WO2007032174A1 - 鋳造法 - Google Patents

鋳造法 Download PDF

Info

Publication number
WO2007032174A1
WO2007032174A1 PCT/JP2006/316041 JP2006316041W WO2007032174A1 WO 2007032174 A1 WO2007032174 A1 WO 2007032174A1 JP 2006316041 W JP2006316041 W JP 2006316041W WO 2007032174 A1 WO2007032174 A1 WO 2007032174A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
desired cavity
filled
cavity portion
compressed gas
Prior art date
Application number
PCT/JP2006/316041
Other languages
English (en)
French (fr)
Inventor
Masahito Goka
Original Assignee
Masahito Goka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masahito Goka filed Critical Masahito Goka
Priority to EP06796431A priority Critical patent/EP1944105A1/en
Priority to US11/991,552 priority patent/US20090151887A1/en
Priority to CN2006800339692A priority patent/CN101262968B/zh
Publication of WO2007032174A1 publication Critical patent/WO2007032174A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum

Definitions

  • the present invention relates to a high-precision and high-productivity method of a forging method in which gravity pouring is performed from the top or side of a breathable saddle.
  • Patent Document 2 Japanese Patent Laid-Open No. 7-265998 discloses a mold for reduced pressure fabrication in which the thickness of the mold of the product and the design cavity is changed in a room temperature curing mold for vacuum fabrication. It is disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-170226 discloses a decompression forging method in which a sensor is disposed in a saddle mold that performs overall decompression, and a decompression operation is started after detecting the inflow of molten metal. Is disclosed.
  • Patent Document 9 Japanese Patent Laid-Open No. 57-31463 discloses a thin-walled bowl that sucks and pours the inside of a cavity through a vent hole that is provided farthest from the vertical gate position. A manufacturing method is disclosed.
  • Patent Document 11 Japanese Patent Application Laid-Open No. 6-226423
  • a suction member having the same configuration as that of Patent Document 10 and having a larger air permeability than a saddle type between a vacuum suction port and a feeder or a skein.
  • a method for producing a thin-walled porcelain is disclosed in which the pressure reduction in the vacuum suction port side cavity is greater than that of the gate side cavity.
  • Patent Document 13 Japanese Patent Application Laid-Open No. 4-147760 describes a portion requiring reduced pressure in a saddle-shaped space and a saddle-shaped A suction forging mold having a suction guide that forms a suction passage with the outside is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 7-265998
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-170226
  • Patent Document 4 JP-A-3-216258
  • Patent Document 5 Japanese Patent Laid-Open No. 60-124438
  • Patent Document 9 Japanese Unexamined Patent Publication No. 57-31463
  • Patent Document 10 JP-A-6-55255
  • Patent Document 11 Japanese Patent Laid-Open No. 6-226423
  • the present invention intends to provide a forging method in which only a desired cavity portion of a saddle type cavity is filled and solidified. This makes it possible to establish a fabrication method with extremely high injection yield and greatly simplify the post-process after dismantling.
  • the forging method in which molten metal of specific weight is poured into a breathable mold, pouring of molten metal with a volume approximately equal to the volume of the desired cavity portion is started. After that, the forging method is characterized in that a compressed gas is supplied from the gate and the molten metal is filled into a desired cavity and solidified.
  • the bowl-shaped cavity is composed of a gate part, a runner part, and a product part for the sake of simplicity. It is assumed that a part of the desired cavity to be filled with the molten metal is a product part.
  • the molten metal filled with molten metal in the breathable bowl-shaped cavity is poured into the molten metal having a volume equal to the volume of the product part which is the desired cavity part.
  • the molten metal enters from the gate and partially fills the runner and product. If left as it is, the molten metal is dispersed in each part of the cavity, and each of the cavity parts constitutes the same height, and the product part that is the desired cavity part, which is the object of the present invention, cannot be filled with the molten metal. .
  • the gate part force compressed gas is supplied, and the molten metal is pushed toward the product part at that pressure, and the product part which is a desired cavity part is filled.
  • the volume of the molten metal is approximately equal to the volume of the product portion that is the desired cavity portion, and the volume is V, the molten metal is filled only in the product portion that is the desired cavity portion.
  • the molten metal may be weighed in a small ladle for each 1-inch type, or from a large ladle, 1-inch type. Weigh the minute You may pour hot water.
  • An approximately equal volume of molten metal means that the volume is multiplied by an appropriate safety factor in consideration of the uplift of the upper mold caused by pouring and the thermal expansion of the saddle type cavity.
  • compressed gas generally compressed air is simple and inexpensive.
  • compressed inert nitrogen gas is also effective in preventing molten metal from oxidizing.
  • the appropriate time after the start of pouring, in which the compressed gas is fed from the gate is preferably as early as possible after the start of pouring and after the last molten metal passes through the gate. If the air supply is delayed, solidification of the filled molten metal starts, so the hot water boundary is prone to problems such as non-rotation and generation of oxides.
  • Filling and solidifying a molten metal does not necessarily mean that the entire molten metal is solidified.
  • the molten metal has a desired force partial force that flows out because of the force near the boundary between the desired cavity part filled with the molten metal and the other cavity part, so that at least the boundary part should be solidified.
  • the compressed gas is fed from the sprue portion to fill the molten metal with a desired cavity, and the molten gas is solidified by maintaining the compressed gas feed.
  • the present means supplies the compressed gas even after filling the desired cavity portion. Hold the to solidify the molten metal. Compressed by holding compressed gas feed The molten metal filled in the desired cavity portion with the pressurized pressure of the gas can be prevented from returning the force near the boundary portion, and the vicinity of the boundary portion can be quickly solidified by the cooling action of the compressed gas. Details are given in Example 2.
  • the pressurized pressure of the compressed gas is determined by the melt inlet force to the desired cavity part in the previous period and the height H up to the top of the desired cavity part. It is a forging method characterized by being equal to or greater than the pressure ⁇ ⁇
  • the bowl-shaped cavity is composed of a sprue part, a runner part, a feeder part and a product part
  • the product part and the feeder part are filled, and the molten metal is used as a desired cavity part.
  • a forging method for filling the material will be described.
  • the pressurized pressure of the compressed gas is applied to the molten metal inlet to the desired cavity part.
  • the height of the cavity part up to the top ⁇ should be equal to or higher than the melt static pressure ⁇ ⁇ ⁇ ⁇ determined by the height ⁇ .
  • is the specific weight of molten metal (kgfZcm 3 )
  • H is the height (cm). Therefore, ⁇ ⁇ is pressure (kg fZcm 2 ).
  • the molten metal static pressure yH means a hydrodynamic molten metal static pressure at which the molten metal filled in a desired cavity portion tends to flow out to the runner side. Therefore, if the pressurized pressure of the compressed gas is kept higher than this, the outflow of the molten metal can be stopped.
  • the pressurized pressure of the compressed gas does not mean the pressure of the compressed gas.
  • the cavity portion other than the desired cavity portion make sure that the melted (unfilled cavity part) pressure is ⁇ or more. Details are given in Example 3.
  • Means 1 to 3 In the forging method described in any one of the above, the compressed gas is fed from the gate and the molten metal is filled in the desired cavity portion, and the desired cavity portion and other cavity portions are filled.
  • This is a forging method characterized by using a blocking means that does not return the molten metal filled from the vicinity of the boundary. [0046] In this means, some blocking means is used in order to prevent the molten metal filling the desired cavity portion from flowing out from the vicinity of the molten metal boundary to the gate portion side. Details are given in Examples 4-8.
  • the forging method is characterized in that means for cooling the vicinity of the boundary portion is used as a blocking means for preventing the molten metal from returning.
  • the vicinity of the boundary portion is cooled and solidification is accelerated.
  • the desired cavity portion is solidified quickly by flowing the gas.
  • compressed air is the simplest and cheapest, but any gas can be applied as long as it is a non-hazardous gas. Low temperature gas is also effective in speeding up the cooling. Details are given in Examples 4 and 5.
  • the forging method is characterized in that means for mechanically blocking the vicinity of the boundary portion is used as the blocking means for preventing the molten metal from returning.
  • the present means provides a forging method in which a desired cavity portion filled with molten metal and the vicinity of the boundary portion of the other cavity portion are mechanically blocked.
  • a method of blocking for example, a method of blocking by pressing a vertical piece such as a shell mold so as to match the shape of the portion near the boundary, or a blocking piece installed near the boundary is blocked. For example, it can be blocked by inserting a blocking plate into the bowl near the boundary. Details are shown in Examples 6-8.
  • the desired cavity portion to be filled with molten metal before pouring or after the start of pouring is decompressed.
  • the pressure is reduced before pouring, the molten metal is quickly sucked and guided to the desired cavity, simplifying the control of the timing and pressure of compressed gas supply after pouring starts. You can do it.
  • the effect of pressure reduction after the start of pouring is the same as the pressure reduction before pouring.
  • the difference between the decompression before pouring and the decompression after the start of pouring is that the decompression before pouring allows the saddle type cavity to have a stable degree of decompression before pouring, but with the start of pouring, The degree of decompression of the saddle type cavity changes. After the start of pouring, since pouring starts at atmospheric pressure, the hot water flow is stable at the initial stage of pouring, but if the start of depressurization is delayed, a sufficient degree of decompression can be achieved during the filling process of the molten metal. It may not be obtained. Therefore, depending on the material of the molten metal, the shape of the saddle type cavity, etc.
  • Depressurization may be performed for the entire saddle shape! It is only necessary to depressurize at least the desired cavity portion. The reduced pressure is maintained as necessary even after the molten metal is filled in the desired cavity. Details are given in Examples 9 and 10.
  • the molten metal is charged before the pouring or after the pouring is started, and the degree of pressure reduction of the desired cavity portion is determined as the inlet force of the melt to the desired cavity portion.
  • This is a forging method characterized in that the molten metal static pressure y H determined by the height H up to the top of the cavity portion is a reduced pressure state having a value greater than the absolute value.
  • the molten metal is filled before or after the start of pouring, and the degree of pressure reduction of the desired cavity portion is set to a reduced pressure state having a value equal to or greater than the absolute value of the molten metal static pressure ⁇ .
  • the molten metal is filled up to the uppermost part of the desired cavity by decompression even when no compressed gas is supplied during pouring, and no force flows out near the boundary after filling. Therefore, the main effect of compressed gas sent after the start of pouring is to prevent auxiliary outflow due to pressure and to cool by gas flow, which increases the stability of the entire forging method.
  • the pressure reduction is maintained as needed even after the molten metal is filled into the desired cavity. Details are given in Example 9.
  • the degree of pressure reduction of the desired cavity portion filled with is lower than the absolute value of the molten metal static pressure y H determined by the height H of the melt to the top of the desired cavity portion.
  • the forging method is characterized in that the value is reduced in pressure.
  • the degree of pressure reduction of the desired cavity portion to be filled with the melt before pouring or after the start of pouring is set to a depressurized state having a value lower than the absolute value of the molten metal static pressure yH.
  • the degree of decompression of the desired cavity is made higher than the absolute value of ⁇ ⁇ , detrimental effects such as sand seizure or turbulent flow of the molten metal may occur. Because there is. In such cases, the degree of decompression is lower (weaker) than the absolute value of ⁇ ⁇ ⁇ as in this measure, and it is filled gently by pressurization with compressed gas so that seizure does not occur.
  • the method to make is good. The reduced pressure is maintained as necessary even after the molten metal is filled into the desired cavity. Details are given in Example 10.
  • the present invention is a force that can be implemented by any one of the means 1 to 9.
  • the best mode is to use the means 7 to obtain a desired cavity to be filled with molten metal before pouring or after pouring is started. Depressurize a part and pour a molten metal with a volume approximately equal to the volume of the desired cavity, and then quickly
  • the degree of decompression and the pressure of the compressed gas are determined in consideration of the material of the melt, the shape of the saddle type cavity, and the fabrication method.
  • Example 1 is shown in Figs.
  • means 1 is used to fill the molten metal in the breathable vertical cavity, and after the start of pouring of the molten metal having a volume approximately equal to the volume of the desired cavity portion, compression is performed from the gate part.
  • a forging method will be described in which gas is supplied and the molten metal is filled into a desired cavity and solidified.
  • the vertical mold 1 is a sand mold, which is formed on the upper frame 2 and the lower frame 3 and placed on the surface plate 4 after being combined.
  • the vertical cavity 7 is composed of a sprue 8, a runner 9, and a product 11.
  • the feeder section is a vertical type.
  • FIG. 1 shows a state in which a molten metal having a volume almost equal to that of the product part 11 which is the desired cavity part 12 is poured into the mold 1 after the molten metal is filled in the pouring ladle 13. Since the poured molten metal 30 has almost the same volume as the product part 11, it cannot fill all the cavities, a part is filled in the product part 11, and a part stays in the runway part 9.
  • the upper force of the spout 8 also feeds the compressed gas 16 compressed by the compressor 15 and is melted in the runner 9 due to the pressure.
  • 30 Product part 11 was filled.
  • compressed air was used as the compressed gas
  • the pressure was 5 kgfZcm 2
  • the air volume was 60 lZsec.
  • a seal member 17 is provided at a location where the compressed gas 16 is supplied to prevent gas leakage. Since the amount of pouring is almost equal to the volume of the product part, the molten metal 30 finally fills only the product part 11 which is the desired cavity part 12. Thereafter, the molten metal 30 filled in this state is solidified.
  • solidification means solidification of the entire product part, which is a desired cavity part in a broad sense, but in the narrow sense, the vicinity of the boundary part between the desired cavity part and the other cavity part solidifies. This means that the molten metal filled does not flow out toward the runner side. More specifically, solidification in a narrow sense means until the solid phase crystallizes to some extent in the molten metal near the boundary and the molten metal stops flowing.
  • the purpose of the present invention is to fill only the desired cavity portion with the molten metal and solidify it, but the various means used for filling and solidification need only continue to solidification in this narrow sense. is there. The same applies to the following embodiments.
  • the vertical type When the compressed gas is supplied, the vertical type has air permeability, so that part of the gas passes through the vertical type particles, so that the action of filling the molten metal is reduced. Considering this, the compressed gas pressure and The air volume is adjusted appropriately so that a sufficient filling operation can be performed. It is also effective to reduce the breathability by covering the saddle with a non-breathable member as necessary.
  • Compressed air is generally the simplest and cheapest compressed gas.
  • compressed inert gas such as nitrogen is effective.
  • the pressure and air volume of the compressed gas should be determined in consideration of the air permeability of the saddle, the shape of the saddle frame, the overall sealing degree, and the manufacturing method.
  • the molten metal is filled only in the product portion, and is not filled in the gate portion and the runner portion. Therefore, only the product part needs to be taken out when the frame is released after solidification, greatly reducing the number of work steps.
  • Example 2 is shown in Figs.
  • a forging method is described in which the compressed gas is supplied after the start of pouring and the molten metal is filled into a desired cavity portion by means of means 2, and the molten gas is solidified by maintaining the compressed gas supply. To do.
  • FIG. 3 shows a state after the molten metal 30 is poured using the product part 11 as the desired cavity part 12.
  • the structure of the vertical mold 1 and the cavity 7 is the same as that of the first embodiment.
  • An iron cover member 18 is placed on the upper part of the upper frame 2 for airtightness. This cover member 18 is provided in order to efficiently apply the pressure of the compressed gas.
  • the cover member 18 is preferably made of a non-breathable material! / ⁇ , but the breathability is lower than that of the saddle type.
  • the compressed gas 16 is kept fed to allow appropriate pressurization. As a result, the filled molten metal 30 can be solidified without flowing out of the product part 11.
  • the pressure and air volume of the compressed gas 16 are set to appropriate values depending on the type of mold and the manufacturing method.
  • FIG. 5 and FIG. 6 show Example 3.
  • the means 3 is used to clearly define the pressurized pressure of the compressed gas when a part of the desired cavity portion to be filled is in the upper mold and has a certain height.
  • a forging method in which a desired cavity portion is filled and solidified will be described.
  • the configuration of the bowl 1 is almost the same as that of the embodiment 2.
  • the saddle type cavity 7 is composed of a gate 8, a runner 9, a feeder 10, and a product 11. Yes.
  • Product part 11 is arranged in upper die 5 and lower die 6, and the height of the upper die part is H.
  • the product part 11 and the feeder part 10 are filled with the molten metal as a desired cavity part 12 and solidified.
  • the height H corresponds to the height of the position where the molten metal flows into the desired cavity portion 12.
  • FIG. 5 shows a state after pouring a molten metal 30 having the same volume as the desired cavity portion 12.
  • the amount of pouring is only the amount that fills only the desired cavity portion 12, so that the molten metal 30 of the pouring portion 8 is almost completely filled with all the cavities and becomes a horizontal level. Therefore, as shown in FIG. 6, the compressed gas 16 is also supplied to the upper force of the gate 8 and the molten metal 30 is filled in the desired cavity portion 12 in the same manner as in the first and second embodiments. Thereafter, the molten gas 30 is solidified while holding the compressed gas 16 supplied. In this embodiment, the pressure applied by the compressed gas 16 is set to ⁇ or more.
  • is the specific weight of the molten metal (kgfZcm 3 )
  • ⁇ ⁇ The meaning of ⁇ ⁇ is that the molten metal 30 filled in the desired cavity portion 12 flows out from the vicinity 19 of the boundary between the desired cavity portion 12 and the other cavity portion 20 toward the runner 9 side. It is the molten metal static pressure. Therefore, the molten metal 30 is filled up to the uppermost portion of the desired cavity portion 12 by applying a pressurized pressure by the compressed gas 16 of ⁇ or more from the runner portion 9 side to the vicinity 19 of the boundary portion. And if this pressurizing pressure is maintained, the outflow of the molten metal 30 filled can be stopped.
  • the pressurized pressure equal to or higher than ⁇ does not mean the pressure of the compressed gas. Considering the leakage of compressed gas 16 from the vertical mold 1, the pressure in the vicinity of the boundary 19 is maintained at ⁇ or higher. Means that.
  • the specific weight ⁇ of the melt and the desired cavity portion 12 is also determined by the height ⁇ up to the top of the desired cavity portion 12 ⁇ ⁇
  • the pressure of the compressed gas 16 with a pressurized pressure of ⁇ or more is applied to the desired cavity portion 12 If 30 is filled and solidified while maintaining this pressurized pressure, it is possible to obtain a product in which only the product portion 11 and the feeder portion 10 which are desired cavity portions 12 are filled with the molten metal.
  • FIG. 7 shows Example 4.
  • means 4 and 5 are used, and the pouring gate portion is started after pouring is started.
  • Force A description will be given of a forging method in which a compressed gas is supplied to fill a desired cavity with molten metal, and the vicinity of the boundary between the desired cavity and the other cavity is cooled and solidified.
  • FIG. 7 shows a state in which the compressed gas 16 is also fed by the upper force of the spout 8 after pouring the molten metal 30 having a volume substantially equal to the desired cavity portion 12.
  • the molten metal 30 was filled into the product part 11 and the hot-water part 10 which are the desired cavity parts 12 by supplying compressed gas 16.
  • the configuration of the mold 1 is almost the same as that of the third embodiment.
  • the vent hole 21 is provided in the upper portion 19 near the boundary portion 19 between the desired cavity portion 12 and the other cavity portion 20.
  • the compressed gas 16 is supplied and the molten metal 30 is filled into the desired cavity portion 12 and then the compressed gas 16 is continuously supplied. Then, the compressed gas 16 passes through the vent hole 21 with the best ventilation. Flowing, taking the heat near the boundary 19 and cooling that part. As a result, the vicinity 19 of the boundary is quickly cooled and solidified. As a result, the time for supplying the compressed gas 16 can be shortened. That is, the compressed gas 16 is used for filling the molten metal 30 and for cooling.
  • FIG. 8 shows Example 5.
  • This Example also uses means 4 and 5 in the same manner as Example 4, and after starting pouring, the compressed gas is fed from the gate and the desired molten metal is obtained.
  • a fabrication method will be described in which the cavity portion is filled and the vicinity of the boundary between the desired cavity portion and the other cavity portion is cooled with compressed gas.
  • FIG. 8 shows a state in which the compressed gas 16 is also fed by the upper force of the spout 8 after pouring the molten metal 30 having a volume substantially equal to the desired cavity portion 12. Compressed gas 16 air supply Then, the molten metal 30 was filled into the product part 11 and the hot water part 10 which are the desired cavity parts 12.
  • the configuration of the mold 1 is almost the same as that of the fourth embodiment, and a ventilation hole 21 is provided in the upper part 19 near the boundary 19 between the desired cavity portion 12 and the other cavity portion 20.
  • the air supply pipe 22 is placed separately from the gate 8 so that the compressed gas 16 can be supplied to the upper force of the vent hole 21.
  • the air pipe 22 is provided with a valve 23.
  • Example 6 is shown in Figs.
  • means 4 and 6 are used to feed a compressed gas from the gate and fill the molten metal with the desired cavity, and mechanically move around the boundary between the desired cavity and the other cavity.
  • FIG. 9 shows a state after pouring a molten metal 30 having a volume approximately equal to the desired cavity portion 12.
  • a shell mold bowl 24 is introduced from the gate 8.
  • the compressed gas 16 is fed from the gate 8 to fill the molten metal 30 into the desired cavity 12 and the vertical piece 24 is pressed against the vicinity 19 of the boundary.
  • the vertical piece 24 is a sand mold, such as a shell mold, which is simple and inexpensive.
  • the specific effect is the same if the specific gravity is smaller than that of the molten metal and the material is refractory.
  • the filled molten metal can be shut off and rapidly solidified, and the production efficiency when the present invention is applied to an actual line can be increased.
  • Example 7 is shown in Figs. Also in this embodiment, using means 4 and 6, compressed gas is fed from the gate and the molten metal is filled into a desired cavity part, and the vicinity of the boundary part between the desired cavity part and the other cavity part is mechanically used. Explain the forging method to block.
  • FIG. 11 shows a state immediately before pouring a molten metal 14 having almost the same volume as the desired cavity portion 12.
  • a recess 25 is provided in the lower mold 19 near the boundary portion of the saddle type cavity 7, and a shell mold blocking piece 26 is installed here! /.
  • FIG. 12 shows a state where the molten metal 30 is filled in the desired cavity portion 12 by supplying the compressed gas 16 after the start of pouring.
  • the blocking pieces 26 installed in the recesses 25 are lifted by buoyancy, and are in close contact with the upper part of the molten metal, thereby blocking the molten metal 30.
  • the blocking piece 26 has an action of stopping the outflow of the molten metal 30 and an action of accelerating the cooling of the vicinity 19 by contacting the molten metal 30.
  • the air supply time of the compressed gas 16 could be shortened, and the production efficiency when the present invention was applied to an actual line could be increased.
  • FIG. 13 shows a state in which the molten metal 30 having almost the same volume as the desired cavity portion 12 is poured, and then the compressed gas 16 is fed to fill the molten metal 30 into the desired cavity portion 12.
  • a vent hole 21 was provided in the upper part of the vicinity 19 of the boundary portion, and after the molten metal was filled, the blocking plate 27 was inserted from the vent hole 21 into the vertical shape in the vicinity of the boundary portion 19 to block the molten metal 30.
  • the vent hole 21 is shaped to match the blocking plate 27.
  • FIG. 14 shows a state immediately before pouring a molten metal 14 having the same volume as that of the desired cavity portion 12.
  • one vent hole 21 is provided in the upper part of the cavity of the product part 11 and the hot-water supply part 10 which are desired cavity parts 12.
  • a decompression hood 29 communicated with the decompression device 28 was placed on the upper frame 2.
  • the vent hole 21 is designed so that the pressure reducing action strongly acts on the desired cavity portion 12 and can stably maintain a predetermined pressure reduction degree.
  • this vent hole is not an indispensable element of the present invention, so long as the desired cavity portion has a predetermined degree of decompression.
  • the decompression by the decompression device is continuously maintained until solidification even after the molten metal is filled in a desired cavity portion, if necessary. That is, the pressure is reduced before pouring or after the pouring is started, and the molten metal is smoothly filled in the desired cavity, and then the molten metal is melted by the compressed gas. By maintaining the force and pressure reduction that stops the outflow from the vicinity of the boundary, the saddle type heat is sucked out and solidified more rapidly.
  • the degree of decompression was made lower than the absolute value of ⁇ H because, depending on the melt material, the shape of the cavity, the forging method, etc. This is because harmful effects such as material generation may occur.
  • the molten metal is gently introduced into the desired cavity portion at a low degree of decompression, and the molten metal is filled into the desired cavity portion together with the compressed gas feeding action. It should be solidified.
  • the desired cavity portion to be filled with the molten metal may be appropriately set according to the situation.
  • a part of the product part, the hot water part, and the runway part can be set as a desired cavity part.
  • a part of the product part and the runner part can be set as a desired cavity part. This is equally effective in all cases of Examples 1 to 10.
  • FIG. 1 is a view showing a state after pouring of Example 1 of the present invention.
  • FIG. 4 is a diagram showing compressed gas supply according to Embodiment 2 of the present invention.
  • FIG. 5 is a view showing a state after pouring of Example 3 of the present invention.
  • FIG. 8 is a diagram showing Example 5 of the present invention.
  • FIG. 9 is a view showing a state after pouring of Example 6 of the present invention.
  • Fig. 10 is a diagram showing compressed gas supply according to Embodiment 6 of the present invention.
  • FIG. 11 is a view showing a state before pouring of Example 7 of the present invention.
  • FIG. 12 is a view showing a state after pouring of Example 7 of the present invention.
  • FIG. 13 is a diagram showing Example 8 of the present invention.
  • FIG. 14 is a diagram showing a state before pouring of Example 9 of the present invention.
  • FIG. 15 is a view showing a state after pouring of Example 9 of the present invention.
  • FIG. 16 is a diagram showing compressed gas supply after pouring in Example 9 of the present invention.
  • FIG. 17 is a view showing a state before pouring of Example 10 of the present invention.
  • FIG. 18 is a view showing a state after pouring of Example 10 of the present invention.
  • FIG. 19 is another diagram showing a state after pouring of Example 10 of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)

Abstract

[課題]通気性鋳型の重力注湯による鋳造法において、鋳型キャビティーのうち所望のキャビティー部分のみに溶湯を充填して凝固させる鋳造法を提供する。 [解決手段]溶湯を充填したい所望のキャビティー部分の体積とほぼ等しい体積の溶湯を注湯後、湯口部から圧縮ガスを送気して溶湯を所望のキャビティー部分に充填して凝固させる。必要に応じて注湯前後にキャビティーを減圧する。

Description

明 細 書
铸造法
技術分野
[0001] 本発明は通気性铸型の铸型上部又は側部から重力注湯する铸造法の高精度化、 高生産性ィ匕に関するものである。
背景技術
[0002] 通気性铸型としては砂粒子を用いて造型された铸型が最も一般的である力 その 他に、セラミックス粒子や金属粒子を用いて造型された铸型も広く使われている。また 、石膏などのほとんど通気性のない铸型でも、通気性材料を混在させたり、部分的に 用いて通気性を付与したものは通気性铸型とみなせる。また、全く通気性のない金 型の場合でも、通気穴やベントホールを設けて通気性を付与したものは通気性铸型 とみなせる。本発明における通気性铸型とは前記したこれらの通気性铸型を含むも のである。
[0003] 一般に铸造にお ヽては、铸型キヤビティーは湯口部、湯道部、押湯部及び製品部 力も構成されている。また、必要に応じて、不要な溶湯を製品部力も排出するための は力せ部などを設けることもある力 ここでは説明を簡単にするために、基本的な湯 口部、湯道部、押湯部及び製品部カゝら構成されているとする。
[0004] 一般铸造法及び特殊な铸造法である減圧铸造法など ヽずれの铸造法にお!ヽても 、注湯はこれらの 4つのキヤビティー部分を充填して完了する。そして凝固完了後、こ れら 4つの部分のうち必要な製品部のみを分離して取り出し、仕上げを行って最終の 铸物製品を得る。
[0005] つまり、製品部を除く湯口部、湯道部及び押湯部は最終的には不要な部分として 製品から分離され、再びリターン材として再溶解に供されるのである。この不要な部 分のうち押湯部は製品部の健全性を補償するために凝固過程で必要なものであるが 、湯道部と湯口部は注湯中にキヤビティーの充填のためにのみ必要なものである。
[0006] また、铸鉄铸物などでは凝固過程で黒鉛が晶出して体積膨張が生じるため、溶湯 の収縮分の一部を補償するので、ある条件下では押湯なしでも健全性の高 、铸物を 铸造できることがわ力つている。この場合には押湯部も不要で、製品部のみに溶湯を 充填すればよいことになる。
[0007] 以上のように従来のいずれの铸造法においても、本来目的とする製品を得るため に、最終的には不必要な湯口部、湯道部及び押湯部にも溶湯を充填するという注湯 過程をとつている。これは極めて不合理なことである。これに対して何らかの方法によ つて、製品部のみ又は製品部と押湯部などの必要な所望のキヤビティー部分のみに 溶湯を充填して凝固させることができれば、製品部重量 Z総注入重量で表示される 注入歩留りが大幅に向上することはもとより、解枠、製品分離などの後工程も大幅に 簡略ィ匕することが可能となる。
[0008] そこで先行技術について調査を行ったが、通気性铸型の铸型上部又は側部から重 力注湯する铸造法において、铸型キヤビティーのうち所望のキヤビティー部分のみに 溶湯を充填する铸造方法を開示したものはまったく見出すことができな力 た。
[0009] このように所望のキヤビティー部分のみに溶湯を充填できる铸造法としては減圧铸 造法が最も可能性が高いと考えられる。そこで先行技術の参考例として、以下に特 許文献 1乃至 15を掲げておく。しかし、いずれも湯口部、湯道部、押湯部及び製品 部のすべてのキヤビティー部分に溶湯を充填するものである。
[0010] 特許文献 1 (特開昭 61— 180642号公報)には、チャンバ一内に通気性の铸型を 設置し、湯口穴を溶融しうる材料で塞いだ後、チャンバ一を所定の圧力に減圧して 注湯する減圧铸造方法が開示されて!ヽる。
[0011] 特許文献 2 (特開平 7— 265998号公報)には、減圧铸造する常温硬化型铸型にお いて、製品及び方案キヤビティーの铸型の厚さを変化させた減圧铸造用铸型が開示 されている。
[0012] 特許文献 3 (特開 2003— 170226号公報)には全体減圧を行う铸型において铸型 内にセンサーを配置し、溶湯が流入したことを検知した後に減圧動作を開始させる 減圧铸造方法が開示されている。
[0013] 特許文献 4 (特開平 3— 216258号公報)には铸型の周囲の全面を榭脂フィルム製 の砂型カバーで気密に覆うとともに、湯口力も十分離間した部位に排気口を設けて、 そこから減圧する減圧装置が開示されている。 [0014] 特許文献 5 (特開昭 60— 124438号公報)には、無枠造型された石膏铸型を通気 孔を有する吸引箱上に載置するとともに、石膏铸型をフィルムシートで覆って、吸引 箱から減圧したのちに注湯を行う減圧铸造方法が開示されている。
[0015] 特許文献 6 (特公平 7—115119号公報)には、消失模型铸造法のおいて、上下開 放铸枠の側壁に吸引機構を設け、铸枠上下に気密シートを密着具備して吸引減圧 する減圧铸造法が開示されて!ヽる。
[0016] 特許文献 7 (特開平 6— 122060号公報)には、有機粘結剤铸型を通気穴を有する 铸枠に造型し、これを上部が開放された鋼鈑製のチャンバ一内にセットして減圧状 態で注湯する減圧铸造方法が開示されて!ヽる。
[0017] 特許文献 8 (特開平 8— 103861号公報)には、上部開放型の減圧容器内の铸物 砂中に砂型を埋設し、吸弓 I減圧状態下で注湯する減圧铸造方法が開示されて!ヽる
[0018] 特許文献 9 (特開昭 57— 31463号公報)には、铸型の湯口位置から最も遠く離れ た位置に設けられた通気穴を介してキヤビティー内を吸引注湯する薄肉铸物の製造 方法が開示されている。
[0019] 特許文献 10 (特開平 6— 55255号公報)には、铸型の堰部カも離隔した位置に押 湯又ははかせを設け、その近くに外部と連通する空孔部を設け、その空孔部から減 圧しながら铸造する鉄鋼铸物の製造方法が開示されている。
[0020] また、同じく特許文献 10には減圧速度制御手段を設け、溶湯の注入速度が一定に なるように減圧する方法や、堰部内に湯面検知センサーを設け、溶湯を検知した直 後から減圧を開始する方法なども開示されている。
[0021] 特許文献 11 (特開平 6— 226423号公報)には、前記特許文献 10と同じ構成で、 減圧吸引口と押湯又ははかせの間に铸型よりも通気度の大きな吸引部材を設けて 減圧吸引口側キヤビティー内の減圧を湯口側キヤビティーのそれよりも大きくする薄 肉铸物の製造方法が開示されている。
[0022] 特許文献 12 (特開平 9— 85421号公報)には、铸型にセットされた中子巾木に外 部と連通する空孔部を設け、減圧する減圧铸造方法が開示されている。
[0023] 特許文献 13 (特開平 4— 147760号公報)には、铸型空間の減圧必要部位と铸型 外部との間で吸引通路を形成する吸引ガイドを設けた吸引铸造用铸型が開示されて いる。
[0024] 特許文献 14 (特開昭 60— 56439号公報)には、石膏铸型の最終充填部近傍から 外表面にかけて、石膏より通気性が良好な耐火材料製フィルターを設けた減圧铸造 用石膏铸型が開示されている。
[0025] 特許文献 15 (特公平 7— 41400号公報)には、生型铸型から発生するガスと中子 力 発生するガスを個別に吸引し、かつ吸引圧力を個別に調整自在とした吸引铸造 方法が開示されている。
[0026] 以上の特許文献に開示されて!、る減圧铸造法の従来技術を総括すると、 V、ずれの 铸造法においても铸型の全キヤビティーを充填している。したがって、製品部重量 z 総注入重量で表示される注入歩留りは低ぐまた解枠、製品分離などの後工程も煩 雑である。
[0027] 以上のように、従来の铸造法では所望のキヤビティー部分のみを充填する铸造方 法はまったく開示及び実施されて 、な ヽ。
[0028] 特許文献 1:特開昭 61— 180642号公報
特許文献 2:特開平 7— 265998号公報
特許文献 3 :特開平 2003— 170226号公報
特許文献 4:特開平 3 - 216258号公報
特許文献 5 :特開昭 60— 124438号公報
特許文献 6:特公平 7 - 115119号公報
特許文献 7:特開平 6 - 122060号公報
特許文献 8:特開平 8— 103861号公報
特許文献 9:特開昭 57— 31463号公報
特許文献 10:特開平 6— 55255号公報
特許文献 11:特開平 6— 226423号公報
特許文献 12 :特開平 9— 85421号公報
特許文献 13 :特開平 4 147760号公報
特許文献 14:特開昭 60— 56439号公報 特許文献 15 :特開平 7— 41400号公報
発明の開示
発明が解決しょうとする課題
[0029] 本発明は以上の従来技術の問題点に鑑み、铸型キヤビティーのうち所望のキヤビ ティー部分のみに溶湯を充填して凝固させる铸造法を提供しょうとするものである。こ れによって極めて高い注入歩留りの铸造法が確立できるとともに、解枠後の後工程 が大幅に簡略ィ匕される。
課題を解決するための手段
[0030] (手段 1)
比重量 Ύの溶湯を通気性铸型に注湯する铸造法において、通気性铸型のキヤビ ティーのうち溶湯を充填させた 、所望のキヤビティー部分の体積とほぼ等 、体積の 溶湯を注湯開始後、湯口部から圧縮ガスを送気して溶湯を所望のキヤビティー部分 に充填して凝固させることを特徴とする铸造法である。
[0031] 本手段においては、铸型のキヤビティーは説明を簡単にするために湯口部、湯道 部及び製品部で構成されているとする。そして、溶湯を充填させたい所望のキヤビテ ィ一部分は製品部であるとする。
[0032] まず通気性铸型のキヤビティーのうち溶湯を充填させた 、所望のキヤビティー部分 である製品部の体積とほぼ等し ヽ体積の溶湯を注湯する。溶湯は湯口部から入って 湯道部及び製品部を部分的に充填する。もしこのまま放置すれば溶湯はキヤビティ 一各部に分散され各キヤビティー部分は同一高さの湯面を構成し、本発明の目的で ある所望のキヤビティー部分である製品部のみに溶湯を充填させることはできない。
[0033] そこで、本手段では注湯開始後の適宜の時期に湯口部力 圧縮ガスを送気して、 その圧力で溶湯を製品部の方に押し込み、所望のキヤビティー部分である製品部を 充填して凝固させる。溶湯の体積は所望のキヤビティー部分である製品部とほぼ等し V、体積であるので、これによつて所望のキヤビティー部分である製品部のみに溶湯が 充填される。
[0034] 所望のキヤビティー部分の体積とほぼ等しい体積の溶湯を注湯するには、小さな取 鍋で 1铸型分ずつ計量して注湯してもよいし、又は大きな取鍋から 1铸型分を計量し ながら注湯してもよい。ほぼ等しい体積の溶湯とは、注湯にともなう上型の浮き上がり や、铸型キヤビティーの熱膨張などを考慮して適宜の安全率を乗じた体積とすること を意味する。
[0035] 圧縮ガスとしては、一般的には圧縮空気が簡便安価である。また、圧縮した不活性 の窒素ガスなども溶湯の酸ィ匕を防止する意味で有効である。
[0036] 圧縮ガスを送気するときは送気管のフランジなどで湯口部を塞!、で圧縮ガスが湯 口部から漏れないようにする方が溶湯を充填する作用が大きい。また、铸型の外周 面からの漏れは圧縮ガスが溶湯を所望のキヤビティーに充填する作用を弱めるので 、可能であれば外周面に何らかのガス漏れの防止策を施すことが望ましい。勿論、铸 型の通気度が低 ヽ場合や、铸型の全体又は一部が気密容器ゃ铸枠などで覆われて V、るような場合は必ずしもガス漏れの防止手段を施す必要はな!/、。
[0037] 湯口部カゝら圧縮ガスを送気する注湯開始後の適宜の時期とは、注湯開始後、最後 の溶湯が湯口部を通過する途中以降できるだけ早い時期が望ましい。送気が遅れる と充填された溶湯の凝固が始まるので、湯境ゃ不廻りなどの欠陥や、酸化物の発生 などの問題が生じ易い。
[0038] 溶湯を充填して凝固させるとは、必ずしも充填された溶湯全体が凝固することを意 味するものではない。溶湯が所望のキヤビティー部分力 流出するのは、溶湯を充填 させた所望のキヤビティー部分とその他のキヤビティー部分の境界部付近力 である ので、少なくともこの境界部付近が凝固すればよい。また、この部分の凝固も完全凝 固する必要はなぐ所望のキヤビティー部分からの流出を止めうる程度に固相が晶出 すればよいのである。詳細を実施例 1に示す。
[0039] (手段 2)
手段 1記載の铸造法にぉ 、て、湯口部から圧縮ガスを送気して溶湯を所望のキヤ ビティー部分に充填し、その圧縮ガスの送気を保持して溶湯を凝固させることを特徴 とする铸造法である。
[0040] 本手段は、手段 1の特徴とする圧縮ガスで溶湯を所望のキヤビティー部分に充填し て凝固させる铸造法にぉ 、て、溶湯を所望のキヤビティー部分に充填後も圧縮ガス の送気を保持して溶湯を凝固させる。圧縮ガスの送気を保持することによって、圧縮 ガスの加圧圧力で所望のキヤビティー部分に充填された溶湯が境界部付近部力 戻 らないようにするとともに、圧縮ガスの冷却作用で境界部付近を速やかに凝固させる ことができる。詳細を実施例 2に示す。
[0041] (手段 3)
手段 1及び 2いずれかに記載の铸造法において、圧縮ガスの加圧圧力が、前期所 望のキヤビティー部分への溶湯の流入口力 所望のキヤビティー部分の最上部まで の高さ Hによって決まる溶湯静圧 γ Ηの値以上であることを特徴とする铸造法である
[0042] 本手段では、铸型キヤビティーが湯口部、湯道部、押湯部及び製品部から構成さ れて 、る場合に、製品部と押湯部を充填した 、所望のキヤビティー部分として溶湯を 充填する铸造法について説明する。所望のキヤビティー部分に充填された溶湯が、 境界部付近力 湯道部側に流出するのをより確実に防ぐために、圧縮ガスの加圧圧 力を所望のキヤビティー部分への溶湯の流入口力 所望のキヤビティー部分の最上 部までの高さ Ηによって決まる溶湯静圧 γ Ηの値以上であるようにする。なお、 γは 溶湯の比重量 (kgfZcm3)、 Hは前記の高さ(cm)である。したがって、 γ Ηは圧力(kg fZcm2)である。
[0043] この溶湯静圧 y Hは、所望のキヤビティー部分に充填された溶湯が湯道部側に流 出しようとする流体力学的な溶湯静圧を意味している。したがって、圧縮ガスの加圧 圧力をこれ以上に保てば溶湯の流出を止めることができるのである。
[0044] 圧縮ガスの加圧圧力は、圧縮ガスの圧力を意味するものではなぐ湯口部ゃ铸型 外表面からの圧縮ガスの漏れを考慮した上で、所望のキヤビティー部分以外のキヤ ビティー部分 (溶湯が未充填のキヤビティー部分)が γ Η以上の圧力になるようにする 。詳細を実施例 3に示す。
[0045] (手段 4)
手段 1乃至 3 、ずれかに記載の铸造法にお!、て、湯口部から圧縮ガスを送気して 溶湯を所望のキヤビティー部分に充填し、その所望のキヤビティー部分とその他のキ ャビティー部分の境界部付近から充填した溶湯が戻らな 、ような遮断手段を用いるこ とを特徴とする铸造法である。 [0046] 本手段では、所望のキヤビティー部分に充填された溶湯力 境界部付近から湯口 部側に流出するのを防ぐために何らかの遮断手段を用いる。詳細を実施例 4乃至 8 に示す。
(手段 5)
手段 4記載の铸造法において、充填した溶湯が戻らないような遮断手段として、境 界部付近部付近を冷却する手段を用いることを特徴とする铸造法である。
[0047] 本手段では、所望のキヤビティー部分に充填された溶湯力 湯口部側に流出する のをより確実に防ぐために、境界部付近を冷却して凝固を早める。手段 2及び 3では 充填された溶湯の流出を防ぐために圧縮ガスの加圧圧力を利用した力 本手段では ガスを流すことによって所望のキヤビティー部分の凝固を早める。特にガスの流れに よって所望のキヤビティー部分とその他の部分の境界部付近を早く凝固させるのが 最も効果的である。ガスとしては、圧縮空気が最も簡便安価であるが、危険性のない ガスであれば如何なるガスも適用可能である。また、低温のガスも冷却を早めるのに 有効である。詳細を実施例 4及び 5に示す。
[0048] (手段 6)
手段 4記載の铸造法において、充填した溶湯が戻らないような遮断手段として、境 界部付近部付近を機械的に遮断する手段を用いることを特徴とする铸造法である。
[0049] 本手段では、溶湯を充填させた所望のキヤビティー部分とその他のキヤビティー部 分の境界部付近を機械的に遮断する铸造法を提供する。遮断する方法としては、例 えば境界部付近にその部分の形状に合うようシェルモールドなどの铸型片を押し当 てて遮断する方法や、境界部付近に遮断片を設置しておいて遮断する方法、また境 界部付近の铸型に遮断板を貫入させて遮断するなどがあげられる。詳細を実施例 6 乃至 8に示す。
[0050] (手段 7)
手段 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、溶湯 を充填させたい所望のキヤビティー部分を減圧することを特徴とする铸造法である。
[0051] 本手段では、注湯にあたって所望のキヤビティー部分への充填を容易にするため に、注湯前又は注湯開始後に溶湯を充填させたい所望のキヤビティー部分を減圧す る。注湯前に減圧しておけば、注湯された溶湯は速やかに所望のキヤビティー部分 に吸引されて導かれることになり、注湯開始後の圧縮ガスの送気の時期や圧力の制 御を簡略ィ匕することができる。また、注湯開始後の減圧も作用効果は注湯前の減圧 と同じである。
[0052] 注湯前の減圧と注湯開始後の減圧の違いは、まず注湯前の減圧では铸型キヤビテ ィーを注湯前に安定した減圧度とすることができるが、注湯開始にともなって铸型キヤ ビティーの減圧度は変化する。注湯開始後の減圧は大気圧の状態で注湯が開始さ れるので注湯の初期に湯流れが安定しているが、減圧開始の時期が遅れると溶湯の 充填過程で十分な減圧度が得られない場合がある。したがって、溶湯の材質、铸型 キヤビティーの形状などによっていずれ力適した方を適用する。
[0053] 減圧は铸型全体を行ってもよ!ヽが、少なくとも所望のキヤビティー部分を減圧すれ ばよい。なお、減圧は溶湯を所望のキヤビティー部分に充填後も必要に応じて保持 する。詳細を実施例 9及び 10に示す。
[0054] (手段 8)
手段 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、溶湯 を充填させた 、所望のキヤビティー部分の減圧度を、該所望のキヤビティー部分へ の溶湯の流入口力 所望のキヤビティー部分の最上部までの高さ Hによって決まる 溶湯静圧 y Hの絶対値以上の値の減圧状態とすることを特徴とする铸造法である。
[0055] 本手段では、注湯前又は注湯開始後に、溶湯を充填させた!/、所望のキヤビティー 部分の減圧度を溶湯静圧 γ Ηの絶対値以上の値の減圧状態とする。これによつて、 溶湯は注湯時は圧縮ガスの送気なしでも減圧によって所望のキヤビティー部分の最 上部まで充填され、かつ充填後も境界部付近力 流出することはない。したがって、 注湯開始後に送気する圧縮ガスの作用は圧力による補助的な流出防止や、ガスの 流れによる冷却の作用が主たるものとなり、铸造法全体の安定性が高まる。なお、減 圧は溶湯を所望のキヤビティー部分に充填後も必要に応じて保持する。詳細を実施 例 9に示す。
[0056] (手段 9)
手段 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、溶湯 を充填させた 、所望のキヤビティー部分の減圧度を、所望のキヤビティー部分への 溶湯の流入口力 所望のキヤビティー部分の最上部までの高さ Hによって決まる溶 湯静圧 y Hの絶対値より低 、値の減圧状態とすることを特徴とする铸造法である。
[0057] 本手段では、注湯前又は注湯開始後の溶湯を充填させたい所望のキヤビティー部 分の減圧度を溶湯静圧 y Hの絶対値より低 、値の減圧状態とする。これは溶湯材質 ゃ铸型キヤビティーの形状などによっては所望のキヤビティー部分の減圧度を γ Ηの 絶対値以上に高くすると、減圧によって砂の焼付きや溶湯の乱流などの悪害が生じ る場合があるからである。このような場合には、本手段のように γ Ηの絶対値より低い 値の(弱い)減圧度とし、圧縮ガスによる加圧との複合作用で静かに充填し又焼付き などが生じないようにする方法がよい。なお、減圧は溶湯を所望のキヤビティー部分 に充填後も必要に応じて保持する。詳細を実施例 10に示す。
発明の効果
[0058] 本発明によって従来の铸造法に比べ次のような効果が得られた。
[0059] すなわち、従来の如何なる铸造法でも溶湯は铸型キヤビティーのすべての部分を 充填していたため、製品部重量 Ζ全注入重量で表示される注入歩留りが低力つた。 これに対し本発明によって、所望のキヤビティー部分のみに溶湯を充填し凝固させる ことができるようになつたので注入歩留りが大幅に向上した。この結果、製品を铸造す るために必要な溶湯が大幅に節減された。
[0060] また、溶湯は所望のキヤビティー部分のみに充填されているので、凝固後の解枠時 には所望のキヤビティー部分のみを取り出し処理すればよいことになり、後工程が大 幅に削減された。
[0061] 以上をまとめると、本発明によって次のような効果が得られた。(1)注入歩留りの大 幅な改善によって大きな溶湯節減が達成でき、溶解エネルギーコストの削減が可能 になった。(2)解枠時の大幅な作業工数の削減が可能になった。(1)及び (2)の効 果は最終的には世界的な問題である COの削減に大きく貢献するものである。
2
発明を実施するための最良の形態
[0062] 本発明は手段 1乃至手段 9のいずれかの方法で実施可能である力 最良の形態は 、手段 7を用いて、注湯前又は注湯開始後に、溶湯を充填させたい所望のキヤビティ 一部分を減圧して所望のキヤビティー部分の体積とほぼ等しい体積の溶湯を注湯し 、その後速やかに
湯口部から圧縮ガスを送気して溶湯を所望のキヤビティー部分に充填し、境界部付 近が凝固するまで減圧と圧縮ガスの送気とを保持する铸造法である。減圧度及び圧 縮ガスの圧力は溶湯材質、铸型キヤビティーの形状、铸造方案などを考慮して決め る。
[0063] 以下実施例により本発明を詳細に説明するが、これら実施例により本発明が限定さ れるものではない。
実施例 1
[0064] 図 1及び図 2に実施例 1を示す。本実施例では手段 1を用いて、通気性铸型のキヤ ビティーのうち溶湯を充填させた 、所望のキヤビティー部分の体積とほぼ等 、体積 の溶湯を注湯開始後、湯口部カゝら圧縮ガスを送気して溶湯を所望のキヤビティー部 分に充填して凝固させる铸造法を説明する。
[0065] まず铸型 1の構成を説明する。铸型 1は砂型であって、上枠 2及び下枠 3に造型さ れ型合わせされて定盤 4の上に置かれている。铸型キヤビティー 7は、湯口部 8、湯 道部 9、製品部 11から構成されている。一般的には湯道部 9と製品部 11の間に押湯 部が設けられることが多 、が、この場合は押湯部がな ヽ铸型の場合である。
[0066] 本実施例では铸型キヤビティー 7のうち、溶湯を充填したい所望のキヤビティー部分 12として製品部 11のみに溶湯を充填し凝固させる铸造法を説明する。図 1は、注湯 取鍋 13に溶湯を充填した 、所望のキヤビティー部分 12である製品部 11とほぼ等し い体積の溶湯を入れ、これを铸型 1に注湯した状態を示す。注湯された溶湯 30は製 品部 11とほぼ等しい体積であるので、全キヤビティーを満たすことはできず一部は製 品部 11に充填され、一部は湯道部 9に停滞する。また湯口部 8の溶湯ヘッドはほとん どないので、注湯された溶湯 30を製品部 11に充填させる駆動力は極めて小さい。そ のため、このままでは注湯された溶湯 30の製品部 11への完全な充填はできな 、か、 又は長い時間を要することになり、結果的には不良品ができることになる。
[0067] そこで、本実施例では図 2に示すように、湯口部 8の上部力も圧縮装置 15によって 圧縮された圧縮ガス 16を送気し、その圧力により湯道部 9に停滞している溶湯 30を 製品部 11に充填した。本実施例では、圧縮ガスは圧縮空気を用い、圧力は 5kgfZc m2、風量は 60 lZsecとした。圧縮ガス 16を送気する箇所にはガスの漏れを防ぐため にシール部材 17を設けている。注湯量は製品部体積とほぼ等しい量であるので、最 終的には溶湯 30は所望のキヤビティー部分 12である製品部 11のみを充填すること になる。その後、この状態で充填された溶湯 30を凝固させる。
[0068] なお、圧縮ガス 16を送気する時期は必ずしも上記のように溶湯が湯道部 9に停滞 するのを待つ必要はない。図 1の溶湯が停滞した状態は本発明の原理を説明するた めに示したものであって、本発明の好ましい実施形態ではない。つまり、停滞時間が 長引けばそれだけ溶湯温度が低下し、湯境、不廻り、酸ィ匕物などの不良が発生する 確率が高まるので、注湯開始後、最後の溶湯が湯口部を通過中又は通過後に速や かに送気する方がよい。そうすれば溶湯は湯道部 9で停滞せずにスムースに所望の キヤビティー部分 12に充填される。これが本発明の実用的な実施形態である。以下 の実施例の説明でも、注湯開始後の圧縮ガスを送気する時期については同様であ る。
[0069] 力べして铸型キヤビティーのうち所望のキヤビティー部分である製品部のみに溶湯を 充填して凝固させることができた。なお、本実施例の場合は製品部が下型にあるので 、溶湯を製品部に充填した後は、圧縮ガスを止めてもよいし、又はわずかに送気する 程度で凝固を進行させてもょ ヽ。
[0070] ここで凝固とは、広義には所望のキヤビティー部分である製品部全体が凝固するこ とであるが、狭義には所望のキヤビティー部分とその他のキヤビティー部分の境界部 付近が凝固し、充填された溶湯が湯道側に向力つて流出しなくなることを意味する。 さらに詳述すると、狭義の凝固とは、境界部付近の溶湯に固相がある程度晶出して 溶湯が流動しなくなるまでという意味である。つまり、本発明では所望のキヤビティー 部分のみに溶湯を充填して凝固させることが目的であるが、充填及び凝固のために 行う種々の手段は、少なくともこの狭義の意味の凝固まで継続すればよいのである。 以下の実施例でも同じである。
[0071] なお、圧縮ガスを送気するとき、铸型は通気性があるのでガスの一部は铸型粒子間 を抜けるため溶湯を充填する作用が減少する。このことを考慮して圧縮ガスの圧力と 風量を適宜に調節して十分な充填作用を行うことができるようにする。また、必要に応 じて铸型を非通気性部材で被覆して通気性を下げることも有効である。
[0072] 圧縮ガスは一般的には圧縮空気が最も簡便安価である。その他には圧縮した窒素 などの不活性ガスなどが有効である。また、圧縮ガスの圧力と風量は铸型の通気度、 铸枠の形状、全体の密閉度、铸造方案などを考慮して決めるようにする。
[0073] 本実施例によって、従来の铸造法では铸型の全キヤビティーを充填していたものが 、所望のキヤビティー部分のみを充填して凝固させることが可能になった。この結果、 製品部重量 Z全注入重量で表示される注入歩留りが大幅に向上する。例えば、従 来歩留り 50〜70%程度であったものがほぼ歩留り 100%となる。これは大幅な溶湯 節減となるものである。
[0074] また本実施例によって、溶湯は製品部のみに充填されており、湯口部と湯道部に は充填されていない。したがって、凝固後の解枠時には製品部のみを取り出せばよ いことになり、大きな作業工数の削減となる。
実施例 2
[0075] 図 3及び図 4に実施例 2を示す。本実施例では手段 2を用いて、注湯開始後に圧縮 ガスを送気して溶湯を所望のキヤビティー部分に充填し、その圧縮ガスの送気を保 持して溶湯を凝固させる铸造法を説明する。
[0076] 図 3は製品部 11を所望のキヤビティー部分 12として溶湯 30を注湯した後の状態を 示す。铸型 1及びキヤビティー 7の構成は実施例 1と同じである力 上枠 2の上部に気 密のために鉄製のカバー部材 18を載置している。このカバー部材 18は圧縮ガスの 圧力を効率よく作用させるために設けたものである。カバー部材 18は非通気性材料 が好まし!/ヽが、铸型よりも通気性が低!ヽ材料でも同様な効果を得ることができる。
[0077] 図 3の注湯後の状態は、実施例 1で示したと同じように、注湯量が製品部 11のみで あり、湯口部 8の溶湯ヘッドがほとんどな 、ので溶湯 30の一部は製品部 11に充填さ れ、一部は湯道部 9で停滞している。
[0078] 次に図 4のように圧縮装置 15により圧縮された圧縮ガス 16を湯口部 8の上部力 送 気すると、実施例 1と同じように湯道部 9の溶湯 30は圧縮ガス 16によって製品部 11 に充填される。本実施例の場合は上枠 2の上部に気密のためにカバー部材 18を載 置しているので、圧縮ガス 16の铸型 1からの漏れは少なくなり、圧縮ガス 16の圧力は 実施例 1の場合よりも、より効率的に溶湯 30を製品部 11に充填する作用として働く。 本実施例では、圧縮ガスは圧縮空気を用い、圧力は 5kgfZcm2、風量は 60 lZsecと した。
[0079] 溶湯 30の製品部 11への充填後も圧縮ガス 16の送気を保持して適宜の加圧をカロ える。これによつて充填された溶湯 30を製品部 11から流出することなく凝固させるこ とができる。圧縮ガス 16の圧力と風量は铸型の種類、铸造方案などによって適宜な 値とする。
[0080] 本実施例によって、実施例 1よりも安定して溶湯の所望のキヤビティー部分への充 填とその後の凝固を進行させることができた。
[0081] なお、圧縮ガスを送気する時期は実施例 1で示したように、必ずしも上記のように溶 湯が湯道部に停滞するのを待つ必要はない。注湯開始後、最後の溶湯が湯口部を 通過中又は通過後に速やかに送気して、溶湯を湯道部で停滞させずスムースに所 望のキヤビティー部分に充填させるのが実用的な実施形態である。
実施例 3
[0082] 図 5及び図 6に実施例 3を示す。本実施例は手段 3を用いて、充填したい所望のキ ャビティー部分の一部が上型にあり、ある高さを有している場合に、圧縮ガスの加圧 圧力を明確に規定して溶湯を所望のキヤビティー部分に充填し凝固させる铸造法を 説明する。
[0083] 図 5に示すように铸型 1の構成は実施例 2とほぼ同じである力 铸型キヤビティー 7 は湯口部 8、湯道部 9、押湯部 10、製品部 11から構成されている。また製品部 11は 上型 5と下型 6に配置されており上型部分の高さは Hである。本実施例では製品部 1 1と押湯部 10を所望のキヤビティー部分 12として溶湯を充填し凝固させる。前記の高 さ Hは所望のキヤビティー部分 12への溶湯の流入位置力もの高さに相当する。
[0084] 図 5は所望のキヤビティー部分 12とほぼ同じ体積の溶湯 30を注湯後の状態である 。実施例 2と同様に、注湯量は所望のキヤビティー部分 12のみを充填する量しか ないので湯口部 8の溶湯ヘッドはほとんどなぐ溶湯 30は全キヤビティーを部分的に 充填し水平レベルとなる。 [0085] そこで、図 6に示すように、湯口部 8の上部力も圧縮ガス 16を送気し、実施例 1、 2と 同様に溶湯 30を所望のキヤビティー部分 12に充填する。その後、圧縮ガス 16の送 気を保持して溶湯 30を凝固させる。本実施例ではこの圧縮ガス 16による加圧圧力を γ Η以上とする。ただし、 γは溶湯の比重量 (kgfZcm3)、 Ηは所望のキヤビティー部 分 12への溶湯の流入位置力も所望のキヤビティー部分 12の最上部までの高さ(cm) である。したがって、 γ Ηは圧力(kgfZcm2)である。例えば、比重量 γ = 7 X 10"3kgf /cm3の铸鉄溶湯を H = 20cmの铸型キヤビティーに充填する場合には、 γ Η = 0.1 4kgfZcm2である。
[0086] γ Ηの意味は、所望のキヤビティー部分 12に充填された溶湯 30が、所望のキヤビ ティー部分 12とその他のキヤビティー部分 20の境界部付近 19から湯道部 9側に向 力つて流出しょうとする溶湯静圧である。したがって、 γ Η以上の圧縮ガス 16による 加圧圧力を湯道部 9側から境界部付近 19に作用させれば溶湯 30は所望のキヤビテ ィ一部分 12の最上部まで充填される。そしてこの加圧圧力を保持すれば充填された 溶湯 30の流出を止めることができるのである。なお、 γ Η以上の加圧圧力とは、圧縮 ガスの圧力を意味するものではなぐ圧縮ガス 16の铸型 1からの漏れを考慮した上で 、境界部付近 19の圧力を γ Η以上に保つことを意味する。
[0087] 本実施例で示したように、充填した!/、所望のキヤビティー部分 12が溶湯の流入口よ り高いところにある場合にも、溶湯の比重量 γと、所望のキヤビティー部分 12への溶 湯の流入位置力も所望のキヤビティー部分 12の最上部までの高さ Ηで決まる γ Η以 上の加圧圧力がかあるような圧縮ガス 16の圧力で、所望のキヤビティー部分 12に溶 湯 30を充填し、この加圧圧力を保持して凝固させれば、所望のキヤビティー部分 12 である製品部 11及び押湯部 10のみに溶湯が充填された铸物を得ることができる。
[0088] なお、圧縮ガスを送気する時期は実施例 1、 2で示したように、必ずしも図 5のように 溶湯が湯道部に停滞するのを待つ必要はない。注湯開始後、最後の溶湯が湯口部 を通過中又は通過後に速やかに送気して、溶湯を湯道部で停滞させずスムース〖こ 所望のキヤビティー部分に充填するのが実用的な実施形態である。
実施例 4
[0089] 図 7に実施例 4を示す。本実施例では手段 4及び 5を用いて、注湯開始後に湯口部 力 圧縮ガスを送気して溶湯を所望のキヤビティー部分に充填し、その所望のキヤビ ティー部分とその他のキヤビティー部分の境界部付近を冷却して凝固する铸造法を 説明する。
[0090] 図 7は所望のキヤビティー部分 12とほぼ等しい体積の溶湯 30を注湯後、湯口部 8 の上部力も圧縮ガス 16を送気している状態を示している。圧縮ガス 16の送気によつ て溶湯 30を所望のキヤビティー部分 12である製品部 11と押湯部 10に充填した。铸 型 1の構成は実施例 3とほぼ同じである力 所望のキヤビティー部分 12とその他のキ ャビティー部分 20の境界部付近 19の上部に通気穴 21を設けている。
[0091] この構成で本実施例の作用を説明する。注湯開始後、圧縮ガス 16を送気して溶湯 30を所望のキヤビティー部分 12に充填後、圧縮ガス 16の送気を続けると、圧縮ガス 16は最も通気性のよい通気穴 21を通って流れ、境界部付近 19の熱を奪いながらそ の部分を冷却する。その結果、境界部付近 19は速やかに冷却されて凝固する。これ によって、圧縮ガス 16を送気する時間を短縮することができる。つまり、圧縮ガス 16 を溶湯 30の充填する作用と冷却の作用のために用 、たのである。
[0092] なお、通気穴 21を設けなくても、圧縮ガス 16の送気を保持すれば圧縮ガス 16は铸 型粒子間を抜けて流れるので、ある程度の速さで境界部付近 19は冷却される。しか し、本実施例の方が冷却能力は高ぐ速やかに凝固させることができる。
[0093] 以上のように、通気穴を設けて圧縮ガスで境界部付近を冷却して速やかに凝固さ せることで、溶湯を所望のキヤビティー部分に充填した後の圧縮ガスの送気を保持す る時間を短縮することができ、本発明を実ラインに適用した場合の生産効率を高める ことができた。
実施例 5
[0094] 図 8に実施例 5を示す、本実施例も実施例 4と同じく手段 4及び 5を用いて、注湯開 始後に湯口部カゝら圧縮ガスを送気して溶湯を所望のキヤビティー部分に充填し、そ の所望のキヤビティー部分とその他のキヤビティー部分の境界部付近を圧縮ガスで 冷却する铸造法を説明する。
[0095] 図 8は所望のキヤビティー部分 12とほぼ等しい体積の溶湯 30を注湯後、湯口部 8 の上部力も圧縮ガス 16を送気している状態を示している。圧縮ガス 16の送気によつ て溶湯 30を所望のキヤビティー部分 12である製品部 11と押湯部 10に充填した。铸 型 1の構成は実施例 4とほぼ同じで所望のキヤビティー部分 12とその他のキヤビティ 一部分 20の境界部付近 19の上部に通気穴 21を設けている。本実施例では、通気 穴 21の上部力もも圧縮ガス 16の送気ができるように湯口部 8とは別に送気管 22を載 置した。この送気管 22にはバルブ 23が設けられている。
[0096] この構成で本実施例の作用を説明する。所望のキヤビティー部分 12に溶湯 30を湯 口部 8からの圧縮ガス 16によって充填後、通気穴 21の上部の送気管 22のバルブ 23 を開き圧縮ガス 16を通気穴 21へ送気する。これによつて、湯口部 8からの送気と通 気穴 21からの送気の両送気によって境界部付近 19を速やかに冷却することができ る。これによつて、実施例 4と同様に、溶湯 30を所望のキヤビティー部分 12に充填し た後の圧縮ガス 16を送気する時間を短縮することができ、本発明を実ラインに適用し た場合の生産効率を高めることができた。
実施例 6
[0097] 図 9及び 10に実施例 6を示す。本実施例では手段 4及び 6を用いて、湯口部から圧 縮ガスを送気して溶湯を所望のキヤビティー部分に充填し、その所望のキヤビティー 部分とその他のキヤビティー部分の境界部付近を機械的に遮断する铸造法を説明 する。
[0098] 図 9は所望のキヤビティー部分 12とほぼ等しい体積の溶湯 30を注湯後の状態を示 す。本実施例では注湯後、湯口部 8からシェルモールドの铸型片 24を投入する。そ の後、図 10に示すように、湯口部 8から圧縮ガス 16を送気して溶湯 30を所望のキヤ ビティー部分 12に充填するとともに、铸型片 24を境界部付近 19に押し付けた状態 にする。境界部付近 19の形状と铸型片 24の形状が勘合するようにしているので溶湯 30の流出はこれで遮断される。溶湯 30の铸型片 24に接した部分は速やかに凝固が 進行し、圧縮ガス 16の保持時間を短縮することができる。なお、铸型片 24はシェル モールドなどの砂型が簡便安価であるが、溶湯より比重の小さ!/、耐火性材料であれ ば作用効果は同じである。
[0099] 本実施例によって、充填された溶湯を遮断して速やかに凝固させることができ、本 発明を実ラインに適用した場合の生産効率を高めることができた。 実施例 7
[0100] 図 11及び図 12に実施例 7を示す。本実施例も手段 4及び 6を用いて、湯口部から 圧縮ガスを送気して溶湯を所望のキヤビティー部分に充填し、その所望のキヤビティ 一部分とその他のキヤビティー部分の境界部付近を機械的に遮断する铸造法を説 明する。
[0101] 図 11は所望のキヤビティー部分 12とほぼ同じ体積の溶湯 14を注湯する直前の状 態を示す。本実施例では、铸型キヤビティー 7の境界部付近 19の下型に凹部 25を 設け、ここにシェルモールドの遮断片 26を設置して!/、る。
[0102] 図 12は注湯開始後、圧縮ガス 16の送気を行って溶湯 30を所望のキヤビティー部 分 12に充填した状態を示す。溶湯 30が充填されると、凹部 25に設置された遮断片 2 6は浮力で浮上し、その部分の湯道上部に密着して溶湯 30を遮断する。遮断片 26 は溶湯 30の流出を止める作用と、溶湯 30に接することによって境界部付近 19の冷 却を早める作用を有している。これによつて、圧縮ガス 16の送気時間を短縮すること ができ、本発明を実ラインに適用した場合の生産効率を高めることができた。
実施例 8
[0103] 図 13に実施例 8を示す。本実施例も手段 4及び 6を用いて、湯口部カゝら圧縮ガスを 送気して溶湯を所望のキヤビティー部分に充填し、その所望のキヤビティー部分とそ の他のキヤビティー部分の境界部付近を機械的に遮断する铸造法を説明する。
[0104] 図 13は所望のキヤビティー部分 12とほぼ同じ体積の溶湯 30を注湯開始後、圧縮 ガス 16を送気して溶湯 30を所望のキヤビティー部分 12に充填した状態を示す。本 実施例では、境界部付近 19の上部に通気穴 21を設けておき、溶湯充填後、通気穴 21から遮断板 27を境界部付近 19の铸型に貫入させて溶湯 30を遮断した。なおこの 場合の通気穴 21は遮断板 27に合わせた形状としている。
[0105] 本実施例では、溶湯 30を充填後、遮断板 27を直接境界部付近 19に貫入させて溶 湯 30の流出を止めることができたので、凝固を待つ必要はなぐ遮断後すぐに圧縮 ガス 16の送気を止めることができる。したがって、本発明を実ラインに適用した場合 の生産効率を高めることができた。
[0106] 手段 6の境界部付近を遮断する方法としては実施例 6乃至 8のような方法を示した 力 要は充填された溶湯の境界部付近からの流出を何らかの適切な障害物で塞ぐこ とを意味しており、その他の方法でも作用効果は同じである。
実施例 9
[0107] 図 14乃至図 16に実施例 9を示す。本実施例では、手段 7及び手段 8を用いて、注 湯された溶湯が速やかに所望のキヤビティー部分を充填するように注湯前又は注湯 開始後に減圧し、また注湯後も必要に応じて減圧し、加えて湯口部から圧縮ガスを 送気する铸造法を説明する。
[0108] 図 14は所望のキヤビティー部分 12とほぼ同じ体積の溶湯 14を注湯する直前の状 態を示す。铸型 1の構成は所望のキヤビティー部分 12である製品部 11と押湯部 10 のキヤビティーの上部に通気穴 21を各 1個設けている。そして、上枠 2の上に減圧装 置 28に連通された減圧フード 29を載置した。通気穴 21は減圧作用が所望のキヤビ ティー部分 12に対して強く働き、安定して所定の減圧度を保つことができるようにし たものである。ただし、この通気穴は本発明の不可欠の要素ではなぐ所望のキヤビ ティー部分が所定の減圧度になればょ 、。
[0109] この構成で上型 5から減圧して、所望のキヤビティー部分 12の減圧度を γ Ηの絶対 値以上にしている。ここで γは溶湯の比重量、 Ηは所望のキヤビティー部分 12に溶 湯が流入する位置力も所望のキヤビティー部分 12の最上部までの高さである。 Ηは 本実施例の場合は製品部 11の上型部の高さに相当する。 y Ηは所望のキヤビティ 一部分 12に充填された溶湯 30が境界部付近力も流出しょうとする溶湯静圧である。
[0110] 図 15は注湯後の状態を示す。注湯された溶湯 30は所望のキヤビティー部分 12が γ Η以上に減圧されているので、所望のキヤビティー部分 12の最上部までスムース に充填される。注湯開始後は湯口部 8が大気に開放されるので減圧度が変化する。 そこで図 16に示すように、湯口部 8の上部力も圧縮ガス 16を送気して充填された溶 湯の境界部付近 19からの流出を止めるとともに、圧縮ガス 16の冷却作用で境界部 付近 19を速やかに冷却して凝固させる。
[0111] 減圧装置による減圧は必要に応じて、溶湯を所望のキヤビティー部分に充填後も 凝固まで継続して保持する。すなわち、注湯前又は注湯開始後に減圧しておき、溶 湯をスムースに所望のキヤビティー部分に充填し、その後、圧縮ガスによって溶湯の 境界部付近からの流出を止めるのである力 減圧を保持することによって、铸型の熱 が吸引排出され凝固をより速やかに進行させることができる。
[0112] なお、減圧開始の時期は本実施例のように注湯前でもよいし、注湯開始後でも作 用効果は同じである。ただし、注湯前と注湯開始後では铸型キヤビティーの減圧度の 変化に違いがある。すなわち、注湯前の減圧では铸型キヤビティーを注湯前に安定 した減圧度とすることができる力 注湯開始にともなって铸型キヤビティーの減圧度は 変化する。注湯開始後の減圧は大気圧の状態で注湯が開始されるので注湯の初期 に湯流れが安定しているが、減圧開始の時期が遅れると溶湯の充填過程で十分な 減圧度が得られない場合がある。したがって、溶湯の材質、铸型キヤビティーの形状 などによっていずれか適した方を適用する。
[0113] 以上のように、減圧と圧縮ガスの送気を組み合わせることによって所望のキヤビティ 一部分への溶湯の充填をより安定して行い、かつ凝固を速やかに進行させることが できた。
実施例 10
[0114] 図 17及び図 18に実施例 10を示す。本実施例では、手段 7及び手段 9を用いて、 注湯された溶湯が速やかに所望のキヤビティー部分を充填するように注湯前に低 、 ( 弱 ヽ)減圧度で減圧し、また溶湯を所望のキヤビティー部分に充填後も必要に応じて 減圧し、加えて湯口部から圧縮ガスを送気する铸造法を説明する。
[0115] 図 17は所望のキヤビティー部分 12とほぼ同じ体積の溶湯 14を注湯する直前の状 態を示す。铸型 1及び減圧装置 28の構成は実施例 9とほぼ同じである。本実施例で は铸型の通気穴は設けていない。この構成で注湯前に所望のキヤビティー部分 12を Ύ Hの絶対値より低 ヽ(弱 、)値の減圧度で減圧する。注湯された溶湯 30は減圧さ れた所望のキヤビティー部分 12にスムースに導入される。しかし、減圧度は γ Ηの絶 対値より低いので溶湯 30は所望のキヤビティー部分 12の最上部まで充填することは できない。
[0116] そこで図 18に示すように、湯口部 8の上部から圧縮ガス 16を送気して溶湯 30を所 望のキヤビティー部分 12の最上部まで充填させる。以後、この状態で境界部付近部 19の凝固を進行させる。減圧は必要に応じて保持する。凝固をできるだけ速やかに 進行させるためには、減圧を保持又は減圧を強くする方がよい。なお、減圧開始の 時期は注湯前でも注湯開始後でも作用効果は同じである。
[0117] 本実施例で減圧度を γ Hの絶対値よりも低くしたのは、溶湯材質、キヤビティー形 状、铸造方案などによっては、減圧度が高すぎると溶湯の流れの乱れや酸ィ匕物発生 などの悪害が生じることがあるためである。このような場合には、本実施例のように低 めの減圧度で溶湯を静か〖こ所望のキヤビティー部分に導入し、圧縮ガスの送気作用 と合わせて溶湯を所望のキヤビティー部分に充填し凝固させるのがよい。
[0118] また図 19に、本実施例において溶湯を充填する所望のキヤビティー部分を製品部 、押湯部及び湯道部とした場合の溶湯の充填状況を示す。注湯、減圧及び加圧の 工程は上記説明と同じである。この場合、充填する溶湯量が増加するので注入歩留 りは低下するが、注湯する溶湯量の計量精度をあまり気にしなくても、铸造における 本質部分である製品部、又は製品部と押湯部に間違いなく溶湯を充填できる点で優 れている。この注湯量の場合でも湯口部がないので、 10〜 15%程度の注入歩留り の改善を図ることができる。
[0119] また、複数個込めの铸造を行うにあたり、図 17、 18に示すような溶湯を充填する所 望のキヤビティー部分が製品部と押湯部のみの場合には、注湯する溶湯を複数のそ れぞれの製品部と押湯部にできるだけ均一に配分することが必要になるのに対し、 図 19に示すような所望のキヤビティー部分が製品部、押湯部及び湯道部の場合に は、溶湯を均一に配分することをほとんど考慮する必要がな 、と 、う点でも優れて ヽ る。
[0120] このように、溶湯を充填する所望のキヤビティー部分は状況に応じて適宜設定すれ ばよい。例えば、製品部、押湯部及び湯道部の一部を所望のキヤビティー部分に設 定することもできる。また、押湯部がない場合に、製品部と湯道部の一部を所望のキ ャビティー部分に設定することもできる。このことは、実施例 1乃至 10の全ての場合に 同様に有効である。
[0121] 実施例 9及び 10によって、減圧と圧縮ガスの送気を組み合わせることで、所望のキ ャビティー部分への溶湯の充填と凝固をより安定して実施することができるようになつ 図面の簡単な説明
[0122] [図 1]本発明の実施例 1の注湯後の状態を示す図である。
[図 2]本発明の実施例 1の圧縮ガスの送気を示す図である。
[図 3]本発明の実施例 2の注湯後の状態を示す図である。
[図 4]本発明の実施例 2の圧縮ガスの送気を示す図である。
[図 5]本発明の実施例 3の注湯後の状態を示す図である。
[図 6]本発明の実施例 3の圧縮ガスの送気を示す図である。
[図 7]本発明の実施例 4を示す図である。
[図 8]本発明の実施例 5を示す図である。
[図 9]本発明の実施例 6の注湯後の状態を示す図である。
[図 10]本発明の実施例 6の圧縮ガスの送気を示す図である。
[図 11]本発明の実施例 7の注湯前の状態を示す図である。
[図 12]本発明の実施例 7の注湯後の状態を示す図である。
[図 13]本発明の実施例 8を示す図である。
[図 14]本発明の実施例 9の注湯前の状態を示す図である。
[図 15]本発明の実施例 9の注湯後の状態を示す図である。
[図 16]本発明の実施例 9の注湯後の圧縮ガスの送気を示す図である。
[図 17]本発明の実施例 10の注湯前の状態を示す図である。
[図 18]本発明の実施例 10の注湯後の状態を示す図である。
[図 19]本発明の実施例 10の注湯後の状態を示す別図である。
符号の説明
[0123] 1 铸型
2 上枠
3 下枠
4 定盤
5 上型
6 下型
7 铸型キヤビティー 湯口部
湯道部
押湯部
製品部
所望のキヤビティー部分 注湯取鍋
溶湯
圧縮装置
圧縮ガス
シール部材
カバー部材
境界部付近
その他のキヤビティー部分 通気穴
送気管
ノ ノレブ
铸型片
凹部
遮断片
遮断板
減圧装置
減圧フード
注湯された溶湯 パッキング部材 発泡榭脂板

Claims

請求の範囲
[1] 比重量 γの溶湯を通気性铸型に注湯する铸造法にぉ 、て、該通気性铸型のキヤ ビティーのうち溶湯を充填させた 、所望のキヤビティー部分の体積とほぼ等し 、体積 の溶湯を注湯開始後、湯口部カゝら圧縮ガスを送気して溶湯を所望のキヤビティー部 分に充填して凝固させることを特徴とする铸造法。
[2] 請求項 1記載の铸造法にお!ヽて、湯口部から圧縮ガスを送気して溶湯を所望のキ ャビティー部分に充填し、該圧縮ガスの送気を保持して溶湯を凝固させることを特徴 とする铸造法。
[3] 請求項 1及び 2いずれかに記載の铸造法において、圧縮ガスの加圧圧力が、前期 所望のキヤビティー部分への溶湯の流入口から所望のキヤビティー部分の最上部ま での高さ Ηによって決まる溶湯静圧 γ Ηの値以上であることを特徴とする铸造法。
[4] 請求項 1乃至 3いずれかに記載の铸造法において、湯口部から圧縮ガスを送気し て溶湯を所望のキヤビティー部分に充填し、該所望のキヤビティー部分とその他のキ ャビティー部分の境界部付近から充填した溶湯が戻らな 、ような遮断手段を用いるこ とを特徴とする铸造法。
[5] 請求項 4記載の铸造法において、前記充填した溶湯が戻らないような遮断手段とし て、境界部付近を冷却する手段を用いることを特徴とする铸造法。
[6] 請求項 4記載の铸造法において、前記充填した溶湯が戻らないような遮断手段とし て、境界部付近を機械的に遮断する手段を用いることを特徴とする铸造法。
[7] 請求項 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、前 期溶湯を充填させたい所望のキヤビティー部分を減圧することを特徴とする铸造法。
[8] 請求項 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、前 期溶湯を充填させた 、所望のキヤビティー部分の減圧度を、該所望のキヤビティー 部分への溶湯の流入口力 所望のキヤビティー部分の最上部までの高さ Ηによって 決まる溶湯静圧 y Ηの絶対値以上の値の減圧状態とすることを特徴とする铸造法。
[9] 請求項 1乃至 6いずれかに記載の铸造法において、注湯前又は注湯開始後に、前 期溶湯を充填させた 、所望のキヤビティー部分の減圧度を、該所望のキヤビティー 部分への溶湯の流入口力 所望のキヤビティー部分の最上部までの高さ Ηによって 決まる溶湯静圧 y Hの絶対値より低 、値の減圧状態とすることを特徴とする铸造法。
PCT/JP2006/316041 2005-09-15 2006-08-15 鋳造法 WO2007032174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06796431A EP1944105A1 (en) 2005-09-15 2006-08-15 Casting method
US11/991,552 US20090151887A1 (en) 2005-09-15 2006-08-15 Casting Method
CN2006800339692A CN101262968B (zh) 2005-09-15 2006-08-15 铸造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-268163 2005-09-15
JP2005268163A JP4150764B2 (ja) 2005-09-15 2005-09-15 鋳造法

Publications (1)

Publication Number Publication Date
WO2007032174A1 true WO2007032174A1 (ja) 2007-03-22

Family

ID=37864772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316041 WO2007032174A1 (ja) 2005-09-15 2006-08-15 鋳造法

Country Status (5)

Country Link
US (1) US20090151887A1 (ja)
EP (1) EP1944105A1 (ja)
JP (1) JP4150764B2 (ja)
CN (1) CN101262968B (ja)
WO (1) WO2007032174A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524691B2 (ja) * 2007-06-07 2010-08-18 新東工業株式会社 鋳型の減圧方法
JP4888796B2 (ja) * 2009-05-22 2012-02-29 有限会社ファンドリーテック・コンサルティング 鋳造法
JP5414063B2 (ja) * 2010-03-29 2014-02-12 新東工業株式会社 鋳造方法、その砂型、およびその鋳造装置。
CN102941334B (zh) * 2012-11-27 2015-07-01 山东圣泉新材料股份有限公司 一种铸造加压系统及铸造加压方法
JP6304249B2 (ja) * 2013-06-20 2018-04-04 日立金属株式会社 鋳造物品の製造方法
CN105324197B (zh) * 2013-06-20 2018-11-06 日立金属株式会社 铸造物品的制造方法、铸造装置
JP6198125B2 (ja) * 2013-08-30 2017-09-20 日立金属株式会社 鋳造物品の製造方法
WO2015046615A1 (ja) 2013-09-30 2015-04-02 日立金属株式会社 鋳造装置及びそれを用いた鋳造物品の製造方法
US10232431B2 (en) 2014-02-28 2019-03-19 Hitachi Metals, Ltd. Production method of castings and gas-permeable casting mold
JP5663800B1 (ja) * 2014-04-08 2015-02-04 有限会社ファンドリーテック・コンサルティング 迅速な凝固が可能な湯道及び鋳造方法
JP6583603B2 (ja) * 2014-09-30 2019-10-02 日立金属株式会社 鋳造物品の製造方法
CN107000048B (zh) * 2014-11-26 2019-02-22 新东工业株式会社 具有加压功能的自动浇注装置以及自动浇注方法
KR102585828B1 (ko) 2015-11-04 2023-10-05 가부시키가이샤 프로테리아루 주조 장치 및 주조 방법
CN105817603A (zh) * 2016-04-26 2016-08-03 安徽纯启动力机械有限公司 一种防缩孔压铸模具
CN105855508A (zh) * 2016-06-14 2016-08-17 吴江市液铸液压件铸造有限公司 一种发动机驱动马达模具
US20180029113A1 (en) * 2016-07-29 2018-02-01 GM Global Technology Operations LLC Direct squeeze casting
CN107838379A (zh) * 2017-12-05 2018-03-27 李理 一种用于汽车制造的汽车发动机缸体的铸造设备
CN108256239B (zh) * 2018-01-23 2020-07-10 华中科技大学 一种适用于铸造充型过程冷隔缺陷的预测方法
JP2020157345A (ja) * 2019-03-27 2020-10-01 日立金属株式会社 通気性鋳型およびそれを用いた鋳造物品の製造方法
WO2021064834A1 (ja) * 2019-09-30 2021-04-08 本田技研工業株式会社 内燃機関用ピストンの製造方法および製造装置
CN110814289B (zh) * 2019-12-02 2024-03-26 中北大学 一种石膏型真空浇注加压凝固铸造方法和装置
JP7215409B2 (ja) * 2019-12-19 2023-01-31 トヨタ自動車株式会社 鋳造方法
CN114951603A (zh) * 2022-05-30 2022-08-30 浙江新峰机械有限公司 一种薄壁铝合金壳体低压浇注装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731463A (en) 1980-08-04 1982-02-19 Sintokogio Ltd Casting method for thin walled casting
JPS5732869A (en) * 1980-08-08 1982-02-22 Toyota Motor Corp Pressure casting method
JPS6056439A (ja) 1983-09-09 1985-04-02 Toyota Motor Corp 減圧鋳造用石膏鋳型
JPS60124438A (ja) 1983-12-09 1985-07-03 Nissan Motor Co Ltd 減圧鋳造方法
JPS61180642A (ja) 1985-02-04 1986-08-13 Toyoda Gosei Co Ltd 減圧鋳造方法
JPS6341352U (ja) * 1986-08-28 1988-03-18
JPH02303671A (ja) * 1989-05-16 1990-12-17 Mazda Motor Corp 加圧鋳造方法
JPH03216258A (ja) 1990-01-22 1991-09-24 Nissan Motor Co Ltd 減圧鋳造装置
JPH0655255A (ja) 1992-04-02 1994-03-01 Hitachi Metals Ltd 砂鋳型による鋳鋼鋳物の製造方法及びその装置
JPH06122060A (ja) 1992-10-14 1994-05-06 Mitsubishi Heavy Ind Ltd 減圧鋳造方法
JPH06226423A (ja) 1993-02-03 1994-08-16 Hitachi Metals Ltd 通気性鋳型による薄肉鋳物の製造方法
JPH0741400B2 (ja) 1989-04-10 1995-05-10 株式会社クボタ 生型鋳造における吸引鋳造方法
JPH07265998A (ja) 1994-03-25 1995-10-17 Hitachi Metals Ltd 減圧鋳造用鋳型
JPH07115119B2 (ja) 1992-08-07 1995-12-13 東京鐵鋼株式会社 消失模型鋳造方法と鋳造装置とその移動方法と解枠方法
JPH0810386A (ja) 1994-06-30 1996-01-16 Fuji Shoji Kk アレンジボール機の制御装置
JPH0985421A (ja) 1995-09-25 1997-03-31 Hitachi Metals Ltd 減圧鋳造方法
JP2003170226A (ja) 2001-12-06 2003-06-17 Mitsubishi Heavy Ind Ltd 管の曲げ加工装置および曲げ加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716727A (ja) * 1993-06-30 1995-01-20 Toyota Motor Corp 真空鋳造法
DE19531551A1 (de) * 1995-08-28 1997-03-06 Bruehl Eisenwerk Verfahren zum Herstellen von Gußstücken aus Leichtmetall und verlorene Form auf Basis von Sand hierfür
US7279128B2 (en) * 2002-09-13 2007-10-09 Hi T.E.Q., Inc. Molten metal pressure pour furnace and metering valve

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731463A (en) 1980-08-04 1982-02-19 Sintokogio Ltd Casting method for thin walled casting
JPS5732869A (en) * 1980-08-08 1982-02-22 Toyota Motor Corp Pressure casting method
JPS6056439A (ja) 1983-09-09 1985-04-02 Toyota Motor Corp 減圧鋳造用石膏鋳型
JPS60124438A (ja) 1983-12-09 1985-07-03 Nissan Motor Co Ltd 減圧鋳造方法
JPS61180642A (ja) 1985-02-04 1986-08-13 Toyoda Gosei Co Ltd 減圧鋳造方法
JPS6341352U (ja) * 1986-08-28 1988-03-18
JPH0741400B2 (ja) 1989-04-10 1995-05-10 株式会社クボタ 生型鋳造における吸引鋳造方法
JPH02303671A (ja) * 1989-05-16 1990-12-17 Mazda Motor Corp 加圧鋳造方法
JPH03216258A (ja) 1990-01-22 1991-09-24 Nissan Motor Co Ltd 減圧鋳造装置
JPH0655255A (ja) 1992-04-02 1994-03-01 Hitachi Metals Ltd 砂鋳型による鋳鋼鋳物の製造方法及びその装置
JPH07115119B2 (ja) 1992-08-07 1995-12-13 東京鐵鋼株式会社 消失模型鋳造方法と鋳造装置とその移動方法と解枠方法
JPH06122060A (ja) 1992-10-14 1994-05-06 Mitsubishi Heavy Ind Ltd 減圧鋳造方法
JPH06226423A (ja) 1993-02-03 1994-08-16 Hitachi Metals Ltd 通気性鋳型による薄肉鋳物の製造方法
JPH07265998A (ja) 1994-03-25 1995-10-17 Hitachi Metals Ltd 減圧鋳造用鋳型
JPH0810386A (ja) 1994-06-30 1996-01-16 Fuji Shoji Kk アレンジボール機の制御装置
JPH0985421A (ja) 1995-09-25 1997-03-31 Hitachi Metals Ltd 減圧鋳造方法
JP2003170226A (ja) 2001-12-06 2003-06-17 Mitsubishi Heavy Ind Ltd 管の曲げ加工装置および曲げ加工方法

Also Published As

Publication number Publication date
CN101262968A (zh) 2008-09-10
JP4150764B2 (ja) 2008-09-17
JP2007075862A (ja) 2007-03-29
CN101262968B (zh) 2011-06-08
US20090151887A1 (en) 2009-06-18
EP1944105A1 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
WO2007032174A1 (ja) 鋳造法
JP2007075862A5 (ja)
CN104985128B (zh) 一种铸造多层叠浇浇注系统及工艺
CN101618428B (zh) 风力发电机轮毂铸件的铸造方法
US10471498B2 (en) Production method of castings and gas-permeable casting mold
AU2021100090A4 (en) ICS- Counter Gravity Casting: Intelligent Centrifugal Counter Gravity Low- cost Casting System
CN101618429A (zh) 一种风力发电机轮毂铸件的铸造方法
JP4891245B2 (ja) 金属溶湯を鋳造する方法及び装置
JP2007275973A (ja) 重力鋳造法及びそれに使用する重力鋳造用金型、重力鋳造用金型により鋳造された空気入りタイヤ
US20100078144A1 (en) Saving energy and optimizing yield in metal casting using gravity and speed-controlled centrifugal feed system
EP3225332B1 (en) Automatic pouring machine and method for automatically pouring that have ability to pressurize
CN205834180U (zh) 低压浇铸装置和在使用低压浇铸装置的情况下制造的铸件
JP4883403B2 (ja) 鋳物製品の鋳造方法
JP4076568B2 (ja) 減圧鋳造法、鋳造システム及びその減圧鋳造装置
US20180111188A1 (en) Method for producing castings, casting apparatus, and gas-blowing nozzle used in casting apparatus
JP6198125B2 (ja) 鋳造物品の製造方法
CN205218000U (zh) 熔池式保温浇注设备
WO2007051434A1 (en) A method of manufacture of metal castings by gravity casting using after-pressure and casting mould for implementing this method
JPH08206815A (ja) 減圧吸引鋳造方法及びその装置
KR101839009B1 (ko) 용락 및 산화방지를 위한 주단조 금형의 용탕주입방법
JPH03124359A (ja) マグネシウム合金砂型加圧鋳造方法
CN108145074A (zh) 铸造法
JP2021146385A (ja) 鋳造装置及び鋳造方法
JPH07164129A (ja) 減圧吸引鋳造装置および方法
JP2005313189A (ja) 減圧鋳型造型の注湯方法及び鋳物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033969.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006796431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 509/MUMNP/2008

Country of ref document: IN