WO2007037184A1 - 太陽電池用電極線材の製造方法 - Google Patents

太陽電池用電極線材の製造方法 Download PDF

Info

Publication number
WO2007037184A1
WO2007037184A1 PCT/JP2006/318908 JP2006318908W WO2007037184A1 WO 2007037184 A1 WO2007037184 A1 WO 2007037184A1 JP 2006318908 W JP2006318908 W JP 2006318908W WO 2007037184 A1 WO2007037184 A1 WO 2007037184A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
electrode wire
molten solder
core
layer
Prior art date
Application number
PCT/JP2006/318908
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Shiomi
Makoto Okada
Masaaki Ishio
Original Assignee
Neomax Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co., Ltd. filed Critical Neomax Materials Co., Ltd.
Priority to JP2007537595A priority Critical patent/JP5036545B2/ja
Publication of WO2007037184A1 publication Critical patent/WO2007037184A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing an electrode wire used as a connecting lead wire for a solar cell.
  • a solar cell includes a semiconductor substrate 11 formed of a silicon semiconductor having a PN junction and a plurality of linear surface electrodes provided in parallel to the surface of the semiconductor substrate 11.
  • a pole 12 and a connecting lead wire 13 connected to the plurality of surface electrodes 12 are provided.
  • the connecting lead wire 13 is soldered to a solder band formed to adhere to the plurality of surface electrodes 12.
  • a plurality of solar cells are connected in series to obtain a desired electromotive force.
  • one surface (lower surface) of the connecting lead wire is soldered to the surface electrode of one solar cell, and the other surface (upper surface) is a back surface having a relatively large area adjacent to the solar cell. This is done by soldering to the electrodes.
  • the electrode wire used as the connecting lead wire 13 is formed of a crushed copper wire that is rolled from a round cross-section copper wire formed of tough pitch copper and crushed into a strip shape. And a molten solder adhesive layer laminated on its surface.
  • the molten soldering layer is formed by melting and soldering the crushed copper wire. Molten soldering is performed by cleaning the surface of the crushed copper wire by pickling or the like and then passing the crushed copper wire through a molten solder bath.
  • the heating temperature is strictly controlled to a low temperature near the melting point of the solder material.
  • the coefficient of thermal expansion is different between copper forming the core of the electrode wire and a semiconductor material forming the semiconductor substrate, for example, silicon. That is, the electrode wire is soldered at a low temperature so as to minimize the thermal stress that causes cracks in the expensive semiconductor substrate.
  • the semiconductor substrate having a thickness of about 300 m has been used.
  • the conventional electrode wire with the crushed conductor as the core material has a problem that cracks are likely to occur in the semiconductor substrate during soldering.
  • a conductive material having a small difference in thermal expansion from the semiconductor substrate material has been used as a core material.
  • an invar typically composition: Fe-36% Ni
  • a clad material in which copper layers are laminated and integrated on both sides of the formed intermediate layer can be mentioned.
  • Kovar registered trademark of Fe—Ni—Co alloy may be used as the low thermal expansion alloy forming the intermediate layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 60-15937
  • the electrode wire (which may be referred to as "clad electrode wire") having the clad material disclosed in Patent Document 1 as a core material can reduce the thermal stress generated in the semiconductor substrate. Since the intermediate layer is formed by an alloy material such as Fe-Ni alloy or Fe-Ni-Co alloy having a relatively high volume resistivity, the average electrical resistance is high and the power generation efficiency of the solar cell is low. There is a problem of lowering.
  • the present inventors have found that when the electrode wire is soldered to the semiconductor substrate, the electrode wire is easily plastically deformed by the thermal stress generated in the substrate during the solidification process of the molten solder.
  • an electrode wire that prevents and suppresses damage to the semiconductor substrate.
  • a strip-like core material of an electrode wire was formed of a metal material or a clad material having a volume resistivity of 2.3 ⁇ 'cm or less and a proof stress of 19.6 MPa or more and 85 MPa or less. Is.
  • the present invention has been made in view of the problem, and solders an electrode wire to a semiconductor substrate.
  • a method of manufacturing an electrode wire for a solar cell that can be easily plastically deformed by a thermal stress generated in the semiconductor substrate and prevent the semiconductor substrate from being damaged due to the thermal stress generated in the semiconductor substrate. It is an object to provide a method that can be easily manufactured without providing a process.
  • the method for producing a solar cell electrode wire according to the present invention includes a core material processing step of processing a core material to produce a strip-shaped core material, and a molten solder for the core material processed into a strip shape. It has a molten soldering step in which it is immersed in a bath and pulled up to form a molten soldering layer on the surface of the core material.
  • the core material is made of pure copper, a Cu alloy containing Cu as a main component, pure silver, or an Ag alloy containing Ag as a main component.
  • a molten solder bath having a bath temperature of 250 ° C or higher and 380 ° C or lower is used, and the immersion time of the core material is set to a bath temperature of 250 ° C or higher and 280 ° C. If the temperature is less than 6 to 10 seconds, set the bath temperature to 280 ° C or higher and 350 ° C or lower to 3 to 10 seconds. If the bath temperature is higher than 350 ° C and lower than 380 ° C, set to 3 to 5 seconds.
  • the pure copper is preferably oxygen-free pure copper having an oxygen content of 20 ppm or less.
  • the core material and the electrode wire material are not limited to the length of the core material and the electrode wire material, but are not limited to the long core material (primary core material) or the electrode wire material (primary electrode wire material).
  • a core material (secondary core material) or an electrode wire material (secondary electrode wire material) cut to a length of 5 mm is included.
  • a high-temperature molten solder bath having a bath temperature of 250 ° C or higher and 380 ° C or lower is used, and the core material is subjected to the immersion time according to the bath temperature. Therefore, the molten solder force that is in direct contact with the core material is quickly transmitted to the core material, and the heating action by the molten solder can be effectively utilized. As a result, the melting soldering process itself applied to the core material can have the role of softening annealing. For this reason, even if the soft annealing process for the core material or the core material before the plating process is omitted, the proof stress of the core material after the plating process can be 85 MPa or less.
  • the predetermined material force that forms the core material can also have a volume resistivity of 2.3 ⁇ 'cm or less. Therefore, the solar cell electrode wire manufactured according to the present invention reduces the thermal stress generated in the semiconductor substrate by being plastically deformed by the thermal stress generated in the semiconductor substrate during the solder solidification process when soldering to the semiconductor substrate. Or can be resolved. For this reason, the semiconductor substrate Cracks are unlikely to occur on the plate.
  • the volume resistivity is 2.3 ⁇ 'cm or less, it has excellent conductivity and excellent power generation efficiency.
  • the core material processing step may be a step of using a plate-like clad material as a core material and slitting it to produce a strip-like core material.
  • the clad material is an intermediate layer formed of pure aluminum or an A1 alloy containing A1 as a main component, and pure copper laminated on both sides thereof, or formed of a Cu alloy containing Cu as a main component. Those having a first surface layer and a second surface layer are used.
  • the pure copper oxygen-free pure copper having an oxygen content of 20 ppm or less is preferable.
  • the first and second surface layers are made of the same material and have the same thickness. Thereby, thermal deformation of the electrode wire can be prevented during soldering, and soldering workability can be further improved.
  • the intermediate layer is preferably 10% or more and 50% or less with respect to the total thickness of the clad material. If it is less than 10%, it is difficult to ensure the yield strength, and if it exceeds 50%, it is difficult to ensure the volume resistivity.
  • the core material is immersed for a predetermined time in accordance with the temperature of the molten solder, so that the molten solder force that is in direct contact with the core material This heat can be quickly transferred to the core material, and the heating action of the molten solder can be used effectively.
  • the fusion soldering process itself applied to the core material has the effect of softening annealing, and even if the softening annealing before the plating process is omitted, the proof stress of the core material after the plating process is reduced. It can be lowered sufficiently.
  • FIG. 1 is a cross-sectional view of a first embodiment (single-layer electrode wire) of an electrode wire manufactured according to the present invention.
  • FIG. 2 is a cross-sectional view of a second embodiment (clad electrode wire) of an electrode wire manufactured according to the present invention.
  • FIG. 3 is a schematic perspective view of a solar cell provided with a connecting lead wire (electrode wire).
  • 5A, 5B copper layer (first surface layer, second surface layer)
  • FIG. 1 shows a single-layer electrode wire 1 according to the first embodiment.
  • a strip-shaped core material 2 and a molten solder adhesive layer 3A formed on the front and back surfaces of the core material 2 are laminated.
  • the core material 2 is made of a low resistance metal having a volume resistivity of 2.3 ⁇ ′ cm or less and a proof stress of 19.6 MPa or more and 85 MPa or less. Note that a force that unavoidably forms a molten soldered layer on the side surface of the core material 2 during the plating process is omitted in FIG. The same applies to the drawings showing other embodiments described later.
  • a copper material or a silver material having good conductivity and solderability can be used as the metal material forming the core material 2.
  • a copper material in addition to pure copper, a copper alloy containing Cu as a main component, for example, a Cu-Ni alloy, a Cu-Mn alloy or a Cu-Ag alloy containing 90 mass% or more, preferably 95 mass% or more.
  • a silver alloy containing Ag as a main component for example, an Ag—Cu alloy containing 90 mass% or more, preferably 95 mass% or more of Ag can be used as the silver material.
  • pure copper is preferred from the viewpoint of material costs.
  • oxygen-free pure copper with an oxygen content of 20 ppm or less, such as oxygen-free copper (OFHC) and vacuum-dissolved copper, is preferred.
  • Fig. 2 shows a clad electrode wire 1A according to the second embodiment.
  • a strip-shaped core material 2A formed of the clad material, and laminated on the front surface and the back surface of the core material 2A.
  • the resulting melt has a stubble layer 3A, 3B.
  • the core material 2A includes an intermediate layer 4 formed of an aluminum material, and a first surface layer 5A and a second surface layer 5B stacked on both surfaces of a copper material.
  • the core material 2A has an average volume resistivity of 2.3 ⁇ ′ cm or less and a proof stress of 1 9. Adjusted to 6MPa or more and 85MPa or less.
  • the aluminum material is preferably pure aluminum having an A1 content of about 99. Omass% or more, preferably 99.9 mass% or more, or an aluminum alloy having an A1 content of 98 mass% or more.
  • A1 alloy Ie JIS 1050, 1060, 1085, 1080, 1070, 1N99, 1N90 can be used.
  • the copper material in addition to pure copper, a copper alloy containing Cu as a main component, for example, Cu—Ni alloy, Cu—Mn alloy or Cu—Ag alloy containing 90 mass% or more, preferably 95 mass% or more of Cu. Can be used.
  • pure copper high purity is preferable, and oxygen-free pure copper with an oxygen content of 20 ppm or less is particularly preferable.
  • the thickness of the intermediate layer 4 is preferably set to 10% or more and 50% or less of the total thickness of the core material 2A. If it is less than 10%, the average yield strength of the clad material will exceed 85 MPa, while if it exceeds 50%, the average volume resistivity will exceed 2.3 ⁇ ⁇ cm. Further, it is preferable that the first and second surface layers 5A and 5B have the same thickness. By using the same thickness, it is possible to prevent the electrode wire from being thermally deformed during soldering.
  • the molten solder adhesive layers 3A and 3B are formed of a solder material having a melting point of about 130 to 300 ° C.
  • solder materials include Sn—Pb alloy, Sn— (0.5-5 mass%) Ag alloy, Sn— (0.5-5 mass%) Ag— (0.3-3. Omass%) Cu alloy, Sn— (0.3 to 1. Omass%) Cu alloy, Sn— (1.0 to 5. Omass%) Ag— (5 to 8 mass%) In alloy, Sn- (1.0 to 5. Omass%) Ag-(40-50mass%) Bi alloy, Sn- (40-50mass%) Bi alloy, Sn- (1.0-5. Omass%) Ag- (40-50mass%) Bi- (5- 8mass%) In alloy.
  • Pb is harmful to the human body and may pollute the natural environment.
  • Pb-free Sn-Ag alloys, Sn-Ag-Cu alloys, Sn-Cu alloys, Sn-Ag-In Solder materials such as alloys and Sn—Ag—Bi alloys are preferred.
  • P of about 50 to 200 ppm, Ga of several to several tens of ppm, Gd of several to several tens of ppm, and Ge of several to several tens of ppm are included. 1 type or 2 or more types can be added.
  • the core material 2 of the single-layer electrode wire 1 is formed by rolling a wire having a round cross-section into a flat surface on both sides. It is possible to use a manufactured strip or a strip produced by slitting a single-layer rolled sheet obtained by rolling a thick plate to reduce the thickness.
  • the total rolling reduction when rolling down from a wire having a round cross section (annealed material) to a strip-shaped core is usually 60% or more. This total reduction ratio is calculated assuming that a square cross-section with the same area as the cross-sectional area of the round wire is the original material before reduction.
  • the round cross-section wire is a single-layer rolled sheet !, and the misalignment also constitutes the core material of the single-layer electrode wire.
  • the wire having a round cross section When the wire having a round cross section is used as a core material, work hardening occurs in the core material when the core material is processed into the core material.
  • the core material when a single-layer rolled sheet is used as a core material, the core material itself is work-hardened, so the core material slit from now on is hardened.
  • the work hardening of the core material accompanying the slit is lighter than the work hardening of the material.
  • the core material of the clad electrode wire is manufactured by slitting a clad sheet having the same cross-sectional structure. Since the clad sheet is not softly annealed and is moderately work-hardened, the slit sheet is easily cut into a plurality of strip plates, that is, a core material without causing burrs.
  • the clad sheet constitutes a core material of the clad electrode wire.
  • the clad sheet is formed by laminating aluminum sheets (annealing material) and copper sheets (annealing material) constituting each layer, and the laminated material is cold or warm and pressed through a pair of reduction rolls. Can be easily manufactured. Furthermore, finish-rolling can be applied to the clad material that has been welded, and the plate thickness can be adjusted to achieve the target thickness of the core material (generally about 100 to 300 m).
  • the rolling reduction of the first rolling for pressing the laminated material is usually 60% or more, and the total rolling reduction from the laminated material to the clad material as the core material is usually 60% or more, preferably 75% or more, more preferably 85% or more.
  • the core material strength produced as described above that is, the core material (primary core material) is directly subjected to a molten solder staking process without being subjected to soft annealing.
  • An electrode wire (primary electrode wire) in which a molten soldering layer is formed on the core material by a molten soldering process is usually cut into a secondary electrode wire of an appropriate length, which is used for solar cells. Soldered to the semiconductor substrate.
  • the molten solder staking process also serves as a soft solder annealing, it is not necessary to provide a soft solder annealing process before the plating process.
  • the plating temperature that is, the temperature of the molten solder bath (bath temperature) is 250 ° C or higher and 380 ° C or lower, preferably 280 ° C or higher and 350 ° C or lower. Set to temperature.
  • the core material is immersed in the molten solder bath at a bath temperature of 250 ° C or higher, 280. Less than C 6-10 seconds, 280. C or higher, 350. Below C, 3-10 seconds, 350. Above C and below 380 ° C, 3 to 5 seconds.
  • the core material In each temperature range of the bath temperature, the core material is insufficiently softened if the lower limit of the immersion time is not reached, whereas if the upper limit of the immersion time is exceeded, Cu atoms or Ag atoms from the core surface to the plating bath Due to the diffusion of Cu, the amount of Cu and Ag dissolved in the molten solder in the plating bath increases. With such a fluctuating molten solder composition, the melting point of the solder rises and the soldering temperature to the semiconductor substrate rises accordingly. For this reason, the soldering workability of the electrode wire is deteriorated. Thus, when the amount of Cu or Ag in the molten solder increases, it becomes necessary to adjust the composition, and stable operation becomes difficult.
  • the bath temperature is higher than 380 ° C, the diffusion of Cu atoms becomes remarkable, and the composition variation of the molten solder becomes remarkable.
  • a Cu-A1 intermetallic compound is formed between the intermediate layer and the surface layer, resulting in a decrease in bonding strength and delamination. It tends to occur.
  • the bath temperature is set to about 30 to 40 ° C. higher than the melting point of the solder alloy, and the immersion time is In order to suppress diffusion from the covering material as much as possible, it is limited to about 1 second or less. For this reason, the immersion time according to the above embodiment is sufficiently longer than the normal immersion time.
  • clad materials having a plate thickness of 160 ⁇ m having intermediate layers of various thicknesses were manufactured.
  • the clad material is oxygen-free on both sides of the intermediate layer material made of aluminum plate (material ⁇ JIS 1N90, Al: 99.90 mass%, annealed material) or invar plate (Fe-36.5 mass% Ni, annealed material).
  • Table 1 shows the total reduction ratio from the laminated material to the cladding material, and the ratio of the thickness of the intermediate layer to the total thickness.
  • a copper single layer material (copper sheet) having a thickness of 160 m was manufactured by rolling the oxygen-free copper plate (thickness 2 mm) at a total reduction ratio of 22%.
  • Each of the above clad materials and Cu single layer material constitute the core material.
  • each clad material and Cu single layer material is slit to produce a strip-shaped primary core material having a width of 2 mm, and the primary core material is cut to form a plurality of core materials having a length of 150 mm ( Secondary core material).
  • the molten solder plating bath (solder composition: Sn-3.5 mass% Ag, melting point: 220 ° C, bath temperature: 320 ° C) After being immersed for 5 seconds, it was quickly pulled up to form a molten solder adhesion layer on the surface of the core material.
  • the thickness of the molten solder layer of the electrode wire manufactured in this way was about 40 m on average per one side of the core material.
  • each electrode wire member the molten solder adhesive layer adhering to the core material is dissolved and removed by mechanical treatment, and the core material after the removal is used in the length direction by the method specified in JISZ2241.
  • a tensile test was performed to measure the resistance to mosquito.
  • the volume resistivity of the core material was measured by the method specified in JISH0505. The measurement results are also shown in Table 1.
  • Table 1 an electrode wire with the same core material was taken as one sample, and a single sample number was assigned to each sample, and each sample was distinguished by the sample number.
  • the electrode wire material of each sample is brought into contact with the band of the solar cell silicon substrate (thickness: 200 m) and held at 260 ° C for 1 minute, whereby the electrode wire material is placed on the substrate. I've got a sticker.
  • the solder band is formed on the surface of the substrate so as to cut a plurality of surface electrodes formed on the silicon substrate. After soldering, the silicon substrate was checked for cracks. The results are also shown in Table 1.
  • the electrode wire materials (Sample Nos. 1, 2, and 4) used in the examples are single layer type and clad type, the proof stress of the core material is 3 ⁇ 45 MPa or less. Even with the thin silicon substrate of m, no cracks were generated. On the other hand, the volume resistivity was lower than that of the clad electrode wire (sample No. 5) of the comparative example in which the intermediate layer was formed of invar, and it was confirmed that the volume resistivity had good conductivity.
  • a clad material with a final thickness of 200 m was manufactured.
  • the clad material was manufactured by overlaying the copper plate on both sides of the aluminum plate, pressing the overlapped material at a rolling reduction of 65 to 75%, and then finish rolling the press contact material. The total rolling reduction of the laminated material to the clad material is 92%.
  • a copper single layer material (copper sheet) having a thickness of 200 m was manufactured by rolling an oxygen-free copper plate (thickness 2.5 mm). Thereafter, the clad material and the Cu single layer material were slit to produce a strip-shaped primary core material having a width of 2 mm.
  • Each of the clad material and the Cu single layer material constitutes a core material.
  • each primary core material After cleaning the surface of each primary core material with acetone, it is immersed in a molten soldering bath (solder composition: Sn—3.5 mass% Ag, melting point: 220 ° C, capacity 20 kg). Then, it was quickly pulled up to form a molten solder adhesion layer on the surface of the primary core material.
  • Table 2 shows the molten soldering conditions (bath temperature, immersion time). During the plating process, changes in solder composition per 6000 m of the primary core material were examined. When the Cu concentration of the molten solder in the plating bath is 3% or less, there is no substantial difference in the melting point of the solder material. Therefore, the case where the Cu concentration in the solder composition is 3% or less is within the acceptance criteria. It was determined.
  • each primary core material was cut to produce a plurality of core materials (secondary core materials) having a length of 150 mm, and performing soldering under the plating conditions shown in Table 2, An electrode wire was produced. Then, in the same manner as in Example 1, each electrode wire member was also examined for the proof stress of the core member after the molten solder adhesion layer was removed. In addition, each electrode wire was soldered to a solar cell silicon substrate (thickness 200 m), and it was examined whether or not cracks occurred in the silicon substrate after soldering. . The results of these surveys are also shown in Table 2. In Table 2, an electrode wire with the same core material and bonding condition was taken as one sample, and a single sample number was assigned to each sample, and each sample was distinguished by the sample number.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Coating With Molten Metal (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

[課題]半導体基板に生じる熱応力により容易に塑性変形して、熱応力に起因する損傷を防止できる太陽電池用電極線材を軟化焼鈍工程を設けることなく、容易に製造することができる太陽電池用電極線材の製造方法を提供する。 [解決手段]本発明の電極線材の製造方法は、芯材素材を加工して帯板状の芯材(2)を製作する芯材加工工程と、前記芯材(2)を溶融はんだ浴に浸漬し、引き上げて前記芯材(2)の表面に溶融はんだめっき層(3A),(3B)を形成する溶融はんだめっき工程を備える。前記溶融はんだめっき工程において、溶融はんだ浴の浴温を250°C以上,380°C以下とし、前記芯材の浸漬時間を浴温250°C以上,280°C未満の場合に6~10秒とし、浴温280°C以上,350°C以下の場合に3~10秒とし、あるいは浴温350°C超,380°C以下の場合に3~5秒とする。

Description

明 細 書
太陽電池用電極線材の製造方法
技術分野
[0001] 本発明は、太陽電池の接続用リード線として用いられる電極線材の製造方法に関 する。
背景技術
[0002] 太陽電池は、図 3に示すように、 PN接合を有するシリコン半導体で形成された半導 体基板 11と、前記半導体基板 11の表面に平行に設けられた複数の線状の表面電 極 12と、前記複数の表面電極 12に接続された接続用リード線 13を備えている。前 記接続用リード線 13は、前記複数の表面電極 12に交叉するように付着形成された はんだ帯にはんだ付けされている。通常、所望の起電力を得るために複数の太陽電 池は直列に接続して使用される。太陽電池の直列接続は一の太陽電池の表面電極 に接続用リード線の一方の表面(下面)をはんだ付けし、他方の表面(上面)を隣接 する太陽電池の、比較的大きな領域を有する裏面電極にはんだ付けすることによつ てなされる。
[0003] 従来、前記接続用リード線 13として用いられている電極線材は、タフピッチ銅で形 成された丸形断面の銅線が圧延されて帯板状に潰された潰し銅線で形成された芯 材と、その表面に積層された溶融はんだめつき層を備える。前記溶融はんだめつき 層は、前記潰し銅線を溶融はんだめつきすることによって形成される。溶融はんだめ つきは、潰し銅線の表面を酸洗等により清浄ィ匕した後、その潰し銅線を溶融はんだ浴 に通すことによって実施される。
[0004] 前記電極線材を半導体基板にはんだ付けするに際し、加熱温度ははんだ材の融 点近傍の低温に厳格に制御される。その理由は、電極線材の芯材を形成する銅と半 導体基板を形成する半導体材料、例えばシリコンとの熱膨張率が相違するためであ る。すなわち、高価な半導体基板にクラックを発生させる原因となる熱応力をできるだ け小さくするように電極線材は低温ではんだ付けされる。
[0005] 前記半導体基板は、従来、その厚さが 300 m程度のものが用いられてきた力 近 年、コスト低減のため、薄肉化する傾向にあり、最近では 250 /z m程度のものが用い られるようになってきた。このため、従来の潰し導線を芯材とした電極線材では、はん だ付けの際に半導体基板にクラックが発生し易いという問題があった。このようなクラ ックを防止するため、近年では半導体基板材料との熱膨張差の小さい導電性材料を 芯材として用いるようになつてきた。このような材料としては、例えば特開昭 60— 159 37号公報 (特許文献 1)に記載されているように、 Fe、 Niの合金であるインバー(代表 的組成: Fe - 36%Ni)で形成された中間層の両面に銅層を積層一体ィ匕したクラッド 材を挙げることができる。前記中間層を形成する低熱膨張合金として、前記インバー のほか、 Fe— Ni— Co合金のコバール (登録商標)が用いられる場合もある。
特許文献 1:特開昭 60— 15937号公報
発明の開示
発明が解決しょうとする課題
[0006] 前記特許文献 1に開示のクラッド材を芯材とする電極線材 (「クラッド電極線材」と呼 ぶことがある。)は、なるほど半導体基板に生じる熱応力を軽減することができるもの の、体積抵抗率が比較的高い Fe— Ni合金や Fe— Ni— Co合金などの合金材によつ て中間層が形成されるため、平均の電気抵抗が高くなり、太陽電池の発電効率が低 下するという問題がある。
[0007] そこで、本発明者らは、半導体基板に電極線材をはんだ付けする際に、溶融はん だの凝固過程で基板に生じた熱応力により電極線材が容易に塑性変形することによ つて半導体基板の損傷を防止、抑制した電極線材を考案した。この電極線材は、電 極線材の帯板状の芯材を体積抵抗率が 2. 3 μ Ω ' cm以下で、かつ耐力が 19. 6M Pa以上、 85MPa以下の金属材あるいはクラッド材で形成したものである。
[0008] このような電極線材を製造する場合、芯材を製作する過程で芯材に加工硬化が生 じる。このため、芯材をカ卩ェする前の芯材素材あるいは芯材素材から帯板状にカロェ した芯材をトンネル炉などの加熱炉によって十分に軟ィヒ焼鈍することが必要と考えら れていた。しかし、このような軟ィ匕焼鈍工程を含む製造工程では、生産性に劣り、ま た製造コスト高を招来するという問題がある。
[0009] 本発明はカゝかる問題に鑑みなされたもので、半導体基板に電極線材をはんだ付け する際に、半導体基板に生じる熱応力により容易に塑性変形して、半導体基板に生 じた熱応力に起因する半導体基板の損傷を防止できる太陽電池用電極線材の製造 方法であって、軟化焼鈍工程を設けることなく容易に製造することができる方法を提 供することを目的とする。
課題を解決するための手段
[0010] 本発明の太陽電池用電極線材の製造方法は、芯材素材を加工して帯板状の芯材 を製作する芯材加工工程と、帯板状に加工された芯材を溶融はんだ浴に浸漬し、引 き上げて前記芯材の表面に溶融はんだめつき層を形成する溶融はんだめつき工程 を有する。前記芯材素材は、純銅あるいは Cuを主成分とする Cu合金又は純銀ある いは Agを主成分とする Ag合金で形成される。また、前記溶融はんだめつき工程にお いて、浴温が 250°C以上, 380°C以下の溶融はんだ浴を用い、前記芯材の浸漬時 間を浴温 250°C以上, 280°C未満の場合に 6〜10秒とし、浴温 280°C以上, 350°C 以下の場合に 3〜 10秒とし、浴温 350°C超, 380°C以下の場合に 3〜5秒とする。前 記純銅としては、酸素が 20ppm以下の無酸素純銅が好ましい。本発明において、前 記芯材及び電極線材は、その長さの長短を問わず、長さの長い芯材 (一次芯材)あ るいは電極線材 (一次電極線材)のみならず、それ力 適宜の長さに切断した芯材( 二次芯材)あるいは電極線材(二次電極線材)を含むものである。
[0011] 本発明の製造方法によれば、浴温が 250°C以上, 380°C以下の高温の溶融はん だ浴を用い、芯材の浸漬時間を浴温に応じて芯材の耐力が十分低下するように設定 するので、芯材に直接接触した溶融はんだ力 その熱が芯材に速やかに伝達し、溶 融はんだによる加熱作用を効果的に利用することができる。その結果、芯材に対して 施される溶融はんだめつき処理自体に軟化焼鈍の役目を持たせることができる。この ため、芯材素材あるいはめっき処理前の芯材に対する軟ィヒ焼鈍工程を省略しても、 めっき処理後の芯材の耐力を 85MPa以下とすることができる。もちろん、芯材を形成 する所定の材料力もその体積抵抗率を 2. 3 μ Ω ' cm以下とすることができる。従って 、本発明により製造された太陽電池用電極線材は、半導体基板にはんだ付けする際 に、はんだの凝固過程で半導体基板に生じた熱応力により自ら塑性変形して半導体 基板に生じる熱応力を軽減し、あるいは解消することができる。このため、半導体基 板にクラックが生じ難い。また、体積抵抗率が 2. 3 μ Ω ' cm以下なので、導電性に優 れ、発電効率にも優れる。
[0012] また、前記芯材加工工程は、芯材素材として板状のクラッド材を用い、これをスリット して帯板状の芯材を製作する工程とすることができる。この場合、前記クラッド材とし ては、純アルミニウムあるいは A1を主成分とする A1合金で形成された中間層と、その 両面に積層された純銅ある 、は Cuを主成分とする Cu合金で形成された第 1表面層 および第 2表面層を備えたものが用いられる。前記純銅としては、酸素が 20ppm以 下の無酸素純銅が好まし 、。
[0013] 上記クラッド材を芯材素材として用いる場合、前記第 1、第 2表面層を同一材料で、 同一厚さに形成しておくことが好ましい。これにより、はんだ付けの際に電極線材の 熱変形を防止することができ、はんだ付け作業性をより向上させることができる。また 、前記中間層はクラッド材の全体厚さに対して 10%以上、 50%以下とすることが好ま しい。 10%未満では前記耐力の確保が難しくなり、 50%を超えると前記体積抵抗率 の確保が難しくなる。
[0014] 上記のとおり、本発明の太陽電池用電極線材の製造方法によれば、芯材を溶融は んだの温度に応じて所定時間浸漬するので、芯材に直接接触した溶融はんだ力 そ の熱が芯材に速やかに伝達し、溶融はんだによる加熱作用を効果的に利用すること ができる。その結果、芯材に対して施される溶融はんだめつき処理自体が軟化焼鈍 の作用を奏するようになり、めっき処理前の軟化焼鈍を省略しても、めっき処理後の 芯材の耐力を十分に低下させることができる。
図面の簡単な説明
[0015] [図 1]本発明によって製造される電極線材の第 1実施形態 (単層電極線材)の横断面 図である。
[図 2]本発明によって製造される電極線材の第 2実施形態 (クラッド電極線材)の横断 面図である。
[図 3]接続用リード線 (電極線材)を備えた太陽電池の概略斜視図である。
符号の説明
[0016] 1 , 1A 電極謝 2, 2A 芯材
3 A, 3B 溶融はんだめつき層
4 中間層
5A, 5B 銅層(第 1表面層、第 2表面層)
発明を実施するための最良の形態
[0017] 先ず、図面を参照して、本発明の製造方法により製造される電極線材の実施形態 について説明する。
図 1は、第 1実施形態に係る単層電極線材 1を示しており、帯板状の芯材 2と、この 芯材 2の表面および裏面に積層形成された溶融はんだめつき層 3A, 3Bを有してい る。前記芯材 2は体積抵抗率が 2. 3 μ Ω ' cm以下で、かつ耐力が 19. 6MPa以上、 85MPa以下の低耐カ金属で形成されている。なお、前記芯材 2の側面にも溶融は んだめつき層がめっき処理の際に不可避的に形成される力 図 1では記載省略され て 、る。後述の他の実施形態を示す図にお 、て同様である。
[0018] 前記芯材 2を形成する金属材としては、導電性、はんだ付け性の良好な銅材、銀材 を用いることができる。具体的には、銅材としては、純銅のほか、 Cuを主成分とする 銅合金、例えば 90mass%以上、好ましくは 95mass%以上含有する Cu— Ni合金、 C u— Mn合金や Cu— Ag合金を用いることができる。また、銀材としては、純銀のほか 、 Agを主成分とする Ag合金、例えば Agを 90mass%以上、好ましくは 95mass%以上 含有する Ag— Cu合金を用いることができる。特に、材料コストの点からは、純銅が好 ましい。銅の純度は高いほどよぐ 99. 9mass%以上、あるいはそれ以上のものが好 ましい。不純物の内、酸素は微量で耐カを高める作用を有するため、少ないほど好 ましぐ無酸素銅 (OFHC)や真空溶解銅などの酸素含有量が 20ppm以下の無酸素 純銅が好適である。
[0019] 図 2は第 2実施形態にカゝかるクラッド電極線材 1Aを示しており、クラッド材で形成さ れた帯板状の芯材 2Aと、この芯材 2Aの表面および裏面に積層形成された溶融は んだめつき層 3A, 3Bを有している。前記芯材 2Aはアルミニウム材で形成された中間 層 4と、その両面に銅材で積層形成された第 1表面層 5A、第 2表面層 5Bを備えてい る。前記芯材 2Aは、平均値として体積抵抗率が 2. 3 μ Ω ' cm以下で、かつ耐力が 1 9. 6MPa以上、 85MPa以下に調整されている。
[0020] 前記アルミニウム材としては、 A1含有量が 99. Omass%程度以上、好ましくは 99. 9 mass%以上の純アルミニウムあるいは A1含有量が 98mass%以上のアルミニウム合金 力 S好まし ヽ。前記 A1合金としては、伊え ¾JIS 1050, 1060, 1085, 1080, 1070 , 1N99, 1N90を用いることができる。一方、前記銅材としては、純銅のほか、 Cuを 主成分とする銅合金、例えば Cuを 90mass%以上、好ましくは 95mass%以上含有す る Cu— Ni合金、 Cu— Mn合金や Cu— Ag合金を用いることができる。純銅について は、純度の高いものが好ましぐ特に酸素含有量が 20ppm以下の無酸素純銅が好 適である。
[0021] 前記中間層 4の厚さは、芯材 2Aの全体の厚さの 10%以上、 50%以下に設定する ことが好ましい。 10%未満ではクラッド材の平均の耐力が 85MPaを超えるようになり 、一方 50%を超えると平均の体積抵抗率が 2. 3 μ Ω · cmを超えるようになるからであ る。また、第 1 ,第 2表面層 5A, 5Bの厚さは同厚とすることが好ましい。同厚にするこ とで、はんだ付けの際に電極線材が熱変形するのを防止することができる。
[0022] 前記溶融はんだめつき層 3A, 3Bは、融点が 130〜300°C程度のはんだ材によつ て形成される。このようなはんだ材としては、例えば Sn— Pb合金、 Sn— (0. 5〜5ma ss%) Ag合金、 Sn— (0. 5〜5mass%) Ag— (0. 3〜1. Omass%) Cu合金、 Sn— (0 . 3〜1. Omass%) Cu合金、 Sn— ( 1. 0〜5. Omass%) Ag— (5〜8mass%) In合金 、 Sn- ( 1. 0〜5. Omass%) Ag - (40〜50mass%) Bi合金、 Sn— (40〜50mass% ) Bi合金、 Sn— ( 1. 0〜5. Omass%) Ag - (40〜50mass%) Bi— (5〜8mass%) In 合金を挙げることができる。 Pbは人体に有害であり、自然環境を汚染するおそれがあ るので、汚染防止の観点からは Pbフリーの Sn— Ag合金、 Sn— Ag— Cu合金、 Sn— Cu合金、 Sn— Ag— In合金、 Sn—Ag— Bi合金などのはんだ材が好ましい。また、 前記各はんだ材において、溶融はんだの酸ィ匕防止のため、 50〜200ppm程度の P 、数〜数十 ppmの Ga、数〜数十 ppmの Gd、数〜数十 ppmの Geの内から 1種または 2種以上を添加することができる。
[0023] 次に、前記実施形態に力かる電極線材の製造方法について説明する。
前記単層電極線材 1の芯材 2は、丸形断面の線材を圧延して両面が平坦面に加工 された帯板材、あるいは厚板を圧延して板厚を薄くした単層圧延シートをスリットする ことにより製作された帯板材を用いることができる。丸形断面の線材 (焼鈍材)から帯 板状の芯材に圧下する場合の全圧下率は、通常、 60%以上である。この全圧下率 は、丸形線材の断面積と等しい面積の正方形断面材を圧下前の当初材と仮定して 計算される。前記丸形断面の線材ゃ単層圧延シートは!、ずれも単層電極線材の芯 材素材を構成する。前記丸形断面の線材を芯材素材とする場合、芯材素材を芯材 に加工する際に芯材に加工硬化が生じる。また、単層圧延シートを芯材素材とする 場合、芯材素材自体が加工硬化しているため、これからスリットされた芯材も加工硬 化している。スリットに伴う芯材の加工硬化は素材の加工硬化に比して軽微である。
[0024] 一方、前記クラッド電極線材の芯材は、同断面構造を有するクラッドシートをスリット すること〖こよって製作される。クラッドシートは、軟化焼鈍されておらず、適度に加工 硬化しているため、スリットによって、バリが生じることなぐ容易に複数の帯板材すな わち芯材に裁断される。前記クラッドシートは、クラッド電極線材の芯材素材を構成す る。
[0025] 前記クラッドシートは、各層を構成するアルミニウムシート (焼鈍材)、銅シート (焼鈍 材)を重ね合わせ、この重ね合わせ材を冷間あるいは温間にて一対の圧下ロールに 通して圧接することによって容易に製造することができる。さらに、圧接したクラッド材 に対して仕上圧延を施し、芯材の目標板厚 (一般的に 100〜300 m程度)になる ように板厚調整を行うことができる。前記重ね合わせ材を圧接するための最初の圧延 の圧下率は、通常、 60%以上とされ、重ね合わせ材から芯材素材となるクラッド材ま での全圧下率は通常 60%以上、好ましくは 75%以上、より好ましくは 85%以上とさ れる。
[0026] 上記のようにして芯材素材力 製作された帯板材すなわち芯材 (一次芯材)は、軟 化焼鈍を施すことなぐ直接、溶融はんだめつき処理に供される。溶融はんだめつき 処理により前記芯材に溶融はんだめつき層が形成された電極線材 (一次電極線材) は、通常、適宜の長さの二次電極線材に切断されて、これが太陽電池用の半導体基 板にはんだ付けされる。本発明では、溶融はんだめつき処理が軟ィ匕焼鈍を兼ねるの で、めっき処理前に軟ィ匕焼鈍工程を設ける必要はない。 [0027] 溶融はんだめつき処理において、めっき温度すなわち溶融はんだ浴の温度 (浴温) は、 250°C以上, 380°C以下、好ましくは 280°C以上, 350°C以下と従来より高い温 度に設定される。また、溶融はんだ浴への芯材の浸漬時間は、浴温が 250°C以上, 280。C未満では 6〜10秒、 280。C以上, 350。C以下では 3〜10秒、 350。C超, 380 °C以下では 3〜5秒とされる。浴温の各温度範囲において、その浸漬時間の下限未 満では芯材の軟化が不十分となり、一方、その浸漬時間の上限を超えると、芯材表 面からめっき浴への Cu原子や Ag原子の拡散により、めっき浴の溶融はんだ中に溶 け込んだ Cuや Agの量が増大する。このように変動した溶融はんだ組成では、はんだ の融点が上昇し、これに伴って半導体基板へのはんだ付け温度も上昇する。このた め電極線材のはんだ付け作業性が劣化する。このように溶融はんだ中の Cuや Agの 量が増大すると、その組成を調整する必要が生じて安定操業が困難になる。また、浴 温が 380°C超では、 Cu原子の拡散が顕著になり、溶融はんだの組成変動が著しくな る。また、クラッド材で形成された芯材の場合、 380°C超では、中間層と表面層との間 に Cu— A1金属間化合物が生成するようになり、接合強度が低下し、層間剥離が生じ やすくなる。ところで、溶融はんだめつき層の形成のみを目的とする、従来の溶融は んだめつき処理の場合、浴温ははんだ合金の融点より 30〜40°C程度高めに設定さ れ、浸漬時間は被めつき材からの拡散を可及的に抑制するため、 1秒程度以下に制 限される。このため、上記実施形態に係る浸漬時間は、通常の浸漬時間に比して十 分長いものである。
[0028] 以下、本発明の電極線材について実施例を挙げて具体的に説明するが、本発明 は力かる実施例によって限定的に解釈されるものではない。
実施例 1
[0029] 種々の厚さの中間層を有する、板厚 160 μ mの種々のクラッド材を製作した。前記 クラッド材は、アルミニウム板 (材^ JIS 1N90、 Al: 99. 90mass%、焼鈍材)あるい はインバー板 (Fe— 36. 5mass%Ni、焼鈍材)からなる中間層素材の両面に無酸素 銅板(Cu: 99. 97mass%、 0 : 15ppm、板厚 1. Omm、焼鈍材)からなる表面層素材 を重ね合わせ、その重ね合わせ材を圧下率 70%で圧接し、さらにその圧接材を圧 下率 50〜80%で仕上圧延することによって製作された。各クラッド材における重ね 合わせ材カゝらクラッド材に至る全圧下率、全体厚さに対する中間層の厚さの割合は 表 1に示すとおりである。一方、前記無酸素銅の銅板 (板厚 2mm)を全圧下率 22%で 圧延して、板厚 160 mの Cu単層材 (銅シート)を製作した。上記の各クラッド材及 び Cu単層材はそれぞれ芯材素材を構成するものである。
[0030] 次に、各クラッド材及び Cu単層材をそれぞれスリットし、幅 2mmの帯板状の一次芯 材を製作し、前記一次芯材を切断して長さ 150mmの複数の芯材 (二次芯材)を製作 した。
[0031] さらに、各芯材の表面をアセトンで清浄にした後、溶融はんだめつき浴(はんだ組成 : Sn- 3. 5mass%Ag、融点: 220°C、浴温: 320°C)に 5秒間浸漬した後、速やかに 引き上げて芯材の表面に溶融はんだめつき層を形成した。このようにして製作された 電極線材の溶融はんだ層の厚さは、芯材の片面あたり平均 40 m程度であった。
[0032] 各電極線材カも芯材に付着した溶融はんだめつき層をィ匕学的処理により溶解除去 し、その除去後の芯材を用いて、 JISZ2241に規定の方法により、長さ方向に引っ張 る引張試験を行い、耐カを測定した。また、 JISH0505に規定の方法により、芯材の 体積抵抗率を測定した。測定結果を表 1に併せて示す。表 1において、芯材素材が 同一の電極線材を一つの試料とし、これに一つの試料番号を付し、試料番号によつ て各試料を区別した。
[0033] また、各試料の電極線材をそれぞれ太陽電池用シリコン基板 (厚さ 200 m )のは んだ帯に当接させて、 260°Cで 1分間保持することにより、電極線材を前記基板には んだ付けした。前記はんだ帯は、シリコン基板に形成された複数の表面電極を縦断 するように基板の表面に付着形成されたものである。はんだ付け後、シリコン基板に クラックが発生したカゝ否かを調べた。その結果を表 1に併せて示す。
[0034] 表 1より、実施例にカゝかる電極線材 (試料 No. 1, 2, 4)は、単層タイプ、クラッドタイ プを問わず、芯材の耐力力 ¾5MPa以下であるため、 200 mの薄形シリコン基板で あってもクラックの発生は皆無であった。一方、体積抵抗率については、実施例のも のは、中間層をインバーで形成した比較例のクラッド電極線材 (試料 No. 5)よりも低く 、良好な導電性を有することが確認された。
[0035] [表 1] シリコン基板 心 材 中間層 全圧下率 芯材耐カ 体積抵抗率
試料 クラック発生
No.
構成 ·材質 厚さ比率 % MPa μ Ω · cm 無:〇、 有: X
*1 Cu/A l /Cu 20¾ 95 80 2. 0 〇
*2 Cu/A l/Cu 33¾ 90 76 2. 2 〇
3 Cu/A l /Cu 60¾ 85 64 2. 6 〇
*4 Cu単層材 ― 95 82 1. 8 〇
5 Cu/イン Λ' - /Cu 33¾ 93 1 35 2. 3 〇
(注) 試料 No. に *を付したものは実施例、 No. 3, 5は比較例 実施例 2
[0036] 上記実施例 1と同材質のアルミニウム板 (板厚 0. 5mm)、無酸素銅の銅板 (板厚 1.
Omm)を準備し、最終板厚が 200 mのクラッド材を製作した。前記クラッド材は、前 記アルミニウム板の両側に前記銅板を重ね合わせ、その重ね合わせ材を圧下率 65 〜75%で圧接し、さらにその圧接材を仕上圧延することによって製作された。重ね合 わせ材カもクラッド材に至る全圧下率は 92%である。一方、無酸素銅の銅板 (板厚 2 . 5mm)を圧延して、厚さ 200 mの Cu単層材 (銅シート)を製作した。その後、これ らのクラッド材及び Cu単層材をそれぞれスリットして幅 2mmの帯板状の一次芯材を製 作した。前記クラッド材及び Cu単層材はそれぞれ芯材素材を構成するものである。
[0037] 次に、各一次芯材の表面をアセトンで清浄にした後、溶融はんだめつき浴(はんだ 組成: Sn— 3. 5mass%Ag、融点: 220°C、容量 20kg)に浸漬して、速やかに引き上 げて一次芯材の表面に溶融はんだめつき層を形成した。溶融はんだめつき条件 (浴 温、浸漬時間)を表 2に示す。めっき処理に際しては、一次芯材 6000m当たりのはん だ組成の変化を調べた。めっき浴中の溶融はんだの Cu濃度が 3%以下では、はん だ材の融点に実質的に差が生じな 、ので、はんだ組成中の Cu濃度が 3%以下であ る場合を合格基準内と判定した。
[0038] 次に、各一次芯材を切断して長さ 150mmの複数の芯材(二次芯材)を製作し、表 2 に示しためっき条件で溶融はんだめつきを行うことによって、電極線材が製作された 。そして、実施例 1と同様にして、各電極線材カも溶融はんだめつき層を除去した後 の芯材の耐力を調べた。また、各電極線材を太陽電池用シリコン基板 (厚さ 200 m )にはんだ付けし、はんだ付け後のシリコン基板にクラックが発生したか否かを調べた 。これらの調査結果を表 2に併せて示す。表 2において、芯材素材及びめつき条件が 同一の電極線材を一つの試料とし、これに一つの試料番号を付し、試料番号によつ て各試料を区別した。
[0039] 表 2より、めっき条件力 浴温 280〜350°C、浸漬時間 3〜: L0秒の実施例 (試料 No.
8〜: L0, 14〜16, 24〜26)、あるいは浴温 380°Cで 3秒浸漬した実施例(試料 No. 11, 27)の電極線材は、単層タイプ、クラッドタイプを問わず、芯材の耐力力 ¾5MPa 以下に止まっており、 200 mの薄形シリコン基板であってもクラックの発生は認めら れな力つた。また、試料 No. 13は、めっき浴温が 250°Cと低い場合でも、浸漬時間が 10秒と長ければ、芯材の耐力が十分に低下することを示しており、シリコン基板にク ラックは生じな力 た。
[0040] [表 2]
た浴'皿 シリコン基板 芯材構成 ; ¾;頁時間 はんだ組成変化 芯材耐カ 備考 試料 度 クラック発生
No. 基準内:〇
。c sec MPa 無:〇、有:
基準外: X
1 クラッド材 250 2 〇 230 X 比較例
2 〃 280 2 0 220 X 〃
3 〃 320 2 〇 220 X 〃
4 350 2 〇 210 X 〃
5 380 2 〇 200 X 〃
6 〃 400 2 X 80 〇
7 250 3 〇 220 X
8 280 3 〇 83 〇 実施例
9 〃 320 3 〇 82 〇
10 〃 350 3 〇 82 〇
1 1 〃 380 3 〇 81 〇 〃
12 〃 400 3 X 80 o 比較例
13 〃 250 10 〇 82 0 実施例
14 〃 280 10 〇 81 〇 〃
15 〃 320 10 〇 80 〇
1 6 350 10 〇 78 〇 〃
1 7 380 10 X 76 〇 比較例
18 〃 250 12 X 82 〇
1 9 〃 280 12 X 80 〇 〃
20 〃 320 12 X 80 〇 〃
21 〃 350 12 X 78 〇
22 380 12 X 76 0 〃
23 Cu単層材 250 3 〇 220 X 〃
24 〃 280 3 〇 85 〇 実施例
25 〃 320 3 〇 84 〇
26 350 3 〇 84 〇 〃
27 380 3 〇 83 0 〃
28 400 3 X 82 〇 比較例

Claims

請求の範囲
[1] 芯材の表面に溶融はんだめつき層が被覆された太陽電池用電極線材の製造方法で あって、
芯材素材を加工して帯板状の芯材を製作する芯材加工工程と、帯板状に加工され た芯材を溶融はんだ浴に浸漬し、引き上げて前記芯材の表面に溶融はんだめつき 層を形成する溶融はんだめつき工程を備え、
前記芯材素材は、純銅あるいは Cuを主成分とする Cu合金又は純銀あるいは Agを 主成分とする Ag合金カゝらなり、
前記溶融はんだめつき工程において、溶融はんだ浴の浴温を 250°C以上, 380°C 以下とし、前記芯材の浸漬時間を浴温 250°C以上, 280°C未満の場合に 6〜: LO秒と し、浴温 280°C以上, 350°C以下の場合に 3〜10秒とし、浴温 350°C超, 380°C以 下の場合に 3〜5秒とする、太陽電池用電極線材の製造方法。
[2] 前記芯材素材は、酸素が 20ppm以下の無酸素純銅からなる、請求項 1に記載した 太陽電池用電極線材の製造方法。
[3] 芯材の表面に溶融はんだめつき層が被覆された太陽電池用電極線材の製造方法で あって、
芯材素材を加工して帯板状の芯材を製作する芯材加工工程と、帯板状に加工され た芯材を溶融はんだ浴に浸漬し、引き上げて前記芯材の表面に溶融はんだめつき 層を形成する溶融はんだめつき工程を備え、
前記芯材加工工程は、前記芯材素材として板状のクラッド材を用い、このクラッド材 をスリットして芯材を製造する工程カゝらなり、前記クラッド材は純 A1あるいは A1を主成 分とする A1合金で形成された中間層の両面に純 Cuある 、は Cuを主成分とする Cu 合金で形成された第 1表面層および第 2表面層が積層形成されたものであり、 前記溶融はんだめつき工程において、溶融はんだ浴の浴温を 250°C以上, 380°C 以下とし、前記芯材の浸漬時間を浴温 250°C以上, 280°C未満の場合に 6〜: LO秒と し、浴温 280°C以上, 350°C以下の場合に 3〜10秒とし、浴温 350°C超, 380°C以 下の場合に 3〜5秒とする、太陽電池用電極線材の製造方法。
[4] 前記第 1表面層および第 2表面層は、酸素が 20ppm以下の無酸素純銅からなる、請 求項 3に記載した太陽電池用電極線材の製造方法。
[5] 前記第 1表面層および第 2表面層は材質および厚さが等しい、請求項 3又は 4に記 載した太陽電池用電極線材の製造方法。
[6] 前記クラッド材は、その全体厚さに対して中間層厚さが 10%以上、 50%以下である
、請求項 3から 5のいずれ力 1項に記載した太陽電池用電極線材の製造方法。
PCT/JP2006/318908 2005-09-28 2006-09-25 太陽電池用電極線材の製造方法 WO2007037184A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537595A JP5036545B2 (ja) 2005-09-28 2006-09-25 太陽電池用電極線材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-281825 2005-09-28
JP2005281825 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037184A1 true WO2007037184A1 (ja) 2007-04-05

Family

ID=37899611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318908 WO2007037184A1 (ja) 2005-09-28 2006-09-25 太陽電池用電極線材の製造方法

Country Status (3)

Country Link
JP (1) JP5036545B2 (ja)
CN (1) CN100550432C (ja)
WO (1) WO2007037184A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016593A (ja) * 2007-07-05 2009-01-22 Neomax Material:Kk 太陽電池用電極線材、その基材および基材の製造方法
JP2010073445A (ja) * 2008-09-17 2010-04-02 Nippon Steel Corp 電気導体及びその製造方法並びに集電用インターコネクター
JP2010205792A (ja) * 2009-02-27 2010-09-16 Hitachi Cable Ltd 太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池
JP2010283138A (ja) * 2009-06-04 2010-12-16 Hitachi Cable Ltd 太陽電池用リード線及びその製造方法並びにそれを用いた太陽電池
JP2011091168A (ja) * 2009-10-21 2011-05-06 Hitachi Cable Fine Tech Ltd 太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池
JP2013039603A (ja) * 2011-08-17 2013-02-28 Hitachi Cable Ltd 溶融はんだめっき撚線の製造方法
WO2013187234A1 (ja) * 2012-06-13 2013-12-19 東洋鋼鈑株式会社 太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
CN106449831A (zh) * 2015-08-07 2017-02-22 Lg电子株式会社 太阳能电池面板
KR20230076427A (ko) * 2021-11-24 2023-05-31 주식회사 제이에이치머티리얼즈 블랙 버스바 및 그 제조방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242345A (ja) * 1986-04-14 1987-10-22 Hitachi Cable Ltd 半導体用高強度リ−ド線ならびにその製造方法
JPH02215008A (ja) * 1989-02-16 1990-08-28 Hitachi Cable Ltd 複合平角線の製造方法
JPH04116904A (ja) * 1990-09-07 1992-04-17 Sony Chem Corp コイル
JPH06208807A (ja) * 1993-01-12 1994-07-26 Furukawa Electric Co Ltd:The 電気電子機器用導体およびその製造方法
JPH0783083B2 (ja) * 1987-07-13 1995-09-06 株式会社日立製作所 金属ピンを有するセラミツク基板とその製造方法
JPH1121660A (ja) * 1997-07-03 1999-01-26 Hitachi Cable Ltd 太陽電池用接続線
JP2000113730A (ja) * 1998-10-05 2000-04-21 Totoku Electric Co Ltd 複合軽量化リボン線、絶縁複合軽量化リボン線およびこれらの製造方法
JP2003160851A (ja) * 2001-08-14 2003-06-06 Marjan Inc コーティング
JP2004204257A (ja) * 2002-12-24 2004-07-22 Hitachi Cable Ltd はんだめっき複合平角導体
JP2004204256A (ja) * 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
WO2004105141A1 (ja) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. 電極線材およびその線材によって形成された接続用リード線を備えた太陽電池
JP2005050780A (ja) * 2003-07-15 2005-02-24 Hitachi Cable Ltd 平角導体及びその製造方法並びにリード線
WO2005114751A1 (ja) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. 太陽電池用電極線材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204547A (ja) * 1983-05-10 1984-11-19 日立電線株式会社 アルミニウム−銅クラツド材
JP2973350B2 (ja) * 1994-06-14 1999-11-08 東京特殊電線株式会社 溶融めっき線の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242345A (ja) * 1986-04-14 1987-10-22 Hitachi Cable Ltd 半導体用高強度リ−ド線ならびにその製造方法
JPH0783083B2 (ja) * 1987-07-13 1995-09-06 株式会社日立製作所 金属ピンを有するセラミツク基板とその製造方法
JPH02215008A (ja) * 1989-02-16 1990-08-28 Hitachi Cable Ltd 複合平角線の製造方法
JPH04116904A (ja) * 1990-09-07 1992-04-17 Sony Chem Corp コイル
JPH06208807A (ja) * 1993-01-12 1994-07-26 Furukawa Electric Co Ltd:The 電気電子機器用導体およびその製造方法
JPH1121660A (ja) * 1997-07-03 1999-01-26 Hitachi Cable Ltd 太陽電池用接続線
JP2000113730A (ja) * 1998-10-05 2000-04-21 Totoku Electric Co Ltd 複合軽量化リボン線、絶縁複合軽量化リボン線およびこれらの製造方法
JP2003160851A (ja) * 2001-08-14 2003-06-06 Marjan Inc コーティング
JP2004204257A (ja) * 2002-12-24 2004-07-22 Hitachi Cable Ltd はんだめっき複合平角導体
JP2004204256A (ja) * 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
WO2004105141A1 (ja) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. 電極線材およびその線材によって形成された接続用リード線を備えた太陽電池
JP2005050780A (ja) * 2003-07-15 2005-02-24 Hitachi Cable Ltd 平角導体及びその製造方法並びにリード線
WO2005114751A1 (ja) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. 太陽電池用電極線材

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016593A (ja) * 2007-07-05 2009-01-22 Neomax Material:Kk 太陽電池用電極線材、その基材および基材の製造方法
JP2010073445A (ja) * 2008-09-17 2010-04-02 Nippon Steel Corp 電気導体及びその製造方法並びに集電用インターコネクター
JP2010205792A (ja) * 2009-02-27 2010-09-16 Hitachi Cable Ltd 太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池
US8653380B2 (en) 2009-02-27 2014-02-18 Hitachi Cable, Ltd. Solar cell lead, method of manufacturing the same, and solar cell using the same
JP2010283138A (ja) * 2009-06-04 2010-12-16 Hitachi Cable Ltd 太陽電池用リード線及びその製造方法並びにそれを用いた太陽電池
JP2011091168A (ja) * 2009-10-21 2011-05-06 Hitachi Cable Fine Tech Ltd 太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池
JP2013039603A (ja) * 2011-08-17 2013-02-28 Hitachi Cable Ltd 溶融はんだめっき撚線の製造方法
WO2013187234A1 (ja) * 2012-06-13 2013-12-19 東洋鋼鈑株式会社 太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
CN106449831A (zh) * 2015-08-07 2017-02-22 Lg电子株式会社 太阳能电池面板
KR20230076427A (ko) * 2021-11-24 2023-05-31 주식회사 제이에이치머티리얼즈 블랙 버스바 및 그 제조방법
KR102612746B1 (ko) 2021-11-24 2023-12-12 주식회사 제이에이치머티리얼즈 블랙 버스바 및 그 제조방법

Also Published As

Publication number Publication date
JPWO2007037184A1 (ja) 2009-04-09
CN100550432C (zh) 2009-10-14
CN101273463A (zh) 2008-09-24
JP5036545B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
EP3012872B1 (en) Solar cell
WO2007037184A1 (ja) 太陽電池用電極線材の製造方法
JP5025122B2 (ja) 太陽電池用電極線材及びその製造方法
JP5787019B2 (ja) 太陽電池用リード線の製造方法
US8653380B2 (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
EP2110861B1 (en) Solar cell lead wire, production method therefor and solar cell using same
JP2008182171A (ja) 太陽電池用はんだめっき線及びその製造方法並びに太陽電池
JP2008098607A (ja) 太陽電池用接続リード線及びその製造方法並びに太陽電池
JP5073386B2 (ja) 太陽電池用電極線材、その基材および基材の製造方法
US20090260689A1 (en) Solar cell lead wire, method of making the same, and solar cell
JP2008140787A (ja) 太陽電池用はんだめっき線およびその製造方法
JP2010141050A (ja) 太陽電池用リード線およびその製造方法
JP2008182170A (ja) 太陽電池用はんだめっき線及びその製造方法並びに太陽電池
JP5397809B2 (ja) 太陽電池
JP5477921B2 (ja) 太陽電池用電極線材及びその基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035619.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810476

Country of ref document: EP

Kind code of ref document: A1