WO2007034989A1 - オートサーマル改質器の起動方法 - Google Patents

オートサーマル改質器の起動方法 Download PDF

Info

Publication number
WO2007034989A1
WO2007034989A1 PCT/JP2006/319234 JP2006319234W WO2007034989A1 WO 2007034989 A1 WO2007034989 A1 WO 2007034989A1 JP 2006319234 W JP2006319234 W JP 2006319234W WO 2007034989 A1 WO2007034989 A1 WO 2007034989A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming catalyst
reforming
heating
catalyst
preheating step
Prior art date
Application number
PCT/JP2006/319234
Other languages
English (en)
French (fr)
Inventor
Yukihiro Sugiura
Yasushi Mizuno
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to CA2622270A priority Critical patent/CA2622270C/en
Priority to US11/992,335 priority patent/US7837858B2/en
Priority to JP2007536598A priority patent/JP5124277B2/ja
Priority to EP06810692A priority patent/EP1935846A4/en
Publication of WO2007034989A1 publication Critical patent/WO2007034989A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/929Special chemical considerations
    • Y10S585/943Synthesis from methane or inorganic carbon source, e.g. coal

Definitions

  • the present invention relates to a method for starting an autothermal reformer using liquid fuel as a raw material used in a fuel cell system or the like.
  • the present invention relates to a combined reforming catalyst having liquid fuel oxidation activity, a heating means for heating the reforming catalyst located upstream of the reforming catalyst, a liquid vaporizer, and an evaporation that generates water vapor.
  • the present invention relates to a startup method for an autothermal reformer having an air supply means for supplying air, and more particularly to a startup method in a state where the reforming catalyst is at a low temperature such as an atmospheric temperature.
  • the temperature of the catalyst must be raised to a temperature at which the reforming catalyst exhibits the oxidation activity of the fuel.
  • a burner is used to raise the temperature of the catalyst in order to shorten the start-up time, and if it is ignited, only the inlet of the catalyst layer will suddenly rise due to the high-temperature gas generated from the burner.
  • it is necessary to repeatedly ignite and extinguish the Pana in order to reach the temperature that can reform the entire catalyst layer.
  • a method in which a gas heated separately in the heat source is introduced into the reforming catalyst layer and the reforming catalyst is preheated to a temperature at which reforming can be performed requires a large amount of power and shortens the startup time. Difficult to do.
  • the catalyst layer inlet temperature is higher than the outlet temperature, so when starting the auto-smal reforming, make the catalyst layer inlet higher. It needs to be pre-heated ', and the conventional method is insufficient in that respect.
  • Patent Document 1 In autothermal reactor, after the supply of the reforming fuel and water was stopped les to shorten because time to restart when stopped, air: to stop the supply of
  • a method for maintaining the catalyst layer temperature by using only a partial oxidation reaction, which is an exothermic reaction, is disclosed, but the catalyst layer temperature is normal temperature such as atmospheric temperature.
  • fuel and water are supplied into the system in advance. It is not applicable when it is not done.
  • -Patent Document 1 Japanese Laid-Open Patent Publication No. 2 0 2 — 1 5 8 0 2 7 (Correspondence: 'US Patent No. 6, 7 8 6, .. 9 4 2 Specification) ⁇ ⁇ ' 'Disclosure of Invention
  • the present invention provides a reforming catalyst having an oxidation activity for liquid fuel, a heating means for heating the reforming catalyst located upstream of the reforming catalyst, a body fuel vaporizer, an evaporator for generating water vapor, and air.
  • the purpose is to shorten the start-up time of an autothermal reformer with an air supply means.
  • the first aspect of the present invention is a reforming catalyst having both oxidation activities, a heating stage for heating the reforming catalyst located upstream of the reforming catalyst, a vaporizer for liquid fuel, an evaporator for generating steam, and air.
  • a starting method of an autothermal reformer having an air supply means for supplying, vaporizing liquid fuel by the vaporizer, and performing autothermal reforming with the reforming catalyst,
  • the transition from the first preheating step to the second preheating step is performed when the reforming catalyst layer inlet temperature reaches 2550 ° C or higher.
  • the present invention relates to a method for starting a photothermal reformer.
  • the transition from the second preheating step to the steady state is such that the reforming catalyst layer inlet temperature is 600 ° C or higher and the outlet temperature is 400 ° C or higher.
  • the present invention relates to a method for starting an autothermal reformer characterized by being performed at a later stage. .
  • the process of heating the reforming catalyst by its own power S-catalyst combustion is adopted, so that the catalyst heating is fast and from the catalyst inlet to the outlet.
  • An ideal temperature distribution can be obtained, and the start-up time can be shortened more comprehensively than in the case of a single process of heating with external heat such as a burner. 'Short description of drawing'. ——
  • FIG. 1 shows a schematic diagram of the activation method of the present invention. '' Best mode for carrying out the invention
  • Liquid fuels subject to autothermal reforming include liquid compounds at room temperature and normal pressure (25 ° C, 0.10 IMP a), which contain carbon and hydrogen in the molecule. Any fuel can be used as long as it is a hydrocarbon compound capable of causing a reforming reaction.
  • saturated hydrocarbons such as decane, undecane, dodecane, tridecane, tetradecane, pen decane, hexadecane, heptodecane, octadecane, nonadecane, and eicosane; Silene, engineered benzene, trimethylbenzene, cumene, propylbenzene, or butylbenzene, pendylbenzene, hexylbenzene, heptyl
  • aromatic compounds such as benzene, octylbenzene, nonylbenzene, decylbenzene, naphthalene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, propyl-5-naphthalene, biphenyl, methylbiphenyl, edilbiphenyl, propylbiphenyl;
  • aromatic or non-aromatic compounds having a saturated ring such as tetralin and decalin.
  • the above pure substance can be used alone as a liquid fuel containing the above hydrocarbon compound, but there are multiple types of hydrocarbon compounds as a mixture in 'normally' liquid materials.
  • liquid fuels examples include naphtha, gasoline, oil, light oil, and fuel manufactured by the Fischer Push method.
  • the concentration is preferably 1 mass ppm or less, more preferably 0 .1 mass ppm or less. Therefore, if necessary, the liquid fuel 20 can be desulfurized beforehand.
  • the sulfur concentration in the raw material used for the desulfurization process is not particularly limited, and any substance can be used as long as it can be converted to the above sulfur concentration in the desulfurization process.
  • Examples of the catalyst that can be used in this case include catalysts composed of nickel molybdenum, cobalt-molybdenum, and the like.
  • a method of sorbing sulfur in the presence of hydrogen in the presence of an appropriate sorbent can be employed if necessary.
  • Japanese Patent No. 2 6 5 4 5 15 (corresponding to: US Pat. No. 4, 9 8 5, 0 74 A sorbent based on copper-zinc as shown in Japanese Patent No. 2688749 (corresponding i US Pat. No. 4,985,074), etc.
  • Examples of the sorbent are:
  • any catalyst that can be used for autothermal reforming that is, one having oxidation activity and steam reforming activity can be used.
  • JP 2000-844.10 (corresponding: Ameri force patent 6,749,828)
  • JP 2001-80907 (corresponding: US 6,335,474)
  • US Patent documents such as patent 5, 929, 286 ⁇ specifications
  • Non-patent literature, etc. It is known that noble metals such as nickel and platinum, rhodium and ruthenium have these activities as described in 1.
  • noble metals having high oxidation activity of liquid fuel are preferably used.
  • a catalyst with high oxidation activity and high steam reforming activity is preferred, ...
  • No particular limitation on the catalyst shape #j for example, a catalyst that has been compressed into tablets and sized to an appropriate range after extrusion, extruded Extruded by adding molded catalyst and appropriate binder Catalysts, powdered catalysts, etc. Further, tablets are molded and then crushed and sized to an appropriate range after pulverization, extruded and shaped, powder or sphere, ring, tablet, cylindrical, It is possible to use a supported catalyst in which a metal is supported on a carrier such as a carrier formed into an appropriate shape such as flakes, etc.
  • a catalyst in which the catalyst itself is formed into a monolithic shape, a honeycomb shape, or the like is suitable. Any material such as a monolith made of a material, such as a honeycomb-shaped body coated with a catalyst, can be used.
  • the autothermal reformer of the present invention generates a reforming catalyst having both oxidation activities of liquid fuel, a heating means for heating the reforming catalyst at a position upstream of the reforming catalyst, a liquid fuel vaporizer, and steam.
  • Evaporator air supply means for supplying air.
  • FIG. 1 is a schematic diagram of the start-up method of the present invention, in which a panner is arranged as a heating means in the upstream position of the reforming catalyst, that is, in the vicinity of the output CJ position ′. Further upstream, a liquid fuel vaporizer, a water evaporator, and an air flow control device as an air supply means for supplying air are arranged.
  • Fig. 1 there is an air flow control device at the uppermost stream, air is sent from now on, then water is sent from the water tank via the water pump, and becomes water vapor in the water evaporator. Supplied to the line. Liquid fuel is then fed through the liquid fuel pump, which is vaporized by the vaporizer, fed to the line, mixed in a suitable manner and introduced into the autothermal reformer.
  • the auto-thermal reformer is filled with the reforming catalyst, and a panner is placed near the catalyst inlet, and the catalyst bed is heated by the flame of the panner when it is launched. In the steady state, reformer gas is obtained from the reformer. .
  • Liquid fuel vaporizers, evaporators, and air flow control devices should be placed upstream or parallel to the fuel so that fuel, water, and air can be mixed in front of the burner; either in series or in parallel. Can do.
  • the reforming catalyst usually forms a catalyst layer in the reformer, and vaporized fuel, water, air, or a mixture thereof is introduced into the reforming catalyst layer inlet, and the catalyst layer After autothermal reforming, the reformed gas is discharged from the catalyst layer outlet.
  • the discharged reformed gas is appropriately purified and used for a fuel cell system or the like.
  • a reforming catalyst having both oxidation activities, a heating means for heating the reforming catalyst located upstream of the reforming catalyst, a vaporizer for liquid fuel, an evaporator for generating water vapor, and an air supply for supplying air
  • a heating means for heating the reforming catalyst located upstream of the reforming catalyst a vaporizer for liquid fuel, an evaporator for generating water vapor, and an air supply for supplying air
  • an auto thermal reformer having a means for vaporizing liquid fuel with the vaporizer and performing auto thermal reforming with the reforming catalyst.
  • a method of providing autothermal reforming by a method comprising: supplying a reforming catalyst heated in the second preheating process together with water vapor and starting autothermal reforming under steady state conditions; It activates the instrument.
  • the transition from the first preheating step to the second preheating step is performed when the reforming catalyst layer inlet temperature reaches 250 ° C. or higher.
  • the transition from the second preheating step to steady tl ⁇ is performed when the reforming catalyst layer inlet temperature is 600 ° C or higher and the outlet temperature is 400 ° C or higher.
  • the temperature of the reforming catalyst is raised to a predetermined temperature by a heating means such as a panner.
  • a heating means such as a panner.
  • the reforming catalyst layer can be quickly heated by adopting a burner as a heating means and introducing vaporized liquid fuel and air into the burner and igniting. .
  • Vaporized fuel and air ⁇ can be used separately
  • liquid fuel and air can be determined appropriately according to the characteristics of the burner, but it is desirable that the air-fuel ratio is 1 to 2 (volume ratio) in order to cause burner combustion. '',. '
  • the heating means is stopped, and the reforming catalyst is heated on the reforming catalyst by using the vaporized liquid fuel and gas for catalytic combustion.
  • the heating means for example, in the system shown in FIG. 1, it can be performed by misfiring the pan by increasing the amount of air.
  • the entire reforming catalyst is heated, and the temperature can be sufficiently raised at the catalyst layer outlet without heating only the catalyst layer inlet.
  • the flow rate of liquid fuel and air in the second preheating step can be set to a flow rate at which liquid fuel can cause catalyst combustion, but the air-fuel ratio is 2.5. : ⁇ 5 (capacity ratio) is desirable. '
  • the temperature of the reforming catalyst layer entrance .. d is 250 ° C or higher. If the inlet temperature is lower than 250 ° C, even if a noble metal catalyst is used as the reforming catalyst, catalytic combustion will not occur.5 'will not be possible, so the catalyst layer will be heated sufficiently by catalytic combustion in the second preheating step. Can not do it.
  • steam is supplied to the reforming catalyst whose temperature has been raised in the second step, and the supply amount of liquid fuel is increased or decreased to a predetermined amount in a steady state.
  • the predetermined amount in the present invention is a fixed amount.
  • the reforming catalyst layer inlet temperature is 600 or more and the outlet temperature is more than '40'0 ° C or more. It is desirable that If the inlet temperature is lower than 600 ° C or the outlet temperature is lower than • 400 ° C, even if steam is introduced, a sufficient thermal reaction cannot occur in the entire catalyst layer.
  • kerosene was used as the liquid fuel, and the system was stopped and started from the atmospheric temperature.
  • the autothermal reformer was charged with 392 25 g of Rh (Ima s s%) Z spherical alumina (diameter 3 mm) as a reforming catalyst.
  • kerosene 60g / h, air 752 LZh air-fuel ratio 1 ⁇ 1
  • the catalyst bed inlet temperature reached 250 ° C in 3 minutes from the stop state.
  • Kerosene is vaporized by the vaporizer and is burned by the panner in practice. Therefore, the air volume was increased to 2052 LZh (air-fuel ratio 3), and the burner was misfired. .
  • the kerosene thus vaporized was supplied to the catalyst layer together with air and shifted to catalytic combustion.As a result, the catalyst layer inlet temperature reached 600 ° C and the catalyst layer outlet temperature reached 400 ° C in 10 minutes from the stop state.
  • the hornworm medium layer inlet temperature is 650
  • the catalyst layer outlet temperature is 550 ° C ⁇ ⁇ Stable, from the reformer outlet ⁇
  • the design value of reformed gas 1. 8m 3 Zh was obtained, and after that, it was operated in steady state.
  • the present invention by adopting a process in which the reforming catalyst itself is heated by catalytic combustion in addition to the process of heating the reforming catalyst with external heat ;
  • An ideal temperature distribution can be obtained from the inlet to the outlet, and the start-up time can be shortened comprehensively compared to the case of heating alone with an external heat such as a burner. Therefore, heat generation of oxidation exothermic reforming endotherm occurs in the reforming catalyst, so it is useful for reformers used in fuel cell systems, etc., with shorter start-up time and faster load follow-up than normal steam reforming. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

オートサーマル改質器の起動時間を短縮するために、上流に位置する改質触媒を加熱する加熱手段により、改質触媒を所定温度にまで加熱する第1の予熱工程;所定温度に到達後に加熱を停止して、所定温度の改質触媒に気化燃料と空気を送り、該改質触媒により燃料を酸化させて改質触媒を加熱する第2の予熱工程;および第2の予熱工程により加熱された改質触媒に水蒸気をも併せて供給して、定常状態の条件によりオートサーマル改質を開始する工程からなる方法によりオートサーマル改質器を起動する。

Description

明細書 オートサーマル改質器の起動方法 , ノ . . . .. ' 技術分野
本発明は、 燃料電池システムなどに用いられる液体燃料を原料とするォー ' トサーマル改質器の起動方法に関する。 . ,
より詳しくは、 本発明は、 液体燃料の酸化活性を有する併有改質触媒と、 改質触媒の上流に位置する改質触媒を加熱する加熱手段、 液体^料気化器、 水蒸気を発生させる蒸発.器、 空気を供給する送 手段を有するオートサーマ . ル改質器の起動方法、 特に改質触媒が大気温等の低温にある状 からの起動 方法に関する。. .背景技術
• 燃料電池システムな.どに用いられる改質器の改質方法には、 水蒸気改質、 部分酸化改質、 オートサーマル改質が^られている。 なかでもオートサーマ ル改質は、 改質触媒内部で酸化発熱一改質吸熱の熱授受が起きるため、 通常 の水蒸気'改質より起動時,間が短く、 負荷追従が早いとされている。
'. しかし、 ォ一トサーマル改質の場合も、 改質触媒が燃料の酸化活性を発現 する温度まで触媒を昇温しな 'ければならない。 触媒層に充填される改質触媒 については、 ここで、 起動晴間の短縮を図るために触媒昇温にパーナを使用 し強熱すると、 パーナから発生する高温ガスのため触媒層入口のみが急激に 昇温するため、 触媒層全体を改質可能な温度に到達させるには、 パーナの点 火と消火を繰り返す必要がある。
また、 ヒー夕一で別途加熱された気体を改質触媒層に導入し、 改質触媒を 改質可能な温度まで予熱する方法では、 多大な電力が必要とされるうえ、 起 動時間も短縮することが難しい。
すなわち、 オートサーマル改質器を安定して素早く起動させるには、 改質 触媒を迅速に該改質触媒層め入口から出口にかけて所望の温度勾配をつけて 昇温させることが不可欠である。
つまり、オートサーマル改質の定常状態の反応では、触媒層の入口温度は、 出口温度よりも高温にあるので、 オート.サ マル改質を起動させるに際して は、 触媒層の入口をより'高温に予熱する必要があり'、 従来の方法ではかかる 点で不充分であった。
また、 次の特許文献 1には:、 オートサーマル反応器において、 停止時から 再起動までめ時間を短縮するために改質燃料と水の供給を停止レた後、 空気 : の供給を停止することで、 発熱反応である部分酸化反応のみ用いて触媒層温 度を保つ方 ¾が開示されているが、 触媒層温度が大気温等の常温で、. しかも 系内に燃料、水があらかじめ供給されていないような場合には適用できない。
- 特許文献 1 :特開 2 0 0 2— 1 5 8 0 2 7号公報 (対応: 'アメリカ特許 第 6 , 7 8 6 ,·. 9 4 2号明細書) ·■ ' ' 発明の開示
• 本発明は、 液体燃料.の酸化活性を有する改質触媒と、 改質触媒の上流 位 置する改質触媒を加熱する加熱手段、 体燃料気化器、 水蒸気を発生させる 蒸発器、 空気を供給する送気手段を有するオートサーマル改質器の起動時間 を短縮することを目的と: Tる。 . ' '
本発明の第 1は、 酸化活性を併有する改質触媒と、 改質触媒の上流に位置 する改質触媒を加熱する加熱 段.、 液体燃料の気化器、 水蒸気 ¾発生させる 蒸発器、空気を供給する送気手段を有し、液体燃料を前記気化器で気化させ、 これを前記改質触媒でォートサーマル改質を行うォ一トサーマル改質器の起 動方法であって、
改質触媒の上流に位置する改質触媒を加熱する加熱手段により、 改質触媒を 所定温度にまで加熱する第 1の予熱工程;
所定?显度に到達後に加熱を停止して、 所定温度の改質触媒に気化燃料と空気 を送り、 該改質触媒により燃料を酸化させて改質触媒を加熱する第 2の予熱 工程;および 第 2の予熱工程により加熱された改質触媒に水蒸気をも併せて供給して、 定 常状態の条件によりオートサ一マル改質を開始する工程、
を'有することを特徴とするォ一トサーマル改質器の起動方法に関する。
本発明の第 2は、 本発明の第 1において、 第 1の予熱工程から第 2の予熱- 工程 の移行を改質触媒層入口温度が 2 5 0 °C以上に到達した段階で行うこ とを特徴とするォートサーマル改質器の起動方法に関する。
本発明の第 3は、 本発明の第 1において、 第 2の予熱工程から定常状態べ の移行を改質触媒層入口温度が 6 0 0 °C以上かつ出口温度が 4 0 0 °C以上と なった段階で行う'ことを特徴とするオートサーマル改質器の起動方法に関す る。 . 発明の効果 ' '
本発明によれば、 改質触媒を外熱 加熱する工程に加えて、 改質触媒自身 力 S触媒燃焼により加熱する工程を採用することにより、 触媒加熱が早く、 ま た、 触媒入口から出口にかけて理想的な温度分布を得ることができ、 パーナ 等の外熱で加熱する工程単独の場合よりも総合的には起動時間を短くするこ とができる。 ' 図面の簡単な説明 ' . ——
図 1は本発明の起動方法の概略図を示す。' ' 発明を実施するための最良の形態
〔液体燃料〕
ォ—トサーマル改質の対象となる液体燃料としては、 常温常圧 (2 5 °C、 0 . 1 0 I M P a ) で液体であり、 分子中に炭素と水素を有する化合物を含 み、 ォートサーマル改質反応を起こしうる炭化水素化合物であればいずれの 燃料も使用できる。使用できる化合物の具体例としてはデカン、ゥンデカン、 ドデカン、 トリデカン、 テトラデカン、 ペン夕デカン、 へキサデカン、 ヘプ 夕デカン、 ォクタデカン、 ノナデカン、 エイコサンなどの飽和炭化水素;キ シレン、工チルベンゼン、 卜リメチルベンゼン、 クメン、 プロピルベンゼン、 あるいはプチルベンゼン、 ペンヂルベンゼン、 へキシルベンゼン、 ヘプチル
' ベンゼン、 ォクチルベンゼン、 ノニルベンゼン、 デシルベンゼン、 ナフタレ ン、 メチルナフタレン、 ジメチルナフダレン、 ェチルナフタレン、 プロピル 5 ナフタレン、 ビフエ二ル、 メチルビフエニル、 エヂルビフエニル、 プロピル ビフエニルなどの置換あるいは無置換の芳香族化合物;テトラリン、 デカリ ンなど飽和環を持つ芳香族あるいは非芳香族化合物、 などを挙げることがで きる。 これらは、 .例示であり、 非常に多くの対象化合物の一部の例でしかな 了いことは言うまでもない。 、
10 . 上記炭化水素化合物を含む液体燃料として上記純物質を単独で用いること もできるが、 '通常、'液体 料には該炭化水素化合物は混合物として複数種類
, . が含まれる。 その液体燃料の例としては、 ナフサ、 ガソリン、 油、 軽油、 フィシヤート プシュ法で製造された燃料、 などを挙げることができる。
'上記液体燃料は、 後記する気化器により気化されて、 気体としてオートサ
15 —マル改質反応へ水蒸気と共に供される。
〔脱硫〕 ·' - 液体燃料中の硫黄は改質触媒を不活性化させる作用があるためなるベく低
. 濃度であることが望ましく、 好ましぐは 1質量 p p m以下、 より好ましくは 0 .. 1質量 p p m以下とす ¾。 このため、 必要に応じて、 前もって液体燃料 20 を脱硫することができる。 脱硫工程に供する,原嵙中の硫黄濃度には特に制限 はなく脱硫工程において上記硫黄.濃度に転換できるものであれば使用するこ とができる。
脱硫の方法にも特に制限はないが、 適当な触媒と水素の存在下水素化脱硫 を行い生成した硫化水素を酸化亜鉛などに吸収させる方法を例としてあげる
25 ことができる。 この場合用いることができる触媒の例としてはニッケル一モ リブデン、 コバルトーモリブデンなどを成分とする触媒を挙げることができ る。 一方、 適当な収着剤の存在下に、 必要であれば水素の共存下硫黄分を収 着させる方法も採用できる。 この場合用いることができる収着剤としては特 許第 2 6 5 4 5 1 5号公報 (対応:アメリカ特許第 4, 9 8 5 , 0 7 4号明 細書) 、 特許第 2688749号公報 (対応 iアメリカ特許第 4, 985, 074号明細書) などに示されたような銅—亜鉛を主成分とする収着剤ある いほニッケル一亜鉛 主成分とする収着剤などを例示できる。
〔改質触媒〕
オートサーマル改質器に用いる触媒としては、 オートサーマル改質用とし て使用できるもの、 すなわち酸化活性と水蒸気改質活性とを備えるものであ れば使用できる。 例えば、 特開 2000— 844.10号公報 (対応:ァメリ 力特許第 6, 749, 828号明細書) 、 特開 2001— 80907号公報 (対応:アメリカ特許第 6, 335, 474号明細書) 、 米国特許 5, 92 9, 286夸明細書等の特許文献や 「2000 Annu a 1 P r o g r e s s Re p o r t s (Of f i c e o τ T r an s p o r t a t i : on Te c hn o 1 o g i e,s) j 等 ©非特許文献などに記載されるよう にニッケルおよび白金、 ロジウム、 ルテニウムなどの貴金属等がこれら活性 を'持つことが知られている。 これらのうち、 液体燃料の酸化活性の高い貴金 属が好ましく用いられる。 特に酸化活性が高く水蒸気改質活性が高いロジゥ ムが好ましい。 , . . .. . 触媒形状としては特に制限はない。 #jえば、 打錠成形し粉砕後適当な範囲 に整粒した触媒、 押し出し成形した触媒、 適当なバインダーを加え押し出し 成形した触媒、 粉末状触媒などを用いることができる。 さらに、 打錠成形し ' 粉砕後適当な範囲に整粒した担体、 押し出し成形した担体、 粉末あるいは球 形、 リング状、 タブレット状、' 円筒状、 フレーク状など適当な形に成形した 担体などの担体に金属を担持した担持触媒などを用いることができる。.また、 触媒自体をモノリス状、 ハニカム状などの形状に成形した触媒、 あるいは適 当な素材からなるモノリスゃハニカム形状体などに蝕媒をコ一ティングした ものなど、 任意のものを用いることができる。
〔改質器〕
本発明のォートサーマル改質器は、 液体燃料の酸化活性を併有する改質触 媒と、 改質触媒の上流の位置に改質触媒を加熱する加熱手段、 液体燃料気化 器、 水蒸気を発生させる蒸発器、 空気を供給する送気手段を有する。 • 図 1に示すのが本願発明の起動方法の概略図であり、改質触媒の上流位置、 すなわち、 出 CJ位置'近傍に加熱手段としてパーナが配置される。 さらにその 上流には液体燃料気化器、.水の蒸発器、 空気を供給する送気手段としての空 気流量制御装置が配される。
- す わち、 図 1では最上流に空気流量制御装置があり、 これから空気が送 気され、 次ぎに水タンクから水ポンプを介して水が送水されて、 水蒸発器で 水蒸気となり、 水蒸気がラインに供給される。 次いで液体燃料が液体燃料ポ ンプを介して供給され、.これは気化器により気化されて、ラインへ供給され、 ίί宜に混合されてォートサーマル改質器へ導入される。'ォートサーマル改質 器には改質触媒が充填され、 その触媒入口近傍にはパーナが配され、.起勲時 にパーナの火炎で触媒床が加熱される。 定常状態では改質器からは改質ガス . が得られる。 · . '
液体燃料気化器、 蒸発器、 空気流量制御装置は、 パーナの上流の位置にあ て燃料、 水、 空気をパーナの前の位置で混合できる形であれば; 直列ある いは並列に配置することができる。
• 改質触媒は、 通常、 ,改質器中の触媒層を形成し、 改質触媒層入口へ気化し た燃料、 水、 空気がそれぞれ、 またはとれらの混合物が導入され、 そして、 触媒層においてオートサ一マル改質後、 触媒層出口からは改質ガスが排出さ れる。 排出された改質ガスは、 適宜に精製されて燃料電池システム等に利用 ' される。.
〔起動方法〕 '
本発明では、 酸化活性を併有する改質触媒と、 改質触媒の上流に位置する 改質触媒を加熱する加熱手段、 液体燃料の気化器、 水蒸気を発生させる蒸発 器、 空気を供給する送気手段を有し、 液体燃料を前記気化器で気化させ、 こ れを前記改質触媒でオートサ一マル改質を行うオートサ一マル改質器の起動 方法である。
すなわち、
改質触媒の上流に位置する、 改質触媒を加熱する加熱手段により、 改質触 媒を所定温度にまで加熱する第 1の予熱工程; 所定温度に到達後に加熱を停止して、 所定温度の改質触媒に気化燃料と空 気を送り、 該改質触媒により燃料を酸化させて改質触媒を加熱する第 2の予 熱工程;および
第 2の予熱工程により加熱された改質触媒に水蒸^をも併せて供給して、 定常状態の条件によりォ ^トサーマル改質を開始する工程、 . ■ を具備する方法によりオートサ一マル改質器を起動するものである。
第 1の予熱工程から第 2の予熱工程への移行を改質触媒層入口温度が 2 5 0 °C以上に到達した段階で行う。 また第 2の予熱工程から定常 tl^への移行 を改質触媒層入口温度が 6 0 0 °C以上かつ出口温度が 4 0 0 °C以上となった 段階で行う。 ' · ' ·
(外熱予熱工程) ,
第 1の予熱工程では、 パーナ等の加熱手段 より改質触媒を所定温度にま で昇温する。こ:のとき、図 1に示すように、加熱手段としてバーナを採用し、 気'化した液体燃料と空気をパーナに導入し点火することにより、 改質触媒層 を速やかに加熱することができる。 気化燃料と空 ^は、 別個のものを使用で
'きるが、 改質用としての気化燃料と空気を利用するのが便利である。 液体燃 料と空気の流量に関しては、パーナの特性により適宜定めることができるが、 パーナ燃焼を起こさせるためには、 空燃比が 1〜2 (容量比) であることが 望ましい。 ' ' 、 . '
' (内熱予熱工程) .
第 2の予熱工程では、 加熱手段.を停止させ、 改質触媒上で、 気化した液体 燃料と 気を用いて触媒燃焼させることにより、 改質触媒を昇温させる。 こ のとき、 加熱手段の停止方法としては、 例えば図 1のシステムにおいては、 空気量を増大させることによりパーナを失火させることにより行うことがで きる。 燃料の触媒燃焼を起こすことにより、 改質触媒全体が加熱され、 触媒 層入口のみが加熱されることなく、 触媒層出口においても十分に昇温するこ とができる。
第 2の予熱工程における液体燃料と空気の流量に関しては、 液体燃料が触 媒燃焼を起こすことができる流量に定めることができるが、 空燃比が 2 . 5 : 〜5 (容量比) であることが望ましい。 '
第 1の予熱工程から第 2の予熱工程の切り替えにおいては、 改質触媒層入 .. dの温度が 250°C以上であることが望ましい。 入口温度が 250°Cより低 いと、 改質触媒として貴金属触媒を用いた場合においても触媒燃焼を起こす · 5 ' こと できないため、 次ぎの第 2の予熱工程において触媒燃焼により触媒層 を十分に加熱することができない。
次ぎに第 2の工程に続いて、 第 2の工程で昇温された改質触媒に水蒸気を '供給し、液体燃料の供給量を定常状態の所定量まで増大 ·または減少させて、 ォートサーマル反応の定常状態を開始する。 本発明 おける所定量とは、 定
' 10 常的に水素 製造する際に必要とされる液体燃料の流量のことをいい、 通常 のォートザ マル改質器に'おいては、 触媒燃焼に十分な液体燃料の流量より . '大さ.い。 . . . ' .
,. 第 2の予熱 X程から、 オートサーマル改質の定常状態の工程の切り替えに いては、,改質触媒層入口の温度が 600で以上かつ出口温度が' 40'0°C以 15 上であることが望ましい。 入口温度が 600°Cより低いもしくは出口温度が •400°Cより低いと、 .水蒸気を導入しても、 触媒層全体で十分なォー卜サー マル反応を起こすことができない。 ' +
上記のようにして改質器を 動し、 定常状態に移行すれば、 以降は定常的 に運転がされる。
20 ' · '
実施例 '
図 1に示したォ一トサーマル改質器において、 液体燃料として灯油を用い て、 停止して大気温状態からの起動を行なった。 オートサ一マル改質器には 改質触媒として Rh (Ima s s %) Z球状アルミナ (径 3mm) を ·392 25 g充填した。
まず、 灯油 60g/h、 空気 752 LZh (空燃比 1 · 1) をパーナに導 入し、 パーナを点火したところ、 停止状態から 3分で触媒層入口温度が 25 0 °Cに達した。灯油は気化器で気化されてパーナで実際上全量が燃焼される。 そこで、 空気量を 2052 LZh (空燃比 3) に増量し、 バーナを失火さ . せた。 それにより気化された灯油は空気と共に触媒層に供給され触媒燃焼に 移行したところ、 停止状態から 10分で触媒層入口温度が 600°C、 触媒層 出口温度が 400°Cに達し.たので、 灯油供給量を改質器設計値である 200 gZhに増量し、空気量をオートサ一マル改質条件である 612 L/h (〇2 /C=,0. 4) とし、 水の供給を開始した。 水の供給量は、 オートサ,一マル 改質条件である 643m l /h (S/C=2. 5) であった。 水は蒸発器で 水蒸気とされて導入される。 ' .
' 水の供給後 1分で角虫媒層入口温度は 650で、 触媒層出口温 は 550°C で 「 ■安定し、 改質器出口■からは \、 設計値である改質ガス 1. 8m3Zhを得るこ とができた。 以降は定常状態で運転された。
• 産業上の利用可能性
本発明によれば、 改質触媒を外熱で ;加熱する工程に加えて、 改質触媒自身 が触媒燃焼により加熱する工程を採用することにより、.触媒加熱が早ぐ、 ま .た、 触媒入口から出口にかけて理想的な温度分布を得ることができ、 パーナ 等の外熱で加熱する工程単独の場合よりも総合的には起動時間を短くする-こ .とができる。 したがって、 改質触媒内^で酸化発熱 改質吸熱の熱授受が起 きるため、 通常の水蒸気改質より起動時間が短く、 負荷追従が早く燃料電池 システムなどに用いられる改質器に有用である。

Claims

請求の範囲
1 . 酸化活性を併有する改質触媒と、 改質触媒の上流に位置する改質触媒 を加熱,する加熱手段、 液体燃料の気化器、 水蒸気を発生させる蒸発器 > 空気 を供給する送気手段を有し、 液体燃料を前記気化器で気化させ、 これを前記 改質触媒でオートサーマル改質を行うオートサーマル改質器の起動方法であ 'つて、 .,
'改質触媒の上流に位置する、 改質触媒を加熱する加熱手段により、 改質蝕 媒を所定温虔にまで加熱する第 1の予熱工程;
所定温度に到達後に加熱を停止して、. 所定温度の改質触媒に気化燃料と空 気を送り、 該改質触媒により燃料を酸化させて改質触媒を加熱する第 2の予 熱工程;および
2の予熱工程により加熱された改質触媒に水蒸気をも併せて供給して、' 定常状態の条件によ.りォ一トサーマル改質を開始する工程、 .
を有することを特徴とするオートサ一マル改質器の起動方法。 . ―
2、 第 1の予熱工程から第 2の予熱工程への移行を改質 ¾媒層入口温度が 2 5 Q °C以上に到達した段階で行うことを特徴とする請求項 1記載のオート サーマル改質器の起動方法。 '
3 . 第 2の予熱工程から定常状態への移行を改質触媒層入口温度が 6 0 0 °C以上かつ出口温度が 4 0 0 °C以上となった段階で行うことを特徴とする 請求項 1記載のォートサーマル改質器の起動方法。
PCT/JP2006/319234 2005-09-21 2006-09-21 オートサーマル改質器の起動方法 WO2007034989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2622270A CA2622270C (en) 2005-09-21 2006-09-21 Method for starting autothermal reformer
US11/992,335 US7837858B2 (en) 2005-09-21 2006-09-21 Method for starting autothermal reformer
JP2007536598A JP5124277B2 (ja) 2005-09-21 2006-09-21 オートサーマル改質器の起動方法
EP06810692A EP1935846A4 (en) 2005-09-21 2006-09-21 METHOD FOR ACCESSING AN AUTOTHEROM REFORMER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005274068 2005-09-21
JP2005-274068 2005-09-21

Publications (1)

Publication Number Publication Date
WO2007034989A1 true WO2007034989A1 (ja) 2007-03-29

Family

ID=37889023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319234 WO2007034989A1 (ja) 2005-09-21 2006-09-21 オートサーマル改質器の起動方法

Country Status (6)

Country Link
US (1) US7837858B2 (ja)
EP (1) EP1935846A4 (ja)
JP (1) JP5124277B2 (ja)
CA (1) CA2622270C (ja)
TW (1) TWI398406B (ja)
WO (1) WO2007034989A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247688A (ja) * 2007-03-30 2008-10-16 Casio Comput Co Ltd 気化装置及びその駆動制御方法並びにそれを備える発電装置
US20090165368A1 (en) * 2007-12-28 2009-07-02 Yunquan Liu Process and apparatus for reforming gaseous and liquid fuels
JP2010524826A (ja) * 2007-04-25 2010-07-22 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング 二次流入通路を備える改質器
KR101213046B1 (ko) 2012-09-18 2012-12-18 국방과학연구소 연료 개질기의 제어 방법
KR101452069B1 (ko) 2012-12-18 2014-10-16 포스코에너지 주식회사 연료전지용 전개질기
WO2015080230A1 (ja) * 2013-11-27 2015-06-04 京セラ株式会社 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
US9603796B2 (en) 2008-07-21 2017-03-28 Otonomy, Inc. Controlled release antimicrobial compositions and methods for the treatment of otic disorders
US11040004B2 (en) 2016-09-16 2021-06-22 Otonomy, Inc. Otic gel formulations for treating otitis externa

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8430938B1 (en) 2006-07-13 2013-04-30 The United States Of America As Represented By The Secretary Of The Navy Control algorithm for autothermal reformer
JP5177998B2 (ja) 2006-11-27 2013-04-10 Jx日鉱日石エネルギー株式会社 改質装置及びその運転方法
JP5418960B2 (ja) * 2009-03-31 2014-02-19 Toto株式会社 固体電解質型燃料電池
JP5230849B2 (ja) * 2011-04-26 2013-07-10 パナソニック株式会社 水素生成装置、燃料電池システム、及びその運転方法
US8591844B1 (en) 2012-05-17 2013-11-26 Fluor Technologies Corporation Start up catalyst heating
US10946359B2 (en) * 2018-01-09 2021-03-16 Innoveering, LLC Fuel reformation for use in high speed propulsion systems
US11239479B2 (en) * 2020-03-26 2022-02-01 Saudi Arabian Oil Company Ignition method of fuel reformer using partial oxidation reaction of the fuel for SOFC fuel cell start-up
US11542159B2 (en) 2020-06-22 2023-01-03 Saudi Arabian Oil Company Autothermal reformer system with liquid desulfurizer for SOFC system
US11618003B2 (en) 2020-06-23 2023-04-04 Saudi Arabian Oil Company Diesel reforming apparatus having a heat exchanger for higher efficiency steam reforming for solid oxide fuel cells (SOFC)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229953A (ja) * 2000-02-18 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2003306310A (ja) * 2002-04-09 2003-10-28 Nippon Oil Corp オートサーマルリフォーミング改質器およびそれを用いたオートサーマルリフォーミング方法
JP2004256356A (ja) * 2003-02-26 2004-09-16 Kubota Corp 改質ガス製造方法、及び、その製造方法に用いる改質装置
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985074A (en) * 1987-11-05 1991-01-15 Osaka Gas Company Limited Process for producing a desulfurization agent
US6110861A (en) * 1997-06-02 2000-08-29 The University Of Chicago Partial oxidation catalyst
AU740872B2 (en) * 1998-06-09 2001-11-15 Idemitsu Kosan Co. Ltd Catalyst and process for reforming hydrocarbon
EP1077198A3 (en) * 1999-08-19 2001-03-07 Haldor Topsoe A/S Process for pre-reforming of oxygen-containing gas
JP3900823B2 (ja) * 2000-11-20 2007-04-04 日産自動車株式会社 燃料改質システムの停止方法
AU2003291530A1 (en) * 2002-11-13 2004-06-03 Nuvera Fuel Cells, Inc. Fast startup in autothermal reformers
US6759156B1 (en) * 2003-04-04 2004-07-06 Texaco Inc. Operating states for fuel processor subsystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229953A (ja) * 2000-02-18 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2003306310A (ja) * 2002-04-09 2003-10-28 Nippon Oil Corp オートサーマルリフォーミング改質器およびそれを用いたオートサーマルリフォーミング方法
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
JP2004256356A (ja) * 2003-02-26 2004-09-16 Kubota Corp 改質ガス製造方法、及び、その製造方法に用いる改質装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1935846A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247688A (ja) * 2007-03-30 2008-10-16 Casio Comput Co Ltd 気化装置及びその駆動制御方法並びにそれを備える発電装置
JP2010524826A (ja) * 2007-04-25 2010-07-22 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング 二次流入通路を備える改質器
US20090165368A1 (en) * 2007-12-28 2009-07-02 Yunquan Liu Process and apparatus for reforming gaseous and liquid fuels
US9603796B2 (en) 2008-07-21 2017-03-28 Otonomy, Inc. Controlled release antimicrobial compositions and methods for the treatment of otic disorders
US11369566B2 (en) 2008-07-21 2022-06-28 Alk-Abelló, Inc. Controlled release antimicrobial compositions and methods for the treatment of otic disorders
KR101213046B1 (ko) 2012-09-18 2012-12-18 국방과학연구소 연료 개질기의 제어 방법
US9212057B2 (en) 2012-09-18 2015-12-15 Agency For Defense Development Method for controlling fuel reformer
KR101452069B1 (ko) 2012-12-18 2014-10-16 포스코에너지 주식회사 연료전지용 전개질기
WO2015080230A1 (ja) * 2013-11-27 2015-06-04 京セラ株式会社 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JPWO2015080230A1 (ja) * 2013-11-27 2017-03-16 京セラ株式会社 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
US11040004B2 (en) 2016-09-16 2021-06-22 Otonomy, Inc. Otic gel formulations for treating otitis externa

Also Published As

Publication number Publication date
EP1935846A1 (en) 2008-06-25
CA2622270A1 (en) 2007-03-29
TW200728197A (en) 2007-08-01
EP1935846A4 (en) 2011-10-12
US7837858B2 (en) 2010-11-23
US20090223861A1 (en) 2009-09-10
CA2622270C (en) 2012-07-17
TWI398406B (zh) 2013-06-11
JP5124277B2 (ja) 2013-01-23
JPWO2007034989A1 (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2007034989A1 (ja) オートサーマル改質器の起動方法
KR101102804B1 (ko) 고체산화물형 연료전지 시스템의 기동 방법
JP4285992B2 (ja) 単一チャンバーのコンパクトな燃料処理装置
JP4335535B2 (ja) 単一チャンバーのコンパクトな燃料処理装置
JP4596735B2 (ja) コンパクト燃料プロセッサーの起動のために触媒を加熱する装置及び方法
US8444951B2 (en) Catalytic process and system for converting liquid fuels into syngas
JP5274547B2 (ja) 液化石油ガスで作動する燃料電池システム及びその使用方法
KR101384040B1 (ko) 간접 내부 개질형 고체 산화물형 연료전지 시스템
JP2010513835A (ja) 燃料処理適用のためのハイブリッド燃焼器
Cheekatamarla et al. Synthesis gas production via catalytic partial oxidation reforming of liquid fuels
JP2015517175A (ja) 燃料電池のための触媒を支持する置換可能な構造化支持部を含む触媒加熱式燃料処理装置
JP2010513189A (ja) 燃料処理用途において触媒プレバーナーを使用するための方法
JP2010513834A (ja) 蒸気発生及びガス予熱用の熱伝達ユニット
JP4805736B2 (ja) 間接内部改質型固体酸化物形燃料電池
JP2001180908A (ja) 水素発生装置およびその起動方法、停止方法
JP4805735B2 (ja) 間接内部改質型固体酸化物形燃料電池
EP2835343A1 (en) Hydrogen generator
JP2010001187A (ja) 改質装置
JP5436746B2 (ja) 固体酸化物形燃料電池モジュールの起動方法
JP2008186759A (ja) 間接内部改質型固体酸化物形燃料電池システムおよび間接内部改質型固体酸化物形燃料電池の運転方法
JP2011204484A (ja) 燃料電池システム
RU191712U1 (ru) Устройство получения синтез-газа
RU160799U1 (ru) Устройство для получения водородсодержащей газовой смеси
JP2003303610A (ja) 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置
US20050245620A1 (en) Fast startup in autothermal reformers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536598

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2622270

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11992335

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006810692

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006810692

Country of ref document: EP