WO2007034816A1 - アスベストの変性方法 - Google Patents

アスベストの変性方法 Download PDF

Info

Publication number
WO2007034816A1
WO2007034816A1 PCT/JP2006/318602 JP2006318602W WO2007034816A1 WO 2007034816 A1 WO2007034816 A1 WO 2007034816A1 JP 2006318602 W JP2006318602 W JP 2006318602W WO 2007034816 A1 WO2007034816 A1 WO 2007034816A1
Authority
WO
WIPO (PCT)
Prior art keywords
asbestos
containing material
sample
heating
microwave irradiation
Prior art date
Application number
PCT/JP2006/318602
Other languages
English (en)
French (fr)
Inventor
Motoyasu Sato
Yoshifumi Sano
Kenichi Matsui
Masashi Koizumi
Takashi Morita
Original Assignee
Inter-University Research Institute National Institutes Of Natural Sciences
Yamaguchi Mica Co., Ltd.
Kubota Matsushitadenko Exterior Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter-University Research Institute National Institutes Of Natural Sciences, Yamaguchi Mica Co., Ltd., Kubota Matsushitadenko Exterior Works, Ltd. filed Critical Inter-University Research Institute National Institutes Of Natural Sciences
Priority to JP2007536513A priority Critical patent/JP5194297B2/ja
Priority to US12/067,375 priority patent/US20090223808A1/en
Priority to EP06810298A priority patent/EP1946857A4/en
Publication of WO2007034816A1 publication Critical patent/WO2007034816A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/178Microwave radiations, i.e. radiation having a wavelength of about 0.3 cm to 30cm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/50Destroying solid waste or transforming solid waste into something useful or harmless involving radiation, e.g. electro-magnetic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/41Inorganic fibres, e.g. asbestos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/35Asbestos
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/045Microwave disinfection, sterilization, destruction of waste...

Definitions

  • the present invention relates to a method for modifying asbestos, and more particularly to a method for modifying an asbestos using microwave technology.
  • Crocidolite belonging to the amphibole system [Na Fe Si O (OH)] CAS No.12001- 28- 4
  • Anthophyllite (Mg, Fe) Si O (OH)] CAS No. 77536- 67-5
  • Actinolite [Ca (Mg, Fe) Si 0 (OH)] CAS No. 77536-66-4.
  • Asbestos has excellent properties such as heat resistance, fire resistance, soundproofing, chemical resistance, wear resistance, insulation, and corrosion resistance.
  • asbestos-containing products such as wood, friction materials, and heat insulation materials were manufactured and sold.
  • crocidolite, amosite, and chrysotile are used in many cases, especially due to delays in legal regulations in Japan.
  • seal heat insulating material examples include asbestos textiles (yarn, cloth), gland packing, asbestos joint sheet, spiral gasket, asbestos board (millboard), asbestos paper, and insulation.
  • Examples of the friction material include an automobile brake lining, an automobile clutch flange, an automobile disk pad, an industrial molded product, and a specially processed opener.
  • Examples of the heat insulating material include asbestos heat insulating material, diatomaceous earth heat insulating material, pearlite heat insulating material, calcium silicate heat insulating material, and asbestos cement pipe for water supply.
  • asbestos is considered to be the cause of mesothelioma, lung cancer, etc., and serious problems have become apparent in Japan and overseas.
  • a detoxification method for asbestos waste including measures to prevent aspirates from handling, discharging and transporting asbestos waste, and measures to prevent suction to the surrounding environment.
  • Building materials that make up the majority of asbestos waste contain, for example, asbestos and cement. Therefore, there is a need for an effective detoxification method for building materials containing asbestos and cement.
  • Patent Document 1 discloses a method of detoxifying asbestos by using a combustion-type heating furnace. In this method, natural asbestos and a specific basicity adjusting agent / binder are mixed, and then the mixture is molded. Next, the formed mixture is supplied to a high-temperature hearth formed of a carbon-based combustible material and heated and melted.
  • Patent Document 2 discloses a method of detoxifying asbestos by using an electric furnace.
  • carbon powder as a high-temperature heat source and raw material as a molten slag source are charged in advance into the melting furnace. Then, by supplying current to the graphite electrode of the melting furnace, molten slag is generated, and the waste asbestos material is put into the molten slag and heated and melted.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-60789
  • Patent Document 2 JP-A-7-171536
  • An object of the present invention is to provide a method for modifying asbestos capable of modifying asbestos in a short time.
  • a method for modifying asbestos includes the step of denaturing asbestos in the asbestos-containing material by heating the asbestos-containing material containing asbestos and a heat-generating auxiliary agent that self-heats by microwave irradiation with microwave irradiation.
  • the exothermic aid is selectively heated by microwave irradiation. Therefore, a large temperature gradient is generated between the exothermic aid and asbestos, and this temperature gradient causes a nonequilibrium chemical reaction at the boundary between the exothermic aid and asbestos. As a result, the transition of the crystal structure and chemical reaction that cannot occur in the equilibrium state proceed. As a result of the microwave irradiation, the entire asbestos-containing material is heated to reach equilibrium, and the chemical reaction is completed. As a result, the acicular crystals of asbestos are thermally denatured and decomposed, and asbestos is modified.
  • the microwave can directly heat the inside of an asbestos-containing material having a lump shape, for example. Therefore, heating by microwave irradiation is suitable for heating a substance having a lower thermal conductivity than heating by an electric furnace or melting furnace, and can be heated simultaneously over the entire asbestos-containing material. As a result, the asbestos in the asbestos-containing material The strike is easily heated throughout the asbestos-containing material and can be modified in a short time.
  • the asbestos-containing material may be pulverized or the asbestos-containing material may be packed in a bag.
  • water or chemicals may be added to the asbestos-containing material in order to prevent workers from inhaling asbestos or scattering asbestos into the environment.
  • the heating power of the asbestos-containing material by microwave irradiation is not hindered by the water and chemicals added to the asbestos-containing material. Therefore, this method is suitable for the detoxification treatment of asbestos-containing materials.
  • the exothermic auxiliary agent is preferably at least one selected from the group power consisting of silicon carbide, carbon, calcium oxide, iron, and iron oxide.
  • Silicon carbide, carbon, calcium oxide, iron, and iron oxide are easily heated to a high temperature by microwave irradiation.
  • calcium oxide is contained in cement and lime. Therefore, for example, building materials such as slate molded plates containing asbestos and cement, machine parts such as equipment used in ships, or asbestos in wastes thereof can be modified in a short time.
  • a method for modifying asbestos includes a gas best and a heating aid that self-heats by irradiation with microwaves, pulverizing the asbestos-containing material, and irradiating and heating the pulverized asbestos-containing material with microwaves. And a step of modifying asbestos in the asbestos-containing material.
  • asbestos can be modified in a short time by a simple process of pulverizing the asbestos-containing material and irradiating the pulverized asbestos-containing material with microwaves. it can.
  • FIG. 1 is a diagram showing the observation results of the sample of Example 18 using an electron microscope.
  • FIG. 2 is a diagram showing an observation result of the sample of Example 19 using an electron microscope.
  • FIG. 3 is a diagram showing an observation result of the sample of Example 20 using an electron microscope.
  • FIG. 4 is a diagram showing an observation result of the sample of Comparative Example 4 using an electron microscope.
  • FIG. 5 Observation result of the sample of Example 24 before microwave irradiation with an electron microscope
  • FIG. 6 is a diagram showing an observation result of the sample of Example 24 by an electron microscope before microwave irradiation.
  • FIG. 7 is a diagram showing an observation result of the sample of Example 24 after microwave irradiation using an electron microscope.
  • FIG. 8 is a diagram showing the observation results of the sample of Example 24 after microwave irradiation using an electron microscope.
  • the method for modifying asbestos includes a step of asbestos and an exothermic auxiliary agent that generates heat by irradiation with microwaves, crushing the asbestos-containing material, and crushing the asbestos-containing material. And a step of modifying the asbestos in the asbestos-containing material by heating with microwave irradiation.
  • the microwave of the present application is an energy source for heating a substance, and has an ultra-long short wave (UHF), a centimeter wave (SHF), a millimeter wave (EHF), and a submillimeter having frequencies from 300 MHz force to 3 T Hz. Electromagnetic waves including waves. As the microwave, an electromagnetic wave having a frequency from 300 MHz to 30 GHz is preferable. In addition, because of its extensive track record in microwave oven applications and the expected reduction in introduction costs, electromagnetic waves with a frequency of 2.45 GHz or 28 GHz are particularly preferred as microwaves.
  • a heating aid that self-heats upon irradiation with microwaves is a substance that is highly absorbed by microwaves.
  • the heat generation aid is made of silicon carbide, carbon, calcium oxide, iron, and iron oxide (eg, magnetite (Fe 2 O 3)) because of its high microwave absorption and low cost.
  • the exothermic auxiliary agent is heated by microwave irradiation to generate heat.
  • asbestos is a substance that absorbs less microwaves, so heating of asbestos by irradiating only asbestos with microwaves cannot be expected. Therefore, in order to heat the asbestos throughout the asbestos-containing material, the exothermic aid is uniformly dispersed in the asbestos-containing material. It is preferable. That is, the exothermic auxiliary agent preferably has a powder form.
  • the content of the exothermic auxiliary in the asbestos-containing material is, for example, 10 to 50% by weight.
  • the content of the exothermic auxiliary agent varies depending on, for example, the planned heat treatment time of the asbestos-containing material, the intensity of the microwave used, the composition of the asbestos-containing material, or the type of the exothermic auxiliary agent. Therefore, the content of exothermic auxiliary may exceed 50% by weight.
  • Examples of the asbestos-containing material include asbestos-containing products such as the building materials, seals, heat insulating materials, friction materials, and heat insulating materials, and wastes thereof.
  • An example of a building material is a mixture of asbestos and cement containing calcium carbonate as a heating aid. Therefore, the asbestos modification method of this embodiment can modify asbestos without pre-treating slate molded plates, sprayed asbestos and the like as the asbestos-containing material.
  • an exothermic auxiliary agent is added to the pulverized slate molded plate. Add it.
  • the asbestos-containing material may contain water.
  • the water in the asbestos-containing material is heated with high efficiency by microwave irradiation. Therefore, in order to prevent workers from sucking asbestos and scattering asbestos into the environment, for example, when asbestos-containing material is crushed or crushed, an appropriate amount of water is supplied to the asbestos-containing material. May be added.
  • the shape of the asbestos-containing material is not particularly limited.
  • the asbestos-containing material may have an irregular plate shape like the slate molded plate, may have a pellet shape, or may have an irregular lump shape sprayed on the article to be sprayed. Have it.
  • the step of pulverizing the asbestos-containing material dry pulverization or wet pulverization in which an appropriate amount of water is added to the asbestos-containing material to prevent the asbestos from scattering is performed. At this time, the asbestos-containing material is crushed to 10 mm square, for example.
  • the apparatus used for pulverizing the asbestos-containing material include known pulverization apparatuses such as a jaw crusher, a cutter mill, a hammer mill, a ball mill, and a medium stirring mill. These devices are preferably hermetically sealed to prevent asbestos from splashing outside the device.
  • the crushed asbestos-containing material is After being introduced into the asbestos heating device (microwave heating device), the pulverized asbestos-containing material is irradiated with microwaves.
  • the asbestos heating device has a chamber 1 into which an asbestos-containing material is introduced, and a microwave generator that irradiates microwaves into the chamber 1.
  • the heat generation aid in the asbestos-containing material is selectively heated.
  • a non-equilibrium chemical reaction occurs at the boundary between the exothermic aid and asbestos, and a crystal structure transition and a chemical reaction that cannot be obtained in an equilibrium state proceed.
  • microwave irradiation the entire asbestos-containing material is heated to reach equilibrium, and the chemical reaction is completed.
  • the acicular crystals of asbestos are thermally denatured and decomposed, and asbestos is denatured.
  • the microwaves are absorbed by the water in the cement granules and thermal distortion occurs. Then, cracking of the cement granules progresses and heating inside the cement granules is promoted.
  • the temperature of the asbestos-containing material in the asbestos heating apparatus is measured, for example, with a radiation thermometer. The temperature of the asbestos-containing material is controlled by appropriately adjusting the intensity of the microwave irradiated to the asbestos heating device. After the temperature of the asbestos-containing material reaches an appropriate asbestos decomposition temperature, the temperature is maintained for a certain period of time.
  • the step of pulverizing the asbestos-containing material may be omitted. Also in this case, asbestos in the asbestos-containing material can be altered by irradiating the asbestos-containing material with microwaves and heating.
  • Example 1 a sample in which ten sheets of asbestos-containing material having a plate shape were stacked was prepared. Next, this sample was introduced into an electric furnace having a microwave generator. The sample was irradiated with microwaves and heated to 900 ° C with an electric furnace, and the temperature inside the sample was measured. As a result, there was little difference between the rate of temperature increase in the electric furnace atmosphere and the rate of temperature increase inside the sample.
  • Comparative Example 1 the same sample as in Example 1 was prepared. Next, this sample was introduced into an electric furnace not equipped with a microwave generator. The sample was heated to 900 ° C only by an electric furnace and the temperature in the sample was measured. As a result, there was a difference between the temperature increase rate of the atmosphere in the electric furnace and the temperature increase rate inside the sample. Specifically, it took 50 minutes for the temperature in the electric furnace atmosphere to reach 900 ° C and for the force to reach 900 ° C.
  • the asbestos-containing material can be heated not only at its surface force but also at its internal force.
  • Example 2 a slate plate containing asbestos and a cement containing calcium oxide as a heat generation aid and formed by a wet process was prepared as a sample. Next, each sample was irradiated with microwaves under the irradiation conditions shown in Table 1. Then, in accordance with Japanese Industrial Standard JIS A 1481: 2006 (method for measuring the content of asbestos in building materials), X-ray diffraction measurement and And qualitative analysis of each sample by dispersive staining using a phase contrast microscope.
  • Comparative Example 2 the same slate plate as in Examples 2 to 9 was prepared as a sample. Next, the qualitative analysis was performed without irradiating the sample with microwaves. Table 1 shows the measurement results of the component ratio in each sample by X-ray fluorescence analysis (XRF) and the qualitative analysis results.
  • XRF X-ray fluorescence analysis
  • “Temperature rise time (minutes)” indicates the microwave irradiation time until the sample surface temperature reaches the treatment temperature.
  • the “(° C.)” column indicates the temperature at which the sample is heat-treated by microwave irradiation, and the “holding time (min)” column indicates the time during which the sample surface temperature is held at the processing temperature.
  • the “X-ray diffraction” column shows the qualitative analysis results by X-ray diffraction.
  • Example 3 to 6 and 8 the number of asbestos fibers observed by the disperse dyeing method using a phase contrast microscope was less than that of Comparative Example 2. For this reason, it was confirmed that the asbestos was denatured by microwave irradiation from the results of analysis by dispersive staining using a phase contrast microscope. In particular, in Examples 6 and 8, asbestos fibers were not recognized at all. For this reason, the microwave irradiation conditions in Examples 6 and 8 are particularly suitable for the modification of asbestos, and it was found that asbestos can be rendered harmless under these conditions.
  • Example 10 to 17 a slate plate containing asbestos and cement containing calcium oxide and molded by a dry method was prepared as a sample. Subsequently, the qualitative analysis was performed in the same manner as in Examples 2-9. In Comparative Example 3, the same slate plate as in Examples 10 to 17 was prepared as a sample. Next, the qualitative analysis was performed without irradiating the sample with microwaves. Table 2 shows the measurement results of the component ratio in each sample and the qualitative analysis results by fluorescent X-ray analysis.
  • Example 12 the number of asbestos fibers observed by the disperse dyeing method using a phase contrast microscope was smaller than that in Comparative Example 3. For this reason, it was confirmed that asbestos was denatured by microwave irradiation in terms of the analytical results obtained by the dispersion staining method using this phase contrast microscope. In particular, almost no asbestos fibers were observed in Example 14, and no asbestos fibers were observed in Example 16. For this reason, the microwave irradiation conditions in Examples 14 and 16 are particularly suitable for denaturation of asbestos, and it was found that asbestos can be made harmless by the microwave irradiation conditions in Example 16 in particular.
  • Example 18 to 23 a slate plate containing asbestos and cement containing calcium oxide and molded by a wet or dry method was prepared as a sample. Subsequently, the qualitative analysis was performed in the same manner as in Examples 2 to 9.
  • Comparative Example 4 the same slate plate as in Examples 18 to 20 was prepared as a sample.
  • Comparative Example 5 the same slate plate as in Examples 21 to 23 was prepared as a sample.
  • the qualitative analysis was performed without irradiating the sample with microwaves.
  • Table 3 shows the measurement results of the component ratio in each sample and the qualitative analysis results by X-ray fluorescence analysis.
  • Example 24 a sample was prepared assuming an asbestos-containing material to be sprayed on the material to be sprayed.
  • asbestos having the composition shown in Table 4 (Wako Pure Chemical Industries, Ltd., type of asbestos is chrysotile, product code No. 019- 04775, CAS N o. 1332- 21- 4) and 70 weight 0/0
  • a sample was prepared using 30% by weight of cement having the composition shown in Table 4 (Toyo Instant Cement White Co., Ltd. manufactured by Toyo Materan Co., Ltd.). This mixing ratio of asbestos and cement is mainly stated on page 40 of the “Asbestos Splash Prevention Manual for Demolition of Buildings” (issued July 20, 2006) by the Japan Working Environment Measurement Association.
  • the eight sprayed asbestos-containing products are based on the description that the asbestos content is 60-70% by weight.
  • 7g of asbestos that had been crushed until it passed through a sieve having an opening of 0.5mm and 3g of cement were placed in a grease container, water was added to the 200ml scale, and then the rotary type A dispersion was prepared by stirring and mixing using a mixer. Next, the dispersion was dried and solidified at 115 ° C. using an electric furnace to prepare a sample. The sample had dimensions of 80 mm long, 50 mm wide, and 15 mm thick.
  • Table 4 shows the composition ratios of asbestos, cement, and samples (in terms of acid and sodium chloride) by X-ray fluorescence analysis. “—” In each column in Table 4 indicates that the content of the corresponding component was below the measurement limit.
  • the obtained sample was subjected to the qualitative analysis and quantitative analysis by X-ray diffraction according to the measurement method described in the preceding 6JIS A1481: 2006. Next, the sample was irradiated with microwaves, and after heating the sample so that the temperature of the sample surface reached from room temperature (25 ° C) to 1000 ° C over 65 minutes, the temperature of the sample surface was 1000 ° C. It was kept at a heating temperature of 30 minutes. The sample was then naturally cooled. The temperature of the sample surface was measured using a radiation thermometer. And the said qualitative analysis and quantitative analysis were performed about the sample after the heating by a microwave. The results are shown in Table 5.
  • the “before heating” column shows the result of the sample before the microwave irradiation
  • the “after heating” column shows the result of the sample after the microwave irradiation.
  • “Qualitative Analysis by X-ray Diffraction (Crinotile Peak)” column “Yes” indicates that the qualitative analysis by X-ray diffraction showed a diffraction peak of chrysotile, and “No” indicates qualitative analysis by X-ray diffraction. In analysis, it shows that the diffraction peak of chrysotile was not recognized.
  • Example 24 As shown in Table 5, in the sample of Example 24, it was confirmed by each analysis and observation that the chrysotile which was the best was denatured by microwave irradiation. The number of asbestos fibers observed by dispersive staining using a phase-contrast microscope was greatly reduced by microwave irradiation. Similarly, chrysotile content in samples obtained by quantitative analysis by X-ray diffraction was significantly reduced by microwave irradiation. Therefore, it was found that the microwave irradiation conditions in Example 24 are suitable for the modification of asbestos.
  • Example 24 For the sample of Example 24, the sample was observed with an electron microscope together with the measurement of the above items. The results are shown in Figs. 5 and 6 show the results of the sample before the microwave irradiation, and FIGS. 7 and 8 show the results of the sample after the microwave irradiation. 5 and 7 show the observation results at 500 times magnification, and FIGS. 6 and 8 show the observation results at 2000 times magnification.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 アスベストを短時間で変性処理することが可能なアスベストの変性方法が提供される。このアスベストの変性方法は、アスベストと、マイクロ波の照射によって自己発熱する発熱助剤とを含有するアスベスト含有物にマイクロ波を照射して加熱し、アスベスト含有物中のアスベストを変性させる工程を含む。

Description

アスベストの変性方法
技術分野
[0001] 本発明はアスベストの変性方法に関し、詳しくはマイクロ波技術を利用したアスペス トの変性方法に関する。
背景技術
[0002] 本願において、 "アスペスド,とは、下記の 6種の鉱物の総称である。
[0003] 蛇紋岩系に属するクリソタイル [Mg Si O (OH) ]CAS No.12001-29-5
3 2 5 4 、
角閃石系に属するクロシドライト [Na Fe Si O (OH) ]CAS No.12001- 28- 4
2 5 8 22 2 、 ァモサイト [(Mg'Fe) Si O (OH) ]CAS No.12172- 73- 5
7 8 22 2 、
アンソフイライト [(Mg,Fe) Si O (OH) ]CAS No.77536- 67- 5
7 8 22 2 、
トレモライト [Ca Mg Si 0 (OH) ]CAS No.77536- 68- 6、及び
2 5 8 22 2
ァクチノライト [Ca (Mg,Fe) Si 0 (OH) ]CAS No.77536- 66- 4。
2 5 8 22 2
[0004] アスベストは、耐熱性、耐火性、防音性、耐薬品性、耐摩耗性、絶縁性、耐腐食性 等の諸特性に優れていることから、 日本国内では、建築材料、シール'断熱材、摩擦 材、保温材等、 3, 000種以上のアスベスト含有製品が製造及び販売されていた。前 記アスベストの内、クロシドライト、ァモサイト、及びクリソタイルの使用事例が多ぐ特 に日本国内の法的規制の遅れから、クリソタイルの使用量が最も多い。
[0005] 建築材料としては、波形石綿スレート、住宅用石綿スレート、石綿セメント板 (フレキ シブル板、平板、軟質板等)、押出成形セメント板厚物、石綿セメントサイディング、パ ルプセメント板、スラグ石膏セメント板、石綿セメント円筒 (煙突)、石綿ケィ酸カルシゥ ム板、吹き付け石綿、石綿含有吹き付けロックウール、石綿含有ロックウール吸音板 、ビュル床タイル等が挙げられる。
[0006] シール断熱材としては、石綿紡織品(糸、布)、グランドパッキン、石綿ジョイントシー ト、渦巻形ガスケット、石綿板 (ミルボード)、石綿紙,絶縁品等が挙げられる。
[0007] 摩擦材としては、自動車用ブレーキライニング、自動車用クラッチフエ一ユング、自 動車用ディスクパット、産業用モールド品、特殊加工ウープン等が挙げられる。 [0008] 保温材等としては、石綿保温材、珪藻土保温材、パーライト保温材、ケィ酸カルシ ゥム保温材、水道用石綿セメント管等が挙げられる。
[0009] 日本国内では、特に建築材料向けにアスベストの約 9割が使用されている。そのた め、今後約 40年間に、建築物の解体等に伴う飛散性及び非飛散性アスベスト廃棄 物としての建築廃材が約 4000万トン排出されると予想されており、処分場容量の問 題も議論されている。
[0010] 一方、アスベストは中皮腫、肺ガン等の原因と考えられており、深刻な問題が日本 国内、及び海外で顕在化している。アスベスト廃棄物を扱う排出、運搬、及び処理業 者における吸引防止対策、周辺環境への飛散防止対策を含め、アスベスト廃棄物の 無害化処理方法の確立が急務となっている。アスベスト廃棄物の大半を占める建築 材料は、例えばアスベストとセメントとを含有している。そのため、アスベスト及びセメ ントを含有する建築材料の効果的な無害化処理方法が必要とされる。
[0011] 従来、アスベストを燃焼式加熱炉又は電気炉により加熱することにより、アスベストを 変性させて無害化する方法が提案されている。例えば特許文献 1には、燃焼式加熱 炉を用いて、アスベストを変性させて無害化する方法が開示されている。この方法で は、天然アスベストと特定の塩基度調整剤兼バインダーとが混合された後、該混合物 が成形処理される。次いで、成形された混合物が、炭素系可燃物質で形成された高 温炉床に供給されて加熱及び溶融される。
[0012] また、例えば特許文献 2には、電気炉を用いて、アスベストを変性させて無害化する 方法が開示されている。この方法では、高温熱源となる炭素粉、及び溶湯スラグ源と なる原料が溶融炉に予め投入される。そして、溶融炉の黒鉛電極に通電することによ り溶湯スラグを生成し、当該溶湯スラグ中に廃アスベスト材が投入されて加熱及び溶 融される。
[0013] アスベストは優れた耐熱性を有することから、アスベストを変性させて無害化するた めには、 1200°Cから 1500°C程度の高温が必要となる。このような高温を作り出す燃 焼式加熱炉は、炭素系可燃物質、例えばコータスの供給装置が必要となる。そのた め、アスベストの加熱装置が大型化し、該装置の製造及び維持に費用が嵩む。また 、電気炉及び燃焼式加熱炉は、運転開始後にアスベストの変性処理が可能な程の 高温に到達するまでに長時間を必要とする。
[0014] さらに、アスベストは高い耐熱性を有するとともに小さい熱伝導率を有することから、 アスベストの塊が電気炉、スラグ浴溶鉱炉等に投入された後に該塊の内部まで加熱 されるには長い処理時間が必要となる。そのため、電気炉及び溶融炉によるアスペス トの加熱は非効率である。これは、電気炉及び溶融炉による物質の加熱は、該物質 の表面を外方から加熱し、物質の内部への熱伝導により物質全体を徐々に加熱する 間接 (外部)加熱であることに起因している。特に、セメント等と混合及び固化された アスベストの塊をその内部まで加熱するには、より長い処理時間が必要となる。
特許文献 1:特開平 3— 60789号公報
特許文献 2:特開平 7— 171536号公報
発明の開示
[0015] 本発明の目的は、アスベストを短時間で変性処理することが可能なアスベストの変 性方法を提供することにある。
[0016] 本発明の一態様では、アスベストの変性方法が提供される。この方法は、アスベスト と、マイクロ波の照射によって自己発熱する発熱助剤とを含有するアスベスト含有物 にマイクロ波を照射して加熱し、アスベスト含有物中のアスベストを変性させる工程を 含む。
[0017] この方法によれば、アスベスト含有物中において、マイクロ波の照射によって発熱 助剤が選択的に加熱される。そのため、発熱助剤と、アスベストとの間に大きな温度 勾配が発生し、この温度勾配により、発熱助剤とアスベストとの境界において非平衡 化学反応が発生する。その結果、平衡状態では起こり得ないような結晶構造の変移 及び化学反応が進行する。そして、マイクロ波の照射に伴ってアスベスト含有物全体 が加熱されて平衡に達し、化学反応が終了する。これにより、アスベストが有する針 状結晶が熱変性して分解され、アスベストが変性処理される。
[0018] 更に、マイクロ波は、例えば塊状を有するアスベスト含有物の内部を直接加熱する ことができる。そのため、マイクロ波の照射による加熱は、電気炉又は溶融炉による加 熱に比べて低い熱伝導性を有する物質の加熱に適しており、アスベスト含有物の全 体にわたって同時に加熱することができる。その結果、アスベスト含有物中のァスべ ストは、アスベスト含有物全体にわたって容易に加熱されて短時間で変性処理され 得る。
[0019] また、アスベストの変性処理の前処理として、アスベスト含有物を粉砕したり、ァスべ スト含有物を袋詰めしたりすることがある。このとき、作業者がアスベストを吸引したり、 アスベストが環境中に飛散したりすることを防止するために、アスベスト含有物に水又 は薬剤が添加されることがある。この場合にも、マイクロ波の照射によるアスベスト含 有物の加熱力 アスベスト含有物に添加された水及び薬剤によって阻害されることが ない。そのため、この方法は、アスベスト含有物の無害化処理に適している。
[0020] 発熱助剤は、好ましくは炭化珪素、炭素、酸ィ匕カルシウム、鉄、及び酸化鉄よりなる 群力 選択される少なくとも一種である。
[0021] 炭化珪素、炭素、酸ィ匕カルシウム、鉄、及び酸化鉄は、マイクロ波の照射によって 容易に加熱されて高温になる。例えば、酸ィ匕カルシウムは、セメント、石灰等に含ま れている。そのため、例えばアスベストとセメントとを含有するスレート成形板等の建 築材料、船に用いられる装置等の機械の部品、又はそれらの廃棄物中のアスベスト を短時間で変性処理することができる。
[0022] 本発明の別の態様では、アスベストの変性方法が提供される。この方法は、ァスべ ストと、マイクロ波の照射によって自己発熱する発熱助剤とを含有し、アスベスト含有 物を粉砕する工程と、粉砕されたアスベスト含有物にマイクロ波を照射して加熱し、ァ スベスト含有物中のアスベストを変性させる工程とを含む。
[0023] この方法によれば、例えばアスベスト含有物を粉砕するとともに、粉砕されたァスべ スト含有物にマイクロ波を照射するという簡単な処理により、アスベストを短時間で変 性処理することができる。
図面の簡単な説明
[0024] [図 1]電子顕微鏡による実施例 18の試料の観察結果を示す図。
[図 2]電子顕微鏡による実施例 19の試料の観察結果を示す図。
[図 3]電子顕微鏡による実施例 20の試料の観察結果を示す図。
[図 4]電子顕微鏡による比較例 4の試料の観察結果を示す図。
[図 5]電子顕微鏡による、マイクロ波の照射前における実施例 24の試料の観察結果 を示す図。
[図 6]電子顕微鏡による、マイクロ波の照射前における実施例 24の試料の観察結果 を示す図。
[図 7]電子顕微鏡による、マイクロ波の照射後における実施例 24の試料の観察結果 を示す図。
[図 8]電子顕微鏡による、マイクロ波の照射後における実施例 24の試料の観察結果 を示す図。
発明を実施するための最良の形態
[0025] 以下に、本発明に係るアスベスト含有物中のアスベストの変性方法を詳細に説明す る。
[0026] 本実施形態のアスベストの変性方法は、アスベストと、マイクロ波の照射によって自 己発熱する発熱助剤とを含有し、アスベスト含有物を粉砕する工程と、粉砕されたァ スベスト含有物にマイクロ波を照射して加熱し、アスベスト含有物中のアスベストを変 性させる工程とを含む。
[0027] 本願のマイクロ波は物質を加熱するためのエネルギー源であり、 300MHz力ら 3T Hzまでの周波数を有する極長短波(UHF)、センチ波(SHF)、ミリ波(EHF)、及び サブミリ波を含む電磁波である。マイクロ波としては、 300MHzから 30GHzまでの周 波数を有する電磁波が好ましい。更に、マイクロ波炉への応用実績が豊富であり、導 入コストの低減が見込まれることから、マイクロ波としては、 2. 45GHz帯、又は 28G Hz帯の周波数を有する電磁波が特に好ま 、。
[0028] マイクロ波の照射によって自己発熱する発熱助剤は、マイクロ波の吸収が大き!、物 質である。マイクロ波の吸収が大きいとともに安価であることから、発熱助剤は、炭化 珪素、炭素、酸ィ匕カルシウム、鉄、及び酸ィ匕鉄 (例えばマグネタイト (Fe O ) )よりなる
3 4 群力も選択される少なくとも一種が好ましぐ酸ィ匕カルシウムがより好ましい。
[0029] 発熱助剤は、マイクロ波の照射によって加熱されて熱を生じる。一方、アスベストは マイクロ波の吸収が小さい物質であり、アスベストのみにマイクロ波を照射することに よるアスベストの加熱は期待できない。そのため、アスベスト含有物全体にわたってァ スベストを加熱するために、発熱助剤は、アスベスト含有物中に均一に分散されてい ることが好ましい。即ち、発熱助剤は粉体状を有することが好ましい。
[0030] アスベスト含有物中における発熱助剤の含有量は、例えば 10〜50重量%である。
発熱助剤の含有量は、例えば予定されるアスベスト含有物の加熱処理時間、使用さ れるマイクロ波の強度、アスベスト含有物の組成、又は発熱助剤の種類によって異な る。そのため、発熱助剤の含有量は 50重量%を超えてもよい。
[0031] アスベスト含有物としては、例えば前記建築材料、シール'断熱材、摩擦材、保温 材等のアスベスト含有製品、及びその廃棄物が挙げられる。建築材料としては、例え ば、アスベストと、発熱助剤としての酸ィ匕カルシウムを含むセメントとの混合物が挙げ られる。そのため、本実施形態のアスベストの変性方法は、アスベスト含有物としての スレート成形板、吹き付けアスベスト等に予め処理を施すことなくアスベストを変性さ せることができる。し力しながら、建築材料中の酸ィ匕カルシウムの含有量、又は酸ィ匕 カルシウムの分散状態に応じて、例えばスレート成形板が粉砕される際、粉砕された スレート成形板に発熱助剤を加えてもょ 、。
[0032] アスベスト含有物は水を含有してもよい。この場合、電子レンジにおける食品の加 熱のように、マイクロ波の照射によってアスベスト含有物中の水は高い効率で加熱さ れる。そのため、作業者がアスベストを吸引したり、アスベストが環境中に飛散したり することを防止するために、例えばアスベスト含有物が粉砕、又は破砕される際、ァス ベスト含有物に適量の水を加えてもよい。
[0033] アスベスト含有物の形状は特に限定されない。アスベスト含有物は、前記スレート成 形板のように不定形の板状を有してもよいし、ペレット状を有してもよいし、被吹き付 け物に吹き付けられた不定形の塊状を有してもょ 、。
[0034] アスベスト含有物を粉砕する工程では、乾燥粉砕、もしくはアスベストの飛散防止の ために適量の水がアスベスト含有物に加えられる湿式粉砕が行われる。このとき、ァ スベスト含有物は、例えば 10mm角まで粗砕される。アスベスト含有物を粉砕するた めに用いられる装置としては、公知の粉砕装置、例えばジョークラッシャー、カッター ミル、ハンマーミル、ボールミル、及び媒体攪拌ミルが挙げられる。これらの装置は、 装置外へのアスベストの飛散を防ぐために密閉式であることが好ま 、。
[0035] アスベスト含有物にマイクロ波を照射する工程では、粉砕されたアスベスト含有物が アスベスト加熱装置 (マイクロ波加熱装置)内に導入された後、粉砕されたアスベスト 含有物にマイクロ波が照射される。アスベスト加熱装置は、アスベスト含有物が導入さ れるチャンバ一と、該チャンバ一内にマイクロ波を照射するマイクロ波発生装置とを有 する。
[0036] アスベストは高 、耐熱性、耐火性、及び断熱性を有することから、これまでアスペス トの変性処理は困難であると考えられていた。さらに、アスベストはマイクロ波の吸収 力 S小さ 、物質であることから、アスベストへのマイクロ波の照射によるアスベストの変性 処理は不可能であると考えられていた。一方、例えば各種セラミックス、金属、及び鉱 物はマイクロ波の吸収が大きい物質であり、マイクロ波が照射されることにより発熱す ることが知られている。
[0037] し力しながら、マイクロ波の吸収が小さい物質 (マイクロ波に関して透明な物質)から なる粒子と、マイクロ波の吸収が大きい物質力 なる粒子との混合物にマイクロ波が 照射されたときには、以下の結果が得られる。即ち、前記混合物にマイクロ波が照射 された場合、マイクロ波の吸収が大き 、物質カゝらなる粒子がマイクロ波を吸収して選 択的に加熱されて該粒子の温度が高くなる。一方、マイクロ波の吸収が小さい物質か らなる粒子の温度はあまり上がらない。その結果、これらの粒子の間において、微視 的なスケールで大きな温度勾配が発生する。この温度勾配は、高い温度を有する粒 子と、低い温度を有する粒子との境界において 0. 1mm当たり数百度にも達する。
[0038] そのため、アスベスト含有物にマイクロ波が照射されると、アスベスト含有物中の発 熱助剤が選択的に加熱される。そして、上述したように、発熱助剤とアスベストとの境 界において非平衡ィ匕学反応が発生し、平衡状態では得ることができない結晶構造の 変移及び化学反応が進行する。次いで、マイクロ波の照射に伴ってアスベスト含有 物全体が加熱されて平衡に達し、化学反応が終了する。これにより、本実施形態で は、アスベストが有する針状結晶が熱変性して分解され、アスベストが変性処理され る。
[0039] アスベスト含有物にセメント粒状物が含まれる場合には、セメント粒状物内の水分に マイクロ波が吸収されて熱的ひずみが生じる。そして、セメント粒状物の亀裂破砕が 進み、セメント粒状物内部の加熱が促進される。 [0040] アスベスト加熱装置内のアスベスト含有物の温度は、例えば放射温度計で測定さ れる。アスベスト加熱装置に照射されるマイクロ波の強度が適宜調整されてアスベスト 含有物の温度管理が行われる。そして、アスベスト含有物の温度が適切なアスベスト 分解温度に達した後、当該温度が一定時間保たれる。
[0041] アスベスト含有物を粉砕する工程は省略されてもよい。この場合も、アスベスト含有 物にマイクロ波を照射して加熱することにより、アスベスト含有物中のアスベストを変 '性させることができる。
実施例
[0042] (実施例 1及び比較例 1)
実施例 1にお 、ては、板状を有するアスベスト含有物を 10枚重ねた試料を準備し た。次いで、この試料を、マイクロ波発生装置を有する電気炉内に導入した。そして、 試料にマイクロ波を照射するとともに電気炉により 900°Cまで加熱し、試料内の温度 を測定した。その結果、電気炉内雰囲気の温度の上昇速度と、試料内部の温度の上 昇速度との間にはほとんど差が見られな力つた。
[0043] 比較例 1にお 、ては、実施例 1と同様の試料を準備した。次 、で、この試料を、マイ クロ波発生装置を備えていない電気炉内に導入した。そして、試料を電気炉のみに より 900°Cまで加熱するとともに、試料内の温度を測定した。その結果、電気炉内雰 囲気の温度の上昇速度と、試料内部の温度の上昇速度との間には差が見られた。 具体的には、電気炉内雰囲気の温度が 900°Cに達して力も試料内部の温度が 900 °Cに達するまでに 50分を要した。
[0044] これらの結果から、アスベスト含有物にマイクロ波を照射することにより、アスベスト 含有物を、その表面力 だけでなく内部力 も同時に加熱することができることが分か つた o
(実施例 2〜9及び比較例 2)
実施例 2〜9においては、アスベストと、発熱助剤としての酸化カルシウムを含むセ メントとを含有し、湿式により成形されたスレート板を試料として準備した。次いで、表 1に示す照射条件で各試料にマイクロ波を照射し、その後、日本工業規格の JIS A 1481: 2006 (建材製品中のアスベスト含有率測定方法)に従って、 X線回折測定及 び位相差顕微鏡を用いた分散染色による各試料の定性分析を行った。
[0045] 比較例 2においては、実施例 2〜9と同様のスレート板を試料として準備した。次い で、マイクロ波を試料に照射することなく前記定性分析を行った。蛍光 X線分析 (XR F)による各試料中の成分割合の測定結果、及び定性分析結果を表 1に示す。
[0046] 各表中の"マイクロ波の照射条件"欄において、 "昇温時間(分) "は試料表面の温 度が処理温度に到達するまでのマイクロ波の照射時間を示し、 "処理温度 (°C) "欄は 、マイクロ波の照射によって試料が加熱処理される温度を示し、 "保持時間 (分) "欄 は試料表面の温度が処理温度で保持される時間を示す。 "定性分析"欄において、 " X線回折"欄は、 X線回折による定性分析結果を示す。当該欄において、 "クリノタイ ルピーク"欄中の"有"はクリソタイルの回折ピークが認められたことを示し、 "無"はタリ ソタイルの回折ピークが認められなカゝつたことを示す。更に、各試料の X線回折パタ ーンにおいて主に観察された回折ピークの物質名を、 "主なピークの種類"欄に示す 。各表中の"定性分析"欄において、 "位相差顕微鏡による観察 (本 Z3000粒子) " 欄は、位相差顕微鏡を用いた分散染色法による分析結果を示す。当該欄における 各数値は、試料 3000粒子当たりに観察されるアスベストの繊維の数を示す。また、 " —"は、位相差顕微鏡を用いた分散染色法による試料の分析を行わな力つたことを 示す。
[0047] [表 1]
Figure imgf000012_0001
[0048] 表 1に示すように、各実施例においては、 X線回折による定性分析においてタリソタ ィルのピークが認められな力つた。一方、マイクロ波の試料への照射が省略された比 較例 2においては、 X線回折による定性分析においてクリソタイルのピークが認められ た。これより、マイクロ波の照射によって、アスベストであるクリソタイルが変性したこと が認められた。
[0049] また、実施例 3〜6及び 8については、位相差顕微鏡を用いた分散染色法によって 観察されたアスベストの繊維の数が比較例 2に比べて少な力つた。そのため、この位 相差顕微鏡を用いた分散染色法による分析結果からも、マイクロ波の照射によってァ スベストが変性したことが認められた。特に、実施例 6及び 8では、アスベストの繊維 が全く認められな力つた。そのため、実施例 6及び 8におけるマイクロ波の照射条件 はアスベストの変性に特に適しており、該条件によってアスベストの無害化が可能で あることが分力つた。
[0050] (実施例 10〜 17及び比較例 3)
実施例 10〜17においては、アスベストと、酸化カルシウムを含むセメントとを含有し 、乾式により成形されたスレート板を試料として準備した。次いで、実施例 2〜9と同 様に前記定性分析を行った。比較例 3においては、実施例 10〜17と同様のスレート 板を試料として準備した。次いで、マイクロ波を試料に照射することなく前記定性分 析を行った。蛍光 X線分析による各試料中の成分割合の測定結果、及び定性分析 結果を表 2に示す。
[0051] [表 2]
Figure imgf000014_0001
[0052] 表 2に示すように、各実施例においては、 X線回折による定性分析においてタリソタ ィルのピークが認められな力つた。一方、マイクロ波の試料への照射が省略された比 較例 3においては、 X線回折による定性分析においてクリソタイルのピークが認められ た。これより、マイクロ波の照射によって、アスベストであるクリソタイルが変性したこと が認められた。
[0053] また、実施例 12、 14及び 16については、位相差顕微鏡を用いた分散染色法によ つて観察されたアスベストの繊維の数が比較例 3に比べて少なカゝつた。そのため、こ の位相差顕微鏡を用いた分散染色法による分析結果力もも、マイクロ波の照射によ つてアスベストが変性したことが認められた。特に、実施例 14ではアスベストの繊維 がほとんど認められず、実施例 16ではアスベストの繊維が全く認められなカゝつた。そ のため、実施例 14及び 16におけるマイクロ波の照射条件はアスベストの変性に特に 適しており、特に実施例 16におけるマイクロ波の照射条件によってアスベストの無害 化が可能であることが分力つた。
[0054] (実施例 18〜23、並びに比較例 4及び 5)
実施例 18〜23においては、アスベストと、酸化カルシウムを含むセメントとを含有し 、湿式又は乾式により成形されたスレート板を試料として準備した。次いで、実施例 2 〜9と同様に前記定性分析を行った。
[0055] 比較例 4においては、実施例 18〜20と同様のスレート板を試料として準備した。比 較例 5においては、実施例 21〜23と同様のスレート板を試料として準備した。次いで 、マイクロ波を試料に照射することなく前記定性分析を行った。蛍光 X線分析による 各試料中の成分割合の測定結果、及び定性分析結果を表 3に示す。
[0056] [表 3] 3
Figure imgf000016_0001
[0057] 表 3に示すように、各実施例においては、 X線回折による定性分析においてタリソタ ィルのピークが認められな力つた。一方、マイクロ波の試料への照射が省略された各 比較例においては、 X線回折による定性分析においてクリソタイルのピークが認めら れた。これより、マイクロ波の照射によって、アスベストであるクリソタイルが変性したこ とが認められた。
[0058] また、実施例 18〜20については、位相差顕微鏡を用いた分散染色法によって観 察されたアスベストの繊維の数が比較例 4に比べて少なカゝつた。そのため、この位相 差顕微鏡を用いた分散染色法による分析結果からも、マイクロ波の照射によってァス ベストが変性したことが認められた。
[0059] 実施例 18〜20及び比較例 4の試料について、上記各項目の測定とともに、電子顕 微鏡による試料の観察を行った。その結果を図 1〜4に示す。図 1は実施例 18の試 料の観察結果を示し、図 2は実施例 19の試料の観察結果を示し、図 3は実施例 20 の試料の観察結果を示し、図 4は比較例 4の試料の観察結果を示す。図 1〜4は、 50 0倍の倍率での観察結果を示す。
[0060] 図 1〜図 3に示すように、各実施例においては、繊維状の物質がほとんど観察され なかった。これに対して、図 4に示すように、比較例 4においては繊維状の物質が観 察された。これより、クリソタイルの形状がマイクロ波の照射によって繊維状から粒状 に変化し、クリソタイルが変性したことが認められた。
[0061] (実施例 24)
実施例 24にお ヽては、被吹き付け物に吹き付けられるアスベスト含有物を想定した 試料を準備した。即ち、表 4に示す組成を有するアスベスト (和光純薬工業株式会社 製、アスベストの種別はクリソタイルである、製品コード番号 019— 04775、 CAS N o. 1332— 21— 4) 70重量0 /0と、表 4に示す組成を有するセメント(トーョーマテラン 株式会社製のトーョ一インスタントセメント白色) 30重量%とを用 、て試料を調製した 。このアスベストとセメントとの混合比は、社団法人日本作業環境測定協会による「建 築物の解体等に係る石綿飛散防止対策マニュアル」(平成 18年 7月 20日発行)の 4 0頁において、主な 8個の吹き付けアスベスト含有製品のアスベスト含有量が 60〜70 重量%であると記載されていることに基づく。 [0062] 具体的には、 0. 5mmの目開きを有する篩を通過するまで粉砕を施したアスベスト 7gと、セメント 3gとを榭脂容器に入れて 200ml目盛りまで水を加えた後、回転式混合 機を用いて撹拌及び混合して分散液を調製した。次いで、電気炉を用いて 115°Cで 分散液を乾燥及び固化させて試料を調製した。試料は、縦 80mm、横 50mm、及び 厚さ 15mmの寸法を有していた。蛍光 X線分析によるアスベスト、セメント、及び試料 の組成比 (酸ィ匕物換算)を表 4に示す。表 4中の各欄における"—"は、該当する成分 の含有量が測定限界以下であったことを示す。
[0063] [表 4] 表 4
Figure imgf000018_0001
[0064] そして、得られた試料について、前記定性分析を行うとともに、前言 6JIS A1481: 2 006に記載された測定方法に従って、 X線回析による定量分析を行った。次いで、試 料にマイクロ波を照射し、試料表面の温度が室温(25°C)から 1000°Cまで 65分間か けて到達するように試料を加熱した後、試料表面の温度が 1000°Cである加熱温度 で 30分間保持した。次いで、試料を自然冷却した。試料表面の温度は、放射温度計 を用いて測定した。そして、マイクロ波による加熱後の試料について、前記定性分析 及び定量分析を行った。それらの結果を表 5に示す。
[0065] 表 5において、 "加熱前"欄は、マイクロ波が照射される前の試料の結果を示し、 "加 熱後"欄は、マイクロ波が照射された後の試料の結果を示す。 "X線回折による定性 分析 (クリノタイルピーク)"欄において、 "有"は、 X線回折による定性分析においてク リソタイルの回折ピークが認められたことを示し、 "無"は X線回折による定性分析にお いてクリソタイルの回折ピークが認められな力つたことを示す。 "X線回折による定量 分析 (重量%) "欄中の各数値は、 X線回折において求められた試料中のクリソタイル の含有量を示す。また、表には示していないが、前記 X線回折による定量分析を行つ た際の残渣率は 0. 8%であった。この残渣率の算出方法は前記 JIS A1481 : 2006 に記載されている。
[0066] [表 5]
5
Figure imgf000019_0001
[0067] 表 5に示すように、実施例 24の試料においては、マイクロ波の照射によってァスべ ストであるクリソタイルが変性したことが、各分析及び観察によって認められた。位相 差顕微鏡を用いた分散染色法によって観察されたアスベストの繊維の数は、マイクロ 波の照射によって大幅に減少していた。同様に、 X線回折による定量分析により得ら れた試料中のクリソタイルの含有量は、マイクロ波の照射によって大幅に減少してい た。そのため、実施例 24におけるマイクロ波の照射条件は、アスベストの変性に適し ていることが分かった。
[0068] また、実施例 24の試料について、上記各項目の測定とともに、電子顕微鏡による 試料の観察を行った。その結果を図 5〜図 8に示す。図 5及び図 6は、マイクロ波が照 射される前の試料の結果を示し、図 7及び図 8は、マイクロ波が照射された後の試料 の結果を示す。図 5及び図 7は 500倍の倍率での観察結果を示し、図 6及び図 8は 2 000倍での観察結果を示す。
[0069] 図 5〜図 8に示すように、実施例 24の試料においては、マイクロ波の照射によって、 観察される繊維状の物質の数が減少した。これより、マイクロ波の照射によって、タリ ソタイルの形状が繊維状力 粒状に変化し、クリソタイルが変性したことが認められた

Claims

請求の範囲
[1] アスベストと、マイクロ波の照射によって自己発熱する発熱助剤とを含有するァスべ スト含有物にマイクロ波を照射して加熱し、アスベスト含有物中のアスベストを変性さ せる工程を含むことを特徴とするアスベストの変性方法。
[2] 前記発熱助剤は、炭化珪素、炭素、酸化カルシウム、鉄、及び酸化鉄よりなる群か ら選択される少なくとも一種である請求項 1に記載のアスベストの変性方法。
[3] アスベストと、マイクロ波の照射によって自己発熱する発熱助剤とを含有し、ァスべ スト含有物を粉砕する工程と、
粉砕されたアスベスト含有物にマイクロ波を照射して加熱し、アスベスト含有物中の アスベストを変性させる工程とを含むことを特徴とするアスベストの変性方法。
PCT/JP2006/318602 2005-09-20 2006-09-20 アスベストの変性方法 WO2007034816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007536513A JP5194297B2 (ja) 2005-09-20 2006-09-20 アスベストの変性方法
US12/067,375 US20090223808A1 (en) 2005-09-20 2006-09-20 Method for Modification of Asbestos
EP06810298A EP1946857A4 (en) 2005-09-20 2006-09-20 METHOD OF AMENDING ASBESTOS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005271929 2005-09-20
JP2005-271929 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034816A1 true WO2007034816A1 (ja) 2007-03-29

Family

ID=37888859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318602 WO2007034816A1 (ja) 2005-09-20 2006-09-20 アスベストの変性方法

Country Status (4)

Country Link
US (1) US20090223808A1 (ja)
EP (1) EP1946857A4 (ja)
JP (1) JP5194297B2 (ja)
WO (1) WO2007034816A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214081A (ja) * 2008-03-12 2009-09-24 Institute Of National Colleges Of Technology Japan アスベストの急速処理方法
JP2010149080A (ja) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd アスベストの無害化処理方法
JP2010167332A (ja) * 2009-01-20 2010-08-05 National Institutes Of Natural Sciences アスベストの無害化処理法
WO2011071218A1 (ko) * 2009-12-11 2011-06-16 Lee Se-Lin 석면폐기물을 이용한 경량 건축자재의 제조 방법
KR20190091106A (ko) * 2018-01-26 2019-08-05 주식회사 모노리스 일메나이트 또는 탄소계 물질을 이용한 석면 함유 물질의 무해화 방법
KR102146082B1 (ko) * 2019-11-19 2020-08-19 전남대학교산학협력단 규산칼슘 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077065A (ja) * 2009-09-29 2011-04-14 Tokyo Electron Ltd 熱処理装置
WO2019130149A1 (en) * 2017-12-27 2019-07-04 Isidoro Giorgio Lesci A method and plant for the destruction of the crystalline structure of mineral and manmade fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834800B2 (ja) * 1979-10-19 1983-07-28 株式会社神戸製鋼所 使用剤ヘパフイルタ−の処理方法
JPS598722B2 (ja) * 1981-12-09 1984-02-27 東京電子技研株式会社 マイクロ波溶融炉の湯口内溶融物の加熱装置
JPS646438B2 (ja) * 1982-09-07 1989-02-03 Ebara Mfg
JPH0360789A (ja) 1989-07-28 1991-03-15 Osaka Gas Co Ltd アスベストの溶融処理法
JPH07171536A (ja) 1993-12-20 1995-07-11 Tanabe:Kk 廃アスベスト材の溶融処理装置
JP2000034114A (ja) * 1998-07-17 2000-02-02 Kubota Corp 炭化及び活性炭製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188231A (en) * 1977-06-17 1980-02-12 Valore Rudolph C Methods of preparing iron oxide mortars or cements with admixtures and the resulting products
JPS62237984A (ja) * 1986-04-08 1987-10-17 Meisei Kogyo Kk 石綿含有物の廃棄処理方法
FR2674939B1 (fr) * 1991-04-03 1993-07-30 Tech Nles Ste Gle Four de fusion a micro-ondes pour la vitrification de materiaux.
DE4303729C2 (de) * 1993-02-04 1999-04-15 Kokoschko Rene Dipl Krist Verfahren zur Phasenveränderung von gesundheitsgefährdenden Asbest-Faserstoffen
DE4423728A1 (de) * 1994-06-25 1996-01-04 Inst Baustoff Und Umweltschutz Verfahren zur Behandlung und umweltverträglichen Verwertung von Asbestzementprodukten
US6620092B2 (en) * 2001-05-11 2003-09-16 Chem Pro Process and apparatus for vitrification of hazardous waste materials
JP4694065B2 (ja) * 2001-09-26 2011-06-01 株式会社エーアンドエーマテリアル 石綿の処理方法
JP2003252695A (ja) * 2002-03-01 2003-09-10 Ig Tech Res Inc リサイクル肥料
JP4189730B2 (ja) * 2002-10-18 2008-12-03 株式会社エーアンドエーマテリアル 石綿スレートの非石綿化処理方法
JP3830492B2 (ja) * 2004-03-30 2006-10-04 独立行政法人科学技術振興機構 アスベストを含むスレート廃材の処理方法
JP2008533432A (ja) * 2005-03-17 2008-08-21 ノックス・ツー・インターナショナル・リミテッド 石炭の燃焼からの水銀放出の低減
JP3747246B1 (ja) * 2005-08-31 2006-02-22 独立行政法人国立高等専門学校機構 アスベスト含有複合材のアスベスト無害化方法
PL209165B1 (pl) * 2005-11-03 2011-07-29 Aton Ht Społka Akcyjna Sposób utylizacji materiałów zawierających azbest i urządzenie do utylizacji materiałów zawierających azbest
US7658795B2 (en) * 2006-11-16 2010-02-09 Maya Magstone, Inc. Magnesium oxychloride cement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834800B2 (ja) * 1979-10-19 1983-07-28 株式会社神戸製鋼所 使用剤ヘパフイルタ−の処理方法
JPS598722B2 (ja) * 1981-12-09 1984-02-27 東京電子技研株式会社 マイクロ波溶融炉の湯口内溶融物の加熱装置
JPS646438B2 (ja) * 1982-09-07 1989-02-03 Ebara Mfg
JPH0360789A (ja) 1989-07-28 1991-03-15 Osaka Gas Co Ltd アスベストの溶融処理法
JPH07171536A (ja) 1993-12-20 1995-07-11 Tanabe:Kk 廃アスベスト材の溶融処理装置
JP2000034114A (ja) * 1998-07-17 2000-02-02 Kubota Corp 炭化及び活性炭製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1946857A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214081A (ja) * 2008-03-12 2009-09-24 Institute Of National Colleges Of Technology Japan アスベストの急速処理方法
JP2010149080A (ja) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd アスベストの無害化処理方法
JP2010167332A (ja) * 2009-01-20 2010-08-05 National Institutes Of Natural Sciences アスベストの無害化処理法
WO2011071218A1 (ko) * 2009-12-11 2011-06-16 Lee Se-Lin 석면폐기물을 이용한 경량 건축자재의 제조 방법
CN102712537A (zh) * 2009-12-11 2012-10-03 李世麟 利用石棉废弃物的轻量建筑材料的制造方法
US8470087B2 (en) 2009-12-11 2013-06-25 Se-Lin Lee Production method for a lightweight construction material using asbestos waste
CN102712537B (zh) * 2009-12-11 2014-04-02 李世麟 利用石棉废弃物的轻量建筑材料的制造方法
KR20190091106A (ko) * 2018-01-26 2019-08-05 주식회사 모노리스 일메나이트 또는 탄소계 물질을 이용한 석면 함유 물질의 무해화 방법
KR102046866B1 (ko) 2018-01-26 2019-11-20 주식회사 모노리스 일메나이트 또는 탄소계 물질을 이용한 석면 함유 물질의 무해화 방법
KR102146082B1 (ko) * 2019-11-19 2020-08-19 전남대학교산학협력단 규산칼슘 제조방법

Also Published As

Publication number Publication date
US20090223808A1 (en) 2009-09-10
JP5194297B2 (ja) 2013-05-08
EP1946857A4 (en) 2012-02-29
EP1946857A1 (en) 2008-07-23
JPWO2007034816A1 (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5194297B2 (ja) アスベストの変性方法
US20120024990A1 (en) Method for conversion of materials including asbestos
JP3769569B2 (ja) アスベスト無害化処理方法
JP2009072709A (ja) アスベスト含有廃棄物の再生処理方法
JP3830492B2 (ja) アスベストを含むスレート廃材の処理方法
Hong et al. Asbestos-containing waste detoxification by a microwave heat treatment using silicon carbide as an inorganic heating element
AU2006265089B2 (en) System and method for accelerating the conversion of asbestos in the process of mineralogical conversion
CA2934498C (en) Asbestos processing
KR102046866B1 (ko) 일메나이트 또는 탄소계 물질을 이용한 석면 함유 물질의 무해화 방법
JP2011072916A (ja) アスベスト含有廃材の無害化処理方法
JP2008238037A (ja) アスベスト含有廃材の処理方法
Gaggero et al. Self-sustained combustion synthesis and asbestos-bearing waste: scaling up from laboratory towards pre-industrial size plant
JP5095193B2 (ja) アスベストの無害化処理方法及びその装置
JP2009034651A (ja) アスベストの分解処理方法
JP5583359B2 (ja) アスベスト製品の無害化処理装置
Hong et al. Detoxification of Asbestos and Recovery of Valuable Metals from Detoxified Asbestos
JP5378901B2 (ja) アスベストの無害化処理物を原料にした耐火煉瓦の製造法および耐火煉瓦
JP2008238038A (ja) アスベスト含有廃材の処理方法
JP2023097432A (ja) 石綿の処理方法
JP2007209831A (ja) アスベストの処理方法
JP2008254824A (ja) アスベスト運搬用容器
JP2022006620A (ja) 廃棄物の資材化処理方法
JP2008279422A (ja) アスベスト含有建材を使ってノンアスベスト建材に再生するシステムとその装置
JP2009214081A (ja) アスベストの急速処理方法
JP2008272593A (ja) アスベスト含有複合材のアスベスト無害化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007536513

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006810298

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12067375

Country of ref document: US