-25 Kobe Steel Ltd 耐熱割れ性および耐食性に優れたAl材料
JP4194143B2 (ja) 1998-10-09 2008-12-10 株式会社神戸製鋼所 ガス耐食性とプラズマ耐食性に優れたアルミニウム合金材
TW488010B (en) * 2000-02-04 2002-05-21 Kobe Steel Ltd Chamber member made of aluminum alloy and heater block
JP2003034894A (ja) * 2001-07-25 2003-02-07 Kobe Steel Ltd 耐腐食性に優れたAl合金部材
JP2004225113A (ja) * 2003-01-23 2004-08-12 Kobe Steel Ltd 耐腐食性及び耐プラズマ性に優れたAl合金部材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229185A (ja) * 1998-02-13 1999-08-24 Kobe Steel Ltd 耐熱割れ性および耐食性に優れたAl材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117042A (ja) * 2009-12-03 2011-06-16 Kobe Steel Ltd 表面処理部材
JP2011157624A (ja) * 2010-01-07 2011-08-18 Kobe Steel Ltd 高耐電圧性を有する表面処理アルミニウム部材およびその製造方法

Also Published As

Publication number Publication date
DE112006002987T5 (de) 2008-10-02
TW200732495A (en) 2007-09-01
JP4796464B2 (ja) 2011-10-19
US20090233113A1 (en) 2009-09-17
JP2007162126A (ja) 2007-06-28
KR20080046273A (ko) 2008-05-26

Similar Documents

Publication Publication Date Title
WO2007058148A1 (ja) 耐食性に優れたアルミニウム部材又はアルミニウム合金部材
Tseng et al. The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy
KR100347428B1 (ko) 가스 및 플라즈마에 대한 내식성이 우수한 알루미늄합금재
US8128750B2 (en) Aluminum-plated components of semiconductor material processing apparatuses and methods of manufacturing the components
Altun et al. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys
Jiang et al. Corrosion resistance of nickel-phosphorus/nano-ZnO composite multilayer coating electrodeposited on carbon steel in acidic chloride environments
Li et al. Multipurpose surface functionalization on AZ31 magnesium alloys by atomic layer deposition: tailoring the corrosion resistance and electrical performance
Zou et al. Ultrasonic-assisted electroless Ni-P plating on dual phase Mg-Li alloy
TWI421373B (zh) 一種金屬母材之鎢塗層方法
Del Olmo et al. Flash-PEO coatings loaded with corrosion inhibitors on AA2024
Yan et al. Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte
Kaseem et al. Modification of a porous oxide layer formed on an Al–Zn–Mg alloy via plasma electrolytic oxidation and post treatment using oxalate ions
CN101287861A (zh) 耐腐蚀性优异的铝构件或铝合金构件
Yan et al. Thermal stabilization of nanocrystalline promoting conductive corrosion resistance of TiN–Ag films for metal bipolar plates
Caicedo et al. Determination of the best behavior among AISI D3 steel, 304 stainless steel and CrN/AlN coatings under erosive-corrosive effect
Wang et al. Influence of treating frequency on microstructure and properties of Al2O3 coating on 304 stainless steel by cathodic plasma electrolytic deposition
JP5937937B2 (ja) アルミニウム陽極酸化皮膜
JP2012237024A (ja) 窒化アルミニウム膜及びそれを被覆した部材
JP6083889B2 (ja) アモルファスカーボン膜被覆部材
Kim et al. Characteristics of Boron-Doped Diamond Electrodes Deposited on Titanium Substrate with TiN x Interlayer
Arrando et al. Comparative study of high corrosion resistant TiCxN1− x and TiN hard coatings
JP2007327350A (ja) 真空ポンプ用部材及びその製造方法
JP4599371B2 (ja) アモルファス状炭素水素固形物皮膜被覆部材およびその製造方法
Mundotia et al. Study of corrosion properties of CrN and multilayer CrN/Cr coating at different electrolyte temperatures deposited on stainless steel by vacuum arc process
KR101696082B1 (ko) 표면 처리된 마그네슘 기판 및 이를 위한 기판의 표면처리 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037811.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087009046

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12090552

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2430/CHENP/2008

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112006002987

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006002987

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823360

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607