WO2007052779A1 - 車両の駆動装置 - Google Patents

車両の駆動装置 Download PDF

Info

Publication number
WO2007052779A1
WO2007052779A1 PCT/JP2006/322053 JP2006322053W WO2007052779A1 WO 2007052779 A1 WO2007052779 A1 WO 2007052779A1 JP 2006322053 W JP2006322053 W JP 2006322053W WO 2007052779 A1 WO2007052779 A1 WO 2007052779A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
lubricating oil
reactor
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2006/322053
Other languages
English (en)
French (fr)
Inventor
Yutaka Komatsu
Yasuhiro Endo
Kazutaka Tatematsu
Takeshi Yamazaki
Hiromichi Kuno
Tadafumi Yoshida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112006003015T priority Critical patent/DE112006003015T5/de
Priority to US12/092,215 priority patent/US7800260B2/en
Publication of WO2007052779A1 publication Critical patent/WO2007052779A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle drive device, and more particularly to a vehicle drive device in which an inverter and a motor are housed in a single case.
  • 'Background technology' ' ⁇ The current hybrid vehicle has a large box-type case of an inverter, which is fixed to the chassis and a motor case (transaxle) is placed under it.
  • a motor case transaxle
  • Japanese Patent Application Laid-Open No. 2000-0.34 3 8 4 5 and Japanese Patent Application No. 2 0 0 1-1 1 9 9 6 1 disclose a hybrid vehicle drive device in which a motor and an inverter are integrated. It is disclosed.
  • the inverter and the motor can be arranged within the same outline as the automatic transmission that is arranged adjacent to the engine in a normal vehicle.
  • An object of the present invention is to provide a vehicle drive device in which a boost converter and an inverter are integrated and miniaturized. ''
  • the present invention is a vehicle drive device that houses a first rotating electrical machine, a power control unit that controls the first rotating electrical machine, a first rotating electrical machine, and a power control unit.
  • the power control unit includes a first inverter that drives the first rotating electrical machine, and a voltage converter that boosts the power supply voltage and supplies the boosted voltage to the first inverter.
  • the voltage converter includes a reactor.
  • the vehicle drive device further includes a heat transfer agent that contacts the reactor and the case. .
  • the heat transfer agent is a lubricating oil for lubricating and cooling the first rotating electrical machine.
  • the vehicle control device is provided with a lubricating oil circulation section. In the case, a lubricating oil circulation path is formed. The reactor is placed on the circulation path.
  • the circulating portion includes a gear that is immersed in the lubricating oil and rotates in accordance with the rotation of the first rotating electric machine, and an oil catch plate that receives the lubricating oil that the gear lifts.
  • the case includes an oil pan disposed on the downstream side of the circulation path, and the circulation unit pumps the lubricating oil from the oil pan in accordance with the rotation of the rotating electrical machine and is upstream of the reactor of the lubrication path. Includes gears to send to the part.
  • the case includes a first storage chamber that stores the rear tuttle, and the reactant is immersed in the heat transfer agent in the first storage chamber.
  • the heat transfer agent is a lubricating oil that lubricates and cools the first rotating electrical machine.
  • the vehicle control device further includes a lubricating oil circulation unit.
  • a lubricating oil circulation path is formed in the case.
  • the case further includes a second storage chamber that stores the first rotating electrical machine, and a partition that partitions the first and second storage chambers.
  • the partition wall is provided with holes that form part of the circulation path.
  • the reactor includes a coil, an iron core, and a coil and an iron core.
  • Insulating material ' is formed in a flange shape that serves as a lid for the first storage chamber.
  • the heat transfer agent is a lubricating oil that lubricates and cools the first rotating electrical machine
  • the first storage chamber is an oil pan that stores the lubricating oil
  • the vehicle includes an internal combustion engine.
  • the vehicle drive device includes: a second rotating electrical machine; and the rotation of the rotor of the first rotating electrical machine is transmitted to the first shaft, and the rotation of the rotor of the second rotating electrical machine is transmitted to the second shaft.
  • a power splitting mechanism that transmits the rotation to the third axis.
  • the power control unit further includes a second inverter provided corresponding to the second rotating electrical machine, and the voltage converter includes the first and second inverters. Common to all inverters. .
  • FIG. 1 is a circuit diagram showing a configuration relating to motor generator control of hybrid vehicle 100 according to the embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining details of the power split mechanism P SD and the reduction gear R D in FIG.
  • FIG. 3 is a perspective view showing the appearance of the hybrid vehicle drive device 20 according to the embodiment of the present invention.
  • FIG. 4 is a plan view of the driving device 20.
  • FIG. 5 is a side view of the driving device 20 as seen from the XI direction of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI—VI of FIG.
  • FIG. 7 is a side view of the driving device 20 viewed from the X2 direction in FIG.
  • a control board 1 2 1 for controlling the power element is arranged on the power element board.
  • FIG. 8 is a cross-sectional view taken along the line V I I I—V I I I in FIG.
  • FIG. 9 is a partial cross-sectional view showing a partial cross-section at IX-IX in FIG.
  • FIG. 10 is a cross-sectional view showing an XX cross section in FIG.
  • Fig. 11 is a diagram showing the outline of the case and the parts accommodated in the case when the case is projected from the rotation axis direction. .
  • FIG. 12 is a diagram showing the case outline and the components housed inside when the case is projected from a direction orthogonal to the rotation axis direction and orthogonal to the vertical direction.
  • FIG. 13 is a diagram showing the direction in which the lubricating oil is lifted by the differential gear DEF and the reduction gear RG. '
  • FIG. 14 is a partial cross-sectional view showing a partial cross-section at X I V_X I V in FIG.
  • Fig. 15 is a partial cross-sectional view showing a partial cross-section along XV-XV in Fig. 14. .0: ⁇
  • FIG. 16 is a view showing a modified example of the reaction nozzle L 1 part.
  • FIG. 17 is a diagram showing a cross-section of the vehicle drive apparatus in the second embodiment.
  • FIG. 18 is a view for explaining a modified example of the portion in which the lubricating oil is circulated. Best mode for carrying out
  • FIG. 1 is a circuit diagram showing a configuration relating to motor generator control of a hybrid vehicle 100 according to an embodiment of the present invention.
  • vehicle 100 includes a battery unit 40, a driving device 2 ⁇ , a control device 30, and an engine and wheels (not shown).
  • Drive device 20 includes motor generators MG 1 and MG 2, power split mechanism P SD ′; speed reducer RD and power control unit 21 that controls motor generators MG 1 and MG 2.
  • Power split mechanism PSD basically consists of engine 4 and motor generator MG 1,
  • a power split mechanism a planetary gear mechanism having three rotating shafts, a sun gear, a planetary carrier, and a ring gear, can be used.
  • Power split mechanism PSD has two rotating shafts for engine 4 and motor generator MG 1 The other rotary shaft is connected to the reducer RD. The rotation of motor generator MG 2 is decelerated and transmitted to power split device PSD by reduction gear RD integrated with power split device PSD. ⁇
  • the rotation shaft of the reduction gear is coupled to the wheel by a reduction gear and a differential gear (not shown).
  • the reduction gear is not essential, and may be configured to transmit the rotation of motor generator MG 2 to power split device P S D without decelerating.
  • the battery unit 40 is provided with terminals 4 1 and 4 2.
  • the drive unit 2 has terminals 4 3 and 4 4. Further, a power cable 6 that connects the terminal 4 1 and the terminal 4 3 and a power cable 8 that connects the terminal 4 2 and the child 4 4 are also included. No
  • Battery unit 40 is connected to battery B, system main relay SMR3 connected between battery B negative electrode and terminal 42, and battery B positive terminal 41.
  • System main relay SMR2 connected in between, system main relay SMR1 and limiting resistor R connected in series between the positive electrode of battery B and terminal 41.
  • the system main relays SMR1 to SMR3 are supplied from the control device 30.
  • the conduction Z non-conduction state is controlled in accordance with the control signal SE.
  • the battery unit 40 further includes a voltage sensor 10 that measures the voltage V B between the terminals of the battery B, and a current sensor 11 that detects the current IB flowing through the battery B.
  • As the battery B a nickel hydride or lithium ion secondary battery or a fuel cell can be used.
  • a large-capacity capacitor such as an electric double layer capacitor can be used as a power storage device instead of the battery B.
  • Power control unit 2 1 includes inverters 2 2 and 14 provided corresponding to motor generators MG 1 and MG 2 respectively, and boost converter 1 2 provided in common with inverters 2 2 and 14 including.
  • Boost converter 12 boosts the voltage between terminals 4 3 and 4 4.
  • Inverter 14 converts the DC voltage supplied from boost converter 12 into a three-phase AC and outputs it to motor generator MG2.
  • Boost converter 1 2 has one end with reactance torr L 1 connected to the terminal 4 3, temperature: are connected in series between the boost converter 1 second output terminal for outputting a voltage VH of depressurizing Includes I GBT elements Q 1,. Q 2, diodes D 1 and D 2 connected in parallel to I GBT elements Q 1 and Q 2, respectively, and a smoothing capacitor C 2.
  • the smoothing capacitor C 2 smoothes the voltage boosted by the boost converter 12.
  • the other end of reactor L 1 is connected to the emitter of I GBT element Q 1 and the collector of I GBT element Q 2.
  • the power sword of diode D 1 is connected to the collector of I GBT element Q 1, and the anode of diode D 1 is connected to the emitter of I GBT element Q 1.
  • the power sword of diode D 2 is connected to the collector of I GBT element Q 2, and the anode of diode D 2 is connected to the emitter of I GBT element Q 2.
  • the inverter 14 converts the DC voltage output from the ascending converter 1 2 into a three-phase AC and outputs it to the motor generator MG 2 that drives the wheels. Inverter 14 also returns the electric power generated in motor generator MG 2 to boost converter '1 2 due to regenerative braking.
  • boost converter 12 is controlled by control device 30 to operate as a step-down circuit.
  • Inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between the output lines of boost converter 12. .
  • V-phase arm 16 includes I GBT elements Q 5 and Q 6 connected in series, and diodes D 5 and D 6 connected in parallel with I GBT elements Q 5 and Q 6, respectively.
  • the power sword of diode D 5 is connected to the collector of I GBT element Q 5, and the anode of diode D 5 is connected to the emitter of I GBT element Q 5.
  • the cathode of diode D 6 is connected to the collector of I GBT element Q 6, and the anode of diode D 6 is connected to the emitter of I GBT element Q 6.
  • W-phase arm 17 consists of I GBT elements Q 7 and Q8 connected in series and I GBT element Includes diodes D7 and D8 connected in parallel with Q7 and Q8, respectively.
  • the power sword of diode D 7 is connected to the collector of I GBT element Q 7, and the diode of diode D 7 is connected to the emitter of I GB T element Q 7.
  • the cathode of diode D 8 is connected to the collector of I GBT element Q 8, and the diode of diode D 8 is connected to the emitter of I GBT element Q 8.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG2. That is, the motor generator MG 2 is a three-phase permanent magnet synchronous motor, and one end of each of the three coils of the U, V, and W phases is connected to the neutral point.
  • the other end of the U-phase coil is connected to the connection node of IGBT elements Q3 and Q4.
  • the other end of the V-phase coil is connected to the connection node of I GB.T elements Q5 and Q6.
  • the other end of the W-phase coil is connected to the connection node of IGBT elements Q7 and Q8.
  • the current sensor 24 detects the current flowing through the motor generator MG 2 as the motor current value M CRT 2 and outputs the motor current value MCRT 2 to the control device 3 °.
  • the inverter 2 parallel is connected between the inverter 14 with respect to the step-up comparator motor 1 2.
  • Inverter 22 converts the DC voltage output from step-up converter 12 to motor generator MG 1 into a three-phase AC and outputs the same.
  • Inverter 22 receives the boosted voltage from boost converter 12 and drives motor generator MG 1 to start the engine, for example.
  • Inverter 22 also returns the electric power generated by motor generator MG 1 to boost converter 12 by the rotational torque transmitted from the crankshaft of the engine. At this time, boost converter 12 is controlled by control device 30 to operate as a step-down circuit.
  • inverter 22 Although the internal configuration of inverter 22 is not shown, it is similar to inverter 14, and detailed description will not be repeated.
  • Control device 30 has torque command values TR 1 and TR 2, motor speed MRN 1 and MR N2, voltages VB, VL and VH, current IB values, motor current values MCRT l and MC RT 2, and start signal IG ON Receive.
  • torque command value TR 1 motor speed MRN 1 and motor current value MC RT 1 relates to motor generator MG 1
  • torque command value TR 2 motor speed MRN 2 and motor current value MCRT 2 relate to motor generator MG 2.
  • the voltage VB is the voltage of the battery B
  • the current IB is the current flowing through the battery B.
  • Voltage VL is a voltage before boost of boost converter 12
  • voltage VH is a voltage after boost of boost converter 12.
  • Control device 30 outputs control signal PWU for instructing boosting to boost converter 12, control signal PWD for instructing step-down and signal CS DN instructing prohibition of operation.
  • control device 30 has a drive instruction PWMI 2 for converting the DC voltage output from step-up converter 12 to AC voltage for driving motor generator MG 2 with respect to inverter 14 and motor generator MG. Outputs the regeneration instruction PWMC 2 that converts the AC voltage generated in Step 2 into a direct current voltage and returns it to the boost converter 12 side. Similarly, the control device 30 converts the DC voltage from the inverter 22 into a drive instruction PWM I 1 for converting the DC voltage into an AC voltage for driving the motor generator MG 1, and the AC voltage generated by the motor generator MG 1 as DC. Regenerative instruction 'PWMC 1' which is converted to voltage and returned to boost converter 1 2 side is output.
  • FIG. 2 is a schematic diagram for explaining the details of the power split mechanism PSD and the reduction gear RD in FIG.
  • this vehicle drive device is configured in accordance with the rotation of motor generator MG 2, reduction gear RD connected to the rotation shaft of motor generator MG 2, and zero rotation shaft decelerated by reduction gear RD.
  • a rotating axle, an engine 4, a motor generator MG1, a reduction gear RD, and a power split mechanism PSD that distributes power between the engine 4 and the motor generator MG1 are provided.
  • Reducer RD has a reduction ratio from motor generator M G 2 to power split mechanism P SD that is, for example, twice or more.
  • crankshaft 50 of the engine 4 the rotor 32 of the motor generator MG 1 and the rotor 37 of the motor generator MG 2 rotate about the same axis.
  • the power split mechanism PSD is a planetary gear, and a sun gear 51 connected to a hollow sun gear shaft penetrating the crankshaft 50 through the center of the shaft;
  • Crankshaft A ring gear 5 2 that is rotatably supported on the same axis as 7 G 5 0, and a pinion gear 5 that is arranged between the sun gear 5 1 and the ring gear 5 2 and revolves while rotating on the outer periphery of the sun gear 5 3 and a planetary carrier 54 connected to the end of the crankshaft 50 and supporting the rotation shaft of each of the pinion gears 53.
  • the power split mechanism PSD consists of a sun gear shaft connected to the sun gear 51, a ring gear case connected to the ring gear 52, and a crankshaft 50 connected to the planetary carrier 54. It is said.
  • the power input / output to / from any of these three axes is determined, the power input / output to the remaining one axis is determined based on the power input / output to the other two axes. . ⁇ ,...
  • Counter drive gear for taking out power '7 string is provided outside the ring gear case and rotates integrally with the ring gear 52.
  • Counter drive gear ⁇ 0 is connected to power transmission reduction gear RG. Power is transmitted between the counter drive gear 70 and the power transmission reduction gear RG.
  • the power transmission reduction gear R G drives the differential gear D E F. On the downhill, the wheel rotation is transmitted to the differential gear D E F, and the power transmission reduction gear R G is driven by the differential gear D E F. ⁇ .
  • Motor generator MG 1 includes a stator 31 that forms a rotating magnetic field, and a rotor 3 2 that is disposed inside stator 31 and has a plurality of permanent magnets embedded therein.
  • the stator 3 1 includes a stator core 3 3 and a three-phase coin 3 4 wound around the stator core 3 3.
  • Rotor 32 is coupled to a sun gear shaft that rotates integrally with sun gear 51 of power split mechanism PSD.
  • the stator core 33 is formed by laminating thin magnetic steel plates and is fixed to a case (not shown).
  • Motor generator MG 1 operates as an electric motor that rotationally drives rotor 3 2 by the interaction between the magnetic field generated by the permanent magnet embedded in rotor 3 2 and the magnetic field formed by three-phase coil 3 4.
  • Motor generator M G 1 also operates as a generator that generates electromotive force at both ends of three-phase coil 34 due to the interaction between the magnetic field generated by the permanent magnet and the rotation of rotor 32.
  • Motor generator MG 2 includes a stator 36 that forms a rotating magnetic field, and a rotor 37 that is disposed inside stator 31 and has a plurality of permanent magnets embedded therein.
  • the stator 3 6 includes a stator core 3 8 and a three-phase coil 3 9 wound around the stator core 3 8.
  • the rotor 37 is coupled to a ring gear case that rotates integrally with the ring gear 52 of the power split mechanism PSD by a reduction gear R D.
  • the stator core 38 is formed, for example, by laminating thin magnetic steel plates, and is fixed to a case (not shown).
  • Motor generator MG 2 also operates as a generator that generates an electromotive force at both ends of three-phase coil 39 by the interaction between the magnetic field generated by the permanent magnet and the rotation of rotor 37.
  • the motor generator MG 2 operates as an electric motor that rotates the port 37 by the interaction between the magnetic field generated by the permanent magnet and the magnetic field formed by the three-phase coil 3.9.
  • the speed reducer R D reduces speed by a structure in which a planetary carrier 66, which is one of the rotating elements of the planetary gear, is fixed to the case of the vehicle drive device. That is, the speed reducer RD includes: a sun gear 62 connected to the shaft of the rotor 37, a ring gear 68 that rotates integrally with the ring gear 52, and the ring gear 68 and the sun gear 62: 6 and a pinion gear 6 4 for transmitting the rotation of 2 to the ring gear 6.8. '',.
  • the reduction ratio can be increased by more than twice.
  • FIG. 3 is a perspective view showing an external appearance of a drive device 2.0 for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 4 is a plan view of the driving device 20.
  • case of drive device 20 is configured to be divided into case 1 0 4 and case 1 0 2.
  • Case 10 04 is a part mainly accommodating motor generator MG 1
  • case 10 02 is a part mainly accommodating motor generator MG 2 and the power control unit.
  • Case 1 0 4 is formed with flange 1 0 6
  • Case 1 0 2 is formed with flange 1 0 5
  • flange 1 0 6 and flange 1 0 5 are fixed with bolts or the like
  • the case 1 0 4 and the case 1 0 2 are integrated.
  • Case 1 0 2 has an opening 10 8 for assembling the power control unit.
  • Capacitor C 2 is accommodated in the left inner part (vehicle traveling direction side) of opening 10 8, and power element board 1 2 0 and terminal blocks 1 1 6 and 1 1 8 are accommodated in the central part.
  • the right part contains reactor L1.
  • the opening 10 ′′ 8 is closed by a lid when mounted on the vehicle. Further, the capacitor C 2 may be replaced so as to accommodate the right side and the reactor L 1 on the left side.
  • reactor L 1 is arranged on the negative side of the rotation shafts of motor generators MG 1 and MG 2, and capacitor C 2 is arranged on the other side of the rotation ⁇ .
  • a power element substrate 120 is disposed in a region between the capacitor C 2 and the reactor L 1.
  • a motor generator MG 2 is arranged below the power element substrate 120.
  • the inverter element board 2 that controls the motor generator MG 1, the inverter 14 that controls the motor generator MG 2, and the arm part 13 of the boost converter 5 are mounted on the circuit board 1 2 0. .
  • the power element substrate 1 2 0 Since the power element substrate 1 2 0 becomes hot, the power element substrate is provided to cool the power element substrate. '1 2 0 is provided with a water passage, and the cooling water inlet 1 1 4 and the cooling water to the water passage An outlet 1 1 2 is provided in the case 1 0 2.
  • the inlet and outlet are formed by, for example, driving a union nut or the like through the flanges 10 6 and 10 5 with respect to the case 100 2.
  • the voltage applied from the battery unit 40 in FIG. 1 to the terminals 4 3 and 4 4 via the power cable is boosted by the boost converter 12 including the reactor 1 and the arm portion 13 and is boosted by the capacitor C 2. Smoothed and supplied to inverters 1 4 and 2 2 Be paid.
  • the reactor L is a relatively large component.
  • the location of 1 and the co-cider C 2 is a problem.
  • the case 100 2 is further provided with an oil passage 2 10 for guiding the cooling lubricating oil 'to the reactor L 1.
  • the oil passage 2 1 0 guides the lubricating oil splashed by the counter driven gear 1 3 2 in FIG. 2 from the power driven gear 1 3 2 side to the rear tuttle L 1 side.
  • FIG. 5 is a side view of the driving device 20 as seen from the XI direction of FIG.
  • case 1 0 2 is provided with an opening 1 0 9 for assembling and maintaining the motor generator, and this opening 1 0 9 is closed by a lid when mounted on the vehicle. . .
  • a motor generator MG 2 is arranged inside the opening .1 0 9.
  • a rotor 37 is disposed inside 36, and a hollow shaft 60 can be seen at the center of the rotor 37.
  • FIG. 6 is a cross-sectional view taken along the line VI—VI of FIG.
  • FIG. 6 a cross section of motor generator MG 2 and a cross section of a storage chamber for storing power control unit 21 are shown.
  • This hybrid vehicle drive device includes motor generators MG 2 and MG 2 disposed behind the motor generators MG 2 and MG 2 on the same axis.
  • MG 1 a power split mechanism arranged coaxially with the rotation center axis of the crankshaft and between the motor generators MG 1 and MG 2, and a power control unit 2 1 for controlling the motor generators MG 1 and MG 2 With.
  • the power control unit 21 has a rear tutor L 1 at least on one side and a smoothing capacitor C 2 on the other side at least with respect to the rotation center axis of the motor generator MG 2.
  • Motor generators MG1, MG2, power split mechanism, and power control unit .21 are housed in a metal case and integrated. ' ⁇
  • the case 1 0 2 is provided with a partition 2 0 0 that separates the two spaces so that the lubricating oil of the motor generator MG 2 does not leak to the power element substrate 1 2 0 side.
  • a water channel 1 2 2 for cooling the power element substrate 1 2 0 is provided on the upper surface portion of the partition wall 2 0 0, and this water channel 1 2 2 is the cooling water inlet 1 1 4 and the cooling water described above. It communicates with exit 1 1 2.
  • the power supply potential on the negative side is transmitted from the terminal 44 to the power element substrate 120 via the bus bar 1 2 8. Although not shown, positive power supply potential is transmitted from terminal 43 to reactor L 1 by another bus bar.
  • the cross section of the motor generator MG 2 will be described.
  • the winding portion of the coil 3 9 of the stator 3 6 can be seen on the inner peripheral side of the stator. Further, on the inner periphery, the rotor 3 7 and the case partition 2 0 2 And the rotor hollow shaft 60 is visible. Further, in FIG. 6, a section of the oil passage 2 10 can be seen at the upper part of the rotary shaft 13 3 °.
  • the vehicle drive device includes a motor generator MG 2, a power control unit 21 that controls the motor generator MG 2, and a case that houses the motor generator MG 2 and the power control unit 21.
  • Power control unit 21 includes a first inverter that drives motor generator MG 2, and a voltage converter that boosts the power supply voltage and applies it to the first inverter.
  • the voltage comparator includes a rear title L1. Heat from reactor L 1 is dissipated using the lubricant that contacts the reactor L 1 and the case as a heat transfer agent.
  • the oil passage in the case 2 1 A lubricating oil circulation path is formed with 0 as a part, and the reactor L 1 is arranged on the circulation path.
  • FIG. 7 is a side view of the driving device 20 viewed from the X2 direction in FIG.
  • a control board 1 2 1 for controlling the power element is arranged on the power element board.
  • FIG. 8 is a cross-sectional view taken along the line V I I I -V I I I in FIG.
  • crankshaft 50 of the engine is connected to damper 1.24, and the output shaft of damper 1 24 is connected to power split mechanism PSD.
  • damper 1 2 4 From the side where the engine is arranged, damper 1 2 4, motor generator MG 1, power split mechanism PSD, reduction gear RD and motor generator MG 2 are arranged in this order on the same rotating shaft .
  • the shaft of rotor 3 2 of motor generator MG 1 is hollow, and the output shaft from damper 1 2 4 passes through this hollow portion.
  • the shaft of the rotor 3 2 of the motor generator MG 1 is spline-fitted with the power split mechanism PSD side ⁇ sun gear 51.
  • the shaft of the damper 1 2 4 is connected to the planetary carrier 5 4.
  • the planetary carrier 5 4 rotatably supports the rotation shaft of the pinion gear 5 3 around the shaft of the damper 1 2 4.
  • the pinion gear 5 3 meshes with the sun gear 51 and the ring gear 52 shown in FIG. 2 formed on the inner periphery of the ring gear case.
  • the reduction gear RD side of the rotor shaft 60 of the motor generator MG 2 is spline-fitted with the sun gear 62.
  • the planetary carrier 66 of the reduction gear R D is fixed to the partition wall 20 2 of the case 10 2.
  • the planetary carrier 6 6 supports the rotation shaft of the pinion gear 6 4.
  • the pinion gear 64 meshes with the sun gear 62 and the ring gear 68 shown in FIG. 2 formed on the inner periphery of the ring gear case.
  • the motor generator MG 1 and the damper 1 2 4 can be assembled from the opening 1 1 1 in the right direction of the case 1 0 4, and the motor generator MG 2 can be assembled from the case 1 0 2 It can be assembled from the left opening 1 ° 9, and the reducer RD and power split mechanism PSD can be assembled from the mating surfaces of the flanges 105 and 106.
  • Case 1 0 2 opening 1 0 9 has lid 7 1 and liquid gas to prevent lubricant from leaking Sealed with a ket.
  • a cover 7 2 is provided at the back of the opening 1 1 of the case 104, and the space for accommodating the MG 1 is sealed with an oil seal and a nozzle 8 1 such as a liquid gasket so that the lubricating oil does not leak.
  • the shaft of rotor 3 2 of motor generator MG 1 is rotatably supported by ball bearing 7 8 provided between lid 7 2 and ball bearing 7 7 provided between partition wall 20 3.
  • the shaft of the rotor 3 2 is hollow, and the shaft of the damper 1 2 4 penetrates through the inside thereof. Needle bearings 7 9 and 80 are provided between the shaft of the rotor 3 2 and the shaft of the damper 1 2 4.
  • the shaft of the rotor 37 of the motor generator MG 2 can be rotated freely by a ball bearing 7 4 provided between the ball bearing 73 and the bulkhead 2.0 2 between the lid 71 and the lid 71. Is supported
  • the ring gear case with both the reduction gear RD ring gear and the power split mechanism PSD ring gear engraved on the inner circumference is located between the ball bearing 7 5 and the partition 2 0 3
  • the ball bearings 7 6 provided support the rotation itself.
  • Power control unit 2 1 and storage room and motor generator The storage room for storing V1G 2 is separated by the partition 2 0 2 of case 1 0 2, but part of it is inserted with terminal Hi 6 Connected through through holes.
  • the bus bar of the stator coil of motor generator MG 2 is connected to one side of this terminal block 1 1 6, and the bus bar of inverter: 14 is connected to the other side.
  • a conductive member is passed through the terminal block 1 16 so that these bus bars can be electrically connected. That is, the terminal block 1 1 6 is configured not to pass the lubricating oil from the motor generator MG 2 side and to pass electricity.
  • the terminal block 1 18 connects the space in which the power control unit is accommodated and the space in which the motor generator MG 1 is accommodated in a state where electricity is passed and lubricant is not passed.
  • an oil pan is provided under the stator of motor generators MG 1 and MG 2.
  • the oil level LVS when the vehicle is stationary for a while when the vehicle is stopped and the oil level when the lubricating oil lubricates each part during driving.
  • Bell LVD is shown.
  • FIG. 9 is a partial cross-sectional view showing a partial cross section taken along the line I X—I X in FIG.
  • oil chamber 2 16 which is a first storage chamber for storing reactor L 1
  • oil chamber 2 1 is partitioned from a space for storing other electronic members by lid 2 12.
  • the lubricating oil that has flowed into the oil chamber 2 1 6 from the oil passage 2 1 0 cools the reactor L 1 and flows as shown by arrows F 1, F 2, F 3, and F 4. Returned to the RG side. '
  • FIG. 10 is a cross-sectional view showing an XX cross section in FIG.
  • the rear title L 1 has a structure in which, for example, a coil is wound around a core in which electromagnetic steel sheets are laminated.
  • the rotation shaft 1 30 of the reduction gear RG shown in FIG. 6 is arranged, and the counter driven gear 1 3 2 of the reduction gear RG is shown in the center.
  • the rotating shaft 1 3 0 of the reduction gear RG is supported by the ball bearings 2 2 0 and 2 2 2 so as to rotate freely.
  • Counter driven gear 1 3 2 meshes with counter drive gear 70 in FIG.
  • a differential drive gear 1 3 '3 is provided on the same axis as the counter driven gear 1 3 2, and a differential gear D EF that is a final driven gear meshing with the gear drive gear 1 3' 3 is shown below the gear.
  • FIG. 11 is a diagram showing the case outline and the components housed inside when the case is projected from the direction of the rotation axis.
  • a damper 1 2 4 to which a crankshaft of an internal combustion engine is coupled, and a rotor arranged so that the rotating shaft of the damper 1 2 4 and the rotating shaft overlap with each other inside a case of a vehicle drive device
  • Motor generator MG 2 having a stator arranged around the rotor, power split mechanism PSD that receives torque from damper 1 2 4 and torque from motor generator MG 2, and substantially parallel to the rotating shaft of damper 1 2 4
  • a reduction gear RG to which the torque from the power split mechanism PSD is transmitted, and a rotation shaft that is substantially parallel to the rotation axis of the damper 1 2 4.
  • a power control unit 2 1 containing C 2 is shown.
  • the case houses the damper 1 2.4, the motor generator MG 2, the reduction gear RG, the differential gear DEF and the power control unit 21.
  • the horizontal dimension when the vehicle drive device is mounted on the vehicle is X3.
  • the dimension X 3 is determined at both ends by the outer edge of the case portion that accommodates the differential gear D EF and the outer edge of the case 104 that accommodates the damper 1.24. 'Therefore, it can be seen that the capacitor C 2, the substrate 1 20 and the rear title L 1 that make up the power control unit are inside the dimension X ⁇ . .
  • the dimension in the vertical direction (height direction) when the vehicle drive device is mounted on a vehicle is Y3.
  • the lower end of this dimension Y3 is determined by the outer edge of the part that houses the differential gear D E F of the case.
  • the upper end of 'dimension Y 3 is determined by the outer edge of the part that accommodates the case damper 1 2 4. Therefore, it can be seen that the capacitor C 2, the substrate 1 20, and the reactor L 1 constituting the power control unit 21 are arranged inside the dimension Y 3.
  • the height of the projection part of the case that accommodates the case's power control unit 21 when mounted on the vehicle is the space of the remaining case, that is, the damper 1 2 4, motor
  • the case is configured and the power control unit 21 is arranged so as not to exceed at least the height when the projection unit of the part accommodating the generator MG.2, the reduction gear RG, and the differential gear DEF is mounted on the vehicle.
  • the center of gravity of the vehicle can be lowered and the running stability can be increased. .
  • the case is configured and power controlled so that the position of the projection part of the case that accommodates the power control unit 21 of the case is located inside the projection part of the remaining case space in the horizontal direction when mounted on the vehicle.
  • Unit 2 1 is placed. As a result, the physique of the vehicle moving device is reduced.
  • FIG. 12 is a diagram showing a case outline and components housed inside when the case is projected from a direction perpendicular to the rotation axis direction and perpendicular to the vertical direction.
  • the dimension X 3 in the direction perpendicular to the vertical direction when the vehicle is mounted is also attached to the outer casing of the lid and the case damper at both ends of the case that houses the motor generator MG 2 of the case. 1 It can be seen that the capacitor C 2, the substrate 120, and the reactor L 1, which are determined by the outer edge of the part that accommodates 24 and constitute the power control unit, are inside the dimension Z 3.
  • the vertical dimension (height direction) dimension Y 3 is determined by the portion that accommodates the damper 124, motor generator MG 2, reduction gear RG, and differential gear DEF.
  • the part that accommodates the power control unit 21 including the board 1 2.0, the reactor L 1 and the capacitor C 2 is projected from the direction perpendicular to the rotation axis direction and perpendicular to the vehicle mounting direction.
  • the projection portion is provided so as to be included in the remaining case space, that is, the projection portion of the portion accommodating the damper 124, the motor generator MG2, the reduction gear RG, and the differential gear DEF.
  • the reduction gear RG and the differential gear DE F are both power transmission gears to which torque from the power distribution mechanism PSD is transmitted. Therefore, the reduction gear RG and the differential gear DE F are not indispensable.
  • the present invention can also be applied to a vehicle having a configuration without a speed gear RG or a rear-wheel drive configuration in which the differential gear DEF is not integrated with the drive unit.
  • the present invention can be applied to a parallel hybrid that is assisted by a motor when the engine is accelerated, etc., and can also be applied to a configuration in which only one motor is integrated with a drive device. Is possible.
  • FIG. 13 is a diagram showing the direction in which the lubricating oil is pumped up by the differential gear DEF and the reduction gear RG. '
  • the lubricating oil stored in the oil pan is splashed toward the reduction gear RG according to the rotation of the differential gear DE F as indicated by arrows F 8,. F 9 . Further, the lubricating oil is further spun up as indicated by arrows F 10 to F 12 according to the rotation of the reduction gear RG. ⁇
  • the lubricating oil flows through the inside of the oil passage 210, flows into the oil chamber 216, and cools the reactor L1. Then, the oil flows out from the oil drain hole 214 toward the space accommodating the reduction gear RG as shown by an arrow F7. If the diameter of the oil drain hole 214 ⁇ is small enough to serve as an orifice that restricts the flow rate, the reactor L 1 is immersed in the lubricating oil in a situation where the lubricating oil flows into the oil chamber 216. It is possible to keep ;
  • fluid lubricating oil is used to heat the reactor heat, but the reactor is immersed in the lubricating oil without providing an oil drain hole: Reactor The heat may be transferred to the case.
  • Reactor The heat may be transferred to the case.
  • the lubricating oil and grease correspond to heat transfer agents that transfer heat from the rear tuttle to the case.
  • FIG. 14 is a partial cross-sectional view showing a partial cross section along XIV-XIV in FIG. 9.
  • FIG. 15 is a partial cross-sectional view showing a partial cross section along XV-XV in FIG.
  • the lubricating oil pumped up by the counter driven gear 1 32 of the reduction gear RG is shown by arrows F 1 7 and F 18 and F 14 and F 1 3. So that it is fried towards the top. If this is configured to be received by the oil catch plate 2 2 4, a portion of the oil that has been sown is stored in the reactor 1 as indicated by arrows F 1 5,. It can be effectively guided to the room 2 1 6.
  • FIG. 16 is a view showing a modification of the reactor 1 part.
  • the reactor L.1 is molded with an insulating resin in the configuration shown in FIG. 10, and the upper end of this mold part is a flange shape that also serves as the lid of the oil chamber 2 16. The point to do is different.
  • This blister-shaped lid made of fi-resin is provided with a terminal for connecting the reactor to the bus bar, not shown.
  • the other portions are the same as those in FIG. 10, and the description will not be repeated. By doing so, the assembly of the reactor L 1 becomes easy and the number of parts can be reduced. ' ⁇ '
  • a driving device integrated with the boost converter and the inverter can be realized. And even if it integrates, the heat generation of the booster's rear tutor can be dissipated well, and a reduction in efficiency of the boost converter can be avoided. .
  • FIG. 17 is a diagram showing a cross section of the vehicle drive apparatus in the second embodiment.
  • reactor L 1 A is arranged in the oil pan below motor generator MG 2.
  • the lubricating oil pumped up by the differential gear DEF and the reduction gear RG is dripped onto the reactor L 1 A as indicated by arrows F 19 and F 20.
  • An oil path is provided in the partition wall 200. As a result, the heat generated in the reactor L 1 A is dissipated through the lubricating oil.
  • Capacitor C 2 interferes with reactor L 1 A, and bulkhead 2 0 0
  • the capacitor may be moved to the part where the rear titlel has been placed in the first embodiment.
  • a capacitor C 2 A can be arranged instead of the capacitor C 2.
  • the drive integrated with the boost converter and the inverter is also provided.
  • a moving device can be realized. And even if it integrates, the heat of the reactor of the boost converter can be dissipated well, and the efficiency of the boost converter can be avoided from being lowered.
  • FIG. 18 is a diagram for explaining a modification of the portion for circulating the lubricating oil.
  • the configuration shown in Fig. 18 is the same as the configuration shown in the first embodiment. Instead of the configuration where the oil is pumped with a gear ⁇ , the lubricating oil is pumped from the oil reservoir and supplied to cool the reactor L1. An oil pump is provided.
  • a trochoid type oil 10 "pump 4 0 0 is installed and the lubricating oil is pumped up from the oil reservoir at the bottom of the case to the oil passage ⁇ 0 4
  • the outlet of the oil passage 4 0 7 is located upstream of the power control unit including the substrate 1 2 0 in the lubricating oil lubrication path.
  • the oil pump 4 0 0 includes a drive gear 40 2 that meshes with the differential gear DEF, an inner rotor 4 0 4 that rotates together with the shaft of the drive gear 4 0 2, and 15 an inner rotor 4 0 4 And an outer rotor 4 0 6 in which the teeth mate.
  • the outlet of the oil passage 4 0 7 communicates with the oil passage 2 1 0 and the oil chamber 2 1 6 for guiding the cooling lubricating oil to the reactor L 1.
  • the lubricating oil flowing into the oil chamber 2 1 6 from the oil passage 2 1 0 cools the reactor L and flows as shown by the arrows F 1, F 2, F 3, F 4 and decelerates from the oil drain hole 2 1 4 Return to gear RG side.

Abstract

車両の駆動装置は、モータジェネレータ(MG2)と、モータジェネレータ(MG2)の制御を行なうパワー制御ユニット(21)と、モータジェネレータ(MG2)およびパワー制御ユニット(21)を収容するケースとを備える。パワー制御ユニット(21)は、モータジェネレータ(MG2)を駆動する第1のインバータと、電源電圧を昇圧して第1のインバータに与える電圧コンバータとを含む。電圧コンバータは、リアクトル(L1)を含む。リアクトル(L1)およびケースに接触する潤滑油を熱伝達剤としてリアクトル(L1)の熱が放熱される。ケースには、潤滑油の循環経路が形成され、リアクトルは、循環経路上に配置される。

Description

明細書 車両の駆動装置 技術分野
この発明は、 車両の駆動装置に関し、 特にインバータとモータを 1つのケース に収めた車両の駆動装置に関する。 ' 背景技術 . ' ' ■ . 現状のハイブリッド車は、 インバータ.の大きな箱型ケースがあり、 それがシャ ーシに固定されその下にモータケース (トランスアクスル) が配置されるという 構成をとつているものが多い。 なるべく多くの車種に搭載することができるハイ ブリツド車両の駆動装置について考慮すると、 ケースが 2個の構成であると車種 ごとにその配置が最適化されることになり部品の共通化が図りにくレ、。
本来、 組合せて動作することが必要なユニットは 1つのケースに収めて一体化 してしまうことが望ましい。 特開 2 0 0 4—.3 4 3 8 4 5号公報および特開 2 0 0 1 - 1 1 9 9 6 1号公報には、 モータとインバータとを一体化したハイブリツ ド車両の駆動装置が開示されている。
し力 しながら、 特開 2 0 0 4— 3 4 3 8 4 5号公報および特開 2 0 0 1— 1 1 9 9 6 1号公報に開示されるハイブリッド車両の駆動装置は、 モータの上にイン バータを載せただけの構造であり、 高さ方向に関し車両に搭載した場合の車両重 心位置について改善の余地がある。 さらに、 ハイブリッド車両の駆動装置を搭載 するスペースの省スペース化も十分に考慮されていない。
多くの車種に搭載可能とするためには、 通常の車両でエンジンに隣接配置され ている自動変速機とほぼ同等の輪郭内にィンバータとモータとを配置することが できることが望ましい。
また、 近年、 効率向上のためバッテリ電圧を昇圧するコンバータを搭載する車 両も開発されている。 上記の先行文献には、 昇圧コンバータの一体化を考慮して インバータとモータを一体化する概念については開示されていない。 昇圧コンパ —タを一体化するに際しては、 昇圧コンバータ部分の発熱に対する考慮も必要と なる。 とくに、 部品として体格の大きいリアク トルについては、 冷却するために 工夫が必要となる。 ' 発明の開示
この発明の目的は、 昇圧コンバータおよびインバ一タが一体化され小型化され た車両の駆動装置を提供することである。 ' '
この発明は、 要約十ると、 車両の駆動装置であって、 第 1の回転電機と、 第 1 の回転電機の制御を行なうパワー制御ユニットと、 第 1の回転電機およびパワー 制御ュニットを収容するケースとを備える。 パワー制御ュニットは、 第 1の回転 電機を駆動する第 1のインバータと、 電源電圧を昇圧して第 1のインバータに与 える電圧コンバータとを含む。 電圧コンバータは、 リアク トルを含む。 車両の駆 動装置は、 リアク トルおよびケースに接触する熱伝達剤をさらに備える。 .
好ましくは、 熱伝達剤は、 第 1の回転電機の潤滑および冷却を行なう潤滑油で 二 ある。 車両の制御装置は、 潤滑油の循環部をざらに備える。. ケースには、 潤滑油 の循環経路が形成される。 リアク トルは、 循環経路上に配置される。
より好ましくは、 循^部は、 潤滑油に浸漬され、 第 1の回転電機の回転に応じ て回転するギヤと、 ギヤの搔き揚げる潤滑油を受けるオイルキャッチ板とを含む。 . より好ましくは、 ケースは、 循環経路上の下流に配置されたオイルパンを含み、 循環部は、 回転電機の回転に応じてオイルパンから潤滑油を汲み上げて潤滑経路 . のリアク トルよりも上流部に送るギヤを含む。
好ましくは、 ケースは、 リアタ トルを収容する第 1の収容室を含み、 リアク ト . . ルは、 第 1の収容室において熱伝達剤に浸漬される。
より好ましくは、 熱伝達剤は、 第 1の回転電機の潤滑および冷却を行なう潤滑 油である。 車両の制御装置は、 潤滑油の循環部をさらに備える。 ケースには、 潤 滑油の循環経路が形成される。 ケースは、 第 1の回転電機を収容する第 2の収容 室と、 第 1、 第 2の収容室を仕切る隔壁とをさらに含む。 隔壁には、 循環経路の 一部を形成する孔が設けられる。
より好ましくは、 リアク トルは、 コイルと、 鉄心と、 コイル及び鉄心をモール ドする絶縁材'とを含む。 絶縁材は第 1の収容室の蓋となるフランジ形状に形成さ れる。
より好ましくは、 熱伝達剤は、.第 1の回転電機の潤滑および冷却を行なう潤滑 油であり、 第 1の収容室は、 潤滑油を貯蔵するオイルパンである。
好ましくは、 車両は、 内燃機関を含む。 車両の駆動装置は、 第 2の回転電機と、 第 1の回転電機のロータの回転が第 1軸に伝達され、 第 2の回転電機のロータの 回転が第 2軸に伝達され、' クランクシャフトの回転が第 3軸に伝達される動力分 割機構と ^さらに備える。 ケースは、 第 2の回転電機および動力分割機構をさら に収容する。 · : ' · ' . .. . ,より好ましくは、 パワー制御ュニッ卜は、 第.2の回転電機に対応して設けられ る第 2のインバータをさらに含み、 電圧コンバータは、 第 1、 第 2のインバータ に共通して設けられる。 . .
本発明によれば、 昇圧コンバータおよびインバ一タに一体化され小型化された 車両の駆動装置を実現することが可能となる。 . . 図面の簡単な説明 .
図 1は、 本発明の実施の形態に係るハイブリッド車両 1 0 0のモータジエネレ ; ータ制御に関する構成を示す回路図である。
図 2は、 図 1における動力分割機構 P S Dおよび減速機 R Dの詳細を説明する ための模式図である。
図 3は、 本発明の実施の形態に係るハイブリッド車両の駆動装置 2 0の外観を 示す斜視図である。
図 4は、 駆動装置 2 0の平面図である。
図 5は、 駆動装置 2 0を図 4の X I方向から見た側面図である。
図 6は、 図 4の V I—V I断面における断面図である。
図 7は、 図 4の X 2方向から駆動装置 2 0を見た側面図である。 図 7において、 パワー素子基板の上部にパヮ一素子を制御する制御基板 1 2 1が配置されている。 図 8は、 図 4の V I I I— V I I Iにおける断面図である。
図 9は、 図 4の I X— I Xにおける部分断面を示した部分断面図である。 図 10は、 図 9における X— X断面を示した断面図である。
図 1 1は、 ケースを回転軸方向から投影した場合に、 ケース輪郭と内部に収容. :■ される部品とを示した図である。 .
図 12は、 ケースを回転軸方向と直交し、 かつ鉛直方向に直交する方向から投 5 影した場合に、 ケース輪郭と内部に収容される部品とを示した図である。
図 1 3は、 ディファレンシャルギヤ DEFおよび減速ギヤ RGによって潤滑油 、 が搔き揚げられる方向を示した図である。 '
図 14は、 図 9の X I V_X I Vにおける部分断面を示した部分断面図である。 図 1 5は、 図 14の XV— XVにおける部分断面を示しだ部分断面図で る。 .0:· 図 16は、 リアク トノレ L 1部分の変形例を示した図である。
: . 図 1 7は、 実施の形態 2における車両の駆動装置の断面を示した図である。
図 1 8は、 潤滑油を循環させる部分の変形例を説明するための図である。 明を実施するための最良の形態
5 . · 以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[車両の構成要素の ¾明]
図 1は、 本発明の実施の形態に係るパイブリッド車両 100のモータジエネレ ータ制御に関する構成を示す回路図である。
0 ; 図 1を参照して、 車両 100は、 電池ユニット 40と、 駆動装置 2◦と、 制御 装置 30と、 図示しないエンジンおよび車輪とを含む。
駆動装置 20は、 モータジェネレータ MG 1, MG2と、 動力分割機構 P SD '; と、 减速機 RDと、 モータジェネレータ MG 1, MG 2の制御を行なうパワー制 御ュニット 2 1とを備える。
5 動力分割機構 P SDは、 基本的には、 エンジン 4とモータジェネレータ MG 1,
MG 2に結合されてこれらの間で動力を分配する機構である。 たとえば動力分割 機構としてはサンギヤ、 プラネタリキヤリャ、 リングギヤの 3つの回転軸を有す る遊星歯車機構を用いることができる。
動力分割機構 P SDの 2つの回転軸がエンジン 4、 モータジェネレータ MG 1 の各回転軸にそれぞれ接続され、 他の 1つの回転軸は減速機 R Dに接続される。 動力分割機構 P S Dと一体化された減速機 R Dによってモータジェネレータ MG 2の回転は減速されて動力分割機構 P S Dに伝達される。■
減速機の回転軸は、 図示しない減速ギヤやディファレンシャルギヤによって車 輪に結合されている。 なお、 減速機は必須ではなく、 モータジェネレータ MG 2 の回転を減速せずに動力分割機構 P S Dに伝達する構成でもよい。
電池ユニット 4 0には端子 4 1, 4 2が設けられている。 また駆動装置 2ひに , は端子 4 3, 4 4が設けられている。 車両 1 0 0 iま、 さらに、 端子 4 1と端子 4 3とを結ぶパワーケーブル 6と、 端子 4 2と 子 4 4とを結ぶパヮ ケーブル 8 とを含む。 ノ
電池ユニット 4 0は、 ノくッテリ Bと、 ノくッテリ Bの負極と端子 4 2との間に接 続されるシステムメインリレー S MR 3と、 ノく ッテリ Bの正極と端子 4 1との間 に接続されるシステムメインリ レー S MR 2と、 バッテリ Bの正極と端子 4 1と の間に直列に接続される、 システムメインリレー S MR 1および制限抵抗 Rとを . 含む。 システムメインリ レー S MR 1〜S MR 3は、.制御装置 3 0から与えられ : .る制御信号 S Eに応じて導通 Z非導通状態が制御される。 . 電池ユニット 4 0は、 さらに、 バッテリ Bの端子間の電圧 V Bを測定する電圧 センサ 1 0と、 バッテリ Bに流れる電流 I Bを検知する電流センサ 1 1とを含む。 バッテリ Bとしては、 ニッケル水素、 リチウムイオン等の二次電池や燃料電池 などを用いることができる。. また、 バッテリ Bに代わる蓄電装置として電気二重 . 層コンデンサ等の大容量キャパシタを用いることもできる。
パワー制御ユニット 2 1は、 モータジェネレータ MG 1, MG 2にそれぞれ対 応して設けられるインバ一タ 2 2, 1 4と、 インバータ 2 2, 1 4に共通して設 けられる昇圧コンバータ 1 2とを含む。
昇圧コンバータ 1 2は、 端子 4 3, 4 4間の電圧を昇圧する。 インバータ 1 4 は、 昇圧コンバータ 1 2から与えられる直流電圧を三相交流に変換してモータジ エネレータ MG 2に出力する。
昇圧コンバータ 1 2は、 一方端が端子 4 3に接続されるリアク トル L 1と、 昇 : 圧後の電圧 V Hを出力する昇圧コンバータ 1 2の出力端子間に直列に接続される I GBT素子 Q 1 ,. Q 2と、 I GBT素子 Q l, Q 2にそれぞれ並列に接続され るダイオード D 1, D 2と、 平滑用コンデンサ C 2とを含む。 平滑用コンデンサ C 2は、 昇圧コンバータ 1 2によって昇圧された電圧を平滑化する。
リアク トル L 1の他方端は I GBT素子 Q 1のェミッタおよび I GBT素子 Q 2のコレクタに接続さ.れる。 ダイオード D 1の力ソードは I GBT素子 Q 1のコ レクタと接続され、 ダイオード D 1のアノードは I GBT素子 Q 1のェ.ミッタと 接続される。 ダイオード D 2の力ソードは I GBT素子 Q 2のコレクタと接続さ れ、 ダイオード D 2のアノードは I GBT素子 Q 2のェミッタと接続される。 インバータ 14は車輪を駆動するモータジェネレータ MG 2に対して昇 コン バータ 1 2の出力する直流電圧を三相交流に変換して出力する。 またインバータ 14は、 回生制動に伴い、 モータジェネレータ MG 2において発電された電力を 昇圧コンバータ' 1 2に戻す。 このとき昇圧コンバータ 1 2は降圧回路として動作 するように制御装置 30によって制御される。 : インバータ 14は、 U相アーム 15と、 V相アーム 1 6と、 W相アーム 1 7と を含む。 U相アーム 15, V相アーム 16, および W相アーム 1 7は、 昇圧コン バータ 1 2の出力ライン間に並列に接続され.る。 .
U相アーム 1 5は'、 直列接続された I GBT素子 Q 3, Q4と、 I GBT素子 Q 3, Q 4とそれぞれ並列に接続され ;るダイォード D 3, D 4とを含む。 ダイォ 一ド D 3の力ソードは I 8丁素子<33のコレクタと接続され、 ダイオード D 3 のアノードは I GBT素子 Q 3のェミッタと接続される。 ダイオード D 4のカソ ードは I GBT素子 Q 4のコレクタと接続ざれ、 ダイオード D 4のァソードは I GBT素子 Q 4のェミッタと接続される。
V相アーム 16は、 直列接続された I GBT素子 Q 5, Q6と、 I GBT素子 Q5, Q 6とそれぞれ並列に接続されるダイオード D 5, D6とを含む。 ダイォ ード D 5の力ソードは I GBT素子 Q 5のコレクタと接続され、 ダイオード D 5 のアノードは I GBT素子 Q 5のェミッタと接続される。 ダイオード D 6のカソ ードは I GBT素子 Q 6のコレクタと接続され、 ダイオード D 6のアノードは I GBT素子 Q 6のェミッタと接続される。
W相アーム 1 7は、 直列接続された I GBT素子 Q 7, Q8と、 I GBT素子 Q 7, Q 8とそれぞれ並列に接続されるダイオード D 7, D 8とを含む。 ダイォ 一ド D 7の力ソードは I GBT素子 Q 7のコレクタと接続され、 ダイォ一ド D 7 のァノードは I GB T素子 Q 7のエミッタと接続される。 ダイォード D 8のカソ 一ドは I GBT素子 Q 8のコレクタと接続され、 ダイォード D 8のァノードは I GBT素子 Q 8のェミッタと接続される。
各相アームの中間点は、 モータジェネレータ MG 2の各相コイルの各相端に接 続さ ている。 すなわち、 モータジェネレータ MG 2は、 三相の永久磁石同期モ —タであり、 U, V, W相の 3つのコイルは各々一方端が中性点に共に接続され ている。 そして、 U相コイルの他方端が I GBT素子 Q 3, Q4の接続ノードに 接続される。 また V相コイルの他方端が I GB.T素子 Q 5, Q 6の接続ノードに 接続される。 また W相コイルの他方端が I GBT素子 Q 7, Q8の接続ノードに 接続される。
電流センサ 24は、 モータジニネレータ MG 2に流れる電流をモータ電流値 M CRT 2として検出し、 モータ電流値 MCRT 2を制御装置 3◦へ出力する。 インバータ 2 2は、 昇圧コンパ タ 1 2に対してインバータ 14と並列的に接 続される。 インバータ 22は、 モータジエネ.レータ MG 1に対して昇圧コンパ タ 1 2の出力する直流電圧を三相交流に変換して出力する。 インバータ 22は、 昇圧コンバータ 1 2から昇圧された電圧を受けてたとえばエンジンを始動させる ためにモータジェネレータ MG 1を駆動する。
また、 インバータ 22は エンジンのクランクシャフトから伝達される回転ト ルクによってモータジェネレータ MG 1で発電された電力を昇圧コンバータ 1 2 に戻す。 このとき昇圧コンバータ 1 2は降圧回路として動作するように制御装置 30によって制御される。
インバータ 22の内部の構成は、 図示しないがインバータ 14と同様であり、 詳細な説明は繰返さない。
制御装置 30は、 トルク指令値 TR 1, TR 2、 モータ回転数 MRN 1, MR N2、 電圧 VB, VL, VH、 電流 I Bの各値、 モータ電流値 MCRT l, MC RT 2および起動信号 I G ONを受ける。
ここで、 トルク指令値 TR 1, モータ回転数 MRN 1およびモータ電流値 MC RT 1はモータジ ネレータ MG 1に関するものであり、 トルク指令値 TR 2, モータ回転数 MRN 2およびモータ電流値 MCRT 2はモータジェネレータ MG 2に関するものである。
また、 電圧 VBはバッテリ Bの電圧であり、 電流 I Bは、 バッテリ Bに流れる 電流である。 電圧 VLは昇圧コンバータ 12の昇圧前電圧であり、 電圧 VHは昇 圧コンバータ 1 2の昇圧後電圧である。
そして制御装置 30は、 昇圧コンバータ 1 2に対して昇圧指示を行なう制御信 号 PWU, 降圧指示を行なう制御信号 PWDおよび動作禁止を指示する信号 CS DNを出力する。
さらに、 制御装置 30は、 インバータ.14に对して昇圧コンバータ.1 2の出力 である直流電圧をモータジェネレータ MG 2を駆動するための交流電圧に変換す る駆動指示 PWMI 2と、 モータジェネレータ MG 2で発電された交流電圧を直 流電圧に変換して昇圧コンバータ 1 2側に戻す回生指示 PWMC 2とを出力する。 同様に制御装置 30は、 ィンバ一タ 22に対して直流電圧をモータジエネレー タ MG 1を駆動するための交流電圧に変換する駆動指示 PWM I 1と、 モータジ エネレータ MG 1で発電された交流電圧を直流電圧に変換して昇圧コンバータ 1 2側に戻す回生指示' PWMC 1とを出力する。
図 2は、 図 1における動力分割機構 P SDおよび減速機 RDの詳細を説明する ための模式図である。
図 2を参照して、 この車両駆動装置は、 モータジェネレータ MG 2と、 モータ ジェネレータ MG 2の回転軸に接続される減速機 RDと、 減速機 RDで減速され た 0転軸の回転に応じて回転する車軸と、 エンジン 4と、 モータジェネレータ M G 1と、 減速機 RDとエンジン 4とモータジェネレータ MG 1との間で動力分配 を行なう動力分割機構 P SDとを備える。 減速機 RDは、 モータジェネレータ M G 2から動力分割機構 P SDへの減速比が、 たとえば 2倍以上である。
エンジン 4のクランクシャフ ト 50とモータジェネレータ MG 1のロータ 32 とモータジェネレータ MG 2のロータ 37とは同じ軸を中心に回転する。
動力分割機構 P SDは、 図 2に示す例ではプラネタリギヤであり、 クランクシ ャフト 50に軸中心を貫通された中空のサンギヤ軸に結合されたサンギヤ 5 1と、 クランクシャ: 7ト 5 0と同軸上を回転可能に支持されているリングギヤ 5 2と、 サンギヤ 5 1とリングギヤ 5 2との間に配置され、 サンギヤ 5 1の外周を自転し ながら公転するピニオンギヤ 5 3と、 クランクシャフト 5 0の端部に結合され各 ピ-オンギヤ 5 3の回転軸を支持するプラネタリキヤリャ 5 4とを含む。
動力分割機構 P S Dは、 サンギヤ 5 1に結合されたサンギヤ軸と、 リングギヤ 5 2に結合されたリングギヤケースおよ プラネタリキヤリャ 5 4に結合された クラングシャフト 5 0の 3軸が動力の入出力軸とされる。 そしてこの 3軸のうち いずれか 2軸へ入出力される動力が決定されると'、 残りの 1軸に入出力される動 力は他の 2軸へ入出力される動力に基づいて'定まる。 · , . . 動力の取出用のカウンタドライブギヤ' 7ひがリングギヤケースの外側に設けら れ、 リングギヤ 5 2と一体的に回転する。 カウンタドライブギヤ Ί 0は、 動力伝 達減速ギヤ R Gに接続されている。 そしてカウンタドライブギヤ 7 0と動力伝達 減速ギヤ R Gとの間で動力の伝達がなされる。 動力伝達減速ギヤ R Gはディファ レンシャルギヤ D E Fを駆動する。 また、 下り坂等では車輪の回転がディファレ ンシャルギヤ D E Fに伝達され、 動力伝達減速ギヤ R Gはディファレンシャルギ ャ D E Fによって駆動される。 · .
モータジェネレータ MG 1は、 回転磁界を形成 るステータ 3 1と、 ステータ 3 1内部に配置され複数個の永久磁石'が埋め込まれているロータ 3 2とを含む。 ステ一タ 3 1は、 ステータコア 3 3と、 ステ一タコア 3 3に卷回される三相コィ ノレ 3 4とを含む。 ロータ 3 2は、 動力分割機構 P S Dのサンギヤ 5 1と一体的に 回転するサンギヤ軸に結合されている。 ステータコア 3 3は、 電磁鋼板の薄板を 積層して形成されており、 図示しないケースに固定されている。
モータジェネレータ MG 1は、 ロータ 3 2に埋め込まれた永久磁石による磁界 と三相コイル 3 4によって形成される磁界との相互作用によりロータ 3 2を回転 駆動する電動機として動作する。 またモータジェネレータ M G 1は、 永久磁石に よる磁界とロータ 3 2の回転との相互作用により三相コイル 3 4の両端に起電力 を生じさせる発電機としても動作する。
モータジェネレータ MG 2は、 回転磁界を形成するステータ 3 6と、 ステータ 3 1内部に配置され複数個の永久磁石が埋め込まれたロータ 3 7とを含む。 ステ ータ 3 6は、 ステータコア 3 8と、 ステータコア 3 8に卷回される三相コイル 3 9とを含む。
ロータ 3 7は、 動力分割機構 P S Dのリングギヤ 5 2と一体的に回転するリン グギヤケースに減速機 R Dによって結合されている。 ステータコア 3 8は、 たと えば電磁鋼板の薄板を積層して形成されており、 図示しないケースに固定されて いる。
モータジェネレータ MG 2は、 永久磁石による磁界とロータ 3 7の回転との相 互作用により三相コイル 3 9の両端に起電力を生じさせる発電機としても動作す る。 またモータジェネレータ MG 2は、 永久磁石による磁界と三相'コイル 3 .9に よって形成される磁界との相互作用により口 タ 3 7を回転駆動する電動機とし て動作する。
減速機 R Dは、 プラネタリギヤの回転要素の一つであるプラネタリキヤリャ 6 6が車両駆動装置のケースに固定された構造により減速を行なう。 すなわち、 減 速機 R Dは、 ロータ 3 7のシャフトに結合されたサンギヤ 6 2と、 .リングギヤ 5 2と一体的に回転するリングギヤ 6 8と、 リングギヤ 6 8およびサンギヤ 6 2に : 嚙み合いサンギヤ 6 2の回転をリングギヤ 6 .8に伝達するピニオンギヤ 6 4とを 含む。 ' ' 、 . .
たとえば、 サンギヤ 6 2の歯数に対しリングギヤ 6 8の歯数を 2倍以上にする ことにより、 減速比を 2倍以上にすることができる。
[実施の形態 1 ]
図 3は、 本発明の実施の形態に係るハイプリッド車両の駆動装置 2. 0の外観を 示^斜視図である。
図 4は、 駆動装置 2 0の平面図である。
図 3、 図 4を参照して、 駆動装置 2 0のケースは、 ケース 1 0 4とケース 1 0 2とに分割可能に構成されている。 ケース 1 0 4は主としてモータジェネレータ MG 1を収容する部分であり、 ケース 1 0 2は、 主としてモータジェネレータ M G 2およびパワー制御ユニットを収容する部分である。
ケース 1 0 4にはフランジ 1 0 6が形成され、 ケース 1 0 2にはフランジ 1 0 5が形成され、 フランジ 1 0 6とフランジ 1 0 5とがボルト等で固定されること により、 ケ一ズ 1 0 4とケース 1 0 2とが一体化される。
ケース 1 0 2にはパワー制御ュニットを組付けるための開口 1 0 8が設けられ ている。 この開口 1 0 8の内部左側部分 (車両進行方向側) にはコンデンサ C 2 が収容され、 中央部分にはパワー素子基板 1 2 0と端子台 1 1 6, 1 1 8とが収 5 容され、 右側部分にはリアク トル L 1とが収容されている。 なお、 この開口 1 0 " 8は車両搭載状態においては蓋により閉じられている。 また、 コンデンサ C 2を 、 右側に、 リアク トル L 1を左側に収容するように入れ換えても良い。 .
つまり、. リアク.トル L 1はモータジェネレータ MG 1および MG 2の回転軸の —方側に配置され、 コンデンサ C 2は回転^の他方側に配置されている。 そして ひ コンデンサ C 2とリアク トル L 1との間の領域にパワー素子基板 1 2 0が配置さ れている。 パワー素子基板 1 2 0の下方にはモータジェネレータ MG 2が配置さ れている。
ノ、ヮー素子基板 1 2 0にはモータジェネレータ MG 1を制御するインバータ 2 2と、 モータジェネレータ MG 2を制御するインバ一タ 1 4と、 昇圧コンバータ5 のアーム部 1 3とが搭載されている。
インバータ 1 4とインバータ 2 2との間の領域には上下に童ねて配置された電 源用バスバーが設けられている。 インバータ 1 4の U相アーム 1 5、 V相アーム 1 6、 W相アーム 1 7からはそれぞ 1本ずつのバスバ一がモータジェネレータ MG 2のステータコイルにつながる端子台 1 1 6に向けて設けられている。 同様0 にインバータ 2 2からも 3本のバスバーがモータジェネレータ MG 1のステータ コイルにつながる端子台 1 1 8に向けて設けられている。
ワー素子基板 1 2 0は高温になるためこれを冷却するためにパワー素子基板 . ' 1 2 0の下には通水路が設けられており、 通水路への冷却水入口 1 1 4と冷却水 出口 1 1 2とがケース 1 0 2に設けられている。 なお、 この入口や出口などは、5 たとえば、 ケース 1 0 2に対し、 フランジ 1 0 6, 1 0 5を貫通させてユニオン ナット等を打ち込んで構成される。
図 1の電池ユニット 4 0から端子 4 3 , 4 4にパワーケーブルを介して与えら れた電圧はリアク トル 1およびアーム部 1 3を含む昇圧コンバータ 1 2によつ て昇圧されコンデンサ C 2によって平滑化されてインバータ 1 4および 2 2に供 給される。
このように昇圧コンバータ 1 2を用いて電池電圧を昇圧して用いることにより バッテリ電圧を 2 0 0 V程度に低減しつつ、 かつモータジェネレータを 5 0 0 V を超える高電圧で駆動することが可能となり、 電力供給を小電流で行なうことに より電気損失を抑制しかつモータの高出力を実現することができる。
駆動装置 2 0として、 インバ一タ 1 4, 2 2およびモー夕ジェネレータ MG 1 MG 2に加えて、 昇圧コンバータ 1 2も含めて一体化する場合には、 比較的大き な部品であるリアク トル L 1およびコシデンサ C 2の配置場所が問題となる。 図 4においてケース 1 0 2にはリアク トル L 1に冷却用の潤滑油'を導くための オイル通路 2 1 0がさらに設けられている。 オイル通路 2 1 0は図 2のカウンタ ドリブンギヤ 1 3 2によってはね上げられた潤滑油を力ゥンタドリブンギヤ 1 3 2側からリアタ トル L 1側に導く。
図 5は、 駆動装置 2 0を図 4の X I方向から見た側面図である。
図 5を参照して、 ケース 1 0 2にはモータジェネレータ組付け用および保守用 の開口 1 0 9が設けられており、 この開口 1 0 9は車両搭載状態においては蓋に より閉じられている。 .
開口.1 0 9め内部にはモータジェネレータ MG 2が配置されている。 U , V , W相のバスバーが接続されるステータ; 3 6の内部にロータ 3 7が配置されている , ロータ 3 7の中央部分には中空のシャフト 6 0が見えている。
図 5に示すように、 ケース 1 0 2のパワー制御ユニット 2 1を収容する収容室 にはモータジェネレータ MG 2のステ一タ 3 6が大きく食い込んでいるので、 モ ータジェネレータ MG 2の一方側にはリアク トル 1が配置され他方側にはコン デンサ C 2が配置され、 大型部品を効率よく収容している。 このため、 コンパク トなハイプリッド車両の駆動装置が実現できている。
図 6は、 図 4の V I—V I断面における断面図である。
図 6を参照して、 モータジェネレータ MG 2の断面およびパワー制御ユニット 2 1を収容する収容室の断面が示されている。
このハイブリッド車両の駆動装置は、 同軸上に各ロータの回転中心軸が配置さ れるモータジェネレータ MG 2および MG 2の奥に配置されるモータジェネレー タ MG 1と、 クランクシャフトの回転中心軸と同軸上にかつモータジェネレータ MG 1および MG 2の間に配置される動力分割機構と、 モータジェネレータ MG 1, MG 2の制御を行なうパワー制御ュニット 2 1とを備える。 パワー制御ュニ ット 2 1は、 モータジェネレータ MG 2の回転中心軸に対し、 少なくと'も一方側 にリアタ トル L 1が他方側に平滑用コンデンサ C 2が分割配置される。 モータジ エネレータ MG 1, MG 2、 動力分割機構、 およびパワー制御ュニット.2 1は、 金属製のケースに収容されて一体化されている。 ' ·
モータジェネレータ MG 2の潤滑油^パワー素子基板 1 2 0側に漏れ出ないよ うにケース 1 0 2には 2つの空間を仕切る隔擎 2 0 0が設けられている。 この隔 壁 2 0 0の上面部分にはパワー素子基板 1 2 0を冷却するための水路 1 2 2が設 けられ、 この水路 1 2 2は先に説明した冷却水入口 1 1 4および冷却水出口 1 1 2と連通している。
端子 4 4からはバスバー 1 2 8によってマイナス側の電源電位がパワー素子基 板 1 2 0に伝達される。 また端子 4 3からは図示しないが他のバスバーによって リアク トル L 1に対して正の電源電位が伝達される。
なおこのパワー制御ュニットを収容する収容室には減速ギヤの回転軸 1 3 0を 支持する部分が食い込んでいる。
モータジェネレータ MG 2の断面部分について説明すると、 ステータ 3 6のコ ィル 3 9の巻回部分がステータ内周側に見えており、 さらにその内周にはロータ 3 7、 ケースの隔壁 2 0 2およびロータの中空シャフト 6 0が見えている。 また、 図 6においては、 回転軸 1 3◦の上部にオイル通路 2 1 0の断面が見え ている。
すなわち、 車両の駆動装置は、 モータジェネレータ MG 2と、 モータジエネレ ータ MG 2の制御を行なうパワー制御ユニット 2 1と、 モータジェネレータ M G 2およびパワー制御ュニット 2 1を収容するケースとを備える。 パワー制御ュニ ッ ト 2 1は、 モータジェネレータ MG 2を駆動する第 1のインバ一タと、 電源電 圧を昇圧して第 1のィンバータに与える電圧コンバータとを含む。 電圧コンパ一 タは、 リアタ トル L 1を含む。 リアタ トル L 1およびケースに接触する潤滑油を 熱伝達剤としてリアク トル L 1の熱が放熱される。 ケースには、 オイル通路 2 1 0をその一部とする潤滑油の循環経路が形成され、 リアク トル L 1は、 循環経路 上に配置される。
図 7は、 図 4の X 2方向から駆動装置 2 0を見た側面図である。 図 7において、 パワー素子基板の上部にパワー素子を制御する制御基板 1 2 1が配置されている。 図 8は、 図 4の V I I I - V I I Iにおける断面図である。
図 7、 図 8を参照して、 エンジンのクランクシャフト 5 0はダンバ 1 .2 4に接 続され、 ダンバ 1 2 4の出力軸は動力分割機構 P S Dに接続される。
エンジンが配置される側からはダンバ 1 2 4、 モータジェネレータ MG 1、 動 力分割機構 P S D、 減速機 R Dおよびモータジェネレータ MG 2の順 、 ^一の 回転軸上に並んでこれらが配置されている。 モータジェネレータ MG 1のロータ 3 2のシャフトは中空であり、 この中空部分にダンバ 1 2 4からの出力軸が貫通 している。 '
モータジェネレータ MG 1のロータ 3 2のシャフ トは、 動力分割機構 P S D側 ^サンギヤ 5 1とスプライン嵌合されている。 ダンバ 1 2 4のシャフトは、 プラ ネタリキヤリャ 5 4と結合ざれている。 プラネタリキヤリャ 5 4は、 ピニオンギ ャ 5 3の回転軸をダンバ 1 2 4のシャフトの周りに回転自在に支持する。 ピニォ ンギヤ 5 3は、 サンギヤ 5 1およびリングギヤケースの内周に形成された図 2の リングギヤ 5 2と嚙み合う。
またモータジェネレータ MG 2のロータシャフト 6 0の減速機 R D側は、 サン ギヤ 6 2とスプライン嵌合されている。 減速機 R Dのプラネタリキヤリャ 6 6は、 ケース 1 0 2の隔壁 2 0 2に固定されている。 プラネタリキヤリャ 6 6は、 ピニ オシギヤ 6 4の回転軸を支持する。 ピニオンギヤ 6 4は、 サンギヤ 6 2およびリ ングギヤケースの内周に形成された図 2のリングギヤ 6 8と嚼み合う。
図 8を見ればわかるように、 モータジェネレータ MG 1およびダンバ 1 2 4は ケース 1 0 4の図右方向の開口 1 1 1から組付けることができ、 モータジエネレ ータ MG 2はケース 1 0 2の左方向の開口 1◦ 9から組付けることができ、 減速 機 R Dおよび動力分割機構 P S Dはフランジ 1 0 5, 1 0 6の合わせ面から組付 けることができる。
ケース 1 0 2の開口 1 0 9は、 潤滑油が漏れないように蓋 7 1および液状ガス ケット等で密閉される。 ケース 1 0 4の開口レ1 1の奥には蓋 7 2が設けられ、 MG 1を収容する空間は潤滑油が漏れないように液状ガスケット等ゃオイルシー, ノレ 8 1によって密閉される。
モータジェネレータ MG 1のロータ 3 2のシャフトは、 蓋 7 2との間に設けら ' れたボールベアリング 7 8および隔壁 2 0 3との間に設けられたボールベアリン グ 7 7によって回転自在に支持されている。 ロータ 3 2のシャフトは中空であり、 . ダンバ 1 2 4のシャフ トがその内部を貫通している。 ロータ 3 2のシャフトとダ ンパ 1 2 4のシャフトの間にはニードルベアリング 7 9, 8 0が設けられている。 モータジェネレータ MG 2のロータ 3 7のシャフ トは、 蓋 7 1との間に :けら れたボールベアリング 7 3および隔壁 2 .0 2との間に設けられたボールべァリン 7 4によって回転自在に支持されている
減速機 R Dのリングギヤと動力分割機構 P S Dのリングギヤがともに内周に刻 まれたリングギヤケースは、 隔壁 2 0 2との間に設けちれたボールべァリング 7 5および隔壁 2 0 3との間に設けられたボールベアリング 7 6によって、 回転自 在に支持されている。
パワー制御ュニット 2 1を収容する収容室.とモータジェネレータ] V1G 2を収容 する収容室とはケース 1 0 2の隔壁 2 0 2で隔てられているが、 その一部は端子 H i 6が挿入される貫通孔でつながっている。 この端子台 1 1 6にはモータジ エネレータ MG 2のステータコイルのバスバーが一方側に接続され、 ィンバータ : 1 4のバスバーが他方側に接続される。 そしてこれらのバスバーを電気的に接続 可能なように、 端子台 1 1 6の内部には導電性部材が通されている。 つまり端子 台 1 1 6は、 モータジェネレータ MG 2側からの潤滑油分を通さないでかつ電気 : を通すように構成されている。
同様に、 端子台 1 1 8によって、 パワー制御ュニットが収容される空間とモー タジェネレータ MG 1が収容される空間とが、 電気を通しかつ潤滑油分を通さな い状態で接続されている。
図 8においてモータジェネレータ MG 1, MG 2のステータ下部にはオイルパ ンが設けられている。 車両停止時においてしばらく静止状態であった場合のオイ ルレベル L V Sと、 走行時において潤滑油が各部を潤滑している場合のオイルレ ベル L V Dが示されている。
図 9は、 図 4の I X— I Xにおける部分断面を示した部分断面図である。
図 9を参照して、 リアク トル L 1を収容する第 1の収容室であるオイル室 2 1 6は蓋 2 1 2で他の電子部材が収容される空間とは仕切られている。 オイル通路 2 1 0からオイル室 2 1 6に流れ込んだ潤滑油はリアク トル L 1を冷却し矢印 F 1, F 2 , F 3 , F 4に示すように流れオイル抜き孔 2 1 4から減速ギヤ R G側 に戻される。 '
図 1 0は、 図 9における X— X断面を示した断面図である。
図 1◦を参照して、 パワー制御ュニット 2 1を収容する収容室において.はリア ク トル L 1の断面が示されている。 リアタ トル L 1は、 たとえば電磁鋼板が積層 されたコアにコイルが巻回された構造を有する。
そしてリアク'トル L 1に近接して、 図 6で示された減速ギヤ R Gの回転軸 1 3 0が配置され、 減速ギヤ R Gのカウンタドリブンギヤ 1 3 2が中央部に示される。 減速ギヤ R Gの回転軸 1 3 0はボールベアリング 2 2 0 , 2 2 2によって回転自 在に支持されている。 カウンタドリブンギヤ 1 3 2は図 2のカウンタドライブギ ャ 7 0と嚙み合う。 そしてこのカウンタドリブンギヤ 1 3 2の同軸上にフアイナ ノレドライブギヤ 1 3 '3が設けられ、 これに嚙み合うファイナルドリブンギヤであ るディファレンシャルギヤ D E Fがその下方に示されている。
図 1 1は、 ケースを回転軸方向から投影した場合に、 ケース輪郭と内部に収容 される部品とを示した図である。
図 1 1において、 車両の駆動装置のケース内部に、 内燃機関のクランクシャフ トが結合されるダンバ 1 2 4と、 ダンバ 1 2 4の回転軸とその回転軸が重なるよ うに配置されるロータおよびロータの周囲に配置されるステータを有するモータ ジェネレータ MG 2と、 ダンバ 1 2 4からのトルクおよびモータジェネレータ M G 2からのトルクを受ける動力分割機構 P S Dと、 ダンバ 1 2 4の回転軸と略平 行にずれた回転軸を有し、 動力分割機構 P S Dからのトルクが伝達される減速ギ ャ R Gと、 ダンバ 1 2 4の回転軸と略平行にずれた回転軸を有し、 減速ギヤ R G と嚙み合い車輪にトルクを伝達するディファレンシャルギヤ D E Fと、 モータジ エネレータ MG 2の制御を行なう基板 1 2 0、 リアク トル L 1およびコンデンサ C 2を含むパワー制御ユニット 2 1とが示されている。 ケースは、 ダンバ 1 2.4、 モータジェネレータ MG 2、 減速ギヤ R G、 ディファレンシャルギヤ D E Fおよ びパワー制御ュニット 2 1を収容する。
図 1 1に示されるケースを回転軸方向から投影した投影図において、 '車両駆動 装置を車両に搭載したときの水平方向の寸法は X 3である。 そして、 寸法 X 3は、 ディファレンシャルギヤ D E Fを収容するケース部分の外縁とダンバ 1 .2 4を収 容するケース 1 0 4の外縁とで両端が定まっている。' したがって、 パワー制御ュ ニットを構成するコンデンサ C 2、 基板 1 2 0およびリアタ トル L 1は、 寸法 X ^の内側にあることがわかる。 . ' . .
また図 1 1において、 車両駆動装置を車両に搭載したときの鉛直方向 (高さ方 向) の寸法は Y 3である。 この寸法 Y 3の下端は、 ケースのディファレンシャル ギヤ D E Fを収容する部分の外縁で定まっている。 また、'寸法 Y 3の上端は、 ケ ースのダンバ 1 2 4を収容する部分の外縁で定まっている。 したがって、 パワー 制御ュニット 2 1を構成するコンデンサ C 2、 基板 1 2 0およびリアク トル L 1 は、'寸法 Y 3の内側に配置されていることがわかる。
ケースを回転軸方向から投影した場合に、 ケースのパワー制御ュニッ ト 2 1を 収容する部分の投影部の車両搭載時の高さが、 残りのケースの空間、 すなわち、 . ダンパ 1 2 4、 モータジェネレータ MG.2、 減速ギヤ R Gおよびディファレンシ ャルギヤ D E Fを収容する部分の投影部の車両搭載時の高さを少なくとも超えな いように、 ケースが構成されパワー制御ュニット 2 1が配置される。 これにより、 ' 車両の重心を低くすることができ、 走行安定性を増すことができる。 .
また、 車両搭載時の水平方向において、 ケースのパワー制御ユニット 2 1を収 容する部分の投影部の位置が残りのケースの空間の投影部の内側に位置するよう に、 ケースが構成されパワー制御ユニット 2 1が配置される。 これにより、 車両 動装置の体格を小さく している。
図 1 2は、 ケースを回転軸方向と直交し、 かつ鉛直方向に直交する方向から投 影した場合に、 ケース輪郭と内部に収容される部品とを示した図である。
図 1 2を参照して、 車両搭载時の鉛直方向に直交する方向の寸法 X 3も両端が、 ケースのモータジェネレータ MG 2を収容する部分の蓋の外緣とケースのダンバ 1 24を収容する部分の外縁とで定まり、 パワー制御ュニットを構成するコンデ ンサ C 2、 基板 1 20およびリアク トル L 1は、 寸法 Z 3の内側にあることがわ かる。
つまり、 図 1 1で説明したように鉛直方向 (高さ方向) の寸法 Y 3がダンバ 1 24、 モータジェネレータ MG 2、 減速ギヤ RGおよびディファレンシャルギヤ DEFを収容する部分によって定まる。 また、 図 12において基板 1 2.0、 リア ク トル L 1およびコンデンサ C 2を含むパワー制御ュニット 21を収容する部分 は、 回転軸方向と直交し、 かつ車両搭載時の鉛直方向に直交する方向から投影し た場合に、 その投影部が残りのケースの空間 すなわち、 ダンパ 1 24、 モータ ジェネレータ MG 2、 減速ギヤ RGおよびディファレンシャルギヤ DE Fを収容 する部分の投影部に含まれるように設けられる。
このようにモ^"タジェネレータ MG 1, MG2、 減速機 RDおよび動力分割機 構 P SDに加えて、 減速ギヤ RGおよびディファレンシャルギヤ DE Fを配置し た状態で、 周辺の空きスペースを利用してパワー制御ュニットの構成要素である パワー素子基板 1 20、 リアク トルし 1およびコンデンサ C 2を配置している。 これにより、 高さを低く抑えつつコンパク トなハイプリッド車両の駆動装置を実 現することができる;
そして、 図 1 1に示すようにモータジェネレータ MG 2に対し、 片側の空きス ペースを使用するだけでなく、 両側の空きスペースにリアク トル L 1とコンデン サ C 2とをそれぞれ配置することにより、 モータジェネレータ MG 2に対する重 さのバランスが良くなるとともに、 さらなる省スペース化を図ることができる。 なお、 動力分割機構 P SDと、 動力分割機構 P SDからのトルクが伝達される 減速ギヤ RG.と、 減速ギヤ RGと嚙み合い車輪にトルクを伝達するディファレン シャルギヤ DEFとは、 全体として、 エンジンの発生した動力にモータジエネレ ータ MG 1, MG 2の発生した動力を合成して駆動軸に伝達する動力伝達機構に 相当する。
また、 減速ギヤ RGおよびディファレンシャルギヤ DE Fはいずれも、 動力分 割機構 P SDからのトルクが伝達される動力伝達ギヤに相当する。 しカゝし、 減速 ギヤ RGおよびディファレンシャルギヤ DE Fは必須ではなく、 本願発明は、 減 速ギヤ RGの無い構成や、 ディファレンシャルギヤ DEFが駆動装置に一体化さ れない後輪駆動の構成の車両にも適用が可能である。
さらに、 本願発明は、 エンジンの加速時等にモータでアシス トするようなパラ レルハイブリッドにも適用が可能であり、 またモータを駆動装置に 1つ'しか一体 化させていない構成にも適用が可能である。
図 1 3は、 ディファレンシャルギヤ DE Fおよび減速ギヤ RGによって潤滑油 が搔き揚げられる方向を示した図である。 '
図 10、,図 1 3を参照して、 オイルパンに貯蔵されている潤滑油は矢印 F 8, . F 9に示すようにディファレンシャルギヤ DE Fの回転に応じて減速ギヤ RGに 向けてはね上げられる。 そしてさらに潤滑油は減速ギヤ RGの回転に応じて矢印 F 10〜F 1 2に示すようにさらに上に搔き揚げられる。 ■
そして、 潤滑油は、 図 10の矢印 F 5, F 6に示すようにオイル通路 2 10内 部を流れてオイル室 216に流入しリアク トル L 1を冷却する。 そしてオイル抜 き孔 214から矢印 F 7に示すように減速ギヤ RGを収容する空間に向けて流出 する。 . ' なお、 流量を制限するオリフィスの役目を果たす程度にオイル抜き孔 214© 径を小さく しておけば、 潤滑油がオイル室 216に流入する状況においてリアク トル L 1を潤滑油に浸漬状態に保つこ ;とも可能である。
また、 本実施の形態では、 リアク トルめ熱を ¾熱するために流動性のある潤滑 油を利用しているが、 オイル抜き孔を設けずに潤滑油にリアク トルを浸漬させて : リアク ルの熱をケースに伝達するようにしても良い。 さらに別の例として、 た どえば、 流動性が低いグリースなどでケース内のリアク トルとケースとの間の隙 間を埋めてリアク トルの熱をケースに伝達して放熱するような構造にしても良い, これらの場合では、 潤滑油やグリースは、 リアタ トルからケースに熱を伝達する 熱伝達剤に該当する。
図 14は、 図 9の X I V— X I Vにおける部分断面を示した部分断面図である 図 1 5は、 図 14の XV— XVにおける部分断面を示した部分断面図である。 図 14、 図 1 5を参照して、 減速ギヤ RGのカウンタドリブンギヤ 1 32によ つて搔き揚げられた潤滑油は、 矢印 F 1 7, F 18および F 14, F 1 3に示す ように上部に向けて搔き揚げられる。 これをオイルキャッチ板 2 2 4によって受 止めるように構成しておけば、 搔き揚げられたオイルの一部を矢印 F 1 5, . F 1 6に示すようにリアク トル 1が収容されるオイル室 2 1 6に向けて効果的に導 くことができる。
図 1 6は、 リアク トル 1部分の変形例を示した図である。
図 1 6に示した変形例は、 図 1 0に示した構成においてリアク トノレ L .1を絶縁 樹脂でモールドし、 このモールド部分の上端をオイル室 2 1 6の蓋を兼用するフ ランジ形状とする点が異なる。 この絶 fi樹脂のブランジ形状の蓋には、 図示しな いがリアク トルをバスバーに接続するための端子が設けられている。 他の 分に ついては図 1 0と同様であるので説明は繰返さない。 このようにすることによつ てリアク トル L 1の組付けが楽になるとともに、. 部品点数を削減することができ る。 . ' · '
以上説明したように、 実施の形態 1においては、 昇圧コンバータおよびインバ ータと一体化された駆動装置が実現できる。 そして、 一体化した場合でも昇圧コ . ンバータのリアタ トルの発熱を良好に放熱することができ、 昇圧コンバータの効 . 率低下を避けることができる。 .
[実施の形態 2 ] ' .
図 1 7は、 実施の形態 2における車両の駆動装置の断面を示した図である。 ' 図 1 7を参照して、 実施の形態.2においてはリアク トル L 1 Aがモータジエネ レ一タ MG 2の下部のオイルパン内に配置される。 そして、 実施の形態 1におい てディファレンシャルギヤ D E Fおよび減速ギヤ R Gによって搔き揚げられた潤 滑油がリアク トル L 1 Aに対して矢印 F 1 9, F 2 0に示すように滴下されるよ うなオイル経路を隔壁 2 0 0に設けておく。 これによりリアク トル L 1 Aにおけ る発熱は潤滑油を介して放熱される。
なお、 コンデンサ C 2がリアク トル L 1 Aと干渉したり、 また隔壁 2 0 0にォ
' ィル経路を設けるのに邪魔になったりする場合には、 実施の形態 1においてリア タ トルを置いておいた部分にコンデンサを移してもよい。 たとえばコンデンサ C 2に代えてコンデンサ C 2 Aを配置することができる。
実施の形態 2においても、 昇圧コンバータおよびインバータと一体化された駆 動装置が実現できる。 そして、 一体化した場合でも昇圧コンバータのリアク トル の発熱を良好に放熱することができ、 昇圧コンバータの効率低下を避けることが . できる。
[他の変形例]
5 図 1 8は、 潤滑油を循環させる部分の変形例を説明するための図である。
図 1 8に示す構成は、 実施の形態 1に示した構成において、 オイルをギヤで搔 ■ , き揚げる構成に換えて、 オイル溜から潤滑油を汲み上げてリアク トル L 1の冷却 のために供給するオイルポンプを備えている。
図 1 8を参照して、 このオイル循環経路の'^では、 トロコイ ド式のオイルボン 10" プ 4 0 0を設けてケース底部のオイル溜から潤滑油を汲み上げてオイ ^^通路 4 0 7に送出する。 オイル通路 4 0 7の出口は、 潤滑油の潤滑経路において基板 1 2 0を含むパワー制御ユニットよりも上流部に位置する。 . :
オイルポンプ 4 0 0は、 ディファレンシャルギヤ D E Fに嚙み合う駆動ギヤ 4 0 2と、 駆動ギヤ 4 0 2と軸が結合され共に回転するインナーロータ 4 0 4と、 15 インナーロータ 4 0 4と内側の歯が嚙み合うアウターロータ 4 0 6とを含む。
オイル通路 4 0 7の出口はリアク トル L 1に冷却用の潤滑油を導くためのオイ :: ル通路 2 1 0およびオイル室 2 1 6と通じている。 オイル通路 2 1 0からオイル . 室 2 1 6に流れ込んだ潤滑油はリアク'トル L を冷却し矢印 F 1, F 2 , F 3 , F 4に示すように流れオイル抜き孔 2 1 4から減速ギヤ R G側に戻される。
'20 図 1 8に示した変形例でも実施の形態 1に示した例と同様な効果を得ることが できる。
今回開示された実施の形態はすべての点で例示であって制限的なものではない . と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示ざれ、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ 25 ることが意図される。

Claims

請求の範囲
1 . 第 1の回転電機と、
前記第 1の回転電機の制御を行なうパワー制御ュニットと、
5 前記第 1の回転電機および前記パワー制御ュニットを収容するケースとを備え、 前記パワー制御ユニットは、
、 前記第 1の回転電機を駆動する第 1のインバータと、
電源電 BEを昇圧して前記第 1のィンバータに与える電庄コンバータとを含み、 前記電圧コンバータは、 · ' . .
0 リアク トルを含み、
前記リアク トルおよび前記ケースに接触する熱伝達剤をさらに備える、 車両の 駆動装置。
2 . 前記熱伝達剤は、 前記第 1の回転電機の潤滑および冷却を行なう潤滑油で あり、
5 前記車両の制御装置は、
前記潤滑油の循環部をさらに備え、 .
前記ケースには、 前記潤滑油の循環経路が形成され、
前記リアク トルは、 前記循環経路上に配置される、 請求の範囲第 1項に記載の 車両の駆動装置。
0 3 . 前記循環部は、
煎記潤滑油に浸漬され、 前記第 1の回転電機の回転に応じて回転するギヤと、 前記ギヤの搔き揚げる前記潤滑油を受けるオイルキャッチ板とを含む、 請求の 範囲第 2項に記載の車両の駆動装置。
4 . 前記ケースは、
5 前記循環経路上の下流に配置されたオイルパンを含み、
前記循環部は、
前記回転電機の回転に応じて前記オイルパンから前記潤滑油を汲み上げて前記 潤滑経路の前記リアク トルよりも上流部に送るギヤを含む、 請求の範囲第 2項に 記載の車両の駆動装置。
5 . 前記ケースは、
前記リアク トルを収容する第 1の収容室を含み、
前記リアク トルは、 前記第 1の収容室において前記熱伝達剤に浸漬される、 請 求の範囲第 1項に記載の車両の駆動装置。
5 6 . 前記熱伝達剤は、 前記第 1の回転電機の潤滑および冷却を行なう潤滑油で :、 あり、
前記車両の制御装置は、 '
前記潤滑油の循環部をさらに備え、 '
. 前記ケースには、 前記潤滑油の循環経路が 成され、
0 . .前記ケースは、 ,
前記第 1の回転電機を収容する第 2の収容室と、
前記第 1、 第 2の収容室を仕切る隔壁とをさらに含み、
前記隔壁には、 前記循環経路の一部を形成する孔が設けられる、 請求の範囲第 5項に記載の車両の駆動装置。
5 7 . 前記リアク トルは、
コイルと、 ·
鉄心と、
. ■ 前記コイル及び前記鉄心をモールドする絶縁材とを含み、 · .
前記絶縁材は前記第 1の収容室の蓋となるフランジ形状に形成される、 請求の0 範囲第 5項に記載の車両の駆動装置。
8 . 前記熱伝達剤は、 前記第 1の回転電機の潤滑および冷却を行なう潤滑油で あ;り、
前記第 1の収容室は、
前記潤滑油を貯蔵するオイルパンである、 請求の範囲第 5項に記載の車両の駆5 動装置。
9 . 前記車両は、
内燃機関を含み、
前記車両の駆動装置は、
第 2の回転電機と、 前記第 1の回転電機のロータの回転が第 1軸に伝達され、 前記第 2の回転電機 のロータの回転が第 2軸に伝達され、 前記クランクシャフトの回転が第 3軸に伝. 達される動力分割機構とをさらに備え、
前記ケースは、 前記第 2の回転電機および前記動力分割機構をさらに収容する、 請求の範囲第 1項に記載の車両の駆動装置。
1 0 . 前記パワー制御ユニットは、
前記第 2の回転電機に対応して設けられる第 2のインバータをさらに含み、 前記電圧コンバータは、 前記第 1、 第 2のインバータに共通して設けられる、 請求の範囲第 9項に記載の車両の駆動装置。 ' : . '
PCT/JP2006/322053 2005-11-01 2006-10-27 車両の駆動装置 WO2007052779A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006003015T DE112006003015T5 (de) 2005-11-01 2006-10-27 Fahrzeugantriebsgerät
US12/092,215 US7800260B2 (en) 2005-11-01 2006-10-27 Vehicle driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005318140A JP4591312B2 (ja) 2005-11-01 2005-11-01 車両の駆動装置
JP2005-318140 2005-11-01

Publications (1)

Publication Number Publication Date
WO2007052779A1 true WO2007052779A1 (ja) 2007-05-10

Family

ID=38005930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322053 WO2007052779A1 (ja) 2005-11-01 2006-10-27 車両の駆動装置

Country Status (5)

Country Link
US (1) US7800260B2 (ja)
JP (1) JP4591312B2 (ja)
CN (1) CN101300725A (ja)
DE (1) DE112006003015T5 (ja)
WO (1) WO2007052779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678755B (zh) * 2007-05-25 2013-03-27 丰田自动车株式会社 车辆的驱动系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
JP4218671B2 (ja) * 2005-10-13 2009-02-04 トヨタ自動車株式会社 ハイブリッド車両の動力出力装置
JP4539531B2 (ja) * 2005-10-26 2010-09-08 トヨタ自動車株式会社 車両の駆動装置
JP4337803B2 (ja) * 2005-10-28 2009-09-30 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP4274188B2 (ja) * 2006-02-08 2009-06-03 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP4645602B2 (ja) * 2006-10-04 2011-03-09 トヨタ自動車株式会社 車両の駆動装置
JP4675311B2 (ja) * 2006-11-16 2011-04-20 トヨタ自動車株式会社 モータのハウジングの内部にモータと一体的に収容されるインバータおよびコンデンサの冷却構造、その冷却構造を備えたモータユニットならびにハウジング
EP2537235B1 (de) * 2010-02-19 2015-04-22 Magna Powertrain AG & Co. KG Elektrische antriebseinheit
JP5261514B2 (ja) * 2011-02-10 2013-08-14 トヨタ自動車株式会社 電力制御装置の搭載構造
JP5716598B2 (ja) * 2011-08-01 2015-05-13 株式会社デンソー 電源装置
JP5716599B2 (ja) * 2011-08-01 2015-05-13 株式会社デンソー 電源装置
JP2013103582A (ja) * 2011-11-14 2013-05-30 Honda Motor Co Ltd パワーコントロールユニットの車体への取付構造
WO2014045708A1 (ja) * 2012-09-21 2014-03-27 日産自動車株式会社 車両搭載用強電ユニット
TWI465030B (zh) 2012-10-30 2014-12-11 Ind Tech Res Inst 多驅動裝置及其驅動電路
US9543069B2 (en) * 2012-11-09 2017-01-10 Ford Global Technologies, Llc Temperature regulation of an inductor assembly
KR101456888B1 (ko) * 2013-11-13 2014-11-12 한국철도기술연구원 열 발전이 가능한 철도 차량용 필터리액터
JP5792867B1 (ja) * 2014-05-16 2015-10-14 三菱電機株式会社 車載用電力変換装置
US9441725B2 (en) 2014-12-02 2016-09-13 Ford Global Technologies, Llc Transmission fluid warm-up system and method
DE112015004417T5 (de) * 2014-12-15 2017-07-13 Aisin Aw Co., Ltd. Fahrzeugantriebs-Vorrichtung
KR102359705B1 (ko) * 2016-07-20 2022-02-08 엘지마그나 이파워트레인 주식회사 전동기용 케이스
GB201709550D0 (en) * 2017-06-15 2017-08-02 Avid Tech Ltd Integrated electric power train
JP6708186B2 (ja) * 2017-08-25 2020-06-10 株式会社デンソー リアクトル冷却装置
JP6500285B1 (ja) 2017-10-19 2019-04-17 本田技研工業株式会社 電力変換装置
WO2019194073A1 (ja) * 2018-04-06 2019-10-10 日本電産株式会社 モータユニット
DE102018113099A1 (de) * 2018-06-01 2019-12-05 Thyssenkrupp Ag Gehäusebaugruppe für einen elektrischen Antrieb oder eine elektrische Antriebseinheit, Motor und Fahrzeug
JP7180265B2 (ja) * 2018-10-08 2022-11-30 株式会社デンソー 電力変換装置
EP3815944B1 (en) * 2019-10-31 2022-06-15 BRUSA Elektronik AG Compact powertrain with an electric motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201409A (ja) * 2002-12-18 2004-07-15 Toyota Motor Corp パワーモジュール
JP2004284447A (ja) * 2003-03-20 2004-10-14 Toyota Motor Corp ハイブリッド車両
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2005073392A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 電源装置およびそれを搭載した自動車
JP2005117790A (ja) * 2003-10-08 2005-04-28 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2005150517A (ja) * 2003-11-18 2005-06-09 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
JP2005253167A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 車両駆動装置及びそれを用いた電動4輪駆動車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2180413A (en) * 1935-12-31 1939-11-21 Rca Corp Magnetically tuned high frequency circuits
CN2121741U (zh) 1992-03-16 1992-11-11 苏州变压器厂 可调电抗器
JPH1042407A (ja) 1996-03-11 1998-02-13 Yukio Ota 気動車両の動力装置
JP3886697B2 (ja) * 1999-04-27 2007-02-28 アイシン・エィ・ダブリュ株式会社 駆動装置
JP2001119961A (ja) 1999-10-18 2001-04-27 Aisin Aw Co Ltd インバータ一体型車両駆動装置
JP2004180477A (ja) * 2002-11-29 2004-06-24 Honda Motor Co Ltd 前後輪駆動車両におけるモータの冷却構造
JP2005032830A (ja) 2003-07-08 2005-02-03 Toyota Motor Corp 制御装置およびそれを搭載した自動車
JP4289340B2 (ja) * 2005-10-05 2009-07-01 トヨタ自動車株式会社 ハイブリッド車両の駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201409A (ja) * 2002-12-18 2004-07-15 Toyota Motor Corp パワーモジュール
JP2004284447A (ja) * 2003-03-20 2004-10-14 Toyota Motor Corp ハイブリッド車両
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2005073392A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 電源装置およびそれを搭載した自動車
JP2005117790A (ja) * 2003-10-08 2005-04-28 Toyota Motor Corp 駆動装置およびこれを搭載する自動車
JP2005150517A (ja) * 2003-11-18 2005-06-09 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
JP2005253167A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 車両駆動装置及びそれを用いた電動4輪駆動車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678755B (zh) * 2007-05-25 2013-03-27 丰田自动车株式会社 车辆的驱动系统

Also Published As

Publication number Publication date
US20090250271A1 (en) 2009-10-08
CN101300725A (zh) 2008-11-05
US7800260B2 (en) 2010-09-21
DE112006003015T5 (de) 2008-10-30
JP2007129794A (ja) 2007-05-24
JP4591312B2 (ja) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2007052779A1 (ja) 車両の駆動装置
JP4692263B2 (ja) 車両の駆動装置
JP4591428B2 (ja) 車両の駆動装置
JP4337803B2 (ja) ハイブリッド車両の駆動装置
JP4645602B2 (ja) 車両の駆動装置
JP4274188B2 (ja) ハイブリッド車両の駆動装置
JP4289340B2 (ja) ハイブリッド車両の駆動装置
JP4539531B2 (ja) 車両の駆動装置
JP4218671B2 (ja) ハイブリッド車両の動力出力装置
JP4696885B2 (ja) 車両の駆動装置
JP4645415B2 (ja) 車両の駆動装置
JP4844434B2 (ja) リアクトル固定構造
JP2007118809A (ja) ハイブリッド車両
JP2007103196A (ja) パワーケーブルおよびそれを用いるモータ駆動システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041050.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12092215

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112006003015

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003015

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822971

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607