WO2007040009A1 - リニア同期モータ及びリニアモータアクチュエータ - Google Patents

リニア同期モータ及びリニアモータアクチュエータ Download PDF

Info

Publication number
WO2007040009A1
WO2007040009A1 PCT/JP2006/317520 JP2006317520W WO2007040009A1 WO 2007040009 A1 WO2007040009 A1 WO 2007040009A1 JP 2006317520 W JP2006317520 W JP 2006317520W WO 2007040009 A1 WO2007040009 A1 WO 2007040009A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
teeth
core member
tooth
alternating current
Prior art date
Application number
PCT/JP2006/317520
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kaneshige
Taro Miyamoto
Akihiro Unno
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to US12/088,829 priority Critical patent/US7888827B2/en
Priority to DE112006002589T priority patent/DE112006002589T5/de
Priority to JP2007538671A priority patent/JP4993609B2/ja
Priority to CN2006800361874A priority patent/CN101278467B/zh
Publication of WO2007040009A1 publication Critical patent/WO2007040009A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor that is used as a driving means in a linear guide portion of, for example, a general conveyance machine or a machine tool, and applies a thrust or a braking force to a linearly guided movable body.
  • the present invention relates to an improvement of a linear synchronous motor in which an alternating current is applied to a coil wound around a core member and a magnetic attraction force generated between the core member and a magnet is used as a thrust.
  • a so-called linear motor actuator using a linear motor as a thrust generation source is known.
  • the movable body is reciprocally supported on a fixed portion such as a bed using a pair of linear guides, and a stator constituting the linear motor and
  • a mover is attached to a fixed part and a movable body so as to face each other (Japanese Patent Laid-Open No. 10-290560, etc.).
  • a linear guide track rail is disposed on the fixed portion, and a linear motor stator is attached in parallel to the track rail, while a linear guide slider and a linear motor move on the movable body.
  • the movable body side slider is mounted on the track rail so that the movable body can be reciprocated on the fixed portion, and the fixed portion side stator and the movable body side movable element face each other. Let's do it.
  • linear motors There are various types of linear motors due to differences in their drive systems.
  • Typical examples of linear motors include so-called linear synchronous motors that are used by applying a plurality of phases of alternating current to the coils (special characteristics). No. 2003-070226, JP-A-8-205514, etc.).
  • This linear synchronous motor includes a stator magnet in which N poles and S poles are alternately arranged in a straight line to generate a field, and movement along the arrangement direction of the magnetic poles of the stator magnet when the alternating current is applied. And a magnetic attraction force or magnetic field between the moving magnetic field generated by the moving element and the field generated by the stator magnet. A repulsive force is generated, which causes a thrust to move the mover and the stator magnet relative to each other!
  • the former is advantageous in terms of force generation thrust in which there is a type including a core member formed of a ferromagnetic body such as iron and a type not including it.
  • a core member is provided with teeth whose number is a natural number multiple of the number of phases of the alternating current so as to face the stator magnet.
  • the coil is wound around these teeth, and when the coil is energized, each tooth becomes an electromagnet, and a magnetic attractive force or a magnetic repulsive force is generated between each magnetic pole constituting the stator magnet.
  • a three-phase AC current is formed with three alternating current forces of phase u, phase V, and phase w that are 120 degrees apart.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-290560
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-070226
  • Patent Document 3 JP-A-8-205514
  • the magnitude of the magnetic attractive force acting between the teeth of the core member and the magnetic poles of the stator magnet varies depending on the magnetic flux density passing through the powerful teeth, and the higher the magnetic flux density, Magnetic attraction is increased. Therefore, if the magnetic flux density that normally passes through each tooth of the core member is uniform, uniform thrust is generated when alternating currents of U phase, V phase, and W phase with different phases are applied to a series of teeth. The answer that results.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide an AC current composed of a plurality of phases when each coil is energized by each phase. It is an object of the present invention to provide a regenerative synchronous motor capable of making the generated thrust uniform and thereby making thrust fluctuation as small as possible.
  • the linear synchronous motor of the present invention that achieves the above object includes a first member in which N poles and S poles are alternately arranged linearly to generate a field, and keeps a gap between the first member and the first member. And a second member that generates a moving magnetic field along the arrangement direction of the magnetic poles when energized with a plurality of phases of alternating current and exerts a thrust on the first member. It has been done.
  • the second member includes a core member in which a number of teeth that is a natural number multiple of the number of phases of the alternating current is arranged, wound around each tooth of the core member, and the alternating current One of the phases is composed of a coil that is energized. Of the plurality of teeth provided on the core member, at least one tip of the tooth corresponding to the phase of the alternating current applied to the coil wound around the teeth on both ends of the core member is the remaining tooth. It protrudes toward the first member from the tip.
  • a three-phase alternating current (u-phase, V-phase, w-phase) will be described as an example.
  • the coil wound on the other tooth is u-phase force.
  • the coil wound on the other tooth is energized in the w-phase.
  • the tip of the tooth around which the V-phase coil is wound is separated from the tip of the tooth around which the U-phase and W-phase coils are wound, and the u-phase and w-phase coils are separated from each other.
  • the tip of the wound tooth protrudes from the tip of the tooth where the V-phase coil is wound toward the first member.
  • the first member may be a stator or a mover. If the first member is a stator, the second member is a mover, and if the first member is a mover, the second member is a stator. However, since the second member is provided with a coil and generates a moving magnetic field, if the second member is a stator, the core member and the coil member are covered over the stroke range of the first member that is the stator. It is necessary to provide it, and the assembly of the second member becomes troublesome. Therefore, it is preferable to use the first member as a stator in view of facilitating the assembly of the second member.
  • FIG. 1 is a perspective view showing a first embodiment of a linear motor actuator to which a linear synchronous motor of the present invention is applied.
  • FIG. 2 is a longitudinal sectional view of the linear motor actuator shown in FIG. 1 cut along a direction perpendicular to the longitudinal direction of the track rail.
  • FIG. 3 is a cross-sectional plan view showing a ball infinite circuit in the linear motor actuator shown in FIG. 1.
  • FIG. 4 A plan view showing a spacer belt used in the linear motor actuator shown in FIG.
  • FIG. 5 is a side view showing a spacer belt used in the linear motor actuator shown in FIG.
  • FIG. 6 is a longitudinal cross-sectional view of the linear motor actuator shown in FIG. 1 in which a moving element and a stator magnet are cut along the longitudinal direction of the track rail.
  • FIG. 7 is a diagram schematically showing the state of the magnetic flux ⁇ passing through each tooth of the core member.
  • FIG. 8 is a plan view showing another example of the arrangement form of the stator magnets on the track rail.
  • FIG. 9 is a schematic view showing another embodiment of a linear motor actuator to which the linear synchronous motor of the present invention is applied.
  • FIG. 1 shows an example of a linear motor actuator equipped with a linear synchronous motor of the present invention.
  • the linear motor actuator includes a track rail 1 formed in a channel shape, a movable body to be controlled, and a table structure 3 that moves along the track rail 1 and the track.
  • a stator magnet 4 disposed on the rail 1; and a movable element 5 mounted on the table structure 3 and constituting a linear synchronous motor together with the stator magnet 4.
  • the table structure 3 can be propelled along the track rail 1 by exciting the coil of the mover 5 mounted on the structure 3 and stopped at a predetermined position.
  • the track rail 1 has a fixed base portion 10 attached to a fixed portion such as a bed by a bolt (not shown), and has a pair of side wall portions 11 and 11 rising from the fixed base portion 10.
  • a space surrounded by the fixed base portion 10 and the side wall portion 11 is a groove-shaped guide passage 12.
  • the table structure 3 reciprocates along the guide passage 12.
  • a ball rolling groove 13 is formed, and this ball rolling groove 13 is formed along the longitudinal direction of the track rail 1! Speak.
  • the table structure 3 includes a pair of sliders 3a and 3b which are arranged in the guide passage of the track rail and freely reciprocate in the guide passage, and the sliders 3a and 3b.
  • the coupling top plate 3c is connected to each other at a predetermined interval.
  • the joint top plate 3c is formed in a substantially rectangular shape with the long side aligned with the longitudinal direction of the track rail 1, and a slider positioned in the guide passage 12 of the track rail 1 at both ends in the longitudinal direction.
  • the coupling top plate 3c itself is mounted on the sliders 3a and 3b and is located outside the guide passage 12 of the track rail 1 while the 3a and 3b are fixed respectively.
  • the movable element 5 is provided between a pair of sliders 3a and 3b fixed to the coupling top plate 3c. The movable element 5 is suspended from the coupling top plate 3c to guide the track rail 1. Located in aisle 12.
  • FIG. 2 shows a cross-sectional view of the track rail 1 and the sliders 3a and 3b.
  • the sliders 3a and 3b are formed in a substantially rectangular shape and are disposed in the guide passage 12 of the track rail 1, but at least a part protrudes from the guide passage 12 of the track rail 1 to the outside.
  • a mounting surface 33 of the coupling top plate 3c is formed on the top surface located above the upper end of the side wall portion 11 of 1.
  • the sliders 3a and 3b are provided with a total of four infinite circulation paths in which the balls 6 circulate, left and right, for a total of four lines. Correspondingly.
  • FIG. 3 is a plan view showing a ball infinite circulation path of the slider.
  • Each of the sliders 3a and 3b includes a bearing race 34 that also has a metal blocking force, and a pair of synthetic resin end caps 35 that are fixed to both front and rear end surfaces of the bearing race 34 with respect to the moving direction of the slider 3.
  • Each infinite circulation path includes a load rolling groove 36 formed on the outer surface of the bearing race 34, a ball return hole 37 formed in the bearing race 34 in parallel with the load rolling groove 36, and the end cap.
  • a U-shaped direction change path 38 formed in 35, while a large number of balls 6 are loaded, and the ball rolling groove 13 of the track rail 1 and the load rolling groove 36 of the bearing race 34 It is configured to roll between.
  • the ball 6 that has finished rolling in the load rolling groove 36 is in the direction of one end cap 35.
  • the ball return hole 37 rolls in an unloaded state, and further rolls on the direction changing path 38 of the other end cap 35, so that the bearing race again. It circulates to 34 load rolling grooves 36. If the unloaded ball 6 rolls through the ball return hole 37, the inner peripheral surface of the ball return hole 37 and the ball 6 come into contact with each other, and noise is generated.
  • the peripheral surface is covered with synthetic resin.
  • the balls 6 are arranged at a predetermined interval on a flexible spacer belt 7 formed of a synthetic resin, and together with the spacer belt 7, a slider 3a , 3b is incorporated into each infinite circuit.
  • the spacer belt 7 is provided with a spacer 70 so as to separate adjacent balls from each other, and prevent the balls 6 from contacting each other while circulating in the infinite circulation path.
  • an accommodation hole for the ball 6 is formed between the pair of front and rear spacers 70, and the ball 6 is accommodated therein.
  • the sliders 3a and 3b configured as described above are disposed in the guide passage 12 of the track rail 1 so as to be sandwiched between the pair of side walls 11 and 11 of the track rail 1 via the balls 6.
  • the ball 6 rolls in the ball rolling groove 13 of the track rail 1 so that it can freely reciprocate along the longitudinal direction of the track rail 1! / .
  • the track rail 1 is formed in a channel shape so as to surround the guide passage 12, the table structure 3 is also guided by the pair of sliders 3a and 3b. Therefore, the track rail 1 has high rigidity and can reciprocate the table structure 3 along the track rail 1 with high accuracy.
  • stator magnet 4 is disposed on the fixed base 10 of the track rail 1 and faces the guide passage 12 in which the sliders 3a and 3b reciprocate.
  • the strong fixed base 10 functions as a yoke of the stator magnet 4.
  • Each stator magnet 4 is made of a permanent magnet, and N poles and S poles are alternately arranged at a predetermined pitch along the longitudinal direction of the track rail 1.
  • These stator magnets 4 must be arranged in parallel with the moving direction of the sliders 3a and 3b in the guide passage 12 of the track rail 1, and therefore, the ball rolling on the fixed base 10 of the track rail 1 is performed.
  • a concave groove 14 is formed in parallel with the groove 13, and the field magnet 4 is fixed to the track rail 1 so as to fit into the concave groove 14.
  • FIG. 6 is a longitudinal sectional view showing the positional relationship between the moving element 5 attached to the table structure and the stator magnet 4 along the longitudinal direction of the track rail 1.
  • the moving element 5 includes a core member 50 fixed to the joint top plate 3c with a bolt 39 and a coil 51 wound around the core member 50.
  • the core member 50 is formed with a plurality of slots at a predetermined pitch along the longitudinal direction of the track rail 1, and is formed in a comb-like shape as a whole.
  • the armature core 50 has twelve teeth 52 with slots formed in the front and rear, and the coil 51 is wound around each tooth 52 of the core member 50 so as to fill each slot. For these twelve teeth 52, the coil 51 has (u, u, u
  • Each tooth 52 has the same width and thickness.
  • the applied current to the coil 51 wound in the three phases is determined based on the detection signal of the position detection device 8 attached to the outside of the track rail 1 (see FIG. 2).
  • a linear scale 80 in which a ladder pattern is repeatedly drawn at a predetermined pitch is fixed to the outer surface of the side wall 11 of the track rail 1, while the linear scale 80 of the linear scale 80 is attached to the coupling top 3 c of the table structure 3.
  • Encoder 81 for optically reading the ladder pattern is fixed.
  • Variable frequency The controller that controls several power supplies grasps the current position and current speed of Slider 3 based on the output signal of the powerful encoder 81, and responds to the difference between the target position and current position, and the difference between the set speed and current speed. Then, an alternating current is supplied to the coil 51 of each phase while changing the frequency of the three-phase alternating current.
  • v-phase teeth 4 teeth in which the v-phase coil is wound are used.
  • U is formed slightly shorter than the teeth around which the u-phase and w-phase coils are wound (hereinafter referred to as “u-phase teeth” and “w-phase teeth”). It is farther from the stator magnet than the u-phase teeth and w-phase teeth. In other words, the u-phase teeth and the w-phase teeth protrude toward the stator magnet 4 rather than the V-phase teeth.
  • FIG. 7 schematically shows the state of the magnetic flux ⁇ passing through each tooth 52 of the core member 50 with arrows.
  • the core member 50 has six teeth. Except for the two teeth (u, w) located at both ends of the core member 50, the other four teeth (V, w, u, V)
  • the teeth are provided, for example, the magnetic flux ⁇ passing through the teeth of the W phase
  • the number of passing magnetic flux ⁇ is smaller.
  • the core member 50 is a ferromagnetic body, and therefore, the teeth and the stator magnet 4 provided in the core member 50 are not affected.
  • a magnetic attraction force acts between and the core member 50 moves in the direction in which the stator magnets 4 are arranged.
  • the magnetic attraction force fluctuates due to the correlation. This is the so-called cogging torque.
  • cogging torque As described above, comparing all u-phase teeth (u, u) and all w-phase teeth (w, w), they are of the same number.
  • V-phase teeth are the U-phase teeth (U, U) and the W-phase teeth.
  • the thrust of the moving element 5 also varies periodically due to the variation of the cogging torque.
  • the magnetic flux ⁇ is less likely to pass through the V-phase teeth.
  • the teeth of each phase are considered as a group, they pass through the u-phase teeth (u, u), the V-phase teeth (V, V), and the w-phase teeth (w, w), respectively.
  • the number of magnetic fluxes ⁇ can be made substantially uniform, and the fluctuation of thrust and cogging torque according to the V phase period can be suppressed as much as possible.
  • is the number of magnetic fluxes that pass through the other four teeth (V, w, u, V)
  • the force is also ⁇ + ⁇
  • the total number of magnetic flux passing through the V-phase teeth (V, V) is ⁇ + ⁇ (> ⁇
  • the total number of magnetic fluxes passing through the phase teeth (V, V) is ⁇ + ⁇ . At least, ⁇ + ⁇ >
  • V , V Since the number of magnetic fluxes passing through each tooth of the core member 50 is affected by the width and thickness of each tooth, the tip shape, the slot spacing, etc., a specific V-phase tooth (V , V) is experimentally determined
  • each phase It is not necessary to apply to all teeth belonging to. As described above, if the total number of magnetic fluxes that pass through the teeth of each phase is approximately equal, fluctuations in thrust according to the period of the V phase can be suppressed. For example, only specific teeth of the V phase can be shortened, Alternatively, the total number of magnetic fluxes can be adjusted even if only specific teeth of the u-phase and w-phase are formed long.
  • FIG. 7 illustrates the force described when six teeth are formed on the core member 50. The same applies to the case where twelve teeth 52 are formed as shown in FIG.
  • the core member of the mover has teeth that are a natural number times the number of phases n of the alternating current. If the phases of the alternating current corresponding to the two teeth located at both ends of the core member are xl and xn, the tips of the teeth corresponding to the other phases (X 1, X 2,. Stator mug than the tip of the two teeth
  • FIG. 8 shows another example of the arrangement of the stator magnets 4 on the fixed base 10 of the track rail 1.
  • the north and south poles of the stator magnet 4 are simply arranged alternately along the longitudinal direction of the track rail 1, and the boundary between these north and south poles is It was parallel to the width direction (left and right direction in FIG. 2).
  • the boundary between these north and south poles is It was parallel to the width direction (left and right direction in FIG. 2).
  • the north and south poles of the stator magnet 4 are formed as parallelograms, and the boundaries between these north and south poles are inclined with respect to the width direction of the track rail 1. Configured. That is, when the tooth 52 of the core member 50 advances in the longitudinal direction of the track rail 1, the magnetic pole of the stator magnet 4 facing the tooth 52 suddenly changes from the N pole to the S pole! Instead of changing to the N pole, it is configured to change gradually.
  • the magnetic force due to the correlation between the arrangement pitch of the stator magnet 4 and the arrangement pitch of the teeth of the core member 50 when the boundary of each magnetic pole is inclined with respect to the width direction of the track rail 1 It is possible to reduce the fluctuation of the force, that is, the fluctuation of the cogging torque, and the ripple of the thrust of the moving element 5 can be reduced.
  • FIG. 9 shows another embodiment of a linear motor actuator constructed using the linear synchronous motor of the present invention.
  • the linear motor actuator includes a base portion 106 mounted on a fixed portion 107 such as a bed of a mechanical device, and a biaxial linear guide device 104 disposed in parallel with each other on the base portion 106.
  • the linear guide device 104 also includes a movable table 103 that is movably provided on the base portion, and a linear synchronous motor 100 that is provided between the base portion 107 and the movable table 103.
  • the linear guide device 104 includes a track rail 108 fixed to the base portion 106 and a slide member 105 fixed to the movable table 103 and reciprocally movable along the track rail 108.
  • the linear synchronous motor 100 includes a mover 101 and a stator magnet 102.
  • the stator magnet 102 is arranged on the base portion 106 along the moving direction of the movable table 103, while the mover 101 is It is suspended from the movable table 103 so as to maintain a gap with the stator magnet 102. Yes.
  • the structure of the mover 101 is exactly the same as that of the mover 5 shown in FIG.
  • the thrust according to the period of the V phase of the AC current is adjusted by adjusting the tooth length of the core member of the moving element 101 as described above. Fluctuation and cogging 'Torque fluctuation can be suppressed as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

 三相交流電流を移動子のコイルに通電した際に、各相により発生する推力の均一化を図って推力変動を可及的に小さくすることが可能なリニア同期モータを提供するものであり、N極及びS極が直線状に交互に配列された固定子マグネット(4)と、この固定子マグネット(4)と対向すると共に、三相交流電流の通電に伴って移動磁界を発生させ、前記固定子マグネット(4)に対して推力を及ぼす移動子(5)とから構成され、前記移動子(5)は、前記交流電流の相数の自然数倍となる数の歯(52)が配列されたコア部材(50)と、各歯(52)に対して巻かれると共に前記交流電流のいずれかの相が通電されるコイル(51)とから構成されており、前記コア部材(50)に具備された複数の歯(52)のうち、当該コア部材(50)の両端の歯(52)に巻回したコイル(51)に通電される交流電流のu相、w相に対応した歯(52)の先端は、残余のv相の歯(52)の先端よりも前記固定子マグネット(4)に向けて突出している。

Description

明 細 書
リニア同期モータ及びリニアモータァクチユエータ
技術分野
[0001] 本発明は、例えば一般搬送機械や工作機械等の直線案内部に駆動手段として利 用され、直線的に案内される可動体に対して推力やブレーキ力を与えるリニアモータ にかかり、詳細には、コア部材に卷回したコイルに対して交流電流を通電し、前記コ ァ部材とマグネットとの間に生じる磁気吸引力を推力として利用するリニア同期モー タの改良に関する。
背景技術
[0002] 一般搬送機械や工作機械において、テーブル等の可動体を直線的に往復動させ る手段としては、推力発生源としてリニアモータを用いた所謂リニアモータァクチユエ ータが知られている。最も一般的なリニアモータァクチユエータとしては、ベッドゃコラ ム等の固定部上に一対のリニアガイドを用いて前記可動体を往復動自在に支承する と共に、リニアモータを構成する固定子及び可動子を互いに対向するようにして固定 部及び可動体に夫々取り付けたものが知られている(特開平 10— 290560号公報等 )。具体的には、前記固定部に対してリニアガイドの軌道レールを配設すると共に該 軌道レールと平行にリニアモータの固定子を取り付ける一方、前記可動体にはリニア ガイドのスライダ及びリニアモータの移動子を取り付け、可動体側のスライダを軌道レ ールに組み付けることによって前記可動体を固定部上で往復動自在に支承すると共 に、固定部側の固定子と可動体側の移動子とを互いに対向させるようにして 、る。
[0003] リニアモータとしてはその駆動方式の違いにより種々のタイプが存在する力 代表 的なものとしては、コイルに対して複数相の交流電流を通電して使用する所謂リニア 同期モータがある(特開 2003— 070226号公報、特開平 8— 205514号公報等)。 このリニア同期モータは、 N極及び S極が直線状に交互に配列されて界磁を発生さ せる固定子マグネットと、前記交流電流の通電によって固定子マグネットの磁極の配 列方向に沿った移動磁界を発生させる移動子とから構成されており、移動子が発生 させる移動磁界と固定子マグネットが発生させる界磁との間に磁気吸引力または磁 気反発力が生じ、これによつて移動子と固定子マグネットとを相対的に移動させる推 力が発生するようになって!/、る。
[0004] 前記移動子は鉄等の強磁性体カゝら形成されたコア部材を具備するタイプと具備し ないタイプとが存在する力 発生推力の点では前者のタイプが有利である。かかるコ ァ部材には前記交流電流の相数の自然数倍となる数の歯が前記固定子マグネットと 対向するように設けられている。これらの歯には前記コイルが卷回されており、コイル に通電すると各歯が電磁石となり、前記固定子マグネットを構成する各磁極との間に 磁気吸引力又は磁気反発力が生じる。例えば三相交流電流は位相が 120度ずっ異 なる u相、 V相、 w相の 3つの交番電流力 形成されているので、前記コア部材の一端 の歯には u相、次の歯には V相、更に次の歯には w相というように、一連の歯に卷回さ れたコイルに対して位相が 120度ずつ異なる交番電流を順次通電していくと、あたか もコア部材の一端に位置する歯力 他端に位置する歯に向けて磁界が移動している かのような現象を生じる。これが前述した移動磁界であり、この移動磁界と固定子マ グネットとの協働によって移動子と固定子マグネットとの間に推力が作用する。
特許文献 1:特開平 10— 290560号公報
特許文献 2 :特開 2003— 070226号公報
特許文献 3:特開平 8 - 205514号公報
発明の開示
発明が解決しょうとする課題
[0005] ここで、コア部材の歯と固定子マグネットの磁極との間に作用する磁気吸引力の大 きさは、力かる歯を通る磁束密度によって異なったものとなり、磁束密度が高いほど 前記磁気吸引力は大きくなる。従って、本来はコア部材の各歯を通る磁束密度が均 等であれば、位相の異なる U相、 V相、 W相の交番電流を一連の歯に対して通電した 際に、均一な推力が生じる答である。
[0006] し力し、コア部材の両端に位置している 2本の歯については、夫々の片側にのみ別 の歯が隣接しており、両側に別の歯が隣接していないことから、これら 2本の歯を通る 磁束密度はこれら以外の歯を通る磁束密度よりも低くなる傾向にある。従って、三相 交流電流を構成する u相、 V相、 w相のうち、 u相をコア部材の一端の歯に、 w相をコ ァ部材の他端の歯に対応させた場合、前述の如く各歯に卷回したコイルに対して三 相を通電して推力を発生させると、 V相に起因して発生する推力が U相及び W相に起 因して発生する推力よりも若干強くなり、推力に周期的なバラツキが発生してしまうと いった問題点があった。
[0007] また、コア部材の両端に位置する 2本の歯を通る磁束密度がこれら以外の歯を通る 磁束密度よりも低いことから、強磁性体力 なるコア部材を固定子マグネットに対して 移動させた際に、コギング 'トルクが局所的に変動してしまい、これによつても移動子 と固定子マグネットとの間の推力が変動してしまうといった問題点もあった。
[0008] 従来はこのような推力変動の問題点に対し、歯の配列ピッチの変更、歯厚さ又は歯 幅の変更などによって対応を図ってきた力 これらの対策はコイルを収容するスロット 空間(互いに隣接する 2歯の間の空間)の減少等につながり、コイルの卷数の減少か ら大幅な推力の低下を招き易 、と 、つた問題点もあった。
課題を解決するための手段
[0009] 本発明はこのような問題点に鑑みなされたものであり、その目的とするところは、複 数の相から構成される交流電流を移動子のコイルに通電した際に、各相により発生 する推力の均一化を図り、それにより推力変動を可及的に小さくすることが可能なリ ユア同期モータを提供することにある。
[0010] 前記目的を達成する本発明のリニア同期モータは、 N極及び S極が直線状に交互 に配列されて界磁を発生させる第 1の部材と、この第 1の部材と間隙を保って対向す ると共に、複数相の交流電流の通電に伴って前記磁極の配列方向に沿った移動磁 界を発生させ、前記第 1の部材に対して推力を及ぼす第 2の部材と、から構成されて いる。また、前記第 2の部材は、前記交流電流の相数の自然数倍となる数の歯が配 列されたコア部材と、このコア部材の各歯に対して巻かれると共に前記交流電流のい ずれかの相が通電されるコイルとから構成されて ヽる。前記コア部材に具備された複 数の歯のうち、当該コア部材の両端の歯に卷回したコイルに通電される交流電流の 相に対応した歯の少なくとも 1本の先端は、残余の歯の先端よりも前記第 1部材に向 けて突出している。
[0011] 例えば、三相交流 (u相、 V相、 w相)を例にとって説明すると、前記コア部材の一端 の歯に卷回したコイルには u相力 他端の歯に卷回したコイルには w相が通電される こと〖こなる。この場合、 V相のコイルが卷回された歯の先端は U相及び W相のコイルが 卷回された歯の先端よりも前記第 1の部材力 離間させ、 u相及び w相のコイルが卷 回された歯の先端を V相のコイルが卷回された歯の先端よりも第 1の部材に向けて突 出させるのである。
[0012] このように構成すると、 u相に対応する一乃至複数の歯、 V相に対応する一乃至複 数の歯、 w相に対応する一乃至複数の歯を夫々グループとして考えた場合に、各グ ループの磁束密度を平均化することができる。そのため、交流電流を通電した際の 推力変動を可及的に小さくすることが可能となる。また、コア部材を搭載した第 2の部 材を第 1の部材に対して移動させた際に生じるコギング 'トルクの局所的変動も抑える ことができ、この点においても推力変動を可及的に小さくすることが可能となる。
[0013] また、前記第 1の部材は固定子としても、あるいは移動子としても差し支えない。第 1 の部材を固定子とするのであれば、第 2の部材が移動子となり、また、第 1の部材を 移動子とするのであれば、第 2の部材が固定子となる。もっとも、第 2の部材はコイル を具備して移動磁界を発生させるものであるから、第 2の部材を固定子とすると、コア 部材及びコイル部材を固定子である第 1の部材のストローク範囲にわたって設ける必 要があり、第 2の部材の組み立てが面倒なものとなる。従って、第 2の部材の組立を 容易なものにするといった観点力もすれば、第 1の部材を固定子とするのが好ましい 図面の簡単な説明
[0014] [図 1]本発明のリニア同期モータを適用したリニアモータァクチユエ一タの第 1の実施 の形態を示す斜視図である。
[図 2]図 1に示したリニアモータァクチユエータを軌道レールの長手方向と直交する方 向に沿って切断した縦断面図である。
[図 3]図 1に示したリニアモータァクチユエータにおけるボール無限循環路を示した平 面断面図である。
[図 4]図 1に示したリニアモータァクチユエータに使用されて!/、るスぺーサベルトを示 す平面図である。 [図 5]図 1に示したリニアモータァクチユエータに使用されて!/、るスぺーサベルトを示 す側面図である。
[図 6]図 1に示したリニアモータァクチユエータにおける移動子及び固定子マグネット を軌道レールの長手方向に沿って切断した縦断面図である。
[図 7]コア部材の各歯を通る磁束 Φの様子を簡略的に示した図である。
[図 8]軌道レール上における固定子マグネットの配列形態の他の例を示す平面図で ある。
[図 9]本発明のリニア同期モータを適用したリニアモータァクチユエータの他の実施の 形態を示す概略図である。
符号の説明
[0015] 1 · · ·軌道レール、 2· · ·可動体、 3· · ·テーブル構造体、 3a, 3b…スライダ、 3c…結合 天板、 4…固定子マグネット、 5…移動子、 10· · ·固定ベース部、 11 · · ·側壁部、 30· · · ベアリング部、 31 · · ·天板部、 50· · ·コア部材、 51…コイル、 52…歯
発明を実施するための最良の形態
[0016] 以下、添付図面に沿って本発明のリニア同期モータを詳細に説明する。
[0017] 図 1は本発明のリニア同期モータを搭載したリニアモータァクチユエータの一例を示 すものである。このリニアモータァクチユエータは、チャネル状に形成された軌道レー ル 1と、制御対象である可動体を搭載すると共に前記軌道レール 1に沿って移動自 在なテーブル構造体 3と、前記軌道レール 1に配設された固定子マグネット 4と、前記 テーブル構造体 3に搭載されると共に前記固定子マグネット 4と相まってリニア同期モ ータを構成する移動子 5とから構成されており、前記テーブル構造体 3に搭載された 移動子 5のコイルを励磁することによって該テーブル構造体 3を軌道レール 1に沿つ て推進し、所定の位置に停止させることができるように構成されて 、る。
[0018] 前記軌道レール 1は図示外のボルトによってベッド等の固定部に取り付けられる固 定ベース部 10を有すると共に、この固定ベース部 10から立ち上がった一対の側壁 部 11 , 11を有し、これら固定ベース部 10及び側壁部 11によって囲まれた空間が凹 溝状の案内通路 12となっている。前記テーブル構造体 3はこの案内通路 12に沿つ て往復動する。また、案内通路 12に面した各側壁部 11の内側面には上下に 2条の ボールの転動溝 13が形成されており、このボール転動溝 13は軌道レール 1の長手 方向に沿って形成されて!ヽる。
[0019] 一方、前記テーブル構造体 3は、前記軌道レールの案内通路内に配置されると共 にこの案内通路内を自在に往復動する一対のスライダ 3a, 3bと、これらスライダ 3a, 3bを所定の間隔をおいて相互に連結する結合天板 3cとから構成されている。かかる 結合天板 3cは長辺を軌道レール 1の長手方向に合致させた略長方形状に形成され ており、長手方向の両端部には軌道レール 1の案内通路 12内に位置しているスライ ダ 3a, 3bが夫々固定される一方、結合天板 3cそれ自体は前記スライダ 3a, 3bに搭 載されて軌道レール 1の案内通路 12の外側に位置している。また、前記結合天板 3c に固定された一対のスライダ 3a, 3bの間には前記移動子 5が設けられており、かかる 移動子 5は結合天板 3cから吊り下げられて軌道レール 1の案内通路 12内に位置し ている。
[0020] 図 2は前記軌道レール 1及びスライダ 3a, 3bの断面図を示すものである。前記スラ イダ 3a, 3bは略矩形状に形成されて、軌道レール 1の案内通路 12内に配置されて いるが、少なくとも一部が軌道レール 1の案内通路 12から外部へ突出しており、軌道 レール 1の側壁部 11の上端よりも上方に位置する頂面には前記結合天板 3cの取付 面 33が形成されている。このスライダ 3a, 3bはボール 6が循環する無限循環路を左 右二列ずつ、計四列備えており、各無限循環路が軌道レール 1の側壁部 11に形成 されたボール転動溝 13に対応して 、る。
[0021] 図 3は前記スライダのボール無限循環路を示す平面図である。前記スライダ 3a, 3b は、金属製ブロック力もなるベアリングレース 34と、前記スライダ 3の移動方向に関し てべァリングレース 34の前後両端面に固定される一対の合成樹脂製エンドキャップ 3 5とから構成されている。各無限循環路は、前記べアリングレース 34の外側面に形成 された負荷転動溝 36と、この負荷転動溝 36と平行にベアリングレース 34に形成され たボール戻し孔 37と、前記エンドキャップ 35に形成された U字状の方向転換路 38と から構成されており、多数のボール 6が荷重を負荷しながら軌道レール 1のボール転 動溝 13とべアリングレース 34の負荷転動溝 36との間を転動するように構成されてい る。また、負荷転動溝 36を転走し終えたボール 6は一方のエンドキャップ 35の方向 転換路 38に進入して荷重力も解放された後、無負荷状態でボール戻し孔 37を転動 し、更に他方のエンドキャップ 35の方向転換路 38を転動することにより、再度べァリ ングレース 34の負荷転動溝 36へ循環するようになっている。尚、ボール戻し孔 37を 無負荷状態のボール 6が転動すると、かかるボール戻し孔 37の内周面とボール 6と が接触し、騒音が発生してしまうことから、ボール戻し孔 37の内周面は合成樹脂によ つて被覆されている。
[0022] 上記ボール 6は、図 4及び図 5に示すように、合成樹脂から形成された可撓性のス ぺーサベルト 7に所定の間隔で配置されており、このスぺーサベルト 7と共にスライダ 3a, 3bの各無限循環路に組み込まれる。このスぺーサベルト 7には互いに隣接する ボール同士を離隔させるようにして間座部 70が設けられており、これらボール 6が無 限循環路内を循環しながら互いに接触するのを防止している。また、前後する一対 の間座部 70の間にはボール 6の収容孔が形成され、そこにボール 6が収容されてい る。これにより、スライダ 3a, 3bが軌道レール 1の案内通路 12内を高速で移動しても 、無限循環路内におけるボール同士の接触音が生じないことから、スライダ 3a, 3bの 高速移動に伴う騒音の発生を抑えることができる他、無限循環路内におけるボール 6 の蛇行が防止され、軌道レール 1に対するスライダ 3a, 3bの円滑な移動、ひいては テーブル構造体 3の円滑な移動が確保されている。
[0023] このように構成されたスライダ 3a, 3bは、ボール 6を介して前記軌道レール 1の一対 の側壁 11 , 11の間に挟み込まれるようにして該軌道レール 1の案内通路 12内に配 置されており、ボール 6が軌道レール 1のボール転動溝 13を転動することで、かかる 軌道レール 1の長手方向に沿って自在に往復動することができるようになって!/、る。こ のとき、軌道レール 1は案内通路 12を取り囲むようにしてチャネル状に形成されてい ることから極めて剛性が高ぐまた、前記テーブル構造体 3も一対のスライダ 3a, 3bに よって案内されて 、ることから軌道レール 1に対して高 、剛性を備えており、かかるテ 一ブル構造体 3を軌道レール 1に沿って高精度に往復動させることができるものであ る。
[0024] 次に、リニア同期モータを構成する固定子マグネット及び移動子について説明する [0025] 前記固定子マグネット 4は、図 1に示されるように、軌道レール 1の固定ベース 10上 に配設され、前記スライダ 3a, 3bが往復動する案内通路 12に面している。すなわち 、力かる固定ベース 10が固定子マグネット 4のヨークとして機能している。各固定子マ グネット 4は永久磁石からなり、軌道レール 1の長手方向に沿って N極及び S極が所 定のピッチで交互に配列されている。これら固定子マグネット 4は軌道レール 1の案内 通路 12内におけるスライダ 3a, 3bの移動方向と平行に配列されて 、る必要があり、 このことから軌道レール 1の固定ベース 10上にはボール転動溝 13と平行に凹溝 14 が形成され、前記界磁マグネット 4はこの凹溝 14に嵌まり込むようにして軌道レール 1 に固定されている。
[0026] 一方、図 6は、テーブル構造体に取り付けられた移動子 5と前記固定子マグネット 4 との位置関係を軌道レール 1の長手方向に沿って示した縦断面図である。かかる移 動子 5は、前記結合天板 3c対してボルト 39で固定されるコア部材 50と、このコア部 材 50に巻き回されたコイル 51と力も構成されている。前記コア部材 50には軌道レー ル 1の長手方向に沿って所定のピッチで複数のスロットが形成されており、全体として 櫛歯状に形成されている。この電機子コア 50には前後にスロットが形成された歯 52 が 12本形成されており、前記コイル 51は各スロットを埋めるようにしてコア部材 50の 各歯 52に巻き回されている。これら 12本の歯 52に対し、前記コイル 51は(u , u , u
1 2 3
, u )、 (v , v , v , v )、 (w , w , w , w )の 3ネ目に卷カれており、これら 3ネ目のコィノレ 5
4 1 2 3 4 1 2 3 4
1に対して三相交流の u相、 V相、 w相の各電流を通電して励磁することにより、移動 子 5と固定子マグネット 4との間に吸引磁力及び反発磁力が発生し、前記移動子 5を 搭載したテーブル構造体 3に対して軌道レール 1の長手方向に沿った推力又はブレ 一キカを作用させることができるようになつている。尚、各歯 52はその幅及び厚さは 等しく形成されている。
[0027] 3相に巻かれたコイル 51に対する印加電流は軌道レール 1の外側に取り付けられ た位置検出装置 8の検出信号に基づいて決定される(図 2参照)。軌道レール 1の側 壁部 11の外側面には所定のピッチでラダーパターンが繰り返し描かれたリニアスケ ール 80が固定される一方、テーブル構造体 3の結合天板 3cには前記リニアスケール 80のラダーパターンを光学的に読み取るェンコーダ 81が固定されて 、る。可変周波 数電源を制御するコントローラは、力かるエンコーダ 81の出力信号に基づいてスライ ダ 3の現在位置、現在速度を把握し、目標位置と現在位置との差、設定速度と現在 速度との差に応じて三相交流の周波数を変化させながら各相のコイル 51に対して交 流電流を供給する。
[0028] 図 6に示されるように、前記コア部材 50に具備された 12本の歯 52のうち、 v相のコィ ルが卷かれた 4本の歯(以下、「v相の歯」と!、う)は u相及び w相のコイルが巻かれた 歯 (以下、それぞれを「u相の歯」、「w相の歯」という)よりも僅か〖こ短く形成され、 目 の歯は u相の歯及び w相の歯よりも固定子マグネットから離間している。逆の表現を すれば、 u相の歯及び w相の歯は V相の歯よりも固定子マグネット 4に向けて突出して いるのである。
[0029] このようにコア部材 50の V相の歯のみを僅かに短く形成した理由は、各歯を通る磁 束密度の差異を考慮し、それぞれ 4本ずつからなる u相の歯のグループと V相の歯の グループと w相の歯のグループとでこれらの歯を通る磁束密度を略均等にするため である。図 7はコア部材 50の各歯 52を通る磁束 Φの様子を矢線で簡略的に図示し たものである。説明の便宜上、 u相の歯、 V相の歯、 w相の歯は夫々 2本ずっとし、コ ァ部材 50には 6本の歯が形成されていると仮定する。コア部材 50の両端に位置する 2本の歯(u , w )を除き、それ以外の 4本の歯 (V , w , u , V )は各々の両隣に別の
1 2 1 1 2 2
歯が設けられていることから、例えば W相の歯を通る磁束 Φは両隣の V相及び U相
1 1 2 の歯を通ることができる。し力し、 U相の歯に隣接するのは V相の歯のみなので、 U 相の歯を通る磁束 Φは V相の歯は通るものの、図中に破線で示す領域については 通り難くなつている。このことは w相の歯についても同じである。すなわち、コア部材 5
2
0に存在する 6歯のうち、両端に位置する 2本の歯(u , w )は残余の 4本の歯 (V , w
1 2 1 1
, U , V )よりも通過する磁束 Φの本数が少ないのである。
2 2
[0030] このため、 u相の 2本の歯(u , u )に巻かれたコイルを励磁した場合と、 V相の 2本の
1 2
歯 (V , V )に巻かれたコイルを励磁した場合とを比較すると、後者の方が固定子マグ
1 2
ネット 4との間で生じる磁気吸引力が強いものとなってしまう。 w相の 2本の歯 (w, w
1 2
)に巻かれたコイルを励磁した場合と、 V相の 2本の歯 (V, V )に巻かれたコイルを励
1 2
磁した場合とを比較しても同じである。このことから、移動子 5が発生する推力は V相 の周期に応じた変動、すなわちリップルを含む結果となってしまう。
[0031] また、コイルに対して通電を行って ヽな 、状態にぉ 、ても、コア部材 50は強磁性体 であることから、かかるコア部材 50に具備された各歯と固定子マグネット 4との間には 磁気吸引力が作用しており、コア部材 50が固定子マグネット 4の配列方向に移動す ると、力かる固定子マグネット 4の配列ピッチとコア部材 50の歯の配列ピッチとの相関 による磁気吸引力の変動が生じる。これが所謂コギング'トルクである。前述のように、 u相の歯 (u , u )全部と w相の歯 (w , w )全部とを比較すると、両者は同程度の数の
1 2 1 2
磁束 Φが通過していると考えられる力 V相の歯 (V , V )は U相の歯 (U , U )及び W相
1 2 1 2 の歯 (W , W )よりも多くの磁束 Φが通過していることから、前記コギング 'トルクも V相
1 2
の歯の存在に起因した変動を含んでいることになる。従って、このコギング 'トルクの 変動によっても移動子 5の推力が周期的に変動することになる。
[0032] し力し、磁束 Φの通り易い V相の歯を u相及び w相の歯よりも固定子マグネット 4から 遠ざければ、その分だけ磁束 Φが V相の歯を通り難くなり、各相の歯をグループとして 考えた場合に、 u相の歯(u , u )、 V相の歯(V , V )、 w相の歯 (w , w )の夫々を通る
1 2 1 2 1 2
磁束 Φの数を略均一にすることができ、 V相の周期に応じた推力変動及びコギング' トルクの変動を可及的に抑え込むことが可能となるのである。
[0033] 例えば、図 7において、コア部材 50の両端に位置する 2本の歯(u , w )の夫々を通
1 2
る磁束の本数を Φ 、その他の 4本の歯(V , w , u , V )の夫々を通過する磁束の本
1 1 1 2 2
数を Φ とすると、前述の説明から明らかな通り Φ < Φである。従って、 U相の歯 (U 0 1 0 1
, U )を通過する磁束の総本数は Φ + Φ、 W相の歯 (V , V )を通過する磁束の総本
2 0 1 1 2
数も Φ + Φ である力 V相の歯 (V , V )を通過する磁束の総本数は Φ + Φ ( > Φ
0 1 1 2 0 0 0
+ Φ )である。ここで、 V相の歯を u相及び w相の歯よりも固定子マグネット 4から遠ざ け、 V相の個々の歯を通過する磁束の本数を Φ ( Φ > Φ > Φ )に調整すれば、 ν
2 0 2 1
相の歯 (V , V )を通過する磁束の総本数は Φ + Φ となる。少なくとも、 Φ + Φ >
1 2 2 2 0 0
Φ + Φであるから、 V相の歯の長さと U相及び W相の歯の長さの差異を調整すること
2 2
により、 Φ + Φ Φ + Φ とすることが可能であり、そのような V相の歯の長さを見出
2 2 0 1
すことにより、 U相の歯(U, U )を通過する磁束の総本数、 W相の歯 (V, V )を通過す
1 2 1 2 る磁束の総本数、 V相の歯 (V , V )を通過する磁束の総本数を略等しくし、 V相の周 期に応じた推力変動及びコギング 'トルクの変動を抑え込むことができるのである。
[0034] コア部材 50の各歯を通過する磁束の本数は、各歯の幅及び厚さ、先端形状、スロ ットの間隔等に影響されることから、具体的な V相の歯 (V , V )の長さは実験によって
1 2
経験的に求めることが必要とされる力 U相、 V相、 W相の総ての歯が同じ条件の下で 形成されているのであれば、少なくとも V相の歯を U相及び W相の歯よりも固定子マグ ネット 4から遠ざける必要がある。換言すれば、 u相及び w相の歯が V相の歯よりも固 定子マグネット 4に近接している必要がある。
[0035] V相の歯を u相及び w相の歯よりも短くする場合、あるいは u相及び w相の歯^ V相の 歯よりも長くする場合、いずれの場合であっても、各相に属する総ての歯について適 用する必要はない。前述の通り、各相の歯を通過する磁束の総本数が略等しくなれ ば、 V相の周期に応じた推力変動を抑え込むことができ、例えば、 V相の特定の歯の みを短くし、あるいは u相及び w相の特定の歯のみを長く形成するようにしても磁束の 総本数の調整を行 ヽ得るカゝらである。
[0036] 尚、図 7はコア部材 50に 6本の歯が形成されている場合について説明した力 図 6 の如く歯 52が 12本形成されている場合も同様に考えることができ、 V相の歯を u相の 歯及び w相の歯よりも固定子マグネット 4から離間させることによって、 V相の周期に応 じた推力変動及びコギング'トルクの変動を抑え込むことができるのである。
[0037] また、前述の説明は三相の交流電流を移動子 5の各コイルに通電する例について 説明したが、本発明は三相に限らず、複数相 (X , X , · · · , X )の
1 2 n 交流電流を用いるリ ユアモータに対して広く適用することができるものである。その場合、移動子のコア部 材は交流電流の相数 nの自然数倍の本数の歯を備えたものとなる。そして、コア部材 の両端に位置する 2本の歯に対応した交流電流の相を xl及び xnとすると、それ以外 の相(X , X , · · · , X )に対応した歯の先端は、前記 2本の歯の先端よりも固定子マグ
2 3 n-1
ネットから離間させることになり、それによつて推力変動及びコギング 'トルクの変動を 抑え込むことが可能となる。但し、交流電流の相数が増加するにつれ、歯の長さの差 異は小さくなると考えられる。コア部材に具備された歯の総本数が増えるにつれ、コ ァ部材の両端に位置する 2本の歯が磁束の総本数に及ぼす影響が小さくなると考え られる力 である。 [0038] 図 8は軌道レール 1の固定ベース 10上における固定子マグネット 4の配列の他の例 を示すものである。図 1に示した例では固定子マグネット 4の N極及び S極を軌道レー ル 1の長手方向に沿って単純に交互に配列しており、これら N極と S極の境界は軌道 レール 1の幅方向(図 2における紙面左右方向)と平行であった。しかし、図 8に示す 例では、固定子マグネット 4の N極及び S極を平行四辺形として形成し、これら N極及 び S極の境界が軌道レール 1の幅方向に対して傾斜するように構成した。すなわちコ ァ部材 50の歯 52が軌道レール 1の長手方向へ進行する際、この歯 52に対向する固 定子マグネット 4の磁極が突然に N極から S極へ、ある!/、は S極力も N極へ変化する のではなぐ徐々に変化するように構成されている。このように、各磁極の境界が軌道 レール 1の幅方向に対して傾斜して 、る場合の方力 固定子マグネット 4の配列ピッ チとコア部材 50の歯の配列ピッチとの相関による磁気吸引力の変動、すなわちコギ ング ·トルクの変動を小さくすることが可能であり、移動子 5の推力のリップルを小さく することができる。
[0039] 図 1に示したリニアモータァクチユエータでは、チャネル状の軌道レールに設けられ た案内通路内において、前後する一対のスライダ 3a, 3bの間にリニア同期モータの 移動子が取り付けられていた力 本発明のリニアモータの利用態様はこれに限定さ れるものではない。図 9は本発明のリニア同期モータを利用して構成したリニアモータ ァクチユエータの別の態様を示すものである。このリニアモータァクチユエータは、機 械装置のベッド等の固定部 107上に取り付けられるベース部 106と、このベース部 1 06上に互いに並行に配設される 2軸の直線案内装置 104と、これら直線案内装置 1 04によってベース部上に移動自在に設けられた可動テーブル 103と、前記ベース部 107と可動テーブル 103との間に設けられたリニア同期モータ 100と力も構成されて いる。前記直線案内装置 104は、ベース部 106に固定された軌道レール 108と、前 記可動テーブル 103に固定されると共に前記軌道レール 108に沿って往復動自在 なスライド部材 105とから構成されている。前記リニア同期モータ 100は移動子 101 及び固定子マグネット 102とから構成されており、固定子マグネット 102は可動テー ブル 103の移動方向に沿ってベース部 106上に配列される一方、移動子 101は固 定子マグネット 102と間隙を保つようにして前記可動テーブル 103に吊り下げられて いる。移動子 101の構造は図 6に示した移動子 5の構造と全く同じである。
このような構造のリニアモータァクチユエータにおいても、移動子 101のコア部材に おける歯の長さを前述した本発明の如く調整することによって、交流電流の V相の周 期に応じた推力変動及びコギング 'トルクの変動を可及的に抑え込むことが可能とな る。

Claims

請求の範囲
[1] N極及び S極が直線状に交互に配列されて界磁を発生させる第 1の部材 (4)と、この 第 1の部材 (4)と間隙を保って対向すると共に、複数相の交流電流の通電に伴って前 記磁極の配列方向に沿った移動磁界を発生させ、前記第 1の部材 (4)に対して推力 を及ぼす第 2の部材 (5)と、力 構成されるリニア同期モータにおいて、
前記第 2の部材 (5)は、前記交流電流の相数の自然数倍となる本数の歯 (52)が配列 されたコア部材 (50)と、このコア部材 (50)の各歯 (52)に対して巻かれると共に前記交流 電流のいずれかの相が通電されるコイル (51)と力 なり、
前記コア部材 (50)に具備された複数の歯 (52)のうち、当該コア部材 (50)の両端の歯 ( 52)に卷回したコイル (51)に通電される交流電流の相に対応した歯 (52)の少なくとも 1 本の先端は、残余の歯 (52)の先端よりも前記第 1部材 (4)に向けて突出していることを 特徴とするリニア同期モータ。
[2] 前記交流電流は u相、 V相及び w相からなる三相交流であり、前記コア部材 (50)の一 端の歯 (52)に卷回したコイル (51)には u相力 他端の歯 (52)に卷回したコイル (51)には w相が通電され、 V相のコイル (51)が卷回された歯 (52)の先端は u相及び w相のコイル (51)が卷回された歯 (52)の先端よりも前記第 1の部材 (4)力も離間していることを特徴と する請求項 1記載のリニア同期モータ。
[3] 長手方向に沿って N極及び S極が交互に配列された固定子マグネット (4)を有する軌 道レール (1)と、この軌道レール (1)に沿って往復動自在なスライダ (3a,3b)と、前記軌 道レール (1)の固定子マグネット (4)と間隙を保った状態で前記スライダ (3a,3b)に搭載 されると共に、複数相の交流電流の通電に伴って前記軌道レール (1)の長手方向に 沿った移動磁界を発生させ、前記軌道レール (1)に対して推力を及ぼす移動子 (5)と、 力も構成されるリニアモータァクチユエータにお ヽて、
前記移動子 (5)は、前記交流電流の相数の自然数倍となる数の歯 (52)が配列された コア部材 (50)と、このコア部材 (50)の各歯 (52)に対して巻かれると共に前記交流電流 のいずれかの相が通電されるコイル (51)と力 なり、
前記コア部材 (50)に具備された複数の歯 (52)のうち、当該コア部材 (50)の両端の歯 ( 52)に卷回したコイル (51)に通電される交流電流の相に対応した歯 (52)の先端は、残 余の歯 (52)の先端よりも前記固定子マグネット (4)に向けて突出していることを特徴と するリニアモータァクチユエータ。
前記固定子マグネット (4)を構成する各磁極は、軌道レール (1)の長手方向に対して傾 斜配置されていることを特徴とする請求項 3記載のリニアモータァクチユエータ。
PCT/JP2006/317520 2005-09-30 2006-09-05 リニア同期モータ及びリニアモータアクチュエータ WO2007040009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/088,829 US7888827B2 (en) 2005-09-30 2006-09-05 Linear synchronous motor and linear motor actuator
DE112006002589T DE112006002589T5 (de) 2005-09-30 2006-09-05 Linearer Synchronmotor und Linearmotor-Stellglied
JP2007538671A JP4993609B2 (ja) 2005-09-30 2006-09-05 リニア同期モータ及びリニアモータアクチュエータ
CN2006800361874A CN101278467B (zh) 2005-09-30 2006-09-05 线性同步电动机以及线性电动机促动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005288030 2005-09-30
JP2005-288030 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007040009A1 true WO2007040009A1 (ja) 2007-04-12

Family

ID=37906053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317520 WO2007040009A1 (ja) 2005-09-30 2006-09-05 リニア同期モータ及びリニアモータアクチュエータ

Country Status (5)

Country Link
US (1) US7888827B2 (ja)
JP (1) JP4993609B2 (ja)
CN (1) CN101278467B (ja)
DE (1) DE112006002589T5 (ja)
WO (1) WO2007040009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379599B2 (en) 2012-03-29 2016-06-28 Sanyo Denki Co., Ltd. Tubular linear motor
CN106516620A (zh) * 2016-12-26 2017-03-22 贵阳普天物流技术有限公司 一种环形分拣机的驱动方法及装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015290B2 (ja) * 2010-06-16 2012-08-29 Thk株式会社 リニアモータ
JP5509049B2 (ja) * 2010-11-30 2014-06-04 Thk株式会社 磁気エンコーダ、アクチュエータ
US20130033125A1 (en) * 2011-08-03 2013-02-07 Kabushiki Kaisha Yaskawa Denki Linear motor armature and linear motor
JP5418558B2 (ja) * 2011-08-23 2014-02-19 株式会社安川電機 リニアモータの固定子およびリニアモータ
JP6156716B2 (ja) * 2012-08-21 2017-07-05 シンフォニアテクノロジー株式会社 搬送装置
CN105006940A (zh) * 2015-07-22 2015-10-28 北京顿一科技有限公司 直线运动线性模组及应用该模组的位置控制伺服系统
WO2018003062A1 (ja) * 2016-06-30 2018-01-04 ヤマハ発動機株式会社 リニアモータ、ヘッドユニット、表面実装機および単軸ロボット
ES2883248T3 (es) * 2016-11-11 2021-12-07 Agie Charmilles Sa Motor de eje lineal
US10381958B2 (en) * 2017-09-28 2019-08-13 Rockwell Automation Technologies, Inc. Method and apparatus for commutation of drive coils in a linear drive system with independent movers
DE102017130724A1 (de) * 2017-12-20 2019-06-27 Physik Instrumente (Pi) Gmbh & Co. Kg Elektromotor
WO2019126727A1 (en) * 2017-12-22 2019-06-27 Mcdonald Harley C Variable torque linear motor/generator/transmission
CN112187008B (zh) * 2020-08-28 2022-03-29 瑞声科技(南京)有限公司 气隙可调直线电机
CN115967309B (zh) * 2022-12-16 2024-10-01 哈尔滨工业大学 一种基于独立绕组结构的动磁式多相永磁同步直线电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270670A (ja) * 1990-03-16 1991-12-02 Hitachi Metals Ltd リニアモータ
JPH0799767A (ja) * 1993-09-24 1995-04-11 Moriyama Kogyo Kk リニアモータ
JP2002374665A (ja) * 2001-06-14 2002-12-26 Yaskawa Electric Corp リニアモータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110339C2 (de) * 1981-03-17 1984-09-27 Thyssen Industrie Ag, 4300 Essen Verfahren zum Herstellen eines Blechpakets für einen Langstator-Linearmotor
JPH0788039A (ja) * 1993-09-24 1995-04-04 Moriyama Kogyo Kk リニアモータ
JPH08205514A (ja) 1995-01-26 1996-08-09 Fanuc Ltd リニア同期モータ
JP3796608B2 (ja) 1997-04-11 2006-07-12 株式会社安川電機 可動磁石形リニアモータ
JP2003070226A (ja) 2001-08-23 2003-03-07 Shin Etsu Chem Co Ltd リニア同期モータ
JP3851265B2 (ja) * 2002-04-23 2006-11-29 三菱電機株式会社 リニアモータ
JP4259978B2 (ja) * 2003-03-25 2009-04-30 Thk株式会社 リニアモータアクチュエータ
JP3872055B2 (ja) * 2003-06-20 2007-01-24 三菱電機株式会社 リニアモータの電機子
US6949846B2 (en) * 2003-08-29 2005-09-27 Sanyo Denki Co., Ltd. Linear motor with reduced cogging force
EP1655824B1 (de) * 2004-11-08 2008-04-09 Etel S.A. Linearmotor mit Segmentstator
ITUD20040231A1 (it) * 2004-12-14 2005-03-14 Gisulfo Baccini Motore lineare

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270670A (ja) * 1990-03-16 1991-12-02 Hitachi Metals Ltd リニアモータ
JPH0799767A (ja) * 1993-09-24 1995-04-11 Moriyama Kogyo Kk リニアモータ
JP2002374665A (ja) * 2001-06-14 2002-12-26 Yaskawa Electric Corp リニアモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379599B2 (en) 2012-03-29 2016-06-28 Sanyo Denki Co., Ltd. Tubular linear motor
EP2645551A3 (en) * 2012-03-29 2017-10-18 Sanyo Denki Co., Ltd. Tubular linear motor
CN106516620A (zh) * 2016-12-26 2017-03-22 贵阳普天物流技术有限公司 一种环形分拣机的驱动方法及装置

Also Published As

Publication number Publication date
US7888827B2 (en) 2011-02-15
JP4993609B2 (ja) 2012-08-08
CN101278467A (zh) 2008-10-01
JPWO2007040009A1 (ja) 2009-04-16
DE112006002589T5 (de) 2008-08-14
US20090127939A1 (en) 2009-05-21
CN101278467B (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4993609B2 (ja) リニア同期モータ及びリニアモータアクチュエータ
EP1615322B1 (en) Linear motor actuator
KR100443590B1 (ko) 리니어모터 및 그 제조방법
US8067862B2 (en) Linear motor actuator
EP1198055B1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
US20060012252A1 (en) Linear motor for use in machine tool
JP2008515376A (ja) 多角形状の電気機械
KR100834485B1 (ko) 리니어 모터 및 이것을 구동원으로 하는 구동 장치
JP2009219199A (ja) リニアモータ
JP4556229B2 (ja) コアレスリニアモータ
US20070057579A1 (en) Moving magnet type linear actuator
JP2001211630A (ja) リニアスライダ
US10734879B2 (en) Cornering linear motor
JP2015104200A (ja) リニアモータ
JP4390464B2 (ja) リニアモータアクチュエータ
JP2002096233A (ja) リニアスライダ
JP2005117831A (ja) 可動磁石形リニアアクチュエータ
JP2006034016A (ja) 工作機械用リニアモータ
JP2007209175A (ja) 三相リニアモータ
JP2007209176A (ja) 三相リニアモータ
JPH08275494A (ja) リニアモータ
JP2005176506A (ja) リニアモータ
JP2005057822A (ja) リニアモータ
JP2006034014A (ja) 工作機械用リニアモータ
JP2006034015A (ja) 工作機械用リニアモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036187.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538671

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120060025899

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002589

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06797426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12088829

Country of ref document: US