WO2007036993A1 - 光受信器およびその識別閾値生成方法 - Google Patents

光受信器およびその識別閾値生成方法 Download PDF

Info

Publication number
WO2007036993A1
WO2007036993A1 PCT/JP2005/017812 JP2005017812W WO2007036993A1 WO 2007036993 A1 WO2007036993 A1 WO 2007036993A1 JP 2005017812 W JP2005017812 W JP 2005017812W WO 2007036993 A1 WO2007036993 A1 WO 2007036993A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
identification
output
circuit
average value
Prior art date
Application number
PCT/JP2005/017812
Other languages
English (en)
French (fr)
Inventor
Masamichi Nogami
Junichi Nakagawa
Masaki Noda
Toyoaki Uo
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN200580002707.5A priority Critical patent/CN101243663B/zh
Priority to JP2007537493A priority patent/JP4532563B2/ja
Priority to PCT/JP2005/017812 priority patent/WO2007036993A1/ja
Priority to EP05788349A priority patent/EP1931095B1/en
Priority to US10/585,458 priority patent/US7609980B2/en
Priority to TW095132130A priority patent/TWI327835B/zh
Publication of WO2007036993A1 publication Critical patent/WO2007036993A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control

Definitions

  • the present invention relates to an optical receiver, and more particularly to an optical receiver suitable for a PON (Passive Optical Network) system that transmits burst optical signals and a method for generating an identification threshold value thereof. .
  • PON Passive Optical Network
  • the optical receiver includes a photoelectric conversion element that converts a received burst digital optical signal into an electric signal, a first positive-phase signal and a first reverse signal of a differential output obtained by amplifying the electric signal to a predetermined level.
  • a second positive phase signal that is a binary average of the value of the first positive phase signal and the peak hold value of the first negative phase signal; When the signal is the first negative-phase signal and the signal is the peak hold value of the first positive-phase signal, and when there is no signal, the binary average value of the offset voltage set to a value higher than this value is taken.
  • An automatic threshold control (ATC) circuit that outputs a second negative phase signal that is in reverse phase with the second positive phase signal, and a second positive phase signal and a second negative phase signal.
  • ATC automatic threshold control
  • the preamplifier connected to the photoelectric conversion element has its own gain according to the detection level obtained by high-speed peak detection of the optical output signal level from the photoelectric conversion element.
  • the automatic threshold control circuit connected to the output side of the preamplifier performs the signal output of the differential output signal in which the preamplifier force is also output, and the peak detection (PD) and the bottom detection (BD).
  • the discrimination output (level) obtained by averaging the selection circuit outputs generated based on the two detection outputs is input to the subsequent discriminator.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 181687
  • the present invention has been made in view of the above, and prevents the unintended gain switching and generation of an erroneous identification level even if the received light signal has a transient response. It is an object of the present invention to provide an optical receiver capable of generating an identification level equivalent to that obtained when there is no answer and a method for generating the identification threshold.
  • an optical receiver includes a preamplifier that converts and amplifies the output of a light receiving element that converts a received light signal into a current signal, and a preamplifier.
  • An optical receiver comprising: an identification reproduction unit including an identification circuit that uses the output signal of the amplification unit as an input signal and performs signal identification of the input signal based on a threshold value generated based on the input signal.
  • the preamplifier includes a first average value detection circuit that detects an average value of the output signal of the preamplifier, and outputs a comparison output between the output of the first average value detection circuit and a predetermined reference voltage.
  • the identification reproduction unit includes a second average value detection circuit that detects an average value of an input signal to the identification circuit, and outputs an output of the second average value detection circuit. It is characterized in that it is output to the identification circuit as a threshold for performing signal identification of the input signal.
  • the preamplifier is based on a comparison output between the output of the first average value detection circuit that detects the average value of its output signal and a predetermined reference voltage.
  • the identification reproduction unit outputs the output of the second average value detection circuit that detects the average value of the input signal to the identification circuit to the identification circuit as a threshold value for identifying the signal of the input signal.
  • FIG. 1 is a block diagram showing a configuration of an optical receiver according to a first embodiment of the present invention.
  • Fig. 2-1 does not consider the transient response in the optical receiver to which the conventional technology is applied! It is a figure for demonstrating the operation
  • Fig. 2-2 is a diagram for explaining the operation when considering the transient response in the optical receiver to which the conventional technology is applied.
  • FIG. 3 is a diagram for explaining the operation of the optical receiver of the first embodiment in consideration of the transient response.
  • FIG. 4 is a block diagram showing a configuration of the optical receiver according to the second exemplary embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the optical receiver according to the third embodiment of the present invention.
  • FIG. 6 is a diagram for explaining an operation of the optical receiver according to the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of the optical receiver according to the first exemplary embodiment of the present invention.
  • the optical receiver shown in the figure includes a light receiving element 1 that receives an optical signal, a preamplifier 2 that receives the output current of the light receiving element 1, converts the input current signal into a voltage signal, and outputs the voltage signal.
  • An identification reproduction unit 3 that receives the output voltage of the preamplifier 2 and identifies the voltage level of the input output voltage is provided.
  • the buffer unit 26 of the preamplifier unit 2 includes a transimpedance amplifier (hereinafter abbreviated as “TIA”) 5 and an automatic gain control unit (hereinafter abbreviated as “AGC unit”) 6. Configured to provide.
  • TIA transimpedance amplifier
  • AGC unit automatic gain control unit
  • the identification / playback unit 3 generates a predetermined threshold level and outputs it based on an automatic threshold control unit (hereinafter abbreviated as “ATC unit”) 7, an input signal to itself, and an output of the ATC unit 7. And an identification circuit 18 for identifying an input signal (level).
  • ATC unit automatic threshold control unit
  • the TIA 5 includes an inverting amplifier 12 and a feedback resistor (Rf) 13, and the AGC unit 6 detects an average value of the output level of the preamplifier unit 2.
  • Comparison circuit 16 that compares output level of average value detection circuit 14 with reference voltage (Vref) 15; feedback resistor (Rf) drive circuit 17 that variably controls the resistance value of feedback resistor (Rf); and feedback resistor (Rf) ) 13 is provided.
  • the feedback resistor 13 has both the conversion function of converting the current signal into a voltage signal and the gain control function of the inverting amplifier 12, and thus is included in each component of the TIA 5 and the AGC unit 6 as described above. ! /
  • the optical receiver shown in FIG. 1 the light receiving element
  • the optical signal received by the child 1 is converted into a current signal, and then converted into a voltage signal by the TIA5.
  • the average value of the output amplitude is continuously detected by the average value detection circuit 14 which is the first average value detection circuit, and a difference voltage from the reference voltage 15 is generated by the comparison circuit 16.
  • the feedback resistor drive circuit 17 drives (variably controls) the value of the feedback resistor 13 based on the output signal of the comparison circuit 16.
  • AGC control is performed so that the amplitude determined by the reference voltage 15 is obtained.
  • a predetermined threshold voltage is generated and output as an output from the ATC unit 7 to the identification circuit 18 by the average value detection circuit 19 which is a second average value detection circuit. Based on the identification level according to the received light power of the element 1, the above-described identification reproduction process is performed.
  • an actual optical burst signal includes an amplitude fluctuation component caused by a transient response as described in the above-described problem. Therefore, the transient response operation in the optical receiver to which the conventional technique is applied will be described next.
  • Figure 2-1 is a diagram for explaining the operation of an optical receiver to which the conventional technology is applied (ideal operation when transient response is not considered).
  • Each operation description in Fig. 2-1 and Fig. 2-2 described later assumes an optical receiver having a general configuration to which the conventional technology is applied.
  • FIG. 2A is a diagram showing an ideal optical signal waveform when a transient response is not considered (assuming that there is no transient response).
  • this optical signal is converted into a current signal by the light receiving element and input to the preamplifier, the first pulse of the burst signal exceeds the level at which AGC operates (level 1).
  • the AGC gain is instantly reduced and the output amplitude is limited ((b) in the figure).
  • the identification reproduction unit 3 operates the ATC, and the threshold level for identification is the upper limit level of the signal pulse (“ It is set to an intermediate level between the “High” level and the lower limit level (“Low” level) (( c )).
  • the AGC operates when gain switching is necessary, and the ATC unit also operates to generate an identification level according to the amplitude of the input signal to itself. Therefore, in an optical receiver having a general configuration to which the conventional technology is applied, as long as the operation in the case where there is no transient response is considered, the existence of a problem can be found and difficult.
  • Fig. 2-2 is a diagram for explaining the operation when considering the transient response in the optical receiver to which the conventional technology is applied.
  • FIG. 2A is a diagram showing an optical signal waveform when a transient response is taken into consideration.
  • this optical signal is converted into a current signal by the light receiving element and input to the preamplifier, in the example shown in FIG. 5B, the level when the second pulse force AGC of the burst signal is activated. Since (level 1) is exceeded, the AGC gain is reduced and the output amplitude is limited.
  • the waveform indicated by the solid line is the waveform when the AGC operates, while the waveform indicated by the wavy line is the waveform when it is assumed that the AGC does not operate. As shown in Fig.
  • Figure (c) is a waveform showing the output signal of the preamplifier when the AGC does not operate.
  • the ATC operates in the identification / reproduction unit, and the threshold level power for identification, for example, the upper limit level (“Highj level”) and the lower limit level (“ Low level)).
  • the threshold level for identification, for example, the upper limit level (“Highj level”) and the lower limit level (“ Low level)
  • the seventh and subsequent pulses of the burst signal input to the identification / reproduction unit 3 are erroneously identified. Note that when the AGC operation is considered (assuming that the AGC operates), the signal level input to the identification / reproduction unit further decreases, and the identification error rate further deteriorates.
  • FIG. 3 is a diagram for explaining the operation when considering the transient response in the optical receiver of the present embodiment.
  • FIG. 3 shows a waveform of an optical signal when a transient response similar to FIG. 2-2 (a) is considered.
  • this optical signal is converted into a current signal by the light receiving element 1 in FIG. 1 and is input to the preamplifier 2, for example, as shown in FIG.
  • Pulse output level force Even if the reference voltage 15 that is one of the input signals input to the comparator circuit 16 exceeds the average value that is the other input signal that is input to the comparator circuit 16, the average value of the detection circuit 14 force Since the output does not exceed the reference voltage 15, or even if it exceeds, the decrease in the AGC gain is small.Therefore, within this transient response period, the AGC is hardly applied and the signal waveform of the light receiving element output signal is maintained. As a result, unintended gain switching in the AGC unit is prevented.
  • the signal waveform shown in FIG. 3B is input to the identification / reproduction unit 3 as an output waveform of the preamplifier 2.
  • the average value detection circuit 19 of the ATC unit 7 operates, and the threshold level for identification is set to the upper limit level (“: High” level) and the lower limit level (“Low” level) of each pulse of the burst signal. "Level”) and an intermediate level. Therefore, the threshold level follows the approximate median value (average value) of the upper limit level and the lower limit level of each pulse, so that a threshold level that does not cause an erroneous identification reproduction process is generated.
  • the preamplifier unit outputs the output of the first average value detection circuit that detects the average value of its output signal and the predetermined reference. Based on the comparison output with the voltage, its own amplification gain is controlled, and the discriminating / reproducing unit performs signal discrimination of the input signal from the output of the second average value detection circuit that detects the average value of the input signal to the discrimination circuit. Since this is output to the identification circuit as a threshold, unintended V and gain switching in the preamplifier is prevented, and a threshold level can be generated without erroneous identification reproduction processing.
  • the force shown for the configuration for controlling the gain of the TIA that is, the gain of the preamplifier, based on the feedback resistance control of the feedback resistance drive circuit. It is not limited. For example, any configuration that can control the gain of the preamplifier based on a comparison result between the average value detection circuit and a predetermined reference voltage is included in the present invention.
  • FIG. 4 is a block diagram showing a configuration of the optical receiver according to the second exemplary embodiment of the present invention.
  • the identification reproduction unit 3 of the optical receiver shown in the figure is provided with an identification circuit 21 that outputs a normal phase output and a reverse phase output instead of the configuration of the identification circuit 21 of the first embodiment.
  • the comparison circuit 22 which is a second comparison circuit that generates a differential voltage between the two-phase outputs of the circuit 21 and the output (difference voltage) of the comparison circuit 22 based on the signal level of the control signal 24 are held.
  • the ATC unit 7 further includes a buffer unit 12 connected to the output side of the average value detection circuit 19 and to which the output (offset adjustment signal) of the offset adjustment circuit 25 is input.
  • the output of the notch unit 26 is input to the identification circuit 21.
  • Other configurations are the same as or equivalent to those of the first embodiment shown in FIG. 1, and those components are denoted by the same reference numerals and description thereof is omitted. In the following description, the operation different from that of the first embodiment will be mainly described.
  • the comparison circuit 22 generates a differential voltage between the positive phase output and the negative phase output of the identification circuit 21 and outputs it to the SZH circuit 23.
  • This control signal 24 indicates the operation mode of the SZH circuit 23 composed of the sample mode and the hold mode.
  • S ZH circuit 23 holds the sampled voltage when the signal level of control signal 24 indicates the hold mode, and offsets the sampled voltage when the signal level of control signal 24 indicates the sample mode.
  • the second average value circuit based on the output of the sample 'hold circuit that holds or transmits the comparison output that compares the differential outputs of the identification circuit. Therefore, the feedback component is controlled so that the voltage difference between the differential outputs of the identification circuit becomes almost zero, reducing the variation in sensitivity of the optical receiver itself. Can be made.
  • FIG. 5 is a diagram for explaining the operation of the optical receiver according to the third embodiment of the present invention.
  • (a) shows a burst signal having an optical signal waveform in which a transient response occurs.
  • each output of the optical receiver that is, the solid line portion indicates, for example, the normal phase output of the identification circuit 21, and the broken line portion indicates, for example, the reverse phase output of the identification circuit 21.
  • FIG. 2C shows an example of the control signal waveform of the control signal 24 input to the SZH circuit 23.
  • the feature of this embodiment is the output mode of the control signal 24 shown in FIG. 5 (c), and the operation mode of the SZH circuit 23 becomes the sample mode only during the no-signal period after the power is turned on. Control signal 24 is output. Therefore, the output offset during the no-signal period after power-on is minimized. Since the output offset in the no-signal period after power-on is minimized, the no-signal period similar to the no-signal period after power-on (in the example of FIG. 5, between the first packet and the second packet). The output offset minimized state can be maintained even between the first packet and between the second packet after the second packet).
  • the offset control by the offset adjustment circuit is performed during the no-signal period after the power is turned on, so that the output offset minimization state can be effectively achieved. Can be maintained.
  • FIG. 6 is a diagram for explaining the operation of the optical receiver according to the fourth embodiment of the present invention.
  • the force for instructing the operation mode of the SZH circuit 23 to be in the sample mode only during the non-signal period after the power is turned on.
  • the operation mode of the SZH circuit 23 is set to all the optical signals. Instruct and enter sample mode in no signal area.
  • the no-signal period after power-on is set to be in the hold mode.
  • the operation mode in this period may be set to be in the sample mode.
  • the output offset component may be accumulated and gradually increase.
  • the operation mode of the SZH circuit 23 is set to the sample mode for all non-signal areas of the optical signal, so that accumulation of the output offset component is suppressed, and the offset component deteriorates with time! / It is possible to reduce aging degradation.
  • the optical receiver according to the present invention is useful for, for example, a PON system that transmits a burst-like optical signal, and particularly when the transient response of an input signal becomes a problem. 1 ⁇ then 0

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)

Abstract

 バースト状の光信号などを受信する光受信器において、受光信号に過渡的な応答がある場合の、意図しない利得の切替および誤った識別レベルの生成を防止すること。  受光素子の出力電流信号を電圧信号に変換かつ増幅する前置増幅部と、前置増幅部の出力信号を所定の閾値に基づいて入力信号レベルを識別する識別回路を具備する識別再生部と、を備えた光受信器において、前置増幅部には、自身の出力信号の平均値を検出する第1の平均値検出回路が具備され、第1の平均値検出回路の出力と所定の基準電圧との比較出力に基づいて自身の増幅利得が制御される。また、識別再生部には、入力信号の平均値を検出する第2の平均値検出回路が具備され、第2の平均値検出回路の出力が信号識別を行うための閾値として識別回路に出力される。

Description

明 細 書
光受信器およびその識別閾値生成方法
技術分野
[0001] 本発明は、光受信器に関するものであり、特に、バースト状の光信号を伝送する P ON (Passive Optical Network)システムに好適な光受信器およびその識別閾 値生成方法に関するものである。
背景技術
[0002] 従来の PONシステムに適用される光受信器として、例えば下記特許文献 1に示さ れたバーストディジタル光受信器が存在する。この光受信器は、受信したバーストデ イジタル光信号を電気信号に変換する光電変換素子と、この電気信号を所定のレべ ルまで増幅した差動出力の第 1の正相信号および第 1の逆相信号を出力するブリア ンプ (前置増幅器)と、第 1の正相信号の値と第 1の逆相信号をピークホールドした値 との 2値平均値をとつた第 2の正相信号、および第 1の逆相信号の値と信号時は第 1 の正相信号をピークホールドした値で無信号時はこの値より高い値にセットしたオフ セット電圧の値との 2値平均値をとつた第 2の正相信号と逆相関係にある第 2の逆相 信号を出力する自動閾値制御(ATC: Auto Threshold Control)回路と、第 2の 正相信号および第 2の逆相信号から、バーストディジタル光信号の無信号時は論理 値" 0"を確定し、信号時はバーストディジタル光信号の振幅値の中間値で論理判断 し論理値" 1"および" 0"を出力する識別器と、を備えるように構成されている。
[0003] この光受信器にあっては、まず、光電変換素子に接続される前置増幅器は、光電 気変換素子からの光出力信号レベルを高速にピーク検波した検波レベルに応じて 自身の利得を制御する。また、この前置増幅器の出力側に接続される自動閾値制御 回路は、前置増幅器力も出力された差動出力信号の信号出力と、ピーク検出 (PD) およびボトム検出(BD)とを行った 2つの検出出力に基づいて生成された選択回路 出力と、を平均化した識別出力(レベル)を後段の識別器に入力するようにしている。
[0004] 特許文献 1 :特開平 9 181687号公報
発明の開示 発明が解決しょうとする課題
[0005] し力しながら、実際のバースト発光には過渡応答が必然的に生ずるため、過渡応答 に起因して変動する過渡応答振幅に反応した検波出力レベルによって、利得切り替 えが必要でないのにも関わらず利得切り替えが行われてしまう可能性が高ぐまた、 自動閾値制御回路が過渡応答振幅に追従した閾値を生成するので、誤った識別レ ベルが生成されてしまう可能性が高いといった問題点があった。
[0006] 本発明は、上記に鑑みてなされたものであって、受光信号に過渡的な応答があつ ても、意図しない利得の切替および誤った識別レベルの生成を防止し、過渡的な応 答がない場合と同等の識別レベルを生成可能な光受信器およびその識別閾値生成 方法を提供することを目的とする。
課題を解決するための手段
[0007] 上述した課題を解決し、目的を達成するため、本発明にかかる光受信器は、受光 信号を電流信号に変換する受光素子の出力を電圧変換増幅する前置増幅部と、前 置増幅部の出力信号を入力信号とし、該入力信号に基づいて生成した閾値に基づ Vヽて該入力信号の信号識別を行う識別回路を具備する識別再生部と、を備えた光受 信器において、前記前置増幅部は、自身の出力信号の平均値を検出する第 1の平 均値検出回路を備え、該第 1の平均値検出回路の出力と所定の基準電圧との比較 出力に基づいて自身の増幅利得を制御し、前記識別再生部は、前記識別回路への 入力信号の平均値を検出する第 2の平均値検出回路を備え、該第 2の平均値検出 回路の出力を入力信号の信号識別を行う閾値として該識別回路に出力することを特 徴とする。
発明の効果
[0008] 本発明にかかる光受信器によれば、前置増幅部は、自身の出力信号の平均値を 検出する第 1の平均値検出回路の出力と所定の基準電圧との比較出力に基づいて 自身の増幅利得を制御し、識別再生部は、識別回路への入力信号の平均値を検出 する第 2の平均値検出回路の出力を入力信号の信号識別を行う閾値として識別回 路に出力するようにしているので、前置増幅部における意図しない利得切替が防止 され、識別再生処理を誤ることのない閾値レベルを生成することができると 、う効果を 奏する。
図面の簡単な説明
[図 1]図 1は、本発明の実施の形態 1にかかる光受信器の構成を示すブロック図であ る。
[図 2-1]図 2— 1は、従来技術が適用された光受信器における過渡応答を考慮しな!、 場合の動作を説明するための図である。
[図 2-2]図 2— 2は、従来技術が適用された光受信器における過渡応答を考慮した場 合の動作を説明するための図である。
[図 3]図 3は、実施の形態 1の光受信器における過渡応答を考慮した場合の動作を説 明するための図である。
[図 4]図 4は、本発明の実施の形態 2にかかる光受信器の構成を示すブロック図であ る。
[図 5]図 5は、本発明の実施の形態 3にかかる光受信器の動作を説明するための図で ある。
[図 6]図 6は、本発明の実施の形態 4にかかる光受信器の動作を説明するための図で ある。
符号の説明
1 受光素子
2 前置増幅部
3 識別再生部
6 AGC咅
7 ATC部
12 反転増幅器 (AMP)
13 帰還抵抗 (Rf)
14, 19 平均値検出回路
15 基準電圧
16, 22 比較回路
17 帰還抵抗駆動回路 18, 21 識別回路
23 SZH回路
24 制御信号
25 オフセット調整回路
26 バッファ部
発明を実施するための最良の形態
[0011] 以下に、本発明にかかる光受信器およびその識別閾値生成方法の好適な実施の 形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定 されるものではない。
[0012] 実施の形態 1.
図 1は、本発明の実施の形態 1にかかる光受信器の構成を示すブロック図である。 同図に示す光受信器は、光信号を受光する受光素子 1と、受光素子 1の出力電流が 入力され、入力された電流信号を電圧信号に変換して出力する前置増幅部 2と、前 置増幅部 2の出力電圧が入力され、入力された出力電圧の電圧レベルを識別する 識別再生部 3と、を備えている。また、その細部構成として、前置増幅部 2のバッファ 部 26は、トランスインピーダンスアンプ (以下「TIA」と略記) 5と、自動利得制御部(以 下「AGC部」と略記) 6と、を備えるように構成される。一方、識別再生部 3は、所定の 閾値レベルを生成して出力する自動閾値制御部(以下「ATC部」と略記) 7と、自身 への入力信号と ATC部 7の出力に基づ 、て入力信号 (レベル)の識別を行う識別回 路 18と、を備えるように構成される。
[0013] さらに、その細部構成として、 TIA5は、反転増幅器 12および帰還抵抗 (Rf) 13を 具備し、 AGC部 6は、前置増幅部 2の出力レベルの平均値を検出する平均値検出 回路 14、平均値検出回路 14の出力レベルと基準電圧 (Vref) 15とを比較する比較 回路 16、帰還抵抗 (Rf)の抵抗値を可変制御する帰還抵抗 (Rf)駆動回路 17および 帰還抵抗 (Rf) 13を具備する。なお、帰還抵抗 13は、電流信号を電圧信号に変換す る変換作用および反転増幅器 12の利得制御作用の両作用を有するため、上記のよ うに TIA5および AGC部 6のそれぞれの構成要素に含めて!/、る。
[0014] つぎに、図 1に示した光受信器の動作について説明する。同図において、受光素 子 1により受光された光信号は、電流信号に変換された後、 TIA5によって電圧信号 に変換増幅される。その後、第 1の平均値検出回路である平均値検出回路 14により 出力振幅の平均値が連続的に検出され、基準電圧 15との差電圧が比較回路 16に より生成される。帰還抵抗駆動回路 17は、比較回路 16の出力信号に基づいて帰還 抵抗 13の値を駆動(可変制御)する。このような制御によって、例えば、 TIA5の出力 振幅が基準電圧 15より大きい場合には、基準電圧 15で決定される振幅となるような AGC制御が行われる。
[0015] また、識別再生部 3では、 ATC部 7から識別回路 18への出力として、第 2の平均値 検出回路である平均値検出回路 19により所定の閾値電圧が生成出力される結果、 受光素子 1の受光電力に応じた識別レベルに基づ!、て、上述の識別再生処理が行 われる。
[0016] ところで、現実の光バースト信号には、上述の課題で述べたように過渡応答によつ て生じた振幅変動成分が存在する。そこで、つぎに、従来技術が適用された光受信 器における過渡応答動作にっ 、て説明する。
[0017] まず、過渡応答を考慮しな!、 (過渡応答が存在しな!ヽと仮定した)場合の光受信器 における動作について図 2—1を参照して説明する。なお、図 2—1は、従来技術が 適用された光受信器における動作 (過渡応答を考慮しない場合の理想的動作)を説 明するための図である。なお、図 2— 1および後述する図 2— 2における各動作説明 は、従来技術が適用された一般的構成の光受信器を想定するものとする。
[0018] 図 2—1において、同図(a)は過渡応答を考慮しない (過渡応答が存在しないと仮 定した)場合の理想的な光信号波形を示す図である。この光信号が受光素子にて電 流信号に変換されて前置増幅部に入力されると、バースト信号の先頭パルスが、 AG Cが動作するときのレベル(レベル 1)を超えているため、 AGC利得が瞬時に低減さ れて出力振幅が制限される(同図 (b) )。一方、出力振幅が制限された前置増幅部の 出力信号が識別再生部に入力されると、識別再生部 3では、 ATCが動作し、識別の ための閾値レベルが信号パルスの上限レベル(「High」レベル)と下限レベル(「Low 」レベル)との中間レベルに設定される(同図(c) )。このように、従来技術が適用され た一般的構成の光受信器にぉ ヽて、過渡応答を考慮しな!ヽ場合の通常動作では、 利得切替が必要なときに AGCが動作し、 ATC部も自身への入力信号振幅に応じた 識別レベルを生成するように動作する。したがって、従来技術が適用された一般的構 成の光受信器では、過渡応答が存在しない場合の動作を考える限りにおいて、問題 点の存在を見 、だし難 、と 、うことができる。
[0019] つぎに、過渡応答を考慮した (過渡応答が存在すると仮定した)場合の光受信器に おける動作について図 2— 2を参照して説明する。なお、図 2— 2は、従来技術が適 用された光受信器における過渡応答を考慮した場合の動作を説明するための図で ある。
[0020] 図 2— 2において、同図(a)は過渡応答を考慮した場合の光信号波形を示す図で ある。この光信号が受光素子にて電流信号に変換されて前置増幅部に入力されると 、同図(b)に示す例では、バースト信号の第 2パルス力 AGCが動作するときのレべ ル (レベル 1)を超えているため、 AGC利得が低減されて出力振幅が制限される。な お、同図(b)において、実線で示される波形は AGCが動作した場合の波形であり、 一方、波線で示される波形は AGCが動作しないと仮定した場合の波形である。同図 (b)が示すように、過渡応答が存在する場合には、 AGCを動作させる必要がない場 合にも AGC動作が働 、てしまう結果、意図しない出力振幅の低下が生じてしまうこと になる。また、同図(c)は AGCが動作しない場合の前置増幅部の出力信号を示す波 形である。この信号が識別再生部に入力されると、識別再生部では、 ATCが動作し 、識別のための閾値レベル力 例えばバースト信号の第 3パルスの上限レベル(「Hig hjレベル)と下限レベル(「Low」レベル)との中間レベルに設定される。このような閾 値レベルが設定される場合、識別再生部 3に入力されるバースト信号の第 7パルス以 降が誤って識別されることになる。なお、 AGC動作を考慮 (AGCが動作すると仮定) した場合には、識別再生部に入力される信号レベルがさらに低下するので、識別の 誤り率はさらに劣化することになる。
[0021] このように、従来技術が適用された一般的構成の光受信器では、入力される光信 号波形の過渡応答の程度如何によつて、 AGC部における意図しない利得切替が行 われ、また、 ATC部における意図しない閾値レベル (識別レベル)が生成されてしま うことがあり、識別レベルの設定を誤るといった問題点が存在していることが分かる。 [0022] つぎに、本実施の形態の光受信器における過渡応答を考慮した (過渡応答が存在 すると仮定した)場合の動作について図 3を参照して説明する。なお、図 3は、本実施 の形態の光受信器における過渡応答を考慮した場合の動作を説明するための図で ある。
[0023] 図 3において、同図(a)は、図 2— 2 (a)と同様な過渡応答を考慮した場合の光信号 波形を示す図である。この光信号が図 1の受光素子 1にて電流信号に変換されて前 置増幅部 2に入力された場合、例えば図 3 (b)に示すように、バースト信号の第 1パル ス〜第 6パルスの出力レベル力 比較回路 16に入力される一方の入力信号である基 準電圧 15を超えていても、比較回路 16に入力される他方の入力信号である平均値 検出回路 14力もの平均値出力が基準電圧 15を超えないため、あるいは超えていて も AGC利得の減少量が小さいため、かかる過渡応答期間内では、 AGCが殆どかか らず、受光素子出力信号の信号波形が維持され、その結果、 AGC部における意図 しな 、利得切替が防止される。
[0024] また、図 3 (b)に示す信号波形は前置増幅部 2の出力波形として識別再生部 3に入 力される。識別再生部 3では、 ATC部 7の平均値検出回路 19が動作し、識別のため の閾値レベルが、バースト信号の各パルスの上限レベル(「: High」レベル)と下限レべ ル(「Low」レベル)との中間レベルに設定される。したがって、閾値レベルが各パル スの上限レベルと下限レベルとの略中央値(平均値)を追従するので、識別再生処理 を誤ることのない閾値レベルが生成されることになる。
[0025] 以上説明したように、この実施の形態の光受信器によれば、前置増幅部は、自身の 出力信号の平均値を検出する第 1の平均値検出回路の出力と所定の基準電圧との 比較出力に基づいて自身の増幅利得を制御し、識別再生部は、識別回路への入力 信号の平均値を検出する第 2の平均値検出回路の出力を入力信号の信号識別を行 う閾値として識別回路に出力するようにしているので、前置増幅部における意図しな V、利得切替が防止され、識別再生処理を誤ることのな 、閾値レベルを生成すること ができる。
[0026] なお、この実施の形態では、帰還抵抗駆動回路の帰還抵抗制御に基づ 、て TIA の利得、すなわち前置増幅部の利得を制御する構成について示した力 この構成に 限定されるものではない。例えば、平均値検出回路と所定の基準電圧との比較結果 に基づ!/、て前置増幅部の利得を制御することができる構成であれば、本発明に包含 されるちのである。
[0027] 実施の形態 2.
図 4は、本発明の実施の形態 2にかかる光受信器の構成を示すブロック図である。 同図に示す光受信器の識別再生部 3は、実施の形態 1の識別回路 21の構成に代え て、正相出力と逆相出力とを出力する識別回路 21を備える一方で、さらに、識別回 路 21の両相出力間の差電圧を発生する第 2の比較回路である比較回路 22と、制御 信号 24の信号レベルに基づいて比較回路 22の出力(差電圧)を保持するか、次段 回路に出力するかを制御するサンプル 'ホールド回路(以下「SZH回路」と表記) 23 と、 SZH回路 23の出力に基づいて生成したオフセット調整信号を ATC部 7に出力 するオフセット調整回路 25と、を備えるように構成されている。また、 ATC部 7は、実 施の形態 1の構成において、平均値検出回路 19の出力側に接続され、オフセット調 整回路 25の出力(オフセット調整信号)が入力されるバッファ部 12をさらに具備し、 ノ ッファ部 26の出力が識別回路 21に入力されるように構成される。なお、その他の 構成については、図 1に示した実施の形態 1の構成部と同一または同等であり、それ らの構成部には同一符号を付して示し、その説明を省略する。また、以下の説明で は、実施の形態 1と異なる動作を中心に説明する。
[0028] つぎに、図 4に示す識別再生部 3の動作について説明する。この実施の形態にか 力る識別再生部 3の動作の特徴は、識別再生部 3の初期オフセットが自動で最小と なるように調整される点が実施の形態 1と異なる。より詳細には、比較回路 22は、識 別回路 21の正相出力と逆相出力との差電圧を発生して SZH回路 23に出力する。 ここで、 SZH回路 23には、制御信号 24が入力される力 この制御信号 24は、サン プルモードおよびホールドモードからなる SZH回路 23の動作モードを指示する。 S ZH回路 23は、制御信号 24の信号レベルがホールドモードを指示する場合には、 サンプルした電圧を保持し、制御信号 24の信号レベルがサンプルモードを指示する 場合には、サンプルした電圧をオフセット調整回路 25に出力する。なお、サンプルし た電圧がオフセット調整回路 25に出力されるとき、 ATC部 7のバッファ部 26の出力 電圧がオフセット調整回路 25の出力に基づいて変更され、識別回路の正相出力と 逆相出力との電圧差が殆ど零となるようなフィードバックループがかかり、識別回路 2 1および ATC部 7の回路オフセット成分がキャンセルされる。また、この動作により、 光受信器自身が有する、感度バラツキが低減される。
[0029] 以上説明したように、この実施の形態によれば、識別回路の各差動出力を比較した 比較出力を保持または伝達するサンプル 'ホールド回路の出力に基づいて第 2の平 均値回路の出力に含まれるオフセット成分を制御するようにして 、るので、識別回路 の差動出力間の電圧差が殆ど零となるようなフィードバック制御が行われ、光受信器 自身が有する感度バラツキを低減させることができる。
[0030] 実施の形態 3.
図 5は、本発明の実施の形態 3にかかる光受信器の動作を説明するための図であ る。図 4において、同図(a)は過渡応答が生じている光信号波形を有するバースト信 号を示している。同図(b)は光受信器の各出力、すなわち実線部は、例えば識別回 路 21の正相出力を示し、破線部は、例えば識別回路 21の逆相出力を示している。 同図(c)は、 SZH回路 23に入力される制御信号 24の制御信号波形の一例を示し ている。
[0031] この実施の形態の特徴は、図 5 (c)に示される制御信号 24の出力態様にあり、電源 投入後の無信号期間のみ、 SZH回路 23の動作モードがサンプルモードとなるよう な制御信号 24が出力される。したがって、電源投入後の無信号期間の出力オフセッ トが最小化される。なお、電源投入後の無信号期間の出力オフセットを最小化してい るので、電源投入後の無信号期間と同様な無信号期間(図 5の例では、第 1パケット と第 2パケットとの間の第 1パケット間,および第 2パケット後の第 2パケット間)におい ても、出力オフセット最小化状態を維持させることが可能となる。
[0032] 以上説明したように、この実施の形態によれば、オフセット調整回路によるオフセッ ト制御を、電源投入後の無信号期間に行うようにしているので、出力オフセット最小 化状態を効果的に維持することができる。
[0033] 実施の形態 4.
図 6は、本発明の実施の形態 4にかかる光受信器の動作を説明するための図であ る。実施の形態 3では、 SZH回路 23の動作モードを電源投入後の無信号期間のみ サンプルモードとなるように指示していた力 この実施の形態では、 SZH回路 23の 動作モードを光信号の全ての無信号領域でサンプルモードなるように指示して 、る。 なお、同図の例では、電源投入後の無信号期間がホールドモードとなるように設定さ れているが、無論、この期間の動作モードがサンプルモードとなるように設定されてい てもよい。
[0034] ここで、光受信器が連続的に動作している場合には、出力オフセット成分が蓄積さ れて徐々に増大していく可能性がある。一方、この実施の形態では、 SZH回路 23 の動作モードを光信号の全ての無信号領域がサンプルモードに設定されるで、出力 オフセット成分の蓄積が抑止され、オフセット成分の経時的劣化ある!/、は経年劣化を 低減することが可能となる。
[0035] 以上説明したように、この実施の形態によれば、オフセット調整回路によるオフセッ ト制御を、受光信号間の無信号期間に行うようにしているので、出力オフセット成分の 蓄積を抑止するとともに、オフセット成分の経時的劣化あるいは経年劣化を低減する ことができる。
産業上の利用可能性
[0036] 以上のように、本発明にかかる光受信器は、例えばバースト状の光信号を伝送する PONシステムなどに有用であり、特に、入力信号の過渡応答が問題となるような場合 【こ; 1≤して 0

Claims

請求の範囲
[1] 受光信号を電流信号に変換する受光素子の出力を電圧変換増幅する前置増幅部 と、前置増幅部の出力信号を入力信号とし、該入力信号に基づいて生成した閾値に 基づ!/ヽて該入力信号の信号識別を行う識別回路を具備する識別再生部と、を備えた 光受信器において、
前記前置増幅部は、自身の出力信号の平均値を検出する第 1の平均値検出回路 を備え、該第 1の平均値検出回路の出力と所定の基準電圧との比較出力に基づい て自身の増幅利得を制御し、
前記識別再生部は、前記識別回路への入力信号の平均値を検出する第 2の平均 値検出回路を備え、該第 2の平均値検出回路の出力を入力信号の信号識別を行う 閾値として該識別回路に出力することを特徴とする光受信器。
[2] 前記識別再生部は、
前記識別回路の同相出力および逆相出力の両出力を差動入力とする比較回路と 前記第 2の平均値回路の出力を保持するバッファ回路と、
該比較回路の出力を保持または伝達するサンプル 'ホールド回路と、
該サンプル ·ホールド回路の出力に基づ!/、て前記バッファ回路のオフセット成分を 制御するオフセット調整回路と、
をさらに備えたことを特徴とする請求項 1に記載の光受信器。
[3] 前記オフセット調整回路によるオフセット制御が、電源投入後の無信号期間に行わ れることを特徴とする請求項 2に記載の光受信器。
[4] 前記オフセット調整回路によるオフセット制御が、受光信号間の無信号期間に行わ れることを特徴とする請求項 2に記載の光受信器。
[5] 受光信号を電流信号に変換する受光素子の出力を電圧変換増幅する前置増幅部 と、前置増幅部の出力信号を入力信号とし、該入力信号に基づいて生成した閾値に 基づ!/ヽて該入力信号の信号識別を行う識別回路を具備する識別再生部と、を備えた 光受信器の識別閾値生成方法にぉ 、て、
前記前置増幅部への入力信号の平均値を検出した第 1の平均値検出力と所定の 基準電圧との比較出力に基づ!/、て自身の増幅利得を制御する利得制御ステップと、 前記識別回路への入力信号の平均値を検出した第 2の平均値検出カを該入力信 号の信号識別を行う閾値として該識別回路に生成出力する識別閾値生成出力ステ ップと、
を含むことを特徴とする光受信器の識別閾値生成方法。
PCT/JP2005/017812 2005-09-28 2005-09-28 光受信器およびその識別閾値生成方法 WO2007036993A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200580002707.5A CN101243663B (zh) 2005-09-28 2005-09-28 光接收器及其识别阈值生成方法
JP2007537493A JP4532563B2 (ja) 2005-09-28 2005-09-28 光受信器およびその識別閾値生成方法
PCT/JP2005/017812 WO2007036993A1 (ja) 2005-09-28 2005-09-28 光受信器およびその識別閾値生成方法
EP05788349A EP1931095B1 (en) 2005-09-28 2005-09-28 Light receiver and its identification threshold value generation method
US10/585,458 US7609980B2 (en) 2005-09-28 2005-09-28 Optical receiver and discrimination-threshold generating method
TW095132130A TWI327835B (en) 2005-09-28 2006-08-31 Optical receiver and discrimination-threshold generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017812 WO2007036993A1 (ja) 2005-09-28 2005-09-28 光受信器およびその識別閾値生成方法

Publications (1)

Publication Number Publication Date
WO2007036993A1 true WO2007036993A1 (ja) 2007-04-05

Family

ID=37899432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017812 WO2007036993A1 (ja) 2005-09-28 2005-09-28 光受信器およびその識別閾値生成方法

Country Status (6)

Country Link
US (1) US7609980B2 (ja)
EP (1) EP1931095B1 (ja)
JP (1) JP4532563B2 (ja)
CN (1) CN101243663B (ja)
TW (1) TWI327835B (ja)
WO (1) WO2007036993A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082585A1 (ja) * 2009-01-19 2010-07-22 株式会社日立製作所 トランスインピーダンスアンプおよびponシステム
CN101651497B (zh) * 2008-08-13 2013-10-09 华为技术有限公司 光接收机增益控制方法和的光接收装置
JP2014003567A (ja) * 2012-06-21 2014-01-09 Hitachi Ltd トランスインピーダンスアンプ
JP2016201736A (ja) * 2015-04-13 2016-12-01 富士通株式会社 信号識別回路、これを用いた光受信器、及び信号識別方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503624B2 (ja) * 2006-03-30 2010-07-14 住友電工デバイス・イノベーション株式会社 電子回路
US7601940B2 (en) * 2007-03-22 2009-10-13 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Gain control system for visible light communication systems
JP5028179B2 (ja) * 2007-08-03 2012-09-19 株式会社日立製作所 Ponシステム
JP2010093353A (ja) * 2008-10-03 2010-04-22 Sumitomo Electric Ind Ltd 光受信器
JP5481240B2 (ja) * 2010-03-12 2014-04-23 株式会社日立製作所 マルチレート用バーストモード受信機
JP5480010B2 (ja) * 2010-05-14 2014-04-23 株式会社東芝 光受信回路
JP5279956B2 (ja) * 2011-04-05 2013-09-04 三菱電機株式会社 光受信器
CN102412906A (zh) * 2011-08-08 2012-04-11 中兴通讯股份有限公司 差分四相相移键控接收机及其增益控制方法
JP5921130B2 (ja) * 2011-10-12 2016-05-24 アズビル株式会社 光電センサ
WO2014112051A1 (ja) * 2013-01-16 2014-07-24 三菱電機株式会社 前置増幅器、光受信器、光終端装置及び光通信システム
DE102014109716B4 (de) * 2013-07-11 2017-11-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Ein Stossbetriebsempfänger, welcher einen großen Dynamikbereich und niedrige Pulsweitenverzerrung hat und ein Verfahren
US9325426B2 (en) * 2013-07-11 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Burst-mode receiver having a wide dynamic range and low pulse-width distortion and a method
US10481246B2 (en) * 2017-05-22 2019-11-19 Analog Devices Global Unlimited Company Photo-diode emulator circuit for transimpedance amplifier testing
US11005573B2 (en) * 2018-11-20 2021-05-11 Macom Technology Solutions Holdings, Inc. Optic signal receiver with dynamic control
CN114175531B (zh) * 2019-08-09 2024-03-22 三菱电机株式会社 光接收器和站侧装置
TWI687048B (zh) * 2019-11-04 2020-03-01 茂達電子股份有限公司 高線性光感測器
US12013423B2 (en) 2020-09-30 2024-06-18 Macom Technology Solutions Holdings, Inc. TIA bandwidth testing system and method
US11658630B2 (en) 2020-12-04 2023-05-23 Macom Technology Solutions Holdings, Inc. Single servo loop controlling an automatic gain control and current sourcing mechanism
US11381318B1 (en) * 2021-07-30 2022-07-05 II-VI Delaware, Inc Control of trans-impedance amplifier (TIA) during settling after recovering from loss of signal in receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188143A (ja) * 1988-01-22 1989-07-27 Nec Corp 光受信器の識別回路
JPH01286655A (ja) * 1988-05-13 1989-11-17 Sumitomo Electric Ind Ltd 光受信回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418654B2 (ja) * 1995-10-27 2003-06-23 株式会社日立製作所 プリアンプ
JP2723874B2 (ja) 1995-12-26 1998-03-09 日本電気エンジニアリング株式会社 バーストディジタル光受信器
JP2814990B2 (ja) 1996-05-20 1998-10-27 日本電気株式会社 光受信回路
GB2328816B (en) * 1997-08-30 2002-05-08 Siemens Plc Optical data communications receiver
US5907261A (en) * 1997-09-05 1999-05-25 Ericsson Inc. Method and apparatus for controlling signal amplitude level
JP3979712B2 (ja) * 1997-10-20 2007-09-19 富士通株式会社 光信号受信装置および方法
JP2000216733A (ja) * 1997-11-28 2000-08-04 Kokusai Electric Co Ltd 光電気変換方法及び受光回路及び光通信システム
JP4019555B2 (ja) * 1999-05-25 2007-12-12 Kddi株式会社 光受信装置及び方法
JP3475877B2 (ja) * 1999-10-25 2003-12-10 日本電気株式会社 前置増幅回路
JP4429565B2 (ja) * 1999-12-27 2010-03-10 富士通株式会社 信号増幅回路及びこれを用いた光信号受信器
JP2001197049A (ja) * 2000-01-14 2001-07-19 Fujitsu Ltd クロック再生回路及びこれを用いた光信号受信器
US6785344B1 (en) * 2000-04-11 2004-08-31 Terawave Communications, Inc. Fast threshold determination for packet-multiplexed digital communication
US7058315B2 (en) * 2001-10-09 2006-06-06 Chiaro Networks Ltd. Fast decision threshold controller for burst-mode receiver
US6844784B1 (en) * 2002-11-26 2005-01-18 Finisar Corporation Wide dynamic range transimpedance amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188143A (ja) * 1988-01-22 1989-07-27 Nec Corp 光受信器の識別回路
JPH01286655A (ja) * 1988-05-13 1989-11-17 Sumitomo Electric Ind Ltd 光受信回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1931095A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651497B (zh) * 2008-08-13 2013-10-09 华为技术有限公司 光接收机增益控制方法和的光接收装置
WO2010082585A1 (ja) * 2009-01-19 2010-07-22 株式会社日立製作所 トランスインピーダンスアンプおよびponシステム
JP5272021B2 (ja) * 2009-01-19 2013-08-28 株式会社日立製作所 トランスインピーダンスアンプおよびponシステム
US8653433B2 (en) 2009-01-19 2014-02-18 Hitachi, Ltd. Transimpedance amplifier and PON system
JP2014003567A (ja) * 2012-06-21 2014-01-09 Hitachi Ltd トランスインピーダンスアンプ
JP2016201736A (ja) * 2015-04-13 2016-12-01 富士通株式会社 信号識別回路、これを用いた光受信器、及び信号識別方法

Also Published As

Publication number Publication date
US7609980B2 (en) 2009-10-27
JPWO2007036993A1 (ja) 2009-04-02
TW200713873A (en) 2007-04-01
CN101243663A (zh) 2008-08-13
CN101243663B (zh) 2011-04-13
JP4532563B2 (ja) 2010-08-25
EP1931095A4 (en) 2010-04-28
US20070098416A1 (en) 2007-05-03
TWI327835B (en) 2010-07-21
EP1931095B1 (en) 2012-01-18
EP1931095A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4532563B2 (ja) 光受信器およびその識別閾値生成方法
EP1717972B1 (en) Automatic bit rate control circuit
JP4261514B2 (ja) バースト先頭検出回路
JP4760312B2 (ja) 光受信器
JP2010093353A (ja) 光受信器
JP6661057B1 (ja) リミッティング増幅回路
US7123098B2 (en) Transimpedance amplifier with differential peak detector
US8144813B2 (en) Receiving method and receiving circuit
JP3749718B2 (ja) バーストモード光受信機
US7330670B2 (en) Bottom level detection device for burst mode optical receiver
JP4999774B2 (ja) 振幅制限増幅回路
US6798282B1 (en) Method and system for transimpedance amplifiers with high current input while maintaining high transimpedance gain and bandwidth
KR100847977B1 (ko) 광 수신기 및 그의 식별 임계값 생성 방법
JP2010161623A (ja) 光バースト受信器、及び、方法
JP2009044508A (ja) 受信回路および2値信号生成回路
KR101043954B1 (ko) 감쇄기를 이용한 광수신기의 임계값 판별장치
EP1322082A1 (en) DC bias control circuit for an optical receiver
JPH08139526A (ja) 光受信装置
US11658630B2 (en) Single servo loop controlling an automatic gain control and current sourcing mechanism
JP4592857B2 (ja) Atc機能付受信装置
JP2001211035A (ja) プリアンプおよび光受信器
JP3518559B2 (ja) 受光信号検出回路及び受光信号処理装置
JP2002111595A (ja) 光受信器
JP2007266726A (ja) 受信器を搭載した電子装置
JPH11205395A (ja) 光信号受信装置及びデューティ制御回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007537493

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007098416

Country of ref document: US

Ref document number: 10585458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580002707.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005788349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067017622

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10585458

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005788349

Country of ref document: EP