WO2007043512A1 - 回転炉床炉 - Google Patents

回転炉床炉 Download PDF

Info

Publication number
WO2007043512A1
WO2007043512A1 PCT/JP2006/320176 JP2006320176W WO2007043512A1 WO 2007043512 A1 WO2007043512 A1 WO 2007043512A1 JP 2006320176 W JP2006320176 W JP 2006320176W WO 2007043512 A1 WO2007043512 A1 WO 2007043512A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
corner
rotary hearth
refractories
inner peripheral
Prior art date
Application number
PCT/JP2006/320176
Other languages
English (en)
French (fr)
Inventor
Masahiko Tetsumoto
Sumito Hashimoto
Hiroshi Sugitatsu
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to AU2006300385A priority Critical patent/AU2006300385B2/en
Priority to US12/067,422 priority patent/US7922484B2/en
Priority to DE602006011193T priority patent/DE602006011193D1/de
Priority to EP06811489A priority patent/EP1939565B1/en
Priority to NZ566210A priority patent/NZ566210A/en
Priority to CN2006800313141A priority patent/CN101253378B/zh
Priority to KR1020087008573A priority patent/KR101064085B1/ko
Priority to CA2620303A priority patent/CA2620303C/en
Publication of WO2007043512A1 publication Critical patent/WO2007043512A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/32Casings
    • F27B9/34Arrangements of linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • F27B9/18Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path under the action of scrapers or pushers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/14Supports for linings

Definitions

  • the present invention relates to a rotary hearth furnace, and more particularly to a rotary hearth furnace that can reduce the influence of thermal expansion of the hearth material and prevent the fall of the hearth refractory.
  • a rotary hearth furnace includes an outer peripheral wall, an inner peripheral wall, and a rotary hearth disposed between the walls.
  • the rotary hearth includes an annular hearth frame, a hearth heat insulating material disposed on the hearth frame, and a refractory disposed on the hearth heat insulating material.
  • Such a rotary hearth is configured to be rotated by a drive mechanism.
  • a drive mechanism there is a meshing mechanism between a pinion gear driven by a rotary shaft provided at the bottom of the hearth and a rack rail fixed circumferentially to the bottom of the furnace body frame. Examples include a mechanism in which a plurality of driving wheels provided at the bottom of the furnace body frame are driven on a track laid circumferentially on the surface.
  • a rotary hearth furnace having such a structure is used for heat treatment of metal such as a steel billet or combustion treatment of combustible waste.
  • metal such as a steel billet or combustion treatment of combustible waste.
  • a method for producing reduced iron from ferric oxide using a rotary hearth furnace has attracted attention.
  • Powdered iron oxides iron ore, electric furnace dust, etc.
  • powdered carbonaceous reducing agents coal, coal, etc.
  • the dried pellets (raw material 29) are fed into the rotary hearth furnace 26 using an appropriate charging device 23. Then, a pellet layer having a thickness of about 1 to 2 pellets is formed on the rotary hearth 21.
  • This pellet layer is returned by radiant heating by the combustion of the burner 27 installed in the upper part of the furnace. Based on this, metallization will be promoted.
  • the metallized pellet is cooled by the cooler 28. This cooling is performed by blowing gas directly onto the pellets or by indirect cooling with a water cooling jacket. By cooling the pellet, the mechanical strength to withstand handling during and after discharge is developed. The cooled pellets are discharged out of the furnace by the discharge device 22.
  • the rotary hearth includes an annular hearth frame, a hearth heat insulating material disposed on the hearth frame, and a refractory disposed on the hearth heat insulating material. It has a lower thermal insulation structure.
  • An outer peripheral side corner refractory and an inner peripheral corner refractory are disposed on the outer peripheral side and the inner peripheral side of the rotary hearth via support hardwares, respectively.
  • dolomite, iron ore, iron oxide (iron A mixture of ore, electric furnace dust, etc.) and a carbonaceous reductant (coal, coatas, etc.) and surface materials such as materials to be treated are charged and reduced.
  • the surface material has no problem at the time of construction before the rotary hearth furnace is operated, but once the operation is started and the operation is continued for a long time, dolomite and iron ore are accumulated and solidified.
  • dolomite and iron ore solidify in an annular shape mainly at the outer periphery of the hearth, and sometimes solidified material is formed on the entire surface of the hearth.
  • the dolomite or iron ore layer which is the surface layer, cannot be intentionally provided with an expansion allowance, and thus contracts while generating cracks on its own at the most prone to cracks. Reheating in this state does not necessarily return to the state before cooling, and there are many parts that receive external force due to thermal expansion.
  • the external force due to this thermal expansion is not only in the circumferential direction but also in the radius. It also affects the direction.
  • the hearth frame also has a structure that expands and contracts, but when reheated, it is naturally heated by the upper force, so that the furnace temperature rises to a steady state until it reaches a steady state. During warming, only the upper member expands. Due to this phenomenon, the corner refractories installed at the inner and outer edges of the rotary hearth are pushed down, fall off the hearth, lift up, and damage fixed hardware. There is also. A conventional example in which such defects are improved will be described below with reference to FIGS.
  • FIG. 6 is a partial plan view showing a hearth structure of a conventional rotary hearth furnace.
  • an annular rotary hearth 52 is disposed between an inner peripheral wall and an outer peripheral wall, and an intermediate portion in the inner and outer directions of the rotary hearth 52 is constituted by a refractory castable layer 55.
  • a plurality of rows of refractory flags 73 and 74 are arranged adjacent to each other on at least one of the inner and outer sides of the refractory castable layer 55 in the inner and outer directions, and between the refractory bricks 73 and 74.
  • a predetermined gap 57, 58 is formed.
  • a rotary hearth furnace according to another conventional example will be described below with reference to a partial schematic diagram 7 showing the rotary hearth furnace in cross section.
  • This rotary hearth furnace is composed of a rotatable furnace frame 32, a heat insulating brick 33 provided on the furnace frame 32, and an irregular refractory 34 provided on the heat insulating brick 33.
  • a hearth center main body 35 is provided.
  • the rotary hearth furnace has a refractory power and is provided with a positioning portion 37 on the inner and outer periphery of the hearth provided on the furnace frame 32.
  • a stepped portion 38 is formed on the inner and outer peripheral portions of the heat insulating brick 33 of the hearth center main body 35 using the same heat insulating brick, and the heat insulating level forming the stepped portion 38 is formed.
  • An expansion allowance 39 is provided between Nga and the irregular refractory 34 inside.
  • the expansion allowance 39 is provided in a dimension of 25 mm or more, preferably 30 mm.
  • An amorphous refractory 40 is provided in the positioning part 37 on the inner and outer periphery of the hearth.
  • An L-shaped metal piece 41 fixed to the furnace frame 32 is disposed on the outer periphery of the irregular refractory 40.
  • On the amorphous refractory 40 there is provided a positioning refractory 42 with laminated inorganic fiber heat insulating materials. This positioning refractory 42 is fixed to the irregular refractory 40.
  • the dimensions of the gaps 57 and 58 formed as thermal expansion allowances are specifically shown. Absent.
  • the specific dimensions of the expansion allowance 39 are shown.
  • the dimensions of the expansion allowance 39 are obtained when the width of the irregular refractory 34 is 2825 mm.
  • it is a dimension that is compensated for calculation, and it cannot be applied to cases where the hearth dimensions and constituent furnace materials are different. For this reason, it is not a guide for how to determine the expansion allowance.
  • the hearth structure is too complicated, and thus there are problems with construction difficulty and cost increase.
  • an object of the present invention is to present a general-purpose equation that can appropriately determine the thermal expansion allowance in a rotary hearth furnace, and has a simple hearth structure that does not damage the hearth even after long-term operation. It is to provide a rotary hearth furnace.
  • the present inventors have intensively studied the expansion / contraction action of the hearth structure of the rotary hearth furnace. As a result, the present inventors have found that by using a corner refractory structure, it is possible to prevent damage to the hearth or the corner refractory from sliding off or rising to the outside of the hearth. It has come.
  • a rotary hearth disposed between an outer peripheral wall and an inner peripheral wall has an annular hearth frame, and a hearth heat insulating material disposed on the furnace frame.
  • a plurality of refractories disposed on the hearth insulation, an outer corner refractory disposed on the outer periphery of the rotary hearth via a support metal In a rotary hearth furnace having an inner peripheral corner refractory disposed via a support metal at the periphery, the outer peripheral side or the inner peripheral corner refractory and the refractory, or the Between refractories, the following formula ( 2)
  • the rotary hearth disposed between the outer peripheral wall and the inner peripheral wall includes an annular hearth frame, and a hearth heat insulating material disposed on the furnace frame, A plurality of refractories disposed on the hearth insulation, an outer corner refractory disposed on the outer periphery of the rotary hearth via a support metal, and an inner periphery of the rotary hearth
  • the inner peripheral corner refractory is divided into a plurality of pieces in the circumferential direction, and the divided inner refractories are divided.
  • a circumferential thermal expansion margin is set between the peripheral corner refractories, and this circumferential thermal expansion margin is expressed by the following equation (5):
  • the inner perimeter corner refractory is divided into the inner perimeter L and outer perimeter
  • Length L is the following formula (3)
  • FIG. 1 is a vertical sectional view showing a rotary hearth furnace according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing the vicinity of the outer peripheral corner refractory in FIG. 1 in an enlarged manner.
  • FIG. 3 is a view corresponding to FIG. 2, showing a state when the surface material is expanded.
  • FIG. 4 A schematic partial plan view of the inner peripheral corner refractory for explaining the basis of equation (3).
  • FIG. 5 is a schematic view showing a conventional rotary hearth furnace.
  • FIG. 6 is a partial plan view showing a hearth in a conventional rotary hearth furnace.
  • FIG. 7 is a partial sectional view schematically showing a conventional rotary hearth furnace.
  • FIG. 1 shows an embodiment of a rotary hearth furnace according to the present invention. This figure is a vertical sectional view of the rotary hearth furnace according to the present embodiment.
  • the rotary hearth furnace 1 includes an outer peripheral wall 2, an inner peripheral wall 3, and an annular rotary hearth 10 disposed therebetween.
  • the rotary hearth 10 is configured to be rotated by a driving device (not shown).
  • the rotary hearth 10 is provided on an annular hearth frame 4, a hearth insulation 5 provided on the furnace frame 4, and the hearth insulation 5.
  • a plurality of refractories 6 are provided.
  • the hearth insulation 5 and the refractory 6 constitute a lower heat insulation structure 13.
  • an outer peripheral corner refractory 7 is disposed on the hearth insulating material 5 via an outer peripheral support metal 11. Further, at the inner end of the rotary hearth 10, an inner peripheral corner refractory 8 is disposed on the hearth insulating material 5 via an inner peripheral support metal 12.
  • a large number of the refractories 6 are arranged in the radial direction and the circumferential direction between the outer peripheral corner refractory 7 and the inner peripheral corner refractory 8.
  • the outer peripheral corner refractory 7 and the inner peripheral corner refractory 8 protrude upward from the upper surface of the refractory 6 which is taller than the refractory 6.
  • the surface material 9 such as the workpiece to be treated introduced into the rotary hearth furnace 1 accumulates on the refractory 6 and the outer corner refractory 7 and The space between the inner peripheral corner refractory 8 is covered with the surface material 9.
  • a radial thermal expansion allowance X between the corner refractories 7 and 8 on the outer peripheral side or the inner peripheral side and the refractory 6 or between the refractories 6 and 6.
  • the radially adjacent refractory 6 Thermal expansion allowances are set in at least one place between the refractories 6 and 6 and between the inner periphery side refractory 8 and the innermost periphery refractory 6, and the total sum is a radius. It is set as the directional thermal expansion allowance X.
  • This radial thermal expansion allowance X is defined by the following equation (2).
  • the “distance at the operating temperature between the outer end of the outer support metal 11 and the inner end of the inner support 12” means the outer end of the outer support 11 and the inner support 12 It means the distance between the inner edge of The outer end of the outer support metal 11 is the outermost part of the support metal 11, and the inner end of the inner support 12 is the innermost part of the support 12.
  • the sum of the lengths of a plurality of refractories 6 and corner refractories 7 and 8 at room temperature in the radial direction means a plurality of refractories 6 (refractory group) arranged in a row in the radial direction. And the sum of the radial lengths of the outer corner refractory 7 and the inner corner refractory 8.
  • the radial thermal expansion allowance X satisfies the following formula (1) when the width of the outer peripheral corner refractory 7 is A and the height B of the outer peripheral support metal 1 is: Is set.
  • FIGS. 2 is a partially enlarged cross-sectional view showing the vicinity of the outer peripheral side corner refractory 7 in FIG. 1, and FIG. 3 is a state in which the surface material 9 is thermally expanded to push the outer peripheral side refractory 7 FIG.
  • the outer peripheral corner refractory 7 is placed on the outer peripheral support metal 11 and has an outer periphery with the upper end a at the outer end of the outer peripheral support metal 11 as a fulcrum. It can be tilted in the direction.
  • tilting means that when the outer peripheral corner refractory 7 is pushed in the outer peripheral direction due to thermal expansion of the surface material 9, the outer peripheral support metal 11 fixed to the lower heat insulating structure 13 reacts with the outer periphery. This means a movement that tilts with the upper end a of the side support hardware 11 as a fulcrum.
  • the outer peripheral side support metal 11 includes a bottom part 11a on which the outer peripheral side corner refractory 7 is placed, and an outer wall part ib extending upward from the outer end part of the bottom part 11a.
  • the length of a straight line connecting the fulcrum a and the inner end b at the lower end of the outer peripheral corner refractory 7 is C.
  • the width A of the outer peripheral corner refractory 7 is the following formula (6)
  • a radial thermal expansion allowance X is set between the outer peripheral surface 14 of the outermost refractory 6 and the outer peripheral corner refractory 7 as shown in FIG.
  • the radial thermal expansion allowance X is an integrated value of gaps formed between a plurality of refractories 6 as defined in the previous equation (2). is there.
  • the inner peripheral corner refractory 8 is divided into a plurality of pieces in the circumferential direction, and the circumferential thermal expansion defined by the following equation (5) is provided between the divided inner peripheral corner refractories 8.
  • Y is set. In other words, a gap corresponding to the circumferential thermal expansion allowance Y is provided between the divided inner peripheral corner refractories 8.
  • Y (the sum of the length of the contact surface side of the inner peripheral corner refractory with the supporting metal at the operating temperature) one (the divided inner peripheral refractory at the room temperature (The sum of the length of the contact surface side) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (5)
  • the length of the inner peripheral corner refractory on the contact surface side with the support metal is the circumferential length on the contact surface side of the inner peripheral corner refractory 8 with the inner peripheral support metal 12 It corresponds to.
  • the sum of the lengths of the contact surface side of the divided inner peripheral corner refractories at the room temperature with the supporting metal means the circumference of the inner peripheral surface of each divided inner corner refractory 8. Corresponds to the sum of the direction lengths.
  • the circumferential thermal expansion allowance is expressed by the following equation (3) in relation to one inner circumferential length L and outer circumferential length L of the inner circumferential corner refractory 8 divided in the circumferential direction. , (4)
  • n is the number of divisions of the inner peripheral corner refractory 8.
  • FIG. 4 is a schematic plan view of the inner peripheral corner refractory 8 for explaining the above equation (3).
  • Expression (4) represents the gap y between the inner peripheral corner refractories 8 adjacent to each other among the divided inner peripheral corner refractories.
  • the inner peripheral length L and the outer peripheral length L of the corner refractory 8 are as shown in FIG.
  • the surface material 9 charged in the rotary hearth 10 is heated. Then, the surface material 9 thermally expands in the radial direction. As a result, the outer peripheral corner refractory 7 is pushed to the outer peripheral side and tilts as shown in FIG. 3, but the inner end b of the outer peripheral refractory 7 contacts the outer peripheral surface 14 of the outermost refractory 6. Because it touches, the outer corner refractory 7 is prevented from falling.
  • the inner peripheral corner refractory 8 is pushed to the inner peripheral side by the thermal expansion of the surface material 9 when the temperature is raised in the initial stage of operation.
  • the inner peripheral corner refractory 8 is arranged so as to satisfy the above formula (3), the inner peripheral corner refractory 8 eventually becomes an adjacent inner peripheral corner refractory. It comes into contact with 8a and 8b and is restrained. After this point, in the surface material 9, the external force due to the thermal expansion in the radial direction is directed toward the outer peripheral side as the temperature is increased. Therefore, it is possible to prevent the inner peripheral corner refractory 8 from being displaced or dropped out of the hearth.
  • the heat of the heated surface material 9 is transferred to the refractory 6 underneath by heat conduction, and when the refractory 6 is heated, the refractory 6 also thermally expands in the radial direction. Thereby, the lower part of the outer peripheral side corner refractory 7 is pressed, and the inclination of the outer peripheral side corner refractory 7 is restored to the normal state.
  • the inner peripheral support metal 12 is Only the positioning of the inner peripheral corner refractory 8 was aimed, and the inner peripheral support metal 12 need not be made of a highly rigid alloy.
  • the rotary hearth furnace 1 includes the annular furnace body frame 4, the hearth insulation 5 provided on the furnace body frame 4, and the hearth insulation.
  • the outer corner refractory 7 is divided into a plurality of pieces in the circumferential direction and the upper end portion of the outer support metal 11 is a fulcrum. As a, it can tilt in the outer circumferential direction. For this reason, even if the outer peripheral corner refractory 7 is inclined outward due to thermal expansion of the surface material 9, the outer peripheral corner refractory 7 is prevented from coming into contact with the inner refractory 6 and further tilting. The Thereby, it is possible to prevent the outer peripheral corner refractory 7 from sliding down and the support metal 11 fixing the outer refractory 7 from being damaged.
  • the inner circumferential corner refractory 8 is divided into a plurality of pieces in the circumferential direction, and a circumferential heat is generated between the divided inner circumferential corner refractories.
  • Expansion allowance Y is set, and the relationship between the inner peripheral length L and outer peripheral length L of the inner peripheral corner refractory 8 is as follows.
  • the radial thermal expansion allowance X that satisfies the equation (1) is set, while the inner periphery side refractory is represented by the equation (3) on the inner periphery side of the rotary hearth 10. Satisfy (4) Since the circumferential thermal expansion allowance Y is set, when the surface material 9 is thermally expanded, further thermal expansion to the inner peripheral side is prevented by contact between the adjacent inner peripheral corner refractories. On the other hand, even if the outer peripheral corner refractory 7 tilts due to the thermal expansion of the surface material 9 to the outer peripheral side due to this, it is possible to prevent the inner peripheral corner refractory 7 from slipping by contact with the refractory 6. it can.
  • the radial thermal expansion allowance X is set in the rotary hearth 10 and the circumferential thermal expansion allowance is set on the inner peripheral side. It is not limited to the configuration. That is, for example, when the surface material 9 on the outer peripheral side of the rotary hearth 10 is particularly easily heated, the radial thermal expansion allowance X is set, while the circumferential thermal expansion allowance is not set on the inner peripheral side. In other words, when the inner peripheral side surface material 9 is particularly easily heated, the peripheral thermal expansion margin is set on the inner peripheral side, but the radial thermal expansion margin X is not set. It is good.
  • a radial thermal expansion allowance X is set between the corner refractory on the outer peripheral side or the inner peripheral side and the refractory, or between the refractories, and the X is the
  • the above formula (1) is satisfied in relation to the width ⁇ ⁇ ⁇ ⁇ of the outer peripheral corner refractory and the height ⁇ of the outer peripheral support metal, which is defined by the equation (2), It can prevent the floor from being damaged, the outer peripheral corner refractory from slipping out of the hearth, and lifting.
  • the outer peripheral corner refractory is divided into a plurality of pieces in the circumferential direction, and tilts in the outer peripheral direction with the upper end of the outer end of the support metal of the outer peripheral corner refractory as a fulcrum. Is possible. Therefore, even if the outer peripheral corner refractory is tilted outward due to thermal expansion of the surface material, the outer peripheral corner refractory is prevented from coming into contact with the inner refractory and further tilting. This prevents the outer corner refractory from slipping down and the supporting hardware that fixes it from being damaged.
  • the inner peripheral corner refractory is divided into a plurality of pieces in the circumferential direction, and a circumferential thermal expansion allowance Y is set between the divided inner peripheral side refractories.
  • the directional thermal expansion margin Y is defined by the following equation (5), and the inner peripheral length L and the outer peripheral length L of the divided inner peripheral corner refractory satisfy the following equation (3). [0059] L> L + 2y ⁇ . (3)
  • Y (Length of contact surface side of inner periphery corner refractories with support metal at operating temperature [Sum of]] (The sum of the length of each divided inner corner refractory on the contact surface side with the support hardware at room temperature)
  • a rotary hearth disposed between an outer peripheral wall and an inner peripheral wall has an annular hearth frame, a hearth heat insulating material disposed on the furnace frame, A plurality of refractories disposed on the hearth insulation, an outer corner refractory disposed on the outer periphery of the rotary hearth via a support metal, and an inner periphery of the rotary hearth It can be used for a rotary hearth furnace having an inner peripheral corner refractory disposed through a support metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Tunnel Furnaces (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

 【課題】回転炉床炉における熱膨張代を適切に決定できる汎用式を提示するとともに、長期間の操業によっても、炉床の損傷のない簡易な炉床構造を有する回転炉床炉を提供すること。 【解決手段】外周側若しくは内周側のコーナー耐火物と前記耐火物との間に、又は前記耐火物間に次式(2)で定義される半径方向熱膨張代Xが設定され、外周側コーナー耐火物7の幅をAとし、このコーナー耐火物7の支持金物11の高さをBとしたときに、次式(1)が満足される。  X+A<√(A2+B2)  ・・(1)  X=([X0=]外周側支持金物11の外端部と内周側支持金物12の内端部の操業温度での距離)-([X1=]複数個の耐火物6およびコーナー耐火物7,8の半径方向の常温における長さの和)  ・・(2)

Description

明 細 書
回転炉床炉
技術分野
[0001] 本発明は、回転炉床炉に関し、より詳しくは、炉床材の熱膨張の影響を低減して、 炉床耐火物のずり落ち等を防止できる回転炉床炉に関する。
背景技術
[0002] 回転炉床炉は、外周壁と、内周壁と、これら壁間に配置された回転炉床とを備える 。そして、この回転炉床は、円環状の炉体フレームと、この炉体フレーム上に配置さ れた炉床断熱材と、この炉床断熱材上に配置された耐火物とを備える。
[0003] このような回転炉床は、駆動機構によって回転するように構成されて 、る。駆動機 構としては、炉床下部に設けられた回転軸によって駆動されるピ-オン歯車と、前記 炉体フレームの底部に円周状に固定されたラックレールとの嚙み合い機構や、床面 に円周状に敷設された軌道上を前記炉体フレームの底部に設けられた複数の駆動 車輪が駆動する機構等が挙げられる。
[0004] このような構造を有する回転炉床炉は、鋼材ビレット等の金属加熱処理あるいは可 燃性廃棄物の燃焼処理等に用いられる。また近年は、回転炉床炉を用いて鉄酸ィ匕 物から還元鉄を製造する方法が注目されて 、る。
[0005] ここで、図 5に示した従来公知の回転炉床炉を示す概略図を参照しつつ、回転炉 床炉による還元鉄製造プロセスの一例を説明する。
(1)粉末の鉄酸化物 (鉄鉱石、電炉ダスト等)および粉末の炭素質還元剤 (石炭、コ 一タス等)を混合して造粒し、生ペレットを製造する。
(2)この生ペレットを、ペレット内から発生する可燃性揮発分が発火しない程度の温 度域に加熱して付着水分を除去し、乾燥ペレット (原料 29)とする。
(3)この乾燥ペレット (原料 29)を、適当な装入装置 23を用いて回転炉床炉 26中に 供給する。そして、回転炉床 21上にペレット 1〜2個程度の厚さを有するペレット層を 形成する。
(4)このペレット層を、炉内上方に設置したバーナー 27の燃焼により輻射加熱して還 元し、金属化を進める。
(5)金属化したペレットを冷却器 28により冷却する。この冷却は、ペレットにガスを直 接吹き付けて冷却するか、または、水冷ジャケットで間接冷却すること等により行われ る。ペレットを冷却することで、排出時および排出後のハンドリングに耐える機械的強 度を発現させる。そして冷却されたペレットを排出装置 22により炉外に排出する。
(6)金属化したペレット (還元鉄 30)を排出後、直ちに乾燥ペレット (原料 29)を装入 し、上記のプロセスを繰り返して還元鉄を製造する。
[0006] ところで、前記回転炉床は、円環状の炉体フレームと、この炉体フレーム上に配設 された炉床断熱材と、この炉床断熱材上に配設された耐火物とを備えた下部断熱構 造を有する。そして、この回転炉床の外周側および内周側には、夫々外周側コーナ 一耐火物および内周側コーナー耐火物が支持金物を介して配設されている。
[0007] また前記回転炉床炉の稼動時には、回転炉床の前記外周側および内周側コーナ 一耐火物に囲まれた前記下部断熱構造の上部に、ドロマイト、鉄鉱石、鉄酸化物 (鉄 鉱石、電炉ダスト等)と炭素質還元剤 (石炭、コータス等)との混合物、被処理物等の 表面材料が装入されて還元処理される。
[0008] 従って、前記回転炉床を構成するこれらの材料の違いにより、前記下部断熱構造、 コーナー耐火物および表面材料間の干渉が複雑化し、場合によってはコーナー耐 火物や下部断熱構造の破損につながる。
[0009] 特に、前記表面材料は、回転炉床炉が稼動する前の施工時には問題ないが、一 且稼動開始して長期間の操業を継続すると、ドロマイトや鉄鉱石が堆積、固化して一 体化する。この一体化したドロマイトや鉄鉱石は、主に炉床外周部で円環状に固化し 、時には炉床全面に固化物が形成される。炉床表面が上記のように一体ィ匕した状態 となった後に回転炉床炉が冷却されると、耐火物や断熱材が収縮し、これにより隙間 や亀裂を生じる。
[0010] 一方、表面層となるドロマイトや鉄鉱石の層には、膨張代を意図的に設けることはで きないため、最も亀裂を生じやすい部分で勝手に亀裂を生じさせながら収縮する。こ の状態で再加熱すると、必ずしも冷却前の状態に復帰せず、熱膨張による外力を受 ける部位が多々見受けられる。この熱膨張による外力は、円周方向のみならず半径 方向にも作用している。
[0011] 一方、炉床フレームも伸縮する構造とされているが、再加熱される場合には当然の ことながら上部力 加熱されるため、炉内温度が定常状態に至るまでの非定常な昇 温中は、上部の部材のみが膨張する現象が見られる。このような現象によって、回転 炉床の内周側や外周側の端部に設置されているコーナー耐火物が押され、炉床外 へずり落ちたり、浮き上がりを起こしたり、固定金物を損傷させることもある。このような 欠点を改善した従来例を、図 6および図 7を用いて以下に説明する。
[0012] 図 6は、従来の回転炉床炉の炉床構造を示す部分平面図である。この炉床構造で は、内周壁と外周壁の間に円環状の回転炉床 52が配設され、この回転炉床 52の内 外方向の中間部が耐火キャスタブル層 55によって構成されている。そして、耐火キヤ スタブル層 55の内周側と外周側の少なくとも一方に、内外方向に複数列の耐火レン ガ 73, 74を隣接するように配置して、これら耐火レンガ 73, 74の列間に所定の間隙 57, 58を形成したものである。
[0013] 一方、他の従来例に係る回転炉床炉について、この回転炉床炉を断面で示した部 分模式図 7を参照しつつ以下に説明する。この回転炉床炉は、回転可能な炉体フレ ーム 32と、この炉体フレーム 32上に設けられた断熱レンガ 33と、この断熱レンガ 33 上に設けられた不定形耐火物 34とからなる炉床中央本体 35を備える。またこの回転 炉床炉は、耐火物力 なり、前記炉体フレーム 32上に設けられた炉床内外周の位置 決め部 37を備えている。
[0014] そして、前記回転炉床炉において、炉床中央本体 35の断熱レンガ 33の内外周部 分に、同じ断熱レンガを用いて段差部 38を形成し、この段差部 38を形成する断熱レ ンガとその内側の不定形耐火物 34との間に膨張代 39を設ける。この膨張代 39は、 2 5mm以上、好ましくは 30mmの寸法に設けられる。
[0015] 炉床内外周の位置決め部 37には不定形耐火物 40が設けられる。この不定形耐火 物 40の外周には、前記炉体フレーム 32に固定された L型金物 41が配設されている 。そして、不定形耐火物 40上には、無機繊維系断熱材を積層した位置決め耐火物 4 2が設けられている。この位置決め耐火物 42は、不定形耐火物 40に固定されている [0016] し力しながら、図 6を用いて説明した従来の回転炉床炉では、熱膨張代として形成 された前記間隙 57, 58の寸法をいくらにすべきかについて、具体的に示されていな い。
[0017] 一方、図 7を用いて説明した従来例においては、膨張代 39の具体的寸法が示され ているが、この膨張代 39の寸法は、不定形耐火物 34の幅が 2825mmの場合に、計 算上補償される寸法であって、炉床寸法や構成炉材が異なる場合にまで適用できる ものではない。このため、膨張代をどのように決定すべきかについて、指針となるもの ではない。更に、上記何れの従来例においても、炉床構造が複雑すぎるため、施工 の困難性とコストアップを伴うと 、う問題点を有して 、る。
[0018] 回転炉床炉では、加熱時には温度 500°C以上、場合によっては 600°C以上に至り 、熱膨張により前記コーナー耐火物に力かる外力によって、これらを支持するコーナ 一耐火物支持金物に横方向の力が作用する。そのため、前記コーナー耐火物支持 金物には高価な合金、例えば、 ASTM HH相当等を使用する必要があった力 寿 命が短いという問題がある。
発明の開示
[0019] そこで、本発明の目的は、回転炉床炉における熱膨張代を適切に決定できる汎用 式を提示するとともに、長期間の操業によっても炉床の損傷のない簡易な炉床構造 を有する回転炉床炉を提供することにある。
[0020] 上記のような事情に鑑み、本発明者らは、回転炉床炉の炉床構造の膨張'収縮作 用について鋭意検討を進めた。その結果、本発明者らは、コーナー耐火物構造をェ 夫することにより、炉床の破損やコーナー耐火物の炉床外へのずり落ちや浮き上がり を防止できることを知見し、本発明をなすに至ったものである。
[0021] 具体的に、本発明は、外周壁と内周壁との間に配置された回転炉床が、円環状の 炉体フレームと、この炉体フレーム上に配設された炉床断熱材と、この炉床断熱材上 に配設された複数個の耐火物と、前記回転炉床の外周部に支持金物を介して配設 された外周側コーナー耐火物と、前記回転炉床の内周部に支持金物を介して配設さ れた内周側コーナー耐火物とを有する回転炉床炉において、前記外周側若しくは内 周側のコーナー耐火物と前記耐火物との間に、又は前記耐火物同士の間に、次式( 2)
X= ( [X0 = ]外周側コーナー耐火物の支持金物の外端部と内周側コーナー耐火 物の支持金物の内端部の操業温度での距離) -( [XI = ]複数個の耐火物および両 コーナー耐火物の半径方向の常温における長さの和) · ·(2)
で定義される半径方向熱膨張代 Xが設定され、
前記外周側コーナー耐火物の幅を Aとし、このコーナー耐火物の支持金物の高さ を Bとしたときに、次式(1)
Χ+Α< ^ (Α22) · ' (1)
が満足される回転炉床炉である。
[0022] また、本発明は、外周壁と内周壁との間に配置された回転炉床が、円環状の炉体 フレームと、この炉体フレーム上に配設された炉床断熱材と、この炉床断熱材上に配 設された複数個の耐火物と、前記回転炉床の外周部に支持金物を介して配設され た外周側コーナー耐火物と、前記回転炉床の内周部に支持金物を介して配設され た内周側コーナー耐火物とを有する回転炉床炉において、前記内周側コーナー耐 火物が周方向に複数個に分割されるとともに、これら分割された内周側コーナー耐 火物間に周方向熱膨張代 Υが設定され、この周方向熱膨張代 Υが次式 (5)
Υ= (内周側コーナー耐火物の、操業温度での支持金物との接触面側の長さ [の 和]) (分割された各内周側コーナー耐火物の室温での支持金物との接触面側の 長さの和) · ·(5)
で定義されるとともに、分割された前記内周側コーナー耐火物 1個の内周長 Lと外周
1 長 Lは、次式(3)
2
L >L + 2v - - (3)
2 1
(ただし、 y=YZnであり、 nは分割された内周側コーナー耐火物の個数である。)を 満足する回転炉床炉である。
図面の簡単な説明
[0023] [図 1]本発明の実施形態に係る回転炉床炉を示す垂直断面図である。
[図 2]図 1の外周側コーナー耐火物近傍を拡大して示す部分拡大断面図である。
[図 3]表面材料が膨張したときの状態を示す図 2相当図である。 [図 4]式 (3)の根拠を説明するための内周側コーナー耐火物の模式的部分平面図で ある。
[図 5]従来の回転炉床炉を示す概略図である。
[図 6]従来の回転炉床炉における炉床を示す部分平面図である。
[図 7]従来の回転炉床炉を概略的に示す部分断面図である。
発明を実施するための最良の形態
[0024] 以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説 明する。
[0025] 図 1は、本発明に係る回転炉床炉の一実施形態を示している。同図は本実施形態 に係る回転炉床炉の垂直断面図である。本回転炉床炉 1は、外周壁 2と、内周壁 3と 、これらの間に配置された円環状の回転炉床 10とを備える。そして、この回転炉床 1 0は、図示しな 、駆動装置によって回転する構成とされて 、る。
[0026] 前記回転炉床 10は、円環状の炉体フレーム (frame)4と、この炉体フレーム 4上に設 けられた炉床断熱材 5と、この炉床断熱材 5上に設けられた複数個の耐火物 6とを備 える。この炉床断熱材 5と耐火物 6とは、下部断熱構造 13を構成している。
[0027] 前記回転炉床 10の外端部には、外周側コーナー (corner)耐火物 7が炉床断熱材 5 の上に外周側支持金物 11を介して配設されている。また回転炉床 10の内端部には 、内周側コーナー耐火物 8が炉床断熱材 5の上に内周側支持金物 12を介して配設 されている。そして、前記耐火物 6は、外周側コーナー耐火物 7と内周側コーナー耐 火物 8との間に、半径方向及び周方向に多数並べられている。外周側コーナー耐火 物 7及び内周側コーナー耐火物 8は、それぞれ耐火物 6よりも背が高ぐ耐火物 6の 上面よりも上方に突出している。このため、回転炉床炉 1の操業が繰り返されると、回 転炉床炉 1内に導入された被処理物等の表面材料 9が耐火物 6上に堆積し、外周側 コーナー耐火物 7と内周側コーナー耐火物 8との間が表面材料 9で覆われることとな る。
[0028] ここで、外周側若しくは内周側のコーナー耐火物 7, 8と前記耐火物 6との間に、又 は前記耐火物 6, 6同士の間には、半径方向熱膨張代 Xが設定されている。具体的 に、外周側コーナー耐火物 7と最外周側の耐火物 6との間、半径方向に隣接する耐 火物 6, 6同士の間、及び内周側コーナー耐火物 8と最内周側の耐火物 6との間の少 なくとも 1箇所以上に熱膨張代が設定されており、その総和が半径方向熱膨張代 Xと して設定されて 、る。この半径方向熱膨張代 Xは次式 (2)で定義される。
[0029] X= ( [XO = ]外周側支持金物 11の外端部と内周側支持金物 12の内端部の操業 温度での距離) - ( [XI =]複数個の耐火物 6およびコーナー耐火物 7, 8の半径方向 の常温における長さの和) · · · ·(2)
ここで、「外周側支持金物 11の外端部と内周側支持金物 12の内端部の操業温度 での距離」とは、外周側支持金物 11の外端部と内周側支持金物 12の内端部との間 の距離を意味している。外周側支持金物 11の外端部とは、支持金物 11の最外周側 の部位であり、内周側支持金物 12の内端部とは、支持金物 12の最内周側の部位で ある。また、「複数個の耐火物 6およびコーナー耐火物 7, 8の半径方向の常温にお ける長さの和」とは、半径方向に一列に並んだ複数個の耐火物 6 (耐火物群)および 外周側コーナー耐火物 7と内周側コーナー耐火物 8における半径方向の長さの和を 意味する。
[0030] そして、前記半径方向熱膨張代 Xは、外周側コーナー耐火物 7の幅を Aとし、この 外周側支持金物 1の高さ Bとしたときに、次式(1)を満足するよう設定されている。
[0031] X+A< ^ (A2+B2) · · · · (1)
ここで、上式(1)の意味するところを、図 2および 3を用いて以下に説明する。図 2は 、図 1の外周側コーナー耐火物 7の近傍を拡大して示した部分拡大断面図であり、図 3は、表面材料 9が熱膨張して外周側コーナー耐火物 7を押している状態を示す部 分拡大断面図である。
[0032] 図 2および図 3に示すように、前記外周側コーナー耐火物 7は、外周側支持金物 11 上に載置されて外周側支持金物 11の外端部における上端部 aを支点として外周方 向に傾動可能となっている。ここで、「傾動」とは、表面材料 9の熱膨張によって外周 側コーナー耐火物 7が外周方向に押された場合に、下部断熱構造 13に固定された 外周側支持金物 11の反作用によって前記外周側支持金物 11の上端部 aを支点とし て傾斜する動きを意味するものである。
[0033] 今、図 2のように、最外側の耐火物 6の外周面 14と外周側コーナー耐火物 7との間 に半径方向熱膨張代 Xが設定された場合について考える。外周側支持金物 11は、 外周側コーナー耐火物 7が載置される底部 11aと、この底部 11aの外端部から上方 に延びる外壁部 l ibとを備えている。そして、耐火物 6上に堆積された表面材料 9が 熱膨張すると、表面材料 9の外端部が外周側コーナー耐火物 7を外側に向けて押圧 することとなる。これにより、外周側コーナー耐火物 7は外壁部 l ibの上端を支点 aと して傾動することとなる。
[0034] ここで、前記支点 aと前記外周側コーナー耐火物 7の下端部における内端部 bとを 結ぶ直線の長さを Cとする。このとき、外周側コーナー耐火物 7の傾動によって、前記 内端部 bが耐火物 6の外周面 14に接触することで転倒が防止されるようにするために は、前記半径方向熱膨張代 Xと前記外周側コーナー耐火物 7の幅 Aとは、次式 (6)
X+A< C · · · · (6)
を満足する関係にあることが必要である。一方、三平方の定理から、前記寸法 Cは次 式 (7)
C = ^ (A2 + B2) · · · · (7)
により求めることができる。ここで、 ( )は括弧内の数式の平方根を示す。
[0035] そして、上記(6)式および(7)式から、次式(1)が求められるのである。
[0036] X+A< ^ (A2+B2) · · · · (1)
ここでは、理解を容易にするために、図 2に示すように、最外周側の耐火物 6の外周 面 14と外周側コーナー耐火物 7との間に半径方向熱膨張代 Xが設定された場合に ついて説明したが、実際の炉床構成においては、半径方向熱膨張代 Xは、前式 (2) に定義された通り、複数個の耐火物 6間に形成された隙間の集積値である。
[0037] この場合、表面材料 9の熱膨張によって外周側コーナー耐火物 7が押されて傾動し たとしても、その内端部 bが耐火物 6の外周面 14に接触する。このため、前記耐火物 6が内周側へ押されて、耐火物間の隙間に吸収されることになるので、炉材の破損や 外周側コーナー耐火物 7の炉床外へのずり落ち等の不具合に至ることはない。
[0038] 次に、この回転炉床 10の周方向における熱膨張にっ 、て述べる。回転炉床 10の 外周側では、周方向の熱膨張の影響は大きくないが、内周側では、周方向の熱膨張 の影響が大き 、ため、本実施形態に係る回転炉床炉 1にお 、ては以下のように構成 とされている。
[0039] 即ち、内周側コーナー耐火物 8は周方向に複数個に分割され、この分割された内 周側コーナー耐火物 8間には、次式 (5)で定義される周方向熱膨張代 Yが設定され ている。言い換えると、分割された内周側コーナー耐火物 8間には、周方向熱膨張代 Yに相当する間隙が設けられている。
[0040] Y= (内周側コーナー耐火物の、操業温度での支持金物との接触面側の長さの和 )一(分割された各内周側コーナー耐火物の室温での支持金物との接触面側の長さ の和) · · · ·(5)
ここで、「内周側コーナー耐火物の支持金物との接触面側の長さ」とは、内周側コ ーナー耐火物 8の内周側支持金物 12との接触面側の周方向長さに相当する。また、 「分割された各内周側コーナー耐火物の室温での支持金物との接触面側の長さの 和」とは、分割された各内周側コーナー耐火物 8の内周面の周方向長さの和に相当 する。
[0041] また、前記周方向熱膨張代 Υは、周方向に分割された前記内周側コーナー耐火物 8の 1個の内周長 Lと外周長 Lとの関係において、次式 (3) , (4)を満足するように設
1 2
定されている。
[0042] L >L + 2y · · · · (3)
2 1
ただし、
y=Y/n … ·(4)
であり、 nは内周側コーナー耐火物 8の分割個数である。
[0043] 図 4は、上式(3)を説明するための内周側コーナー耐火物 8の模式的平面図である 。同図からも明らかなように、式 (4)は、分割された内周側コーナー耐火物のうち、互 いに隣接する内周側コーナー耐火物 8間の隙間 yを表している。また前記コーナー 耐火物 8の内周長 L及び外周長 Lは図 4に示す通りである。
1 2
[0044] ここで、表面材料 9が加熱されて熱膨張した場合を考えると、熱膨張による半径方 向の外力の殆どは外周方向に作用する力 内周側コーナー耐火物 8近傍では逆に 内周方向に作用する。従って、図 4に示すように、内周側コーナー耐火物 8において も、外周側から図中に示す矢印方向の外力が作用する。分割された前記内周側コー ナー耐火物 8は扇状の形状をなしているため、前記式 (3)が満たされる限り、隣接す る他の内周側コーナー耐火物 8a, 8bとの接触によって半径方向内側への移動が阻 止されるのである。
[0045] 以上のような本実施形態に係る回転炉床炉 1の炉床構造に関し、操業時の作用に ついて図 1乃至図 4を参考にしながら以下に述べる。
[0046] 本回転炉床炉 1の炉床構造の施工を完了し運転開始すると、先ず、回転炉床 10に 装入された表面材料 9が加熱される。すると、この表面材料 9は半径方向に熱膨張す る。これにより、外周側コーナー耐火物 7が外周側に押されて図 3に示すように傾動 するが、外周側コーナー耐火物 7の内端部 bが最外側の耐火物 6の外周面 14に接 触するため、外周側コーナー耐火物 7の転倒が防止される。
[0047] 一方、内周側コーナー耐火物 8は、稼動初期の昇温時には、表面材料 9の熱膨張 によって内周側に押される。し力しながら、内周側コーナー耐火物 8は前記式(3)を 満足するよう配設されているので、最終的には内周側コーナー耐火物 8は、隣接する 内周側コーナー耐火物 8a, 8bと接触して拘束された状態に至る。この時点以降、表 面材料 9では、昇温されるに従って半径方向の熱膨張による外力が外周側に向かう ことになる。従って、内周側コーナー耐火物 8が炉床外にずれを生じたり、脱落する のを防止することができる。
[0048] その後、加熱された表面材料 9の熱が熱伝導によってその下層の耐火物 6へと伝わ り、耐火物 6が加熱されると、この耐火物 6も半径方向に熱膨張する。これにより、外 周側コーナー耐火物 7の下部が押圧されて、外周側コーナー耐火物 7の傾きは元に 戻り正常状態に至る。
[0049] 以上のような炉床構造とすることにより、熱膨張によって内周側コーナー耐火物 8を 半径方向内側へ押す力が作用したとしても、分割された前記コーナー耐火物 8間の 周方向熱膨張代 Yが許す限り、内周側コーナー耐火物 8が内側へ移動するのが許 容され、さらに熱膨張が進行した場合には、分割された前記コーナー耐火物 8が相 互に接触しあうことによって内周側コーナー耐火物 8の移動が阻止される。その結果 、内周側支持金物 12にかかる外力は減少し、これにより従来 1〜2年であった前記内 周側支持金物 12の寿命が延び、 2年経た後の検査でも全く問題がな力つた。また、 内周側コーナー耐火物 8は、昇温後のある時点からは隣の内周側コーナー耐火物 8 a, 8bと相互接触して拘束された状態に至るため、内周側支持金物 12は、内周側コ ーナー耐火物 8の位置決めのみが目的となり、内周側支持金物 12を高剛性の合金 で作成する必要がなくなった。
[0050] 以上のように、本実施形態に係る回転炉床炉 1は、円環状の炉体フレーム 4と、この 炉体フレーム 4上に設けられた炉床断熱材 5と、この炉床断熱材 5上に設けられた複 数個の耐火物 6と、前記回転炉床 10の外周側および内周側に夫々支持金物 11, 1 2を介して配設されたコーナー耐火物 7, 8とを有する。そして、外周側若しくは内周 側のコーナー耐火物 7, 8と耐火物 6との間に、又は耐火物 6, 6同士の間に、半径方 向熱膨張代 Xが設定され、この Xが前記式 (2)で定義される一方、外周側コーナー 耐火物 7の幅 Aと外周側支持金物 11の高さ Bとの関係において、前記式(1)が満足 されている。このため、簡易な構成でありながら、熱膨張によって炉床の損傷や外周 側コーナー耐火物の炉床外へのずり落ち、浮き上がりを起こさなくなった。
[0051] し力も、本実施形態に係る回転炉床炉 1は、前記外周側コーナー耐火物 7が、周方 向に複数個に分割されるとともに、この外周側支持金物 11の上端部を支点 aとして、 外周方向に傾動可能となっている。このため、表面材料 9の熱膨張によって外周側コ ーナー耐火物 7が外側に傾いたとしても、外周側コーナー耐火物 7がその内側の耐 火物 6と接触してそれ以上傾くのが阻止される。これにより外周側コーナー耐火物 7 がずり落ちたり、これを固定する支持金物 11が破損するのを回避することができる。
[0052] また、本実施形態に係る回転炉床炉 1は、前記内周側コーナー耐火物 8が周方向 に複数個に分割され、この分割された内周側コーナー耐火物間に周方向熱膨張代 Yが設定され、前記内周側コーナー耐火物 8の内周長 Lと外周長 Lとの関係におい
1 2
て、前記式 (3) , (4)を満足するよう構成されている。このため、表面材料 9の熱膨張 により、内周側コーナー耐火物 8が表面材料 9から力を受けたとしても、内周側コーナ 一耐火物同士が接触することにより、内周側コーナー耐火物 8及び内周側支持金物 12が炉床外へずり落ちたり、破損したりするのを防止することができる。
[0053] すなわち、本実施形態では、式(1)を満足する半径方向熱膨張代 Xが設定される 一方、回転炉床 10の内周側において、内周側コーナー耐火物に式(3) (4)を満足 する周方向熱膨張代 Yが設定されているので、表面材料 9が熱膨張したときに、隣り 合う内周側コーナー耐火物同士の接触によってこれ以上の内周側への熱膨張を防 止する一方、これに伴う表面材料 9の外周側への熱膨張により外周側コーナー耐火 物 7が傾動したとしても耐火物 6との接触によって内周側コーナー耐火物 7のずり落 ちを防止することができる。
[0054] なお、本実施形態では、回転炉床 10において半径方向熱膨張代 Xが設定されると ともに内周側において周方向熱膨張代 Υが設定される構成としたが、本発明はこの 構成に限られるものではない。すなわち、例えば回転炉床 10の外周側の表面材料 9 が特に加熱されやすい場合等には、半径方向熱膨張代 Xが設定される一方で、内 周側において周方向熱膨張代 Υが設定されない構成としてもよぐあるいは例えば内 周側の表面材料 9が特に加熱されやすい場合等には内周側において周方向熱膨張 代 Υが設定される一方で、半径方向熱膨張代 Xが設定されない構成としてもよい。
[0055] ここで、本実施の形態の特徴について、以下に説明する。
[0056] (1)前記外周側若しくは内周側のコーナー耐火物と前記耐火物との間に、又は前 記耐火物同士の間に、半径方向熱膨張代 Xが設定され、この Xが前記式 (2)で定義 される一方、外周側コーナー耐火物の幅 Αと外周側支持金物の高さ Βとの関係にお いて、前記式(1)が満足されているため、熱膨張によって炉床の損傷や外周側コー ナー耐火物の炉床外へのずり落ち、浮き上がりを防止することができる。
[0057] (2)前記外周側コーナー耐火物は、周方向に複数個に分割されるとともに、この外 周側コーナー耐火物の支持金物の外端部における上端部を支点として、外周方向 に傾動可能である。したがって、表面材料の熱膨張によって外周側コーナー耐火物 が外側に傾いたとしても、外周側コーナー耐火物がその内側の耐火物と接触してそ れ以上傾くのが阻止される。これにより外周側コーナー耐火物がずり落ちたり、これを 固定する支持金物が破損するのを回避することができる。
[0058] (3)前記内周側コーナー耐火物が周方向に複数個に分割されるとともに、これら分 割された内周側コーナー耐火物間に周方向熱膨張代 Yが設定され、この周方向熱 膨張代 Yが次式 (5)で定義されるとともに、分割された前記内周側コーナー耐火物 1 個の内周長 Lと外周長 Lは、次式 (3)を満足する。 [0059] L >L +2y · . (3)
2 1
(ただし、 y=YZnであり、 nは分割された内周側コーナー耐火物の個数である。 ) Y= (内周側コーナー耐火物の、操業温度での支持金物との接触面側の長さ [の 和]) (分割された各内周側コーナー耐火物の室温での支持金物との接触面側の 長さの和)
••(5)
[0060] したがって、表面材料の熱膨張により、内周側コーナー耐火物が表面材料から力 を受けたとしても、内周側コーナー耐火物同士が接触するので、内周側コーナー耐 火物及びこれを支持する支持金物が炉床外へずり落ちたり、破損したりするのを防 止することができる。
産業上の利用可能性
[0061] 本発明は、外周壁と内周壁との間に配置された回転炉床が、円環状の炉体フレー ムと、この炉体フレーム上に配設された炉床断熱材と、この炉床断熱材上に配設され た複数個の耐火物と、前記回転炉床の外周部に支持金物を介して配設された外周 側コーナー耐火物と、前記回転炉床の内周部に支持金物を介して配設された内周 側コーナー耐火物とを有する回転炉床炉に利用することが可能である。

Claims

請求の範囲
[1] 外周壁と内周壁との間に配置された回転炉床が、円環状の炉体フレームと、この炉 体フレーム上に配設された炉床断熱材と、この炉床断熱材上に配設された複数個の 耐火物と、前記回転炉床の外周部に支持金物を介して配設された外周側コーナー 耐火物と、前記回転炉床の内周部に支持金物を介して配設された内周側コーナー 耐火物とを有する回転炉床炉において、
前記外周側若しくは内周側のコーナー耐火物と前記耐火物との間に、又は前記耐 火物同士の間に、次式 (2)で定義される半径方向熱膨張代 Xが設定され、
前記外周側コーナー耐火物の幅を Aとし、このコーナー耐火物の支持金物の高さ を Bとしたときに、次式(1)が満足される回転炉床炉。
Χ+Α< ^ (Α22) · ' (1)
Χ= ( [ΧΟ = ]外周側コーナー耐火物の支持金物の外端部と内周側コーナー耐火 物の支持金物の内端部の操業温度での距離) -( [XI = ]複数個の耐火物および両 コーナー耐火物の半径方向の常温における長さの和) · ·(2)
[2] 前記外周側コーナー耐火物は、周方向に複数個に分割されるとともに、この外周 側コーナー耐火物の支持金物の外端部における上端部を支点として、外周方向に 傾動可能である請求項 1に記載の回転炉床炉。
[3] 前記内周側コーナー耐火物が周方向に複数個に分割されるとともに、これら分割さ れた内周側コーナー耐火物間に周方向熱膨張代 Υが設定され、この周方向熱膨張 代 Υが次式 (5)で定義されるとともに、分割された前記内周側コーナー耐火物 1個の 内周長 Lと外周長 Lは、次式 (3)を満足する請求項 1に記載の回転炉床炉。
1 2
L >L + 2v - - (3)
2 1
(ただし、 y=YZnであり、 nは分割された内周側コーナー耐火物の個数である。 ) Y= (内周側コーナー耐火物の、操業温度での支持金物との接触面側の長さ [の 和]) (分割された各内周側コーナー耐火物の室温での支持金物との接触面側の 長さの和)
••(5)
[4] 外周壁と内周壁との間に配置された回転炉床が、円環状の炉体フレームと、この炉 体フレーム上に配設された炉床断熱材と、この炉床断熱材上に配設された複数個の 耐火物と、前記回転炉床の外周部に支持金物を介して配設された外周側コーナー 耐火物と、前記回転炉床の内周部に支持金物を介して配設された内周側コーナー 耐火物とを有する回転炉床炉において、
前記内周側コーナー耐火物が周方向に複数個に分割されるとともに、これら分割さ れた内周側コーナー耐火物間に周方向熱膨張代 Yが設定され、この周方向熱膨張 代 Yが次式 (5)で定義されるとともに、分割された前記内周側コーナー耐火物 1個の 内周長 Lと外周長 Lは、次式 (3)を満足する回転炉床炉。
1 2
L >L + 2y - - (3)
2 1
(ただし、 y=YZnであり、 nは分割された内周側コーナー耐火物の個数である。 ) Y= (内周側コーナー耐火物の、操業温度での支持金物との接触面側の長さ [の 和]) (分割された各内周側コーナー耐火物の室温での支持金物との接触面側の 長さの和)
••(5)
PCT/JP2006/320176 2005-10-11 2006-10-10 回転炉床炉 WO2007043512A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2006300385A AU2006300385B2 (en) 2005-10-11 2006-10-10 Rotary hearth furnace
US12/067,422 US7922484B2 (en) 2005-10-11 2006-10-10 Rotary hearth furnace
DE602006011193T DE602006011193D1 (de) 2005-10-11 2006-10-10 Drehherdofen
EP06811489A EP1939565B1 (en) 2005-10-11 2006-10-10 Rotary hearth furnace
NZ566210A NZ566210A (en) 2005-10-11 2006-10-10 Rotary hearth furnace that prevents the refractory material for falling under the effects of thermal expansion
CN2006800313141A CN101253378B (zh) 2005-10-11 2006-10-10 转底炉
KR1020087008573A KR101064085B1 (ko) 2005-10-11 2006-10-10 회전 노상 노
CA2620303A CA2620303C (en) 2005-10-11 2006-10-10 Rotary hearth furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-296746 2005-10-11
JP2005296746 2005-10-11

Publications (1)

Publication Number Publication Date
WO2007043512A1 true WO2007043512A1 (ja) 2007-04-19

Family

ID=37942748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320176 WO2007043512A1 (ja) 2005-10-11 2006-10-10 回転炉床炉

Country Status (12)

Country Link
US (1) US7922484B2 (ja)
EP (2) EP1939565B1 (ja)
JP (1) JP4866195B2 (ja)
KR (2) KR101064085B1 (ja)
CN (2) CN101253378B (ja)
AT (1) ATE452322T1 (ja)
AU (1) AU2006300385B2 (ja)
CA (2) CA2620303C (ja)
DE (1) DE602006011193D1 (ja)
NZ (2) NZ566210A (ja)
RU (1) RU2379608C1 (ja)
WO (1) WO2007043512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161631A (zh) * 2017-07-01 2017-09-15 泰富重工制造有限公司 一种环形输送机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510326B1 (de) * 2010-09-08 2012-08-15 Siemens Vai Metals Tech Gmbh Maschine zur thermischen behandlung von feststoffen
JP5841296B2 (ja) * 2013-04-12 2016-01-13 中外炉工業株式会社 回転炉床炉
CN104819646B (zh) * 2015-05-12 2017-09-22 奉化科创科技服务有限公司 环冷机送料系统及其在线检修方法
CN105021032A (zh) * 2015-07-21 2015-11-04 石家庄新华能源环保科技股份有限公司 一种环形转底炉
JP7120135B2 (ja) * 2019-04-12 2022-08-17 株式会社デンソー ダクト

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324274A (ja) * 2000-05-17 2001-11-22 Sanyo Special Steel Co Ltd 鋼材ビレットの回転炉床式加熱炉

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB447114A (en) 1934-10-12 1936-05-12 Gavin Smellie Mclay Improvements in or relating to rotating hearth furnaces
US2074662A (en) * 1934-10-12 1937-03-23 Wellman Seaver Rolling Mill Co Rotating hearth furnace
US4083752A (en) * 1976-11-10 1978-04-11 Monsanto Company Rotary retort
US4578031A (en) * 1984-11-09 1986-03-25 Midland-Ross Corporation Dimensionally stable movable furnace hearth
CN2035451U (zh) * 1988-08-04 1989-04-05 李华 台车炉真空室式隔热装置
IT1309150B1 (it) * 1999-06-09 2002-01-16 Demag Italimpianti Spa Forno a suola rotante con struttura alleggerita
JP2001181720A (ja) 1999-12-28 2001-07-03 Kobe Steel Ltd 回転炉床炉による還元鉄製造方法
JP3553873B2 (ja) 2000-12-07 2004-08-11 株式会社神戸製鋼所 還元金属製造用回転式炉床炉及び還元金属の製造方法
JP4337272B2 (ja) 2001-04-06 2009-09-30 大同特殊鋼株式会社 回転炉床炉の炉床構造
JP4337271B2 (ja) 2001-04-06 2009-09-30 大同特殊鋼株式会社 回転炉床炉の炉床構造
JP2002350065A (ja) * 2001-05-25 2002-12-04 Daido Steel Co Ltd 回転炉床炉の炉床構造
JP2004003729A (ja) 2002-05-31 2004-01-08 Nippon Steel Corp 回転炉床式加熱炉の炉殻構造
US8163230B2 (en) * 2008-08-29 2012-04-24 Global Research and Engineering, LLC Rotary hearth furnace for treating metal oxide materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324274A (ja) * 2000-05-17 2001-11-22 Sanyo Special Steel Co Ltd 鋼材ビレットの回転炉床式加熱炉

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161631A (zh) * 2017-07-01 2017-09-15 泰富重工制造有限公司 一种环形输送机

Also Published As

Publication number Publication date
US7922484B2 (en) 2011-04-12
US20090136887A1 (en) 2009-05-28
CN101253378B (zh) 2010-05-26
NZ566210A (en) 2011-01-28
ATE452322T1 (de) 2010-01-15
EP1939565A1 (en) 2008-07-02
EP2161524B1 (en) 2013-01-09
EP1939565A4 (en) 2008-12-31
CN101701767B (zh) 2012-05-23
RU2008118335A (ru) 2009-11-20
KR20080060238A (ko) 2008-07-01
KR100991642B1 (ko) 2010-11-04
CN101253378A (zh) 2008-08-27
EP1939565B1 (en) 2009-12-16
AU2006300385A1 (en) 2007-04-19
CA2692322C (en) 2011-08-09
KR101064085B1 (ko) 2011-09-08
DE602006011193D1 (de) 2010-01-28
NZ588492A (en) 2011-03-31
JP4866195B2 (ja) 2012-02-01
EP2161524A1 (en) 2010-03-10
RU2379608C1 (ru) 2010-01-20
JP2007132650A (ja) 2007-05-31
AU2006300385B2 (en) 2011-07-21
CA2620303C (en) 2011-02-01
CN101701767A (zh) 2010-05-05
CA2620303A1 (en) 2007-04-19
KR20100082384A (ko) 2010-07-16
CA2692322A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4866195B2 (ja) 回転炉床炉
JP5486395B2 (ja) 還元鉄の製造方法
CN106091680A (zh) 一种转底炉
JP5704659B2 (ja) ロータリーキルン
JP4337271B2 (ja) 回転炉床炉の炉床構造
JP4337272B2 (ja) 回転炉床炉の炉床構造
AU2011203288B2 (en) Rotary hearth furnace
JP4069138B2 (ja) 回転炉床
CN103629922A (zh) 一种内燃式高温回转炉
JP2008076049A (ja) 回転炉床炉の耐火物構造
JP4340002B2 (ja) 製鋼用転炉ウエアライニング構造
KR20200033304A (ko) 열풍 스토브
CN202757420U (zh) 一种内燃式高温回转炉
RU123128U1 (ru) Водоохлаждаемый свод дуговой сталеплавильной печи
JP5073347B2 (ja) 蓄熱式バーナを備えた加熱炉の操炉方法
JPS6226442Y2 (ja)
JPS6038156Y2 (ja)
JP2002188892A (ja) 段差を設けた回転炉炉壁
RU2350668C2 (ru) Печь с солевым обогревом для плавки магния
JP2002350065A (ja) 回転炉床炉の炉床構造
JPH0726136B2 (ja) 高炉の熱風炉構造
JPH0336491A (ja) 高温用炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031314.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006300385

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2620303

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 566210

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2006811489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12067422

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006300385

Country of ref document: AU

Date of ref document: 20061010

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1773/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087008573

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008118335

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 1020107013868

Country of ref document: KR