WO2007032207A1 - 超電導線材の製造方法および超電導機器 - Google Patents

超電導線材の製造方法および超電導機器 Download PDF

Info

Publication number
WO2007032207A1
WO2007032207A1 PCT/JP2006/317077 JP2006317077W WO2007032207A1 WO 2007032207 A1 WO2007032207 A1 WO 2007032207A1 JP 2006317077 W JP2006317077 W JP 2006317077W WO 2007032207 A1 WO2007032207 A1 WO 2007032207A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
superconducting wire
copper
silver
Prior art date
Application number
PCT/JP2006/317077
Other languages
English (en)
French (fr)
Inventor
Munetsugu Ueyama
Kazuya Ohmatsu
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP20060797051 priority Critical patent/EP1933334B1/en
Priority to CA002620888A priority patent/CA2620888A1/en
Priority to NZ566327A priority patent/NZ566327A/en
Priority to AU2006290035A priority patent/AU2006290035A1/en
Priority to KR1020087006276A priority patent/KR101197935B1/ko
Priority to US12/063,941 priority patent/US8048475B2/en
Publication of WO2007032207A1 publication Critical patent/WO2007032207A1/ja
Priority to NO20081812A priority patent/NO20081812L/no

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores

Definitions

  • the present invention relates to a method for manufacturing a superconducting wire and a superconducting device.
  • FIG. 9 shows a schematic cross-sectional view of an example of a conventional superconducting wire.
  • This conventional superconducting wire consists of a Ni alloy or other powerful substrate 1 and an intermediate layer 2 made of cerium oxide or yttria-stabilized zirconium oxide, Ho-Ba-Cu-O system, Y-Ba-Cu-O, etc.
  • a superconducting layer 3 with oxide superconducting power and a stable silver layer 4 with silver as a superconducting layer of the superconducting layer 3 are sequentially stacked (for example, JP-A-7- 37444 (See Fig. 1 of the publication (Patent Document 1)).
  • the silver stabilizing layer is formed with a thickness of 5 ⁇ m or less and the copper stabilizing layer is formed with a thickness of 10 m or more.
  • the present invention is a superconducting device including a superconducting wire obtained by any one of the above-described superconducting wire manufacturing methods.
  • FIG. 2 is a schematic cross-sectional view of a preferred example after forming an intermediate layer of a substrate used in the present invention.
  • FIG. 5 is a schematic configuration diagram of an example of a preferred electroplating device used in the present invention.
  • FIG. 6 is a schematic cross-sectional view of a preferred example of the superconducting wire of the present invention.
  • FIG. 8 is a diagram showing the relationship between tensile stress and critical current in the superconducting wire of the present invention and a conventional superconducting wire.
  • FIG. 9 is a schematic cross-sectional view of an example of a conventional superconducting wire.
  • 1—X represents the composition ratio of ZrO (zirconia), and X is Y 2 O
  • composition ratio of (yttria) is shown.
  • X is a real number satisfying 0.03 ⁇ x ⁇ 0.1.
  • the superconducting layer 3 is formed on the intermediate layer 2.
  • a Ho—Ba—Cu—O-based oxide superconductor containing holmium (Ho), barium (Ba), copper (Cu), and oxygen (O) or yttrium ( 1 ⁇ —Ba—Cu—O-based oxides such as oxide superconductors of Y-8 & —01—0 series containing Y), barium (Ba), copper (Cu) and oxygen (O)
  • a superconductor can be used.
  • Re represents a rare earth element.
  • Re can be gadolinium (Gd) or samarium (Sm).
  • a represents the composition ratio of rare earth elements
  • b represents the composition ratio of barium
  • c represents the composition ratio of copper
  • d represents the composition ratio of oxygen.
  • a is a real number satisfying 0.7 ⁇ a ⁇ l.3
  • b is a real number satisfying 1.7 ⁇ b ⁇ 2.3
  • c is 2. 7 ⁇ c ⁇ 3.3 Real number that satisfies 3.
  • d is real number that satisfies 6 ⁇ d ⁇ 8.
  • the superconducting layer 3 is represented by the yarn composition formula in which Re in the above composition formula (2) is Ho. It is preferable to use an oxide superconductor based on Ho—Ba—Cu—O.
  • the superconducting layer 3 is, for example, at least one method in which a group force including a sputtering method, a laser ablation method, a MOD (Metal Organic Deposition) method and a MOCVD (Metal Organic Chemical Vapor Deposition) method is selected. Forming by etc. Can do.
  • the intermediate layer 2, the superconducting layer 3, and the silver stabilizing layer 4 are sequentially laminated in the copper sulfate aqueous solution 7 accommodated in the container 8 as a tanning bath.
  • the formed substrate 1 is immersed as a cathode, and the electrode 6 is immersed as an anode.
  • the electrode 6 is electroplated by applying a voltage between the silver stable layer 4 and the electrode 6 so that the potential of the electrode 6 is higher than that of the silver stable layer 4.
  • the copper stable layer 5 is formed on the surface of the silver stable layer 4, and the superconducting wire of the present invention is obtained.
  • the copper stable layer 5 is preferably formed to a thickness of 10 m or more.
  • the copper stabilizing layer 5 is formed to a thickness of less than 10 m, the copper stabilizing layer 5 is too thin, so that the copper stabilizing layer 5 does not function as an electrical stabilizing layer. And the superconducting state collapsed In some cases, the copper stable layer 5 may burn out, or the mechanical strength of the copper stable layer 5 may be insufficient, resulting in deterioration of superconducting characteristics due to handling.
  • the copper stabilizing layer 5 is preferably formed to a thickness of 50 m or less. Therefore, for the above reasons, the thickness of the copper stabilization layer 5 is preferably 10 ⁇ m or more and 50 ⁇ m or less! /.
  • a first cerium oxide layer having a thickness of 0.1 ⁇ m was formed on the substrate by a sputtering method.
  • a YSZ layer having a thickness of 1 ⁇ m was formed on the first oxide / cerium layer by a laser ablation method.
  • a 0.1 ⁇ m-thick second cerium oxide layer was formed on the YSZ layer by sputtering.
  • the above-mentioned first oxide-cerium layer, YSZ layer, and second oxide-cerium layer were laminated in this order from the substrate side, and an intermediate layer having a three-layer laminate strength was formed on the substrate.
  • the YSZ layer is expressed by the composition formula of (ZrO) (Y O).
  • a 1 ⁇ m thick superconducting layer made of superconductor was formed. Then, a silver stable layer having a thickness of 3 ⁇ m was formed on the superconducting layer by sputtering.
  • Example 2 The appearance of the superconducting wire of Example 2 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 2 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • a superconducting wire of Comparative Example 1 was produced in the same manner and under the same conditions as in Example 1 except that a copper cyanide aqueous solution was used as the plating bath instead of the copper sulfate aqueous solution.
  • a superconducting wire of Comparative Example 2 was fabricated by the same method and the same conditions as Comparative Example 1 except that the copper stable layer was formed to a thickness of 20 ⁇ m.
  • the appearance of the superconducting wire of Comparative Example 2 produced in this way was examined in the same manner as in Example 1. As a result, the copper conducting layer was floated even in the superconducting wire of Comparative Example 2. Many spots were found to have insufficient adhesion. Further, in the superconducting wire of Comparative Example 2, there were many places where the plating bath soaked into the superconducting wire and changed its color.
  • Table 1 shows the inspection results of the appearance of the superconducting wires of Examples 1-2 and Comparative Examples 1-2.
  • the superconducting wires in Examples 1 and 2 in which the copper stable layer was formed by electrical plating using an aqueous copper sulfate solution as a plating bath were prepared by using an aqueous copper cyanide solution. Compared to the superconducting wires of Comparative Example 1 and Comparative Example 2 in which was used as a plating bath, it was confirmed that they had high adhesion and no discoloration and had an excellent appearance.
  • a superconducting wire of Comparative Example 3 was fabricated by the same method and the same conditions as in Example 1 except that the copper stable layer was not formed.
  • the critical current was measured for each of the superconducting wires of Example 1, Example 2, and Comparative Example 3 described above. As a result, the superconducting wires of Example 1 and Example 2 were able to measure the critical current, but the superconducting wire of Comparative Example 3 was burned out during the measurement of the critical current. Measurement was impossible.
  • Example 3 was carried out under the same method and the same conditions as in Example 1 except that the current density on the surface of the body to be covered was 2AZdm 2 and the electric contact time was 23 minutes. A superconducting wire was produced.
  • Example 4 Except that the current density on the surface of the body to be braided was 2AZdm 2 at the time of electric mating, and the copper plating layer with a thickness of 20 ⁇ m was formed for 45 min.
  • the superconducting wire of Example 4 was produced using the same method and the same conditions.
  • Example 4 The appearance of the superconducting wire of Example 4 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 4 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • Example 5 was carried out in the same manner and under the same conditions as in Example 1 except that the current density on the surface of the body to be braided was 3AZdm 2 and the time of electric mating was 15 minutes. A superconducting wire was produced.
  • Example 5 The appearance of the superconducting wire of Example 5 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 5 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • Example 6 Same as Example 1 except that the current density on the surface of the body to be covered was 3AZdm 2 and the copper plating time was 30 minutes, and a 20 m thick copper stable layer was formed.
  • the superconducting wire of Example 6 was fabricated using the above method and the same conditions.
  • Example 6 The appearance of the superconducting wire of Example 6 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 6 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • Example 7 Example 1 except that the current density on the surface of the body to be covered was 3AZdm 2 at the time of electric plating, and the time of electric plating was 10 minutes, and a 6 ⁇ m thick copper stable layer was formed.
  • the superconducting wire of Example 7 was produced using the same method and the same conditions.
  • Example 7 The appearance of the superconducting wire of Example 7 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 7 was also glossy like the superconducting wire of Example 1. Although it was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high, the superconducting properties were reduced by handling during the measurement of the critical current.
  • Example 8 Same as Example 1 except that the current density on the surface of the body to be covered was 5AZdm 2 at the time of electric plating, and the copper plating layer of 10m thickness was formed with the electric plating time being 10 minutes.
  • the superconducting wire of Example 8 was fabricated using the same method and the same conditions.
  • Example 8 The appearance of the superconducting wire of Example 8 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 8 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • Example 9 Except for forming a thickness of 18 mu copper stabilization I ⁇ of m an electrical plated time as 10 minutes while the 9AZdm 2 the current density of the surface of the object to be plated body during electric-plating to Example 1
  • the superconducting wire of Example 9 was produced using the same method and the same conditions.
  • Example 9 The appearance of the superconducting wire of Example 9 produced in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 9 was also glossy like the superconducting wire of Example 1. It was confirmed that the surface was smooth and the adhesion of the copper stable layer was very high.
  • Example 10 The appearance of the superconducting wire of Example 10 manufactured in this manner was examined in the same manner as in Example 1. As a result, the superconducting wire of Example 10 was in a state where powder was blown on the copper stable layer. The copper stabilization layer has slightly insufficient adhesion compared to the superconducting wire of Example 1. It was confirmed that.
  • Table 2 below shows the inspection results of the superconducting wires of each of Examples 3 to LO described above.
  • Example 7 For each of the superconducting wires of Example 3, Example 4 and Comparative Example 4 above, the relationship between the bending strain rate and the critical current was examined. The results are shown in Fig. 7. In FIG. 7, the horizontal axis indicates the bending strain rate (%), and the vertical axis indicates the critical current at each bending strain rate when the critical current value is 1 when the bending strain rate is 0%. The value (relative value) is shown. Further, the bending strain rate in FIG. 7 was calculated by the following equation (3).
  • the relationship between tensile stress and critical current was examined for each of the superconducting wires of Example 3, Example 4 and Comparative Example 4 above. The results are shown in Fig. 8.
  • the horizontal axis shows the tensile stress (kgZmm 2 ), and the vertical axis shows the critical current at each bow I tension stress when the critical current value when the tensile stress is 0 is 1. Show the value (relative value)!
  • the tensile stress in FIG. 8 is the tensile stress (kg) applied per lm m 2 of the cross section of the superconducting wire perpendicular to the tensile direction. As is clear from FIG.
  • the superconducting wires of Examples 3 and 4 having a copper stable layer formed by electrical plating using a copper sulfate aqueous solution as a plating bath are copper stable layers. Even when the tensile stress increased compared to the superconducting wire of Comparative Example 4 in which no layer was formed and only the silver stabilizing layer, a larger critical current tended to flow and it was confirmed that excellent superconducting properties were exhibited. .
  • the amount of industrially expensive silver used can be reduced by replacing a part of the silver stabilizing layer of the conventional superconducting wire with a copper stabilizing layer.
  • the manufacturing cost of the wire can be reduced, and the mechanical strength of the superconducting wire can be improved by using copper having a mechanical strength higher than that of silver.
  • the copper stabilizing layer by electrical plating using a copper sulfate aqueous solution as a plating bath, it is possible to obtain a superconducting wire having an excellent appearance with high adhesion and no discoloration. it can .
  • the current density on the surface of the object to be bonded is less than lOAZdm 2 , particularly 9AZdm 2 or less, when electroplating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

超電導線材の製造方法および超電導機器
技術分野
[0001] 本発明は、超電導線材の製造方法および超電導機器に関する。
背景技術
[0002] 図 9に、従来の超電導線材の一例の模式的な断面図を示す。この従来の超電導線 材は、 Ni合金など力もなる基板 1上に酸ィ匕セリウムやイットリア安定ィ匕ジルコユアなど からなる中間層 2、 Ho— Ba— Cu— O系や Y— Ba— Cu— O系などの酸化物超電導 体力 なる超電導層 3および超電導層 3の安定ィ匕層として銀力 なる銀安定ィ匕層 4を 順次積層した構成を有して ヽる (たとえば、特開平 7— 37444号公報 (特許文献 1)の 図 1参照)。
[0003] 上記の従来の超電導線材においては、超電導層 3を構成する酸化物超電導体の 酸素量が変動することにより超電導層 3の特性が大きく変化する。そこで、超電導層 3 上に銀安定化層 4を形成した後に熱処理を施すことによって、超電導層 3を構成する 酸ィ匕物超電導体の酸素量を調整することが一般的に行なわれている。
[0004] し力しながら、銀は工業材料としては比較的高価な材料であり、銀安定化層 4の形 成に多量の銀を用いると製造コストが高くなるという問題があった。また、銀安定化層 4を用いた場合には、超電導線材の十分な機械的強度が得られな!/ヽと ヽぅ問題もあ つた o
[0005] このような問題を解決するために、超電導線材の超電導層 3上にその長手方向に わたって均一に半田で銅箔を貼り付ける手法が提案されている。
特許文献 1:特開平 7— 37444号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記の銅箔を貼り付ける手法においては、超電導線材の長手方向に わたって半田で均一に銅箔を貼り付けるために高度な技術を要し、また、銅箔と超電 導層との密着性が低ぐ剥がれが生じやすいという問題もあった。 [0007] 上記の事情に鑑みて、本発明の目的は、製造コストを低減することができるとともに 超電導線材の機械的強度も向上することができる超電導線材の製造方法およびそ の方法により得られた超電導線材を含む超電導機器を提供することにある。
課題を解決するための手段
[0008] 本発明は、基板上または基板上に形成された中間層上に超電導層を形成するェ 程と、超電導層上に銀安定化層を形成する工程と、超電導層および銀安定化層が 形成された後の基板を硫酸銅水溶液中に浸漬させる工程と、硫酸銅水溶液をめつき 浴として用いた電気めつきにより銀安定ィ匕層上に銅安定ィ匕層を形成する工程と、を 含む、超電導線材の製造方法である。なお、本発明においては、基板と超電導層と の間に他の層が含まれていてもよい。また、本発明においては、超電導層と銀安定 化層との間に他の層が含まれて!/、てもよ!/、。
[0009] ここで、本発明の超電導線材の製造方法においては、電気めつき時における被め つき体の表面の電流密度を lOAZdm2未満とすることが好ましい。
[0010] また、本発明の超電導線材の製造方法において、銀安定化層は 5 μ m以下の厚み に形成され、銅安定ィ匕層は 10 m以上の厚みに形成されることが好ましい。
[0011] また、本発明は、上記のいずれかの超電導線材の製造方法によって得られた超電 導線材を含む超電導機器である。
発明の効果
[0012] 本発明によれば、製造コストを低減することができるとともに超電導線材の機械的強 度も向上することができる超電導線材の製造方法およびその方法により得られた超 電導線材を含む超電導機器を提供することができる。
図面の簡単な説明
[0013] [図 1]本発明に用いられる基板の好ましい一例の模式的な断面図である。
[図 2]本発明に用いられる基板の中間層形成後の好ましい一例の模式的な断面図で ある。
[図 3]本発明に用いられる基板の超電導層形成後の好ましい一例の模式的な断面図 である。
[図 4]本発明に用いられる基板の銀安定ィ匕層形成後の好ましい一例の模式的な断面 図である。
[図 5]本発明にお 、て用いられる電気めつき装置の好ま 、一例の模式的な構成図 である。
[図 6]本発明の超電導線材の好ましい一例の模式的な断面図である。
[図 7]本発明の超電導線材と従来の超電導線材における曲げ歪み率と臨界電流との 関係を示す図である。
[図 8]本発明の超電導線材と従来の超電導線材における引張応力と臨界電流との関 係を示す図である。
[図 9]従来の超電導線材の一例の模式的な断面図である。
符号の説明
[0014] 1 基板、 2 中間層、 3 超電導層、 4 銀安定化層、 5 銅安定化層、 6 電極、 7 硫酸銅水溶液、 8 容器。
発明を実施するための最良の形態
[0015] 以下、本発明の超電導線材の製造方法の好ましい一例について説明する。なお、 本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすも のとする。
[0016] まず、図 1の模式的断面図に示すように、たとえばテープ状の基板 1を用意する。こ こで、基板 1としては、たとえば、ニッケルを主成分とする合金などの導電性基板を用 いることができる。なかでも、基板 1としては、ニッケルを主成分とする合金を用いるこ と力 S好ましく、特にニッケルを主成分とする合金はタングステンを含むことが好ま U、。 なお、本発明において、「主成分」は、基板を構成する原子の総原子数の 50%以上 を占めることを意味する。
[0017] 次に、図 2の模式的断面図に示すように、基板 1上に中間層 2を形成する。ここで、 中間層 2としては、たとえば、酸ィ匕セリウム層、イットリア安定ィ匕ジルコユア層(YSZ層) 、ガドリニアとジルコユアと力もなる GdZrO層および酸化マグネシウム層の群力も選 択された少なくとも 1種の導電層などを用いることができる。なかでも、中間層 2として は、基板 1側力 酸ィ匕セリウム層、 YSZ層および酸ィ匕セリウム層の順序で積層された 3層の積層体を用いることが好ま U、。 [0018] ここで、 YSZ層は以下の糸且成式(1)でその糸且成が表わされる。
(ZrO ) (Y O ) …ひ)
2 1 2 3
上記の糸且成式(1)において、 1— Xは ZrO (ジルコ -ァ)の組成比を示し、 Xは Y O
2 2 3
(イットリア)の組成比を示す。なお、上記の組成式(1)において、 Xは 0. 03≤x≤0. 1を満たす実数である。
[0019] また、中間層 2は、たとえば、スパッタリング法、レーザアブレーシヨン法、電子ビー ム蒸着法および IBAD (Ion Beam Assist Deposition)法からなる群から選択された 少なくとも 1種の方法などにより形成することができる。
[0020] 次いで、図 3の模式的断面図に示すように、中間層 2上に超電導層 3を形成する。
ここで、超電導層 3としては、たとえば、ホルミウム (Ho)とバリウム (Ba)と銅 (Cu)と酸 素(O)を含む Ho— Ba— Cu— O系の酸化物超伝導体またはイットリウム (Y)とバリウ ム(Ba)と銅(Cu)と酸素(O)を含む丫ー8&— 01—0系の酸化物超伝導体などの1^ — Ba— Cu—O系の酸ィ匕物超伝導体を用いることができる。なお、 Reは希土類元素 を示しており、 Reとしては Hoおよび Y以外にもガドリニウム(Gd)またはサマリウム(S m)などを用いることができる。
[0021] ここで、 Re— Ba— Cu— O系の酸化物超伝導体は以下の糸且成式(2)で糸且成が表わ される酸化物超伝導体である。
[0022] Re Ba Cu O - - - (2)
a b c d
上記の組成式(2)において、 aは希土類元素の組成比を示し、 bはバリウムの組成 比を示し、 cは銅の組成比を示し、 dは酸素の組成比を示す。なお、上記の組成式(2 )において、 aは 0. 7≤a≤l . 3を満たす実数であり、 bは 1. 7≤b≤2. 3を満たす実 数であり、 cは 2. 7≤c≤3. 3を満たす実数であり、 dは 6≤d≤ 8を満たす実数である 。 Re— Ba— Cu— O系の酸ィ匕物超伝導体のなかでも超電導層 3としては上記の組成 式(2)中の Reが Hoとなる糸且成式でその糸且成が表わされる Ho— Ba— Cu— O系の酸 化物超伝導体を用いることが好ま ヽ。
[0023] また、超電導層 3は、たとえば、スパッタリング法、レーザアブレーシヨン法、 MOD ( Metal Organic Deposition)法および MOCVD (Metal Organic Chemical Vapor Deposition)法力もなる群力も選択された少なくとも 1種の方法などにより形成すること ができる。
[0024] 続いて、図 4の模式的断面図に示すように、超電導層 3上に銀安定ィ匕層 4を形成す る。ここで、銀安定化層 4は、たとえば、スパッタリング法などの少なくとも 1種の方法な どを用いて、超電導層 3上に銀力もなる膜を成膜することによって形成することができ る。また、銀安定化層 4は、 5 m以下の厚みに形成されることが好ましい。銀安定ィ匕 層 4の厚みが 5 μ mよりも厚く形成された場合には銀安定化層 4の形成に多量の銀を 用いることによって製造コストが高くなる傾向にあり、また銀の機械的強度の低さに起 因して超電導線材の十分な機械的強度が得られない傾向にある。また、銀安定化層 4は 1 μ m以上の厚みに形成されることが好ましい。銀安定化層 4の厚みが 1 μ mより も薄く形成された場合には、超電導層 3の保護が不十分となるおそれがある。したが つて、上記の理由によれば、銀安定化層 4の厚みは 1 μ m以上 5 μ m以下であること が好ましい。
[0025] 次いで、図 5の模式的構成図に示すように、容器 8にめつき浴として収容された硫酸 銅水溶液 7中に、中間層 2、超電導層 3および銀安定化層 4が順次積層された基板 1 を陰極として浸漬させるとともに、電極 6を陽極として浸漬させる。そして、上記の銀安 定ィ匕層 4と電極 6との間に電極 6の方が銀安定ィ匕層 4よりも電位が高くなるように電圧 を印加することによって電気めつきを行なう。これにより、図 6の模式的断面図に示す ように、銀安定ィ匕層 4の表面に銅安定ィ匕層 5が形成されて、本発明の超電導線材が 得られる。
[0026] ここで、上記の電気めつき時における被めつき体の表面の電流密度は lOAZdm2 未満とすることが好ましぐ特に 9AZdm2以下であることが好ましい。上記の電気めつ き時における被めつき体の表面の電流密度が lOAZdm2以上である場合には、電流 密度が大きすぎて密着性の高い銅安定ィ匕層 5が形成できないおそれがある。また、 上記の電気めつき時における被めつき体の表面の電流密度が 9AZdm2以下である 場合には、密着性の高い銅安定ィ匕層 5を形成することができる傾向にある。
[0027] また、銅安定ィ匕層 5は 10 m以上の厚みに形成されることが好ましい。銅安定化層 5が 10 m未満の厚みに形成された場合には、銅安定ィ匕層 5の厚みが薄いため、銅 安定ィ匕層 5の電気的安定ィ匕層としての機能が不十分となって超電導状態が崩れたと きに銅安定ィ匕層 5が焼損したり、銅安定ィ匕層 5の機械的強度が不十分となってハンド リングなどによって超電導特性が劣化したりするおそれがある。また、銅安定化層 5は 50 m以下の厚みに形成されることが好ましい。したがって、上記の理由によれば、 銅安定化層 5の厚みは 10 μ m以上 50 μ m以下であることが好まし!/、。
[0028] なお、上記の電気めつきによって銅は基板 1の表面などにも堆積し得る力 図 6に ぉ ヽては説明の便宜のため図示して!/ヽな 、。
[0029] また、硫酸銅水溶液 7には、光沢剤などの従来から公知の添加剤が適宜添加され ていてもよい。
[0030] 上記のようにして得られた本発明の超電導線材は、たとえば超電導ケーブル、超電 導モータ、発電機、磁気分離装置、単結晶引上げ炉用マグネット、 MRI (Magnetic Resonance Imagingノ、 NMR (Nuclear Magnetic Resonanceノ、リニ/'モ ~~タ' ~~力' ~~ または変圧器などの超電導機器に用いることができる。
実施例
[0031] (実施例 1)
まず、幅 lOmm X長さ lOOmX厚さ 0. 1mmのテープ状のニッケルとタングステンと の合金カゝらなる配向性の基板を用意した。ここで、基板中において、ニッケルは基板 を構成する原子の総原子数の 95%を占めており、タングステンは基板を構成する原 子の総原子数の 5%を占めていた。
[0032] 次に、この基板上にスパッタリング法によって厚さ 0. 1 μ mの第 1酸化セリウム層を 形成した。続いて、この第 1酸ィ匕セリウム層上にレーザアブレーシヨン法によって厚さ 1 μ mの YSZ層を形成した。さらに、 YSZ層上にスパッタリング法によって厚さ 0. 1 μ mの第 2酸ィ匕セリウム層を形成した。これにより、上記の第 1酸ィ匕セリウム層、 YSZ層 および第 2酸ィ匕セリウム層が基板側からこの順序で積層された 3層の積層体力もなる 中間層を基板上に形成した。ここで、 YSZ層は、 (ZrO ) (Y O ) の組成式で表
2 0.92 2 3 0.08
わされる組成であった。
[0033] 次いで、上記の中間層上に、レーザアブレーシヨン法によって上記の糸且成式(2)を 満たす HoBa Cu O の糸且成式で表わされる糸且成の Ho— Ba— Cu—O系の酸化物
2 3 7- δ
超電導体からなる厚さ 1 μ mの超電導層を形成した。 [0034] そして、超電導層上に、スパッタリング法によって厚さ 3 μ mの銀安定ィ匕層を形成し た。
[0035] その後、容器に収容されためつき浴である硫酸銅水溶液中に、基板上に上記の中 間層、超電導層および銀安定ィ匕層を順次積層した被めつき体を陰極として浸漬し、 さらに陽極として電極を浸漬した。そして、電極の方が銀安定ィ匕層よりも電位が高くな るように銀安定ィ匕層と電極との間に電圧を印加して電気めつきを行なうことによって、 銀安定化層上に厚さ 10 mの銅安定化層を形成し、実施例 1の超電導線材を作製 した。ここで、電気めつき時における被めつき体の表面の電流密度が 3AZdm2にな るように電気めつきが行なわれた。
[0036] このようにして作製した実施例 1の超電導線材の外観を検査したところ、実施例 1の 超電導線材は光沢を有して表面が平滑となっており、銅安定化層の密着性が非常 に高いことが確認された。
[0037] (実施例 2)
銅安定ィ匕層を 20 μ mの厚みに形成したこと以外は実施例 1と同一の方法および同 一の条件で実施例 2の超電導線材を作製した。
[0038] このようにして作製した実施例 2の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 2の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0039] (比較例 1)
硫酸銅水溶液に代えてめっき浴としてシアン化銅水溶液を用いたこと以外は実施 例 1と同一の方法および同一の条件で比較例 1の超電導線材を作製した。
[0040] このようにして作製した比較例 1の超電導線材の外観を実施例 1と同様にして検査 したところ、比較例 1の超電導線材にお 、ては銅安定ィ匕層が浮 、て 、て密着性が不 十分な箇所が多数見受けられた。また、比較例 1の超電導線材においては、めっき 浴が超電導線材の内部に染み込んで変色している多数箇所も見受けられた。
[0041] (比較例 2)
銅安定ィ匕層を 20 μ mの厚みに形成したこと以外は比較例 1と同一の方法および同 一の条件で比較例 2の超電導線材を作製した。 [0042] このようにして作製した比較例 2の超電導線材の外観を実施例 1と同様にして検査 したところ、比較例 2の超電導線材にお 、ても銅安定ィ匕層が浮 、て 、て密着性が不 十分な箇所が多数見受けられた。また、比較例 2の超電導線材においては、めっき 浴が超電導線材の内部に染み込んで変色している箇所も多数見受けられた。
[0043] なお、上記の実施例 1〜2および比較例 1〜2のそれぞれの超電導線材の外観の 検査結果を以下の表 1に示す。
[0044] [表 1]
Figure imgf000010_0001
[0045] 表 1に示すように、硫酸銅水溶液をめつき浴として用いた電気めつきにより銅安定ィ匕 層の形成を行なった実施例 1および実施例 2の超電導線材は、シアン化銅水溶液を めっき浴として用いた比較例 1および比較例 2の超電導線材と比べて、密着性が高く 、変色のな!ヽ優れた外観を有して ヽることが確認された。
[0046] (比較例 3)
銅安定ィ匕層を形成しな力つたこと以外は実施例 1と同一の方法および同一の条件 で比較例 3の超電導線材を作製した。
[0047] (臨界電流測定)
上記の実施例 1、実施例 2および比較例 3の超電導線材のそれぞれにつ 、て臨界 電流の測定を行なった。その結果、実施例 1および実施例 2の超電導線材はそれぞ れ臨界電流の測定が可能であつたが、比較例 3の超電導線材は臨界電流の測定中 に焼損してしま 、、臨界電流の測定が不可能であった。
[0048] (実施例 3) 電気めつき時における被めつき体の表面の電流密度を 2AZdm2にするとともに電 気めつき時間を 23分としたこと以外は実施例 1と同一の方法および同一の条件で実 施例 3の超電導線材を作製した。
[0049] このようにして作製した実施例 3の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 3の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0050] (実施例 4)
電気めつき時における被めつき体の表面の電流密度を 2AZdm2にするとともに電 気めつき時間を 45分として厚さ 20 μ mの銅安定ィ匕層を形成したこと以外は実施例 1 と同一の方法および同一の条件で実施例 4の超電導線材を作製した。
[0051] このようにして作製した実施例 4の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 4の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0052] (実施例 5)
電気めつき時における被めつき体の表面の電流密度を 3AZdm2にするとともに電 気めつき時間を 15分としたこと以外は実施例 1と同一の方法および同一の条件で実 施例 5の超電導線材を作製した。
[0053] このようにして作製した実施例 5の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 5の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0054] (実施例 6)
電気めつき時における被めつき体の表面の電流密度を 3AZdm2にするとともに電 気めつき時間を 30分として厚さ 20 mの銅安定ィ匕層を形成したこと以外は実施例 1 と同一の方法および同一の条件で実施例 6の超電導線材を作製した。
[0055] このようにして作製した実施例 6の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 6の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0056] (実施例 7) 電気めつき時における被めつき体の表面の電流密度を 3AZdm2にするとともに電 気めつき時間を 10分として厚さ 6 μ mの銅安定ィ匕層を形成したこと以外は実施例 1と 同一の方法および同一の条件で実施例 7の超電導線材を作製した。
[0057] このようにして作製した実施例 7の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 7の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認されたが、臨 界電流測定の作業時におけるハンドリングにより超電導特性が低下してしまった。
[0058] (実施例 8)
電気めつき時における被めつき体の表面の電流密度を 5AZdm2にするとともに電 気めつき時間を 10分として厚さ 10 mの銅安定ィ匕層を形成したこと以外は実施例 1 と同一の方法および同一の条件で実施例 8の超電導線材を作製した。
[0059] このようにして作製した実施例 8の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 8の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0060] (実施例 9)
電気めつき時における被めつき体の表面の電流密度を 9AZdm2にするとともに電 気めつき時間を 10分として厚さ 18 μ mの銅安定ィ匕層を形成したこと以外は実施例 1 と同一の方法および同一の条件で実施例 9の超電導線材を作製した。
[0061] このようにして作製した実施例 9の超電導線材の外観を実施例 1と同様にして検査 したところ、実施例 9の超電導線材も実施例 1の超電導線材と同様に光沢を有して表 面が平滑となっており、銅安定ィ匕層の密着性が非常に高いことが確認された。
[0062] (実施例 10)
電気めつき時における被めつき体の表面の電流密度を lOAZdm2にするとともに電 気めつき時間を 10分として厚さ 20 mの銅安定ィ匕層を形成したこと以外は実施例 1 と同一の方法および同一の条件で実施例 10の超電導線材を作製した。
[0063] このようにして作製した実施例 10の超電導線材の外観を実施例 1と同様にして検 查したところ、実施例 10の超電導線材は銅安定ィ匕層に粉を吹いたような状態の箇所 が見受けられ、実施例 1の超電導線材と比べて銅安定化層の密着性がやや不十分 であることが確認された。
[0064] なお、上記の実施例 3〜: LOのそれぞれの超電導線材の外観の検査結果を以下の 表 2に示す。
[0065] [表 2]
Figure imgf000013_0001
[0066] 表 2に示すように、硫酸銅水溶液をめつき浴として用いた電気めつきにおいて電気 めっき時における被めつき体の表面の電流密度を lOAZdm2未満として作製された 実施例 3〜9の超電導線材は、その電流密度を lOAZdm2として作製された実施例 10の超電導線材と比べて、密着性が高ぐ変色のない優れた外観を有する傾向にあ つた。したがって、電気めつき時における被めつき体の表面の電流密度は lOAZdm 2未満であることが好ましぐ特に 9AZdm2以下であることが好ま U、ことが確認された
[0067] (比較例 4)
銅安定化層を形成せずに銀安定化層の厚みを 20 μ mに形成したこと以外は実施 例 1と同一の方法および同一の条件で比較例 4の超電導線材を作製した。
[0068] (曲げ歪み率と臨界電流との関係)
上記の実施例 3、実施例 4および比較例 4の超電導線材のそれぞれについて曲げ 歪み率と臨界電流との関係を検査した。その結果を図 7に示す。なお、図 7において 、横軸は曲げ歪み率(%)を示しており、縦軸は曲げ歪み率が 0%であるときの臨界 電流値を 1としたときのそれぞれの曲げ歪み率における臨界電流値 (相対値)を示し ている。また、図 7における曲げ歪み率は以下の式(3)で算出した。
[0069] 曲げ歪み率(%) = 100 X (T/2) /{R+ (Τ/2)}· ·· (3)
なお、上記の式(3)において、 Rは超電導線材を曲げたときに超電導線材が形成 する曲率円の直径であり、 Τは超電導線材の厚みである。
[0070] 図 7から明らかなように、硫酸銅水溶液をめつき浴とした電気めつきにより形成され た銅安定ィ匕層を有する実施例 3および実施例 4の超電導線材は、銅安定ィ匕層が形 成されず銀安定化層のみを有する比較例 4の超電導線材と比べて曲げ歪み率が増 大した場合でもより大きな臨界電流が流れる傾向にあり、優れた超電導特性を示すこ とが確認された。
[0071] (引張応力と臨界電流との関係)
上記の実施例 3、実施例 4および比較例 4の超電導線材のそれぞれにつ ヽて引張 応力と臨界電流との関係を検査した。その結果を図 8に示す。なお、図 8において、 横軸は引張応力(kgZmm2)を示しており、縦軸は引張応力が 0であるときの臨界電 流値を 1としたときのそれぞれの弓 I張応力における臨界電流値 (相対値)を示して!ヽ る。また、図 8における引張応力は引張方向に垂直な超電導線材の断面の面積 lm m2当たりに加えられる引張応力(kg)である。 [0072] 図 8から明らかなように、硫酸銅水溶液をめつき浴とした電気めつきにより形成され た銅安定ィ匕層を有する実施例 3および実施例 4の超電導線材は、銅安定ィ匕層が形 成されず銀安定化層のみを有する比較例 4の超電導線材と比べて引張応力が増大 した場合でもより大きな臨界電流が流れる傾向にあり、優れた超電導特性を示すこと が確認された。
[0073] 本発明によれば、従来の超電導線材の銀安定化層の一部を銅安定化層に置き換 えることによって工業的に高価な銀の使用量を低減することができるために超電導線 材の製造コストを低減することができ、また銀よりも機械的強度が大きい銅を用いるこ とによって超電導線材の機械的強度も向上することができる。さらに、上記の銅安定 化層の形成を硫酸銅水溶液をめつき浴として用いた電気めつきにより行なうことによ つて密着性が高ぐ変色等のない優れた外観を有する超電導線材を得ることができる 。特に、密着性の高い銅安定ィ匕層を得るためには、電気めつき時における被めつき 体の表面の電流密度を lOAZdm2未満、特に 9AZdm2以下とすることが好まし 、。
[0074] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。
産業上の利用可能性
[0075] 本発明によれば、製造コストを低減することができるとともに超電導線材の機械的強 度も向上することができる超電導線材の製造方法およびその方法により得られた超 電導線材を含む超電導機器を提供することができる。

Claims

請求の範囲
[1] 基板(1)上または基板(1)上に形成された中間層(2)上に超電導層 (3)を形成す る工程と、
前記超電導層 (3)上に銀安定化層 (4)を形成する工程と、
前記超電導層 (3)および前記銀安定化層 (4)が形成された後の前記基板(1)を硫 酸銅水溶液 (7)中に浸漬させる工程と、
前記硫酸銅水溶液(7)をめつき浴として用いた電気めつきにより前記銀安定ィ匕層( 4)上に銅安定化層(5)を形成する工程と、
を含む、超電導線材の製造方法。
[2] 前記電気めつき時における被めつき体の表面の電流密度を lOAZdm2未満とする ことを特徴とする、請求項 1に記載の超電導線材の製造方法。
[3] 前記銀安定化層(4)は 5 μ m以下の厚みに形成され、前記銅安定化層(5)は 10 m以上の厚みに形成されることを特徴とする、請求項 1に記載の超電導線材の製造 方法。
[4] 請求項 1に記載の超電導線材の製造方法によって得られた超電導線材を含む、超 電導機器。
PCT/JP2006/317077 2005-09-16 2006-08-30 超電導線材の製造方法および超電導機器 WO2007032207A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20060797051 EP1933334B1 (en) 2005-09-16 2006-08-30 Method for producing superconducting wire and superconducting apparatus
CA002620888A CA2620888A1 (en) 2005-09-16 2006-08-30 Method for fabricating superconducting wire, and superconducting apparatus
NZ566327A NZ566327A (en) 2005-09-16 2006-08-30 Method for producing superconducting wire by electroplating copper onto a silver stabilisation layer
AU2006290035A AU2006290035A1 (en) 2005-09-16 2006-08-30 Method for fabricating superconducting wire, and superconducting apparatus
KR1020087006276A KR101197935B1 (ko) 2005-09-16 2006-08-30 초전도 선재의 제조 방법 및 초전도 기기
US12/063,941 US8048475B2 (en) 2005-09-16 2006-08-30 Method of fabricating superconducting wire and superconducting apparatus
NO20081812A NO20081812L (no) 2005-09-16 2008-04-14 Fremgangsmate for fremstilling av superledende ledning, og superledende anordning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-270225 2005-09-16
JP2005270225A JP5119582B2 (ja) 2005-09-16 2005-09-16 超電導線材の製造方法および超電導機器

Publications (1)

Publication Number Publication Date
WO2007032207A1 true WO2007032207A1 (ja) 2007-03-22

Family

ID=37864805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317077 WO2007032207A1 (ja) 2005-09-16 2006-08-30 超電導線材の製造方法および超電導機器

Country Status (12)

Country Link
US (1) US8048475B2 (ja)
EP (1) EP1933334B1 (ja)
JP (1) JP5119582B2 (ja)
KR (1) KR101197935B1 (ja)
CN (1) CN101268523A (ja)
AU (1) AU2006290035A1 (ja)
CA (1) CA2620888A1 (ja)
NO (1) NO20081812L (ja)
NZ (1) NZ566327A (ja)
RU (1) RU2366017C1 (ja)
TW (1) TW200729237A (ja)
WO (1) WO2007032207A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100136464A (ko) * 2008-02-19 2010-12-28 수퍼파워, 인크. 고온 초전도체 물품의 형성 방법
WO2019105778A1 (en) 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
WO2020064505A1 (en) 2018-09-24 2020-04-02 Basf Se Process for producing highly oriented metal tapes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934155B2 (ja) * 2009-01-27 2012-05-16 住友電気工業株式会社 超電導線材および超電導線材の製造方法
JP5084766B2 (ja) * 2009-03-11 2012-11-28 住友電気工業株式会社 薄膜超電導線材および超電導ケーブル導体
JP5427554B2 (ja) * 2009-10-30 2014-02-26 公益財団法人国際超電導産業技術研究センター 低交流損失マルチフィラメント型超電導線材の製造方法
US8682406B2 (en) * 2010-06-24 2014-03-25 University Of Houston System Multifilament superconductor having reduced AC losses and method for forming the same
TWI626223B (zh) * 2010-11-30 2018-06-11 康寧公司 玻璃帶以及將第一玻璃帶部分接合至第二部件之方法
WO2013129568A1 (ja) 2012-02-29 2013-09-06 株式会社フジクラ 超電導線材および超電導コイル
WO2016183190A1 (en) 2015-05-11 2016-11-17 University Of Houston System Ultra-thin film superconducting tapes
JP6688564B2 (ja) * 2015-05-28 2020-04-28 昭和電線ケーブルシステム株式会社 酸化物超電導線材の製造方法
CN108342757B (zh) * 2018-02-05 2020-04-10 苏州新材料研究所有限公司 一种电镀铜制备高温超导带材保护层的方法
JP6743233B1 (ja) 2019-03-28 2020-08-19 株式会社フジクラ 酸化物超電導線材
JP6743232B1 (ja) 2019-03-28 2020-08-19 株式会社フジクラ 酸化物超電導線材
JP6743262B1 (ja) 2019-10-09 2020-08-19 株式会社フジクラ 酸化物超電導線材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737444A (ja) 1993-05-17 1995-02-07 Sumitomo Electric Ind Ltd 酸化物超電導導体およびその製造方法
JPH07335051A (ja) 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 安定化層を備えた酸化物超電導テープ及びその製造方法
JP2000200518A (ja) * 1998-10-26 2000-07-18 Sumitomo Electric Ind Ltd 酸化物超電導線およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930109A (en) * 1971-03-09 1975-12-30 Hoechst Ag Process for the manufacture of metallized shaped bodies of macromolecular material
DE4006094A1 (de) * 1990-02-27 1991-08-29 Kabelmetal Electro Gmbh Hochtemperatursupraleiter aus einem gewellten metallrohr
RU2031463C1 (ru) 1990-11-27 1995-03-20 Институт машиноведения Уральского отделения РАН Способ изготовления сверхпроводящей жилы
RU2022061C1 (ru) 1991-05-23 1994-10-30 Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности Способ изготовления сверхпроводящего проводника
JPH07169343A (ja) 1993-10-21 1995-07-04 Sumitomo Electric Ind Ltd 超電導ケーブル導体
RU2081937C1 (ru) 1994-10-10 1997-06-20 Институт монокристаллов АН Украины Способ получения высокотемпературного сверхпроводящего покрытия
JPH09161573A (ja) * 1995-12-11 1997-06-20 Toshiba Corp 超電導線材の作製方法および超電導線材および超電導マグネット
TW420729B (en) 1996-02-12 2001-02-01 Gould Electronics Inc A non-cyanide brass plating bath and a method of making metallic foil having a brass layer using the non-cyanide brass plating bath
DK0917156T3 (da) * 1997-11-14 2009-08-17 Sumitomo Electric Industries Oxidsuperledende snoet tråd og fremgangsmåde til fremstilling af denne
CN1184359C (zh) 1998-09-14 2005-01-12 三井金属鉱业株式会社 多孔铜箔及其用途和制造方法
JP2000149676A (ja) * 1998-11-09 2000-05-30 Sumitomo Electric Ind Ltd 酸化物超電導撚線およびそれを用いたケーブル導体
US6765151B2 (en) * 1999-07-23 2004-07-20 American Superconductor Corporation Enhanced high temperature coated superconductors
DE19939144C2 (de) * 1999-08-19 2003-04-10 Adelwitz Technologie Zentrum G Verfahren zur metallischen Beschichtung von Hochtemperatur-Supraleiter
DE10040935C2 (de) * 2000-08-19 2003-05-15 Adelwitz Technologie Zentrum G Verfahren zur galvanischen Beschichtung von Hochtemperatur-Supraleitern mit Cu-Verbindungen
EP2045362A1 (en) * 2001-01-19 2009-04-08 The Furukawa Electric Co., Ltd. Plated material, method of producing same, and electrical/electronic part using same
JP4034095B2 (ja) * 2002-03-18 2008-01-16 日鉱金属株式会社 電気銅めっき方法及び電気銅めっき用含リン銅アノード
US20040266628A1 (en) * 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
JP7107181B2 (ja) 2018-11-13 2022-07-27 トヨタ自動車株式会社 内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737444A (ja) 1993-05-17 1995-02-07 Sumitomo Electric Ind Ltd 酸化物超電導導体およびその製造方法
JPH07335051A (ja) 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 安定化層を備えた酸化物超電導テープ及びその製造方法
JP2000200518A (ja) * 1998-10-26 2000-07-18 Sumitomo Electric Ind Ltd 酸化物超電導線およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1933334A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100136464A (ko) * 2008-02-19 2010-12-28 수퍼파워, 인크. 고온 초전도체 물품의 형성 방법
US8809237B2 (en) * 2008-02-19 2014-08-19 Superpower, Inc. Method of forming an HTS article
KR101627093B1 (ko) 2008-02-19 2016-06-03 수퍼파워, 인크. 고온 초전도체 물품의 형성 방법
WO2019105778A1 (en) 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
WO2020064505A1 (en) 2018-09-24 2020-04-02 Basf Se Process for producing highly oriented metal tapes

Also Published As

Publication number Publication date
KR20080045709A (ko) 2008-05-23
NO20081812L (no) 2008-04-14
JP2007080780A (ja) 2007-03-29
US20090137399A1 (en) 2009-05-28
NZ566327A (en) 2010-04-30
TW200729237A (en) 2007-08-01
CA2620888A1 (en) 2007-03-22
JP5119582B2 (ja) 2013-01-16
RU2366017C1 (ru) 2009-08-27
AU2006290035A1 (en) 2007-03-22
EP1933334A4 (en) 2012-01-04
US8048475B2 (en) 2011-11-01
KR101197935B1 (ko) 2012-11-05
EP1933334A1 (en) 2008-06-18
CN101268523A (zh) 2008-09-17
EP1933334B1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5119582B2 (ja) 超電導線材の製造方法および超電導機器
JP4934155B2 (ja) 超電導線材および超電導線材の製造方法
US9255320B2 (en) Thin film superconducting wire and superconducting cable conductor
JP5326573B2 (ja) 超電導テープおよび超電導テープの製造方法
JP4602911B2 (ja) 希土類系テープ状酸化物超電導体
JP6688564B2 (ja) 酸化物超電導線材の製造方法
US20150228380A1 (en) Manufacturing method of superconducting wire and superconducting wire made thereby
JP6743233B1 (ja) 酸化物超電導線材
US8912126B2 (en) Substrate, method of producing substrate, superconducting wire, and method of producing superconducting wire
JP2010218730A (ja) 超電導線材および超電導線材の製造方法
US9570215B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
MX2008002381A (es) Metodo de fabricacion de alambre superconductor, y aparato superconductor.
JP6232450B2 (ja) 酸化物超電導線材
JP6743232B1 (ja) 酸化物超電導線材
JP2012084478A (ja) 酸化物超電導線材およびその製造方法
WO2019172432A1 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
JP2020107445A (ja) 酸化物超電導線材及びその製造方法
JPH10144162A (ja) Nb3Al系化合物超電導線材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034101.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12063941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/002381

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1631/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 566327

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2620888

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006290035

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087006276

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006797051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006290035

Country of ref document: AU

Date of ref document: 20060830

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008114831

Country of ref document: RU