WO2007029782A1 - 2サイクルエンジン - Google Patents

2サイクルエンジン Download PDF

Info

Publication number
WO2007029782A1
WO2007029782A1 PCT/JP2006/317765 JP2006317765W WO2007029782A1 WO 2007029782 A1 WO2007029782 A1 WO 2007029782A1 JP 2006317765 W JP2006317765 W JP 2006317765W WO 2007029782 A1 WO2007029782 A1 WO 2007029782A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
load
combustion
air
combustion chamber
Prior art date
Application number
PCT/JP2006/317765
Other languages
English (en)
French (fr)
Inventor
Kenji Nishida
Hisashi Sakuyama
Takahiro Kimijima
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37835897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007029782(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US12/065,866 priority Critical patent/US7685989B2/en
Priority to BRPI0615641-0A priority patent/BRPI0615641A2/pt
Publication of WO2007029782A1 publication Critical patent/WO2007029782A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is configured to include an exhaust control valve capable of adjusting the opening degree of the exhaust port, and by operating the exhaust control valve, the supplied air and the supplied fuel in the combustion chamber are self-ignited and combusted. It relates to a two-cycle engine configured to be able to.
  • the ignition plug when the engine is in a low load range, the ignition plug is used in a state where the air and fuel supplied into the combustion chamber are mixed with the burned gas remaining in the combustion chamber in the previous stroke.
  • spark ignition combustion the residual gas having the above effects inhibits ignition and flame propagation after ignition, resulting in irregular combustion. If irregular combustion occurs, the supplied fuel will not be burned completely, and unburned gas containing harmful substances will be discharged to the outside, resulting in fuel efficiency and environmental issues.
  • an engine having an exhaust valve capable of controlling the opening degree of the exhaust port is known (see, for example, JP-A-07-071279).
  • the exhaust valve is controlled according to the load to adjust the opening of the exhaust port, and the ratio of the residual gas mass to the total gas mass in the cylinder at the start of the compression stroke (hereinafter referred to as this The ratio is referred to as “EGR rate”), and the mixture in the combustion chamber is heated using the thermal energy of the residual gas, so that the mixture is self-ignited and combusted.
  • the operation control of the exhaust valve and the spark plug is performed so that the spark ignition combustion is performed in the high load region and the self ignition combustion is performed in the low load region. It is configured. Since self-ignition combustion is Balta combustion, irregular combustion is eliminated throughout the combustion chamber, improving fuel efficiency and reducing harmful emissions.
  • One or more embodiments of the present invention provide a two-cycle engine in which irregular combustion in a low load region is eliminated and fuel efficiency is improved.
  • a two-cycle engine includes a cylinder in which a cylinder chamber is formed and a piston is accommodated in the cylinder chamber, and an ignition device in which the ignition unit faces the combustion chamber.
  • An exhaust control valve that adjusts the opening degree of the exhaust passage connected to the exhaust port that opens to the inner peripheral surface of the cylinder chamber, and a control device that controls the operation of the ignition device and the exhaust control valve.
  • the ignition device is operated to control the supply air supplied to the cylinder chamber and the mixture consisting of the supplied fuel sparks in the combustion chamber, and the exhaust opening is controlled in the low load range.
  • This relates to a two-cycle engine configured to adjust the pressure in the cylinder chamber by adjusting the air pressure and to control the auto-ignition combustion in the combustion chamber.
  • the low-load low-rotation region which is the low-rotation region in the low-load region
  • a large amount of air-fuel mixture is distributed in the center of the combustion chamber and remains in the combustion chamber outside the central portion of the combustion chamber.
  • It has a stratified mixture field forming means that forms a stratified mixture field in which a large amount of burned gas is distributed.
  • a stratified mixture field is formed by the stratified mixture field forming means.
  • the control device is configured to perform control for self-ignition combustion.
  • control device is operated in an extremely low load low rotation range that is a low load and low rotation range in a low load low rotation range. It may be configured to control the air-fuel mixture to spark-ignite and burn!
  • the stratified mixture field forming means has an exhaust control valve, and the control device operates the exhaust control valve so that the opening degree of the exhaust port becomes small in the low load and low rotation range.
  • the opening of the exhaust port In the low-load / medium-rotation range, which is the mid-rotation range within the load range, the opening of the exhaust port is larger than that in the low-load / low-rotation range, and the opening of the exhaust port increases as the load increases.
  • the exhaust control valve is operated, the exhaust opening is larger in the high load range than in the low load mid-rotation range, and the exhaust opening is increased as the load increases.
  • it is configured to perform the control that activates the control valve.
  • the stratified mixture field forming means has a combustion chamber provided with the top portion being offset to the exhaust port side or the opposite side with respect to the cylindrical axis of the cylinder chamber. ,. Also
  • the stratified mixture field forming means includes a direct injection device that is operation-controlled by the control device and directly supplies the supplied fuel into the combustion chamber and supplies the supplied fuel. It is preferable that the direct injection device is controlled so that the timing of supplying the gas into the cylinder chamber is delayed as compared with the low load medium rotation range and the high load range.
  • the stratified mixture field forming means has a sub-throttle valve configured to be able to adjust the supply amount of the supply air into the combustion chamber according to the opening degree, and the control device is in a low load low rotation region.
  • the sub throttle valve is preferably operated so as to increase the opening amount of the sub throttle valve as the load decreases, and control is performed to increase the amount of supply air supplied.
  • a load detection device for detecting the load and a temperature detection device for detecting the engine temperature are provided, and the control device detects the load detected by the load detection device and the engine temperature detected by the temperature detection device. Based on the above, it is configured to perform control to adjust the timing when the supplied fuel is supplied into the combustion chamber, the supply amount of the supplied fuel, and the opening degree of the exhaust port Is preferred.
  • the two-cycle engine of one or more embodiments of the present invention in the low-load and low-rotation region, a large amount of the air-fuel mixture is distributed in the central portion of the combustion chamber by the stratified air-fuel mixture forming means, and on the outside thereof A stratified mixture field in which a large amount of burned gas is distributed is formed. For this reason, if the entire combustion chamber is seen, that is, if the three compositions are uniformly mixed, even if the EGR rate cannot be self-ignited and combusted, the EGR rate is low in the center and autoignition is not possible. A combustible state is created locally.
  • the ignition device in an extremely low load and low rotation range, is operated to form a stratified mixture field, and control to cause spark ignition combustion of the mixture is performed.
  • irregular combustion in the low-load range such as can be more reliably resolved, and further improvement of fuel consumption and reduction of harmful exhaust gas can be achieved.
  • an exhaust control valve is provided as a stratified mixture field forming means, and the control device controls the exhaust control valve so that the opening degree of the exhaust port is smaller in the low load and low rotation range than in other load regions. Operation control is performed.
  • the exhaust pressure is adjusted to be high, and the supply air supplied into the cylinder chamber does not flow toward the exhaust port, but forms a vertical spiral flow and is guided to the combustion chamber. In this way, stratification of air and residual gas is promoted, and self-ignition combustion can be performed in a low load and low rotation range.
  • the top of the combustion chamber is offset to the exhaust port side or the opposite side with respect to the cylindrical axis of the cylinder chamber.
  • a large pressure field bias is formed between the side of the cylinder chamber where the exhaust port is provided across the cylindrical shaft and the opposite side, and the formation of a vertical spiral flow is promoted. For this reason, the formation of the stratified mixture field can be performed more reliably.
  • a direct injection device that directly injects fuel into the cylinder chamber is provided as a stratified mixture field forming means, and the control device causes the fuel injection period to be slower in the low load and low rotation range than in other load regions.
  • the operation control of the direct injection device is performed.
  • a sub-throttle valve capable of adjusting the air supply amount into the cylinder chamber by adjusting the opening is provided, and the control device reduces the load in the low load and low rotation range.
  • the operation of the sub-throttle valve is controlled so that the opening of the sub-throttle valve increases.
  • the air flow for forming the stratified mixture field can be stably controlled regardless of the increase or decrease of the load.
  • FIG. 1 is a cross-sectional view of an engine which is a typical embodiment of a two-cycle engine according to the present invention.
  • FIG. 2 is a graph showing a region of combustion forms in the first typical embodiment.
  • FIG. 3 is a graph showing the relationship between engine torque and control states of various devices in the first exemplary embodiment.
  • FIG. 4 is a cross-sectional view of the engine showing the air flow from the scavenging outlet in a low-load, low-rotation region.
  • FIG. 5 is a schematic diagram of a stratified mixture field.
  • FIG. 6 is a graph showing a region of combustion forms in a second typical embodiment.
  • FIG. 7 is a graph showing the relationship between engine torque and control states of various devices in a second typical embodiment.
  • FIG. 8 is a graph showing the relationship between the EGR rate and the gas temperature in the cylinder chamber at the end of the compression stroke.
  • FIG. 9 is a graph showing the relationship between the EGR rate and the gas temperature in the cylinder chamber at the end of the combustion stroke.
  • FIG. 1 shows a two-cycle engine according to a typical embodiment of the present invention.
  • the engine 1 is configured by connecting a cylinder head 2, a cylinder block 3, and a crankcase 4 so as to overlap each other.
  • the cylinder block 3 has a cylinder chamber 3a formed therein, and a piston 5 is disposed so as to be slidable up and down in the cylinder chamber 3a.
  • the crankcase 4 is coupled to the cylinder block 3 and communicates a crank chamber 4a in which the crankshaft 6 is accommodated with the cylinder chamber 3a.
  • the piston 5 and the crankshaft 6 are connected via a connecting rod 7.
  • a combustion chamber 10 is formed by being surrounded by the inner peripheral surface 3b of the cylinder chamber 3a, the upper surface of the piston 5, and the inner wall surface of the cylinder head 2.
  • a spark plug 8 and a fuel injection valve 9 are attached to the cylinder head 2, and the ignition portion 8 a of the spark plug 8 and the nozzle portion 9 a of the fuel injection valve 9 face the inner wall force combustion chamber 10 of the cylinder head 2.
  • the combustion chamber 10 is formed in a substantially hemispherical shape by a recess 2 a formed on the inner wall surface of the cylinder head 2 and has a top portion 10 a on the upper side.
  • the top portion 10a is offset to the exhaust port side, which will be described later, with respect to the cylinder axis A indicated by the alternate long and short dash line.
  • the spark plug 8 is provided with the ignition portion 8a protruding into the combustion chamber 10 by a predetermined protrusion amount.
  • the fuel injection valve 9 projects the nozzle portion 9a downward from the top portion 10a of the combustion chamber by a predetermined amount of protrusion. The fuel is directly injected from the nozzle portion 9a into the cylinder chamber 3a.
  • the crankcase 4 is formed with an intake passage 12 that is connected to the intake port 11 that communicates with the crank chamber 4a at one end and the other end communicates with the outside, and an intake manifold 14 is connected to the intake passage 12 ing.
  • the intake passage 12 is provided with a lead valve 15 that also constitutes an elastically deformable lead piece cover, and the intake manifold 14 is provided with an intake throttle valve 16 having a variable opening ⁇ THm.
  • an intake sub-passage (not shown) is connected to the intake manifold 14 so as to communicate with the downstream side of the intake throttle valve 16, and the intake sub-passage is connected to a sub-throttle with a variable opening ⁇ THs.
  • Valve 18 is installed.
  • An air cleaner (not shown) is connected to the upstream side of the intake throttle valve 16 and the sub-throttle valve 18, and the intake manifold 14 is supplied with clean air as much as an air tally.
  • the lead piece In the reed valve 15, the lead piece is cantilevered so as to always close the intake passage 12, and when the crank chamber 4a becomes negative pressure, the lead piece crawls and opens the intake passage 12.
  • the intake throttle valve 16 changes the opening ⁇ TH m according to manual operation of a throttle grip (not shown), and changes the amount of air supplied to the crank chamber 4a according to the opening ⁇ THm. Also, by operating the sub-throttle valve 18 to adjust the opening ⁇ THs, the air supplied to the crank chamber 4a is replenished, and the crank chamber 4a is supplied regardless of the opening ⁇ THm of the intake throttle valve 16. The amount of air supplied can be adjusted.
  • the cylinder block 3 is provided with an exhaust passage 22 having one end connected to the exhaust port 21 communicating with the cylinder chamber 3a and the other end connected to the exhaust connection port 23 communicating with the outside.
  • An exhaust control valve 24 is provided in the exhaust passage 22.
  • the exhaust control valve 24 is configured to have a swingable valve piece 24a that is formed in a fan shape when viewed from the side. The valve piece 24a swings with the servo motor 24b as a drive source, and the exhaust port 21 is closed from the top to the bottom by this swing.
  • the valve piece 24a By driving and controlling the servo motor 24b to adjust the swing position of the valve piece 24a, the valve piece 24a is swung to the lower limit position from the fully open state where the valve piece 24a is swung to the upper retracted position. Further, the opening degree ⁇ EX of the exhaust port 21 can be adjusted steplessly during the fully closed state.
  • a scavenging outlet 33 is opened in the cylinder chamber 3a at a position lower than the exhaust port 21.
  • a scavenging inlet 31 is open in the rank chamber 4a.
  • ECU control unit 40 adjusts the opening degree ⁇ EX of the exhaust port 21 to adjust the EGR rate, as described later. Air and fuel are self-ignited and burned at the optimal time using thermal energy Control is performed.
  • the engine 1 is provided with an ECU 40 that is configured to control the operation of various devices such as the exhaust control valve 24, the spark plug 8, the fuel injection valve 9, and the sub throttle valve 18.
  • Various sensors are arranged in the engine 1, and the detection signal force from these sensors is input to the CU40. Examples of sensors include an engine speed sensor 51 that detects the engine speed Ne, a throttle opening sensor 52 that detects the opening ⁇ THm of the intake throttle valve 16, a cooling water temperature sensor 53 that detects the cooling water temperature Tw, A cylinder temperature sensor 54 for detecting the cylinder inner surface temperature Tc, an intake air temperature sensor 55 for detecting the intake air temperature Ti, a pressure sensor 56 for detecting the atmospheric pressure P, and the like are provided.
  • the ECU 40 determines the fuel injection timing, the fuel injection amount F, the opening degree ⁇ EX of the exhaust port 21, the opening degree ⁇ THs of the sub-throttle valve 18, and the spark. Determine the ignition timing ts as the output value.
  • the ECU 40 stores predetermined arithmetic expressions using the engine speed Ne and the opening ⁇ THm of the intake throttle valve 16 as input parameters. From these arithmetic expressions, the output values F, ⁇ EX, ⁇ THs, ts is required.
  • the ECU 40 outputs an operation control signal to the fuel injection valve 9 based on each output value obtained from the arithmetic expression so as to inject fuel of a predetermined fuel injection timing tfC and a predetermined fuel injection amount F.
  • the fuel injection valve 9 is controlled to operate.
  • an operation control signal is output to the servo motor 24b to control the servo motor 24b so that the valve piece 24a of the exhaust control valve 24 is swung to a predetermined swing position, and the exhaust port 21 is controlled to a predetermined opening ⁇ . Adjust to EX.
  • an operation control signal is output to the sub-throttle valve 18 to control the operation of the sub-throttle valve 18 so that the predetermined opening ⁇ THs is obtained, and the amount of air supplied to the crank chamber 4a is adjusted. Then, an operation control signal is output to the spark plug 8, and spark ignition is performed at a predetermined spark ignition timing ts.
  • the spark plug 8 is controlled to operate as described above.
  • FIG. 2 shows the combustion mode region of the engine 1 according to the engine rotational speed Ne and the engine torque Te.
  • the ECU 40 controls the operation of each device according to the engine rotational speed Ne and the opening degree ⁇ THm of the intake throttle valve 16 using the above formula, and performs premixed spark ignition combustion in a high load range, thereby reducing the low pressure. It is configured to perform premixed compression self-ignition combustion in the middle and high rotation range, and to perform stratified charge air compression self-ignition combustion in the low load and low rotation range.
  • the engine torque Te increases or decreases in accordance with the opening ⁇ THm of the intake throttle valve 16.
  • the premixed spark ignition combustion means that the spark plug 8 is operated to spark-ignite air and fuel, and the flame is spread from the vicinity of the spark-ignited ignition part 8a to the entire combustion chamber 10.
  • the air and fuel in the combustion chamber 10 are burned, and this is a conventional spark ignition combustion mode.
  • the three compositions in the combustion chamber 10 are in a substantially uniformly mixed state.
  • the premixed compression auto-ignition combustion is a method in which air and fuel are self-ignited and combusted during compression in a state where the three compositions are substantially uniformly mixed in the combustion chamber 10. It is a form of combustion.
  • the stratified charge air compression self-ignition combustion is a stratified mixed air field in which three compositions are substantially stratified in the combustion chamber 10, and causes air and fuel to self-ignite and combust at the time of compression. It is a combustion form. Conventionally, in this region where stratified charge air compression auto-ignition combustion is performed, the EGR rate is high and the thermal energy necessary for auto-ignition combustion cannot be maintained, so irregular combustion that makes it difficult to perform premixed compression auto-ignition combustion is difficult. It was generated.
  • the stratified air-fuel mixture field is a state in which a large amount of air and fuel are distributed in the central portion of the combustion chamber 10 and a large amount of burned gas is distributed on the outside of the combustion chamber 10 so as to be substantially stratified.
  • This stratified air-fuel mixture is generated by appropriate operation control of the exhaust control valve 24 that adjusts the opening degree ⁇ EX of the exhaust port and proper operation of the fuel injection valve 9 that can control the fuel injection timing tl3 ⁇ 4 and the fuel injection amount F. Control, proper operation control of the sub-throttle valve 18 with adjustable air supply to the crank chamber 4a, and the combustion chamber 10 with the top 10a offset, which is a typical embodiment of the present invention. It becomes a component of the stratified mixed air field forming means.
  • FIG. 3 shows the case where the engine speed Ne is set to a predetermined speed Ne indicated by a broken line III in FIG. The relationship between the engine torque Te and each output value is shown. At this rotational speed Ne
  • the piston 5 In the region where the fuel injection timing tf is in the high load range and the premixed spark ignition combustion is performed, the piston 5 is positioned near the bottom dead center in the compression stroke so that the fuel does not blow through the exhaust port 21. Set to range. Similarly, in the region where the premixed compression auto-ignition combustion is performed in the low load region, the range in which the fuel does not blow out from the exhaust port 21 is set. Further, in both of these regions, a sufficient time is ensured for mixing the fuel into the entire combustion chamber 10 after the injection until the end of the compression stroke. On the other hand, in the low load region where the stratified charge air compression self-ignition combustion is performed, it is set to become slower as the load decreases. Further, the fuel injection amount F is set so as to increase as the engine torque Te increases, and is set so as to achieve an optimum air-fuel ratio for each combustion mode.
  • the opening ⁇ EX of the exhaust port 21 is substantially constant regardless of the engine torque Te in the region where the stratified charge air compression compression ignition combustion is performed in the low load region, and is a predetermined low value. It has come to take. In the region where the premixed compression auto-ignition combustion is performed in the low load region, the opening ⁇ EX increases as the engine torque Te increases, and the stratified charge air compression auto-ignition combustion proceeds. The opening ⁇ EX is larger than the region where the operation is performed. In the high load range where premixed spark ignition combustion is performed, the opening ⁇ EX gradually increases as the engine torque Te increases, and premixed compression ignition combustion The opening ⁇ EX is larger than the region where the operation is performed.
  • the opening ⁇ EX of the exhaust port 21 is set to be smaller as the load is lower, and the EGR rate is adjusted to increase. However, if the EGR rate is increased too much, In order to reduce the EGR rate again in the low-load low-rotation range and to the low-load side, there is a risk that the combustion suppression effect of the gas will work so much that self-ignition combustion cannot be performed.
  • the opening ⁇ EX of the exhaust port 21 changes so as to increase.
  • the opening degree ⁇ EX of the exhaust port 21 is increased by retracting the valve piece 24a upward, The air stroke is performed by opening the exhaust port 21 closed by the side surface of the piston 5 to the cylinder chamber 3a as the piston 5 moves downward.
  • the exhaust start timing can be adjusted according to the opening degree ⁇ EX of the exhaust port 21.
  • the opening ⁇ EX is set so that the optimum exhaust start timing is reached in order to increase the output, and the opening gradually increases as the engine torque Te increases.
  • the exhaust start time is set so that ⁇ EX becomes large.
  • the opening ⁇ THs of the sub-throttle valve 18 is set so that the opening ⁇ THs increases as the load decreases in the region where the stratified charge air compression compression ignition combustion is performed in the low load region. Is set. For this reason, the lower the load, the greater the amount of air supplied from the intake sub-passage. In the region where premixed compression self-ignition combustion and premixed spark ignition combustion are performed, the opening ⁇ THs of the sub-throttle valve 18 is set to zero so that air from the intake sub-passage is not replenished. Become.
  • the opening ⁇ EX of the exhaust port 21 is set to be large, so that the pressure field bias in the cylinder chamber 3a is small. Since the amount of air supplied from the scavenging outlet 33 is large, scavenging efficiency is high and burned gas is sufficiently exhausted. At the same time, since the fuel injection timing tl3 ⁇ 4S is set earlier, the amount of the remaining burned gas is small and the three compositions are sufficiently mixed in the combustion chamber 10. For this reason, when spark ignition combustion is performed by the ignition plug 8 that is controlled to operate at a predetermined spark ignition timing ts, flame propagation is performed from the ignition portion 8a to the entire combustion chamber 10, and the crankshaft with high output is achieved. 6 can be rotated. In this way, premixed spark ignition combustion is performed in the high load range.
  • the opening degree ⁇ EX of the exhaust port 21 is adjusted to adjust the EGR rate, and the gas temperature in the cylinder chamber 3a at the end of the compression stroke becomes equal to the predetermined temperature T shown in FIG.
  • the EGR rate increases as the amount of air supplied from the scavenging outlet 33 into the cylinder chamber 3a decreases.
  • the opening degree ⁇ EX of the exhaust port 21 is set to be further smaller than that in the low-load medium-high rotation range, so that the exhaust pressure is increased and the exhaust port 21 is increased.
  • the pressure field is biased between the vicinity of and the vicinity of the scavenging outlet 33.
  • the air supplied from the scavenging outlet 33 has a small amount of supply, so the turbulence is originally small, and it is affected by this pressure field deviation, causing no horizontal flow and upward vortex. To form a flow.
  • the air supplied to the cylinder chamber 3a as well as the scavenging outlet 33 flows intensively toward the center of the recess 2a formed on the inner wall surface of the cylinder head 2.
  • the top portion 10a of the combustion chamber 10 is offset from the cylinder shaft A on the cylinder outlet A to the exhaust port 21 side.
  • the bias of the pressure field is further increased between the side where the exhaust port 21 is provided across the cylinder shaft A and the opposite side. Therefore, as indicated by the arrow in FIG. 4, the air supplied with the scavenging outlet 33 force is further encouraged to form a vertical swirl flow, flows around the exhaust control valve 24, and flows into the cylinder head 2. It flows more intensively toward the recess 2a formed on the wall surface.
  • the conventional combustion mode cannot perform self-ignition combustion, and the load of air supplied from the scavenging outlet 33 is less disturbed.
  • the exhaust pressure 21 is adjusted by adjusting the opening degree ⁇ EX of the exhaust port 21 so that the supplied air forms a vertical spiral flow.
  • the supplied air is not well mixed in the cylinder chamber 3a and is led to the center of the combustion chamber 10 to promote stratification.
  • a state with a low EGR rate is locally formed in the combustion chamber, and even in a load region that cannot be combusted in a state of being mixed almost uniformly as in the prior art, auto-ignition combustion is possible. Can be continued. Therefore, it is possible to provide a two-cycle engine in which irregular combustion is eliminated and fuel cost is improved.
  • the top portion 10 a of the combustion chamber 10 is offset to the exhaust port 21 side with respect to the cylinder axis A.
  • the air supplied from the scavenging outlet 33 can flow more intensively toward the combustion chamber 10, and the formation of the stratified mixture field can be performed more reliably.
  • the opening degree ⁇ THs of the sub throttle valve 18 is increased accordingly, and the air is also supplied to the intake sub passage force. Yes.
  • the amount of air supplied from the scavenging outlet 33 into the cylinder chamber 3a is stabilized, and the flow of air supplied from the scavenging outlet 33 can be controlled stably.
  • the stratified mixture field can be continuously formed stably, and the stratified compression auto-ignition combustion can be stably performed.
  • the temperature of the engine E or the temperature of the residual gas in the combustion chamber 10 is low, such as when the engine E is started or idling. In this case, the supply air and the supply fuel may not be able to obtain sufficient heat energy necessary for autoignition combustion and sufficient residual gas power.
  • a second typical embodiment of the two-cycle engine according to the present invention will be described with reference to FIGS. 6 and 7 as an engine that can reliably eliminate irregular combustion even in such a case.
  • This exemplary embodiment is obtained by changing the control contents in the ECU 40 with respect to the first exemplary embodiment, and the configuration of the engine E and the electrical connection relation of the ECU 40 are shown in FIG. It is the same as the embodiment.
  • the ignition plug 8 is preferably attached to the cylinder head 2 so that the ignition part 8a is positioned at the central part 10c of the combustion chamber 10! /.
  • a low load and low rotation range (very low load low rotation range and First, instead of stratified charge compression auto-ignition combustion, stratified charge spark ignition combustion is performed.
  • stratified charge air spark ignition combustion in a state in which a stratified mixture field is formed in the combustion chamber 10, the air-fuel mixture that also has air and fuel power is spark-ignited using the spark plug 8.
  • premixed spark ignition combustion, premixed compression autoignition combustion, and stratified charge compression autoignition combustion are performed.
  • the FIG. 7 shows an engine torque at a predetermined engine speed Ne indicated by a broken line VII in FIG.
  • Te The relationship between Te and each output value is shown.
  • the fuel injection timing tl ⁇ is set later so that the supplied fuel is not sufficiently diffused throughout the combustion chamber 10 compared to other regions, and the fuel is set to an optimal air-fuel ratio. Since the injection amount F is set low and the opening ⁇ THm of the intake throttle valve 16 is almost zero, the subthrottle valve 18 opening ⁇ THs increases as the load decreases to adjust the air supply. In addition, if the EGR rate is increased too much, the combustion suppression effect of burnt gas is greatly affected.Therefore, the opening of the exhaust port ⁇ EX is set to increase as the load decreases. Yes.
  • each output value is set in this manner in the extremely low load and low rotation range, and therefore, stratified mixing is performed in the combustion chamber 10 as in the first exemplary embodiment.
  • An air field is formed.
  • the air-fuel mixture collected in the central portion 10c is spark-ignited and combusted by the ignition plug 8 controlled to operate at a predetermined spark ignition timing ts. Since the ignition part 8a of the ignition plug 8 is positioned in the central part 10c, the mixture collected in the central part 10c is easily ignited! / Speak.
  • a stratified mixture field was formed in an extremely low load low rotation region where the temperature of the residual gas was low and the thermal energy required for autoignition combustion could not be obtained.
  • spark ignition combustion is performed. For this reason, irregular combustion that may have occurred in the region where stratified charge air compression self-ignition combustion was performed can be more reliably eliminated.
  • combustion modes are performed according to the engine speed and engine load, and the optimum combustion mode is fine between the extremely low load low rotation range and the high load range. It can be selected and set to improve fuel efficiency and driving performance.
  • the appropriate supply air amount and EGR rate differ depending on the combustion mode, but since this combustion mode is carefully set, when changing the combustion mode, the supply air amount and EGR rate are extremely reduced. It is not necessary to change the operation, and the operation control of various devices according to the combustion mode can be smoothly transferred, and the running performance can be improved.
  • the exemplary embodiment of the two-cycle engine according to the present invention has been described above.
  • the configuration is not limited, and can be changed as appropriate.
  • the top portion 10a is offset to the exhaust port 21 side to form the combustion chamber 10, but even if it is offset to the opposite side of the exhaust port 21 to form the combustion chamber 10, the same effect is obtained.
  • the same effect can be obtained.
  • the ECU 40 is configured to perform control for correcting each output value obtained from the arithmetic expression using the engine load condition as an input parameter as described above according to the engine temperature condition and the intake air environmental condition. It may be. For example, if the engine temperature is low, the loss of heat energy of burned gas increases, and there is a problem when the temperature of burned gas is kept high.
  • the ECU 40 may be configured to control the operation of the servo motor based on the correction value and to adjust the opening degree ⁇ EX of the exhaust port 21 so that the engine temperature becomes higher.
  • correction control that incorporates engine temperature conditions in this way, self-ignition combustion can be performed in a more appropriate state.
  • a configuration in which the combustion mode is set according to the engine temperature condition is effective.
  • stratified compression auto-ignition combustion is further performed so as to expand the region where stratified charge air spark ignition combustion is performed to the high load side. It is preferable to set so that each output value is corrected so as to expand the region to be performed to the high load side. This makes it possible to more reliably eliminate irregular combustion in the low load and low rotation range.
  • each output value obtained from the arithmetic expression changes, the trend of the diagram changes, and the control state of various devices changes.
  • the calculation formula for obtaining each output value can be changed as appropriate according to the output characteristics of the engine, and the engine torque Te corresponding to the same predetermined engine speed Ne and each output
  • the present invention has an exhaust control valve capable of adjusting the opening degree of the exhaust port, and can operate the exhaust control valve to cause self-ignition combustion of supply air and supply fuel in the combustion chamber. Available for engines.

Abstract

 2サイクルエンジン1は、点火装置8と、排気制御弁24と、点火装置8および排気制御弁24を制御する制御装置40とを備える。制御装置40は、高負荷域では点火装置8を作動させて火花点火燃焼させる制御を行い、低負荷域では排気口21の開度の調整によりシリンダ室3a内の圧力を調整して燃焼室10内で混合気を自着火燃焼させる制御を行う。更に、低負荷低回転域において、燃焼室10の中央部10cにエアおよび燃料が多く分布し、燃焼室10の中央部の外側10bに燃焼室10内に残留した既燃ガスが多く分布する成層混合気場が形成され、低負荷低回転域ではこの成層混合気場を形成させて混合気を自着火燃焼させる。

Description

明 細 書
2サイクルエンジン
技術分野
[0001] 本発明は、排気口の開度を調整可能な排気制御弁を有して構成され、この排気制 御弁を作動させて燃焼室内の供給エアおよび供給燃料を自着火燃焼させることがで きるように構成された 2サイクルエンジンに関する。
背景技術
[0002] 2サイクルエンジンは、吸気量が少なくなると掃気効率が低下して排気口から充分 な排気が行われず、シリンダ室内に大量の既燃ガスが残留する(以下、このようなガ スを「残留ガス」とも称する)。また、一般に、既燃ガスが残留する燃焼室内にエアおよ び燃料が送り込まれると、燃焼室内ではこの 3組成が略均一に混合される。残留ガス は、燃焼により高温となって高い熱エネルギーを保持する一方、不活性ガスであるこ とから燃焼を抑制する効果を有する。
[0003] このため、エンジンが低負荷域にある場合において、燃焼室内に供給されたエアお よび燃料と、前行程で燃焼室内に残留した既燃ガスとが混合された状態で点火ブラ グを利用した火花点火燃焼を行うと、上記効果を有する残留ガスにより着火や着火 後の火炎伝播が阻害され、不整燃焼が生じる。不整燃焼が生じると、供給された燃 料が完全に燃焼されず、また、有害物質を含む未燃ガスが外部に排出されるため、 燃費面や環境面での課題になって 、る。
[0004] これに対し、排気口の開度を制御可能な排気弁を設けて構成されたエンジンが知 られている(例えば、特開平 07-071279参照)。このようなエンジンにおいては、負荷 に応じて排気弁を作動制御して排気口の開度を調整し、圧縮行程開始時における シリンダ内における全ガスの質量に対する残留ガスの質量の割合 (以下、この割合を 「EGR率」と称する)を調整し、残留ガスの熱エネルギーを利用して燃焼室内の混合 気を加熱させ、混合気を自着火燃焼させるように構成されて 、る。
[0005] この形態のエンジンにお ヽては、高負荷域では火花点火燃焼を行わせ、低負荷域 では自着火燃焼を行わせるように、排気弁や点火プラグの作動制御が行われるよう に構成されている。自着火燃焼は、燃焼形態がバルタ燃焼であるため、燃焼室内の 全体で不整燃焼が解消され、燃費の改善および有害排出ガスの低減が図られる。
[0006] 図 8に示すように、残留ガスは熱エネルギーを保持するため、 EGR率の上昇に伴つ て圧縮行程終了時のシリンダ室内のガス温度は上昇する。また、所定温度 T を上回
AR
ると自着火燃焼させることができることが確認されている。一方、図 9に示すように、燃 焼行程終了時においては、残留ガス自身の燃焼抑制効果から、 EGR率の上昇に伴 つてシリンダ室内のガス温度は下降する。このため、 EGR率が高くなるように排気弁 を作動制御して圧縮行程終了時のガス温度を高温に保つように図っても、 EGR率が 所定値 EGR を超えると、燃焼行程終了時のガス温度の低下が大きいことから、次
AR
の圧縮行程でエアおよび燃料を充分に加熱するだけの熱エネルギーが不足し、自 着火燃焼に必要な温度 τ を維持できなくなる。
AR
[0007] この現象は、特に高出力型のエンジンにおいて、低負荷低回転域にあり、エアの供 給量が少なくなつて掃気流のコントロールが難しくなつた場合などに起こっている。こ のような自着火燃焼させることができな 、領域にぉ 、ては、依然として不整燃焼が生 じており、低負荷域における不整燃焼の解消が課題となっていた。
発明の開示
[0008] 本発明の一または一以上の実施例は、低負荷域での不整燃焼が解消されて燃費 の向上が図られた 2サイクルエンジンを提供する。
[0009] 本発明の一または一以上の実施例によれば、 2サイクルエンジンは、シリンダ室が 形成されてシリンダ室内にピストンを収容したシリンダと、点火部を燃焼室内に臨ませ る点火装置と、シリンダ室の内周面に開口する排気口に繋がる排気通路の開度を調 整する排気制御弁と、点火装置および排気制御弁の作動制御を行う制御装置とを有 し、制御装置が、高負荷域では点火装置を作動させてシリンダ室内に供給された供 給エアおよび供給燃料カゝらなる混合気を燃焼室内で火花点火燃焼させる制御を行 い、低負荷域では排気口の開度の調整によりシリンダ室内の圧力を調整し、燃焼室 内で混合気を自着火燃焼させる制御を行うように構成された 2サイクルエンジンに関 する。そして、低負荷域内における低回転域である低負荷低回転域において、燃焼 室の中央部に混合気が多く分布し、燃焼室の中央部の外側に燃焼室内に残留した 既燃ガスが多く分布する成層混合気場を形成する成層混合気場形成手段を有して おり、低負荷低回転域では成層混合気場形成手段により成層混合気場を形成させ て混合気を自着火燃焼させる制御を行うように制御装置を構成して ヽる。
[0010] さら〖こは、制御装置を、低負荷低回転域内における低負荷且つ低回転域である極 低負荷低回転域にお!ヽては、点火装置を作動させて成層混合気場を形成して ヽる 混合気を火花点火燃焼させる制御を行うように構成してもよ!/ヽ。
[0011] また、成層混合気場形成手段が排気制御弁を有してなり、制御装置が、低負荷低 回転域では、排気口の開度が小さくなるように排気制御弁を作動させ、低負荷域内 における中回転域である低負荷中回転域では、低負荷低回転域と比べて排気口の 開度が大きくなり、かつ、負荷の上昇に伴って排気口の開度が上昇するように排気制 御弁を作動させ、高負荷域では、低負荷中回転域と比べて排気口の開度が大きくな り、かつ、負荷の上昇に伴って排気口の開度が上昇するように排気制御弁を作動さ せる制御を行うように構成されることが好ま 、。
[0012] また、成層混合気場形成手段が、頂部をシリンダ室の円筒軸に対して排気口側ま たはその反対側にオフセットして設けられた燃焼室を有してなることが好まし 、。また
、成層混合気場形成手段が、制御装置により作動制御されて供給燃料を燃焼室内 に直接噴射して供給する直噴装置を有してなり、制御装置が、低負荷低回転域では 、供給燃料をシリンダ室内に供給する時期が低負荷中回転域および高負荷域と比 ベて遅くなるように直噴装置を作動させる制御を行うように構成されることが好ま U、
。さらに、成層混合気場形成手段が開度に応じて燃焼室内への供給エアの供給量を 調整可能に構成されたサブスロットルバルブを有してなり、制御装置が、低負荷低回 転域では、負荷の低下に伴ってサブスロットルバルブの開度が大きくなるようにサブ スロットルバルブを作動させ、供給エアの供給量を増カロさせる制御を行うように構成さ れることが好ましい。
[0013] そして、負荷を検出する負荷検出装置と、エンジン温度を検出する温度検出装置と を設け、制御装置が、負荷検出装置により検出された負荷および温度検出装置によ り検出されたエンジン温度に基づいて、燃焼室内に供給燃料が供給される時期、供 給燃料の供給量、および、排気口の開度を調整する制御を行うように構成されること が好ましい。
[0014] 本発明の一または一以上の実施例の 2サイクルエンジンによると、低負荷低回転域 では成層混合気場形成手段により、燃焼室の中央部に混合気が多く分布してその 外側に既燃ガスが多く分布した成層混合気場が形成される。このため、燃焼室全体 でみれば、すなわち、 3組成が均一に混合されているとすれば、自着火燃焼させるこ とができない高 EGR率であっても、中央部に EGR率が低く自着火燃焼可能な状態 が局所的に作り出される。したがって、本構成では、従来のように 3組成が略均一に 混合された状態では自着火燃焼させることができなカゝつた領域に対しても自着火燃 焼させることができ、自着火燃焼可能な領域が拡大されて燃費の改善や有害排出ガ スの低減が図られる。
[0015] また、極低負荷低回転域にお!ヽて、点火装置を作動させて成層混合気場を形成し て 、る混合気を火花点火燃焼させる制御を行うように構成すると、低温時等の低負 荷域での不整燃焼がより確実に解消され、さらなる燃費の改善や有害排出ガスの低 減が図られる。
[0016] また、成層混合気場形成手段として排気制御弁を備え、制御装置により、低負荷低 回転域では、他の負荷領域と比べて排気口の開度が小さくなるように排気制御弁の 作動制御が行われるようになつている。これにより、排気圧が高くなるように調整され、 シリンダ室内に供給された供給エアは排気口に向けて流れず、縦渦状の流れを形成 して燃焼室に導かれる。このようにしてエアと残留ガスの成層化が促され、低負荷低 回転域での自着火燃焼を行わせることができる。
[0017] また、成層混合気場形成手段として、燃焼室の頂部をシリンダ室の円筒軸に対して 排気口側またはその反対側にオフセットしている。これにより、シリンダ室の円筒軸を 挟んで排気口が設けられている側と、その反対側とで大きな圧力場の偏りが形成さ れ、縦渦状の流れの形成が促される。このため、成層混合気場の形成をより確実に 行わせることができる。
[0018] また、成層混合気場形成手段としてシリンダ室内に燃料を直接噴射する直噴装置 を備え、制御装置により、低負荷低回転域では、他の負荷領域と比べて燃料噴射時 期が遅くなるように直噴装置の作動制御が行われるようになつている。これにより、燃 料がシリンダ室内、燃焼室内の全体に行き渡らせる時間が充分に確保されな 、ため 、成層混合気場の形成をより確実に行わせることができる。
[0019] また、成層混合気場形成手段として、開度の調整によりシリンダ室内へのエア供給 量を調整可能なサブスロットルバルブを備え、制御装置により、低負荷低回転域では 、負荷の低下に伴ってサブスロットルバルブの開度が大きくなるようにサブスロットル バルブの作動制御が行われるようになつている。これにより、負荷が低下してシリンダ 室内に供給されるエアの量が不足するときであっても不足を補ってエアを供給するこ とができ、シリンダ室内に供給されるエアの量を安定させ、成層混合気場を形成する ためのエアの流れを負荷の増減に関わらず安定して制御することができる。
[0020] その他の特徴および効果は、実施例の記載および添付のクレームより明白である。
図面の簡単な説明
[0021] [図 1]本発明に係る 2サイクルエンジンの典型的実施例であるエンジンの断面図であ る。
[図 2]第 1典型的実施例における燃焼形態の領域を示すグラフである。
[図 3]第 1典型的実施例におけるエンジントルクと各種装置の制御状態との関係を示 すグラフである。
[図 4]低負荷低回転域における掃気出口からのエアの流れを示すエンジンの断面図 である。
[図 5]成層混合気場の模式図である。
[図 6]第 2典型的実施例における燃焼形態の領域を示すグラフである。
[図 7]第 2典型的実施例におけるエンジントルクと各種装置の制御状態との関係を示 すグラフである。
[図 8]EGR率と圧縮行程終了時のシリンダ室内のガス温度との関係を示すグラフであ る。
[図 9]EGR率と燃焼行程終了時のシリンダ室内のガス温度との関係を示すグラフであ る。
符号の説明
[0022] 1 エンジン 3 シリンダブロック
4 クランクケース
8 点火プラグ
9 燃焼噴射弁
10 燃焼室
18 サブスロットルバルブ
21 排気口
24 排気制御バルブ
33 掃気出口
40 ECU
発明を実施するための最良の形態
[0023] 以下、図面を参照して本発明の好ましい実施形態について説明する。図 1に本発 明の典型的実施例に係る 2サイクルエンジンを示している。エンジン 1は、シリンダへ ッド 2と、シリンダブロック 3と、クランクケース 4とが上下に重なるように結合されて構成 されている。
[0024] シリンダブロック 3は、内部にシリンダ室 3aが形成されており、このシリンダ室 3a内を 上下に摺動可能にピストン 5が配設されている。クランクケース 4は、シリンダブロック 3 に結合され、クランクシャフト 6が収容されるクランク室 4aをシリンダ室 3aに連通させて いる。ピストン 5およびクランクシャフト 6はコンロッド 7を介して連結される。また、シリン ダ室 3aの内周面 3bと、ピストン 5の上面と、シリンダヘッド 2の内壁面とに囲まれて燃 焼室 10が形成されている。シリンダヘッド 2には、点火プラグ 8および燃料噴射弁 9が 取り付けられており、点火プラグ 8の点火部 8aおよび燃料噴射弁 9のノズル部 9aをシ リンダヘッド 2の内壁面力 燃焼室 10に臨ませて 、る。
[0025] 図 4に示すように燃焼室 10は、シリンダヘッド 2の内壁面に形成された凹部 2aにより 、略半球形状に形成されて上方に頂部 10aを有している。頂部 10aは、一点鎖線で 示すシリンダ軸 Aに対して後述する排気口側にオフセットされている。点火プラグ 8は 、点火部 8aをこのような燃焼室 10内に所定の突出量だけ突出させて設けられている 。燃料噴射弁 9は、ノズル部 9aを燃焼室の頂部 10aから所定の突出量だけ下方に突 出させて設けられており、ノズル部 9aからシリンダ室 3a内に燃料を直接噴射する。
[0026] クランクケース 4には、一端力クランク室 4aに連通する吸気口 11に繋がり、他端が 外部に連通する吸気通路 12が形成され、吸気通路 12には吸気マ-ホールド 14が 接続されている。吸気通路 12には、弾性変形可能なリード片カも構成されるリードバ ルブ 15が設けられており、吸気マ-ホールド 14には、開度 Θ THmが可変の吸気スロ ットルバルブ 16が取り付けられている。さらに、吸気マ-ホールド 14には、図示しな い吸気サブ通路が吸気スロットルバルブ 16の下流側に連通して接続されており、こ の吸気サブ通路には開度 Θ THsが可変のサブスロットルバルブ 18が取り付けられる 。なお、吸気スロットルバルブ 16およびサブスロットルバルブ 18の上流側には図示し ないエアクリーナが繋がり、吸気マ-ホールド 14にはエアタリーナカもの清浄なエア が供給される。
[0027] リードバルブ 15は、常には吸気通路 12を閉塞するようにリード片が片持ち支持され てなり、クランク室 4aが負圧になるとリード片が橈んで吸気通路 12を開放する。吸気 スロットルバルブ 16は、図示しないスロットルグリップの手動操作に応じて開度 θ TH mを変化させ、この開度 Θ THmに応じてクランク室 4aに供給されるエアの量を変化さ せる。また、サブスロットルバルブ 18を作動させて開度 Θ THsを調整することにより、ク ランク室 4aに供給されるエアが補給され、吸気スロットルノ レブ 16の開度 Θ THmに 関わらずクランク室 4aに供給されるエアの量を調整できる。
[0028] また、シリンダブロック 3には、一端がシリンダ室 3aに連通する排気口 21に繋がり、 他端が外部に連通する排気接続口 23に繋がる排気通路 22が設けられている。排気 通路 22には、排気制御ノ レブ 24が設けられている。この排気制御バルブ 24は、側 面視扇形状に形成されて揺動自在のバルブ片 24aを有して構成されている。バルブ 片 24aはサーボモータ 24bを駆動源として揺動し、この揺動によって排気口 21は上 方から下方に向けて閉鎖されるようになっている。サーボモータ 24bを駆動制御して バルブ片 24aの揺動位置を調整することにより、バルブ片 24aを上方の退避位置に 揺動させた全開状態から、バルブ片 24aを下動限界位置まで揺動させた全閉状態の 間で、排気口 21の開度 θ EXを無段階的に調整できる。
[0029] さらに、シリンダ室 3aには排気口 21よりも下方に位置して掃気出口 33が開口し、ク ランク室 4aには掃気入口 31が開口している。シリンダブロック 3およびクランクケース 4が結合されることにより、一端がこの掃気入口 31に連通し、他端力この掃気出口 33 に連通する掃気通路 32が形成される。
[0030] このように構成されるエンジン 1は、ピストン 5が下死点から上動すると、クランク室 4a が負圧となってリードバルブ 15が開弁して吸気スロットルバルブ 16の開度 Θ THmに 応じた量のエアがクランク室 4aに供給される一方、シリンダ室 3a内のガスが圧縮され る(吸気'圧縮行程)。このとき、燃料噴射弁 9から所定噴射時期に所定噴射量の燃 料がシリンダ室 3a内に噴射される。そして、ピストン 5が上死点近傍まで上動したとこ ろで圧縮されたエアおよび燃料の混合気を燃焼させる (燃焼行程)。これによりピスト ン 5は上死点から下動する。
[0031] ピストン 5が下動すると、ピストン 5の側面により閉塞されていた排気口 21がシリンダ 室 3aに開放され、既燃ガス力 S排気口 21から排気通路 22へと排出される (排気行程) 。さらに、ピストン 5が下動すると、排気口 21の下方に位置する掃気出口 33がシリン ダ室 3aに開放される一方、ピストン 5の下動によりクランク室 4a内で圧縮されたエアが 掃気入口 31から掃気通路 32に流入する。掃気通路 32に流入したエアは掃気出口 3 3からシリンダ室 3a内に供給され、既燃ガスの排出が促される (排気 ·掃気行程)。再 びピストン 5が下死点力 上動すると、ピストン 5の側面により掃気出口 33および排気 口 21カ 噴〖こ閉塞され、吸気'圧縮行程が行われる。
[0032] エンジン 1の燃焼行程開始時 (圧縮行程終了時)において、燃焼室 10内には、掃 気出口 33から供給されたエアと、燃料噴射弁 9から噴射された燃料と、前の排気'掃 気行程において排気口 21から排出されずにシリンダ室 3a内に残留した既燃ガスの 3 組成が存在する。既燃ガスは、高温で高い熱エネルギーを保持している一方、不活 性ガスであり燃焼抑制効果を有している。このため、掃気出口 33からのエアの供給 量が少なく EGR率が上昇した状態で点火プラグ 8を利用した火花点火燃焼を行って も、既燃ガスの燃焼抑制効果により点火部 8aからの火炎伝播が阻害されて不整燃焼 が生じる。このような不整燃焼を回避するため、後述するようにコントロールユニット( 以下、「ECU」と称する) 40により、排気口 21の開度 θ EXを調整して EGR率を調整 し、既燃ガスの熱エネルギーを利用してエアおよび燃料を最適時期で自着火燃焼さ せる制御が行われる。
[0033] また、排気 ·掃気行程において掃気出口 33から供給されるエアの量が多いとき、す なわち、吸気スロットルバルブ 16の開度 Θ THmが大きく負荷が高い場合には、供給 されたエアの流れに乱れが生じて 3組成がよく混合され、燃焼行程開始時には 3組成 が燃焼室内で略均一に混合された状態となる。一方、エンジン負荷が低ぐ掃気出 口 33から供給されるエアの量が少ないとき、供給されたエアの流れは乱れが小さくな る。
[0034] エンジン 1には、排気制御バルブ 24、点火プラグ 8、燃料噴射弁 9およびサブスロッ トルバルブ 18等の各種の装置の作動制御を行うように構成された ECU40が備えら れている。エンジン 1には各種のセンサが配設されており、これらセンサからの検出信 号力 ¾CU40に入力される。センサとして、例えば、エンジン回転速度 Neを検出する エンジン回転速度センサ 51、吸気スロットルバルブ 16の開度 Θ THmを検出するスロ ットル開度センサ 52、冷却水温度 Twを検出する冷却水温度センサ 53、シリンダ内周 面温度 Tcを検出するシリンダ温度センサ 54、吸気温度 Tiを検出する吸気温度セン サ 55、大気圧 Pを検出する圧力センサ 56などが設けられている。
[0035] ECU40は、これら各入力値に基づ!/、て、燃料噴射時期ぱ、燃料噴射量 F、排気口 21の開度 θ EX、サブスロットルバルブ 18の開度 Θ THs、および、火花点火時期 tsを それぞれ出力値として求める。 ECU40には、エンジン回転速度 Neおよび吸気スロッ トルバルブ 16の開度 Θ THmを入力パラメータとする所定の演算式が記憶されており 、この演算式から各出力値ぱ, F, θ EX, Θ THs, tsが求められる。
[0036] ECU40は、演算式から求められた各出力値に基づいて、燃料噴射弁 9に作動制 御信号を出力し、所定の燃料噴射時期 tfC所定の燃料噴射量 Fの燃料を噴射させる ように燃料噴射弁 9を作動制御する。また、サーボモータ 24bに作動制御信号を出力 し、排気制御バルブ 24のバルブ片 24aを所定の揺動位置まで揺動させるようにサー ボモータ 24bを作動制御し、排気口 21を所定の開度 θ EXに調整する。さらに、サブ スロットルバルブ 18に作動制御信号を出力し、所定の開度 Θ THsになるようにサブス ロットルバルブ 18を作動制御し、クランク室 4aへのエアの供給量を調整する。そして 、点火プラグ 8に作動制御信号を出力し、所定の火花点火時期 tsで火花点火が行わ れるように点火プラグ 8を作動制御する。
[0037] 図 2は、エンジン 1の燃焼形態の領域をエンジン回転速度 Neおよびエンジントルク Teに応じて示している。 ECU40は、上記演算式を用いてエンジン回転速度 Neおよ び吸気スロットルバルブ 16の開度 Θ THmに応じて各装置を作動制御し、高負荷域で は予混合火花点火燃焼を行わせ、低負荷中高回転域では予混合圧縮自着火燃焼 を行わせ、低負荷低回転域では成層給気圧縮自着火燃焼を行わせる制御を行うよう に構成されている。なお、図 3に示すように、エンジントルク Teは吸気スロットルバル ブ 16の開度 Θ THmに対応して増減する。
[0038] ここで、予混合火花点火燃焼とは、点火プラグ 8を作動させてエアおよび燃料を火 花点火燃焼させ、火花点火された点火部 8aの近傍から燃焼室 10の全体に火炎伝 播させて燃焼室 10内のエアおよび燃料を燃焼させるものであり、従来行われている 火花点火燃焼の形態である。このとき、燃焼室 10内の 3組成は、略均一に混合され た状態になっている。予混合圧縮自着火燃焼とは、同様に燃焼室 10内で 3組成が略 均一に混合された状態で、圧縮時にエアおよび燃料を自着火燃焼させるものであり 、従来行われている圧縮自着火燃焼の形態である。
[0039] 成層給気圧縮自着火燃焼とは、燃焼室 10内で 3組成が略成層化された成層混合 気場で、圧縮時にエアおよび燃料を自着火燃焼させるもので、本発明の特徴となる 燃焼形態である。従来この成層給気圧縮自着火燃焼を行わせる領域では、 EGR率 が高く自着火燃焼させるために必要な熱エネルギーを維持できな 、ため予混合圧縮 自着火燃焼を行うことが難しぐ不整燃焼を生じさせていた。成層混合気場は、燃焼 室 10の中央部にエアおよび燃料が多く分布し、その外側に既燃ガスが多く分布して 略成層化された状態になったものである。この成層混合気場は、排気口の開度 θ EX を調整する排気制御バルブ 24の適切な作動制御と、燃料噴射時期 tl¾よび燃料噴 射量 Fを制御可能な燃料噴射弁 9の適切な作動制御と、クランク室 4aへのエア供給 量を調整可能なサブスロットルバルブ 18の適切な作動制御と、頂部 10aがオフセット された燃焼室 10とにより形成され、これらが本発明の典型的実施例に係る成層混合 気場形成手段の構成要素となる。
[0040] 図 3は、エンジン回転速度 Neを図 2に破線 IIIで示す所定の回転速度 Neとしたとき におけるエンジントルク Teと各出力値との関係を示している。この回転速度 Neにお
1 いては、エンジントルク Teの変化に応じて上記 3つの燃焼形態を取り得るようになつ ている。以下、図 3を参照し、負荷に応じて行われる各種装置の作動制御および各 燃焼形態における各種装置の作動について説明する。
[0041] 燃料噴射時期 tfは、高負荷域にあって予混合火花点火燃焼を行わせる領域では、 圧縮行程においてピストン 5が下死点近傍に位置して排気口 21から燃料が吹き抜け ないような範囲に設定されている。また、低負荷域にあって予混合圧縮自着火燃焼 を行わせる領域においても、同様に排気口 21から燃料が吹き抜けない範囲に設定さ れる。また、これら両領域においては、噴射後から圧縮行程終了時までに燃料を燃 焼室 10の全体に混合させる時間が充分に確保されている。一方、低負荷域にあって 成層給気圧縮自着火燃焼を行わせる領域では、負荷の低下に伴って遅くなるように 設定されている。また、燃料噴射量 Fは、エンジントルク Teの上昇に伴って上昇する ように設定されており、各燃焼形態にぉ 、て最適の空燃比となるように設定されて ヽ る。
[0042] 排気口 21の開度 θ EXは、低負荷域にあって成層給気圧縮自着火燃焼を行わせる 領域では、エンジントルク Teに関わらずほぼ一定に推移しており、所定の低い値をと るようになっている。そして、低負荷域にあって予混合圧縮自着火燃焼を行わせる領 域では、エンジントルク Teの上昇に伴って開度 θ EXが大きくなるように推移しており 、成層給気圧縮自着火燃焼を行わせる領域よりも開度 θ EXが大きくなつている。そし て、高負荷域にあって予混合火花点火燃焼を行わせる領域では、エンジントルク Te の上昇に伴って緩やかに開度 θ EXが大きくなるように推移しており、予混合圧縮自 着火燃焼を行わせる領域よりも開度 θ EXが大きくなつている。
[0043] このように、低負荷ほど、排気口 21の開度 θ EXが小さくなるように設定されており、 EGR率を増大させるように調整されるが、あまりに EGR率を増大させると既燃ガスの 燃焼抑制効果が働きすぎて自着火燃焼を行わせることができなくおそれがあることか ら、低負荷低回転域内にぉ ヽて低負荷側にぉ ヽては再び EGR率を下げるために排 気口 21の開度 θ EXが大きくなるように推移している。なお、排気制御バルブ 24は、 バルブ片 24aを上方に退避させることで排気口 21の開度 θ EXが大きくなる一方、排 気行程は、ピストン 5の下動に伴ってピストン 5の側面により閉塞された排気口 21がシ リンダ室 3aに開放されることにより行われる。すなわち、排気口 21の開度 θ EXに応じ て排気開始時期を調整することができる。予混合火花点火燃焼を行わせる領域では 、高出力化を図るため、最適な排気開始時期になるように開度 θ EXが設定されてお り、エンジントルク Teの上昇に伴って緩やかに開度 θ EXが大きくなるように排気開始 時期が設定されている。
[0044] また、サブスロットルバルブ 18の開度 Θ THsは、低負荷域にあって成層給気圧縮自 着火燃焼を行わせる領域では、負荷の低下に伴って開度 Θ THsが大きくなるように 設定されている。このため、低負荷ほど、吸気サブ通路からのエアの補給量が多くな る。また、予混合圧縮自着火燃焼および予混合火花点火燃焼を行わせる領域では、 サブスロットルバルブ 18の開度 Θ THsはゼロに設定されており、吸気サブ通路からの エアが補給されな 、ようになって 、る。
[0045] このような作動制御により、高負荷域においては、排気口 21の開度 θ EXが大きく 設定されていることからシリンダ室 3a内における圧力場の偏りが小さい状態であるとと もに、掃気出口 33から供給されるエアの量が多いため、掃気効率が高く既燃ガスの 排気が充分に行われる。同時に、燃料噴射時期 tl¾S早く設定されているため、残留 する既燃ガスの量が少ない状態であって 3組成が燃焼室 10内で充分に混合された 状態となる。このため、所定の火花点火時期 tsで作動するように制御された点火ブラ グ 8により火花点火燃焼を行うと、点火部 8aから燃焼室 10の全体に火炎伝播が行わ れ、高出力でクランクシャフト 6を回転させることができる。このようにして高負荷域に ぉ 、て予混合火花点火燃焼が行われる。
[0046] 低負荷中高回転域においては、排気口 21の開度 θ EXを調整して EGR率を調整し 、圧縮行程終了時におけるシリンダ室 3a内のガス温度が図 8に示す所定温度 T を
AR
上回るように制御される。これにより、圧縮行程終了時に、掃気出口 33から供給され たエアおよび燃料噴射弁 9から供給された燃料が自着火燃焼される。このとき、負荷 の低下により、予混合火花点火燃焼を行わせる領域と比べて掃気出口 33からシリン ダ室 3a内に供給されるエアの量は少なくなる力 燃焼室内の 3組成は、排気口 21の 開度 θ EXや燃料噴射弁9の燃料噴射時期 tぬどの制御により、予混合火花点火燃 焼を行わせるときと同様にして略均一に混合された状態が形成されている。このよう にして低負荷中高回転域において予混合圧縮自着火燃焼が行われる。
[0047] 低負荷低回転域においては、上記の通り、掃気出口 33からシリンダ室 3a内に供給 されるエアの量がより少なくなつて EGR率が高くなる。このとき、 ECU40の制御により 、排気口 21の開度 θ EXは、低負荷中高回転域にあるときと比べてさらに小さくなるよ うに設定されていることから、排気圧が高められ、排気口 21の近傍と掃気出口 33の 近傍とで圧力場に偏りが生じる。このため、掃気出口 33から供給されるエアは、供給 量が少ないことから元々乱れが小さい上に、この圧力場の偏りの影響を受け、横方向 への流れを生じず上方に向けて縦渦状の流れを形成する。これにより、掃気出口 33 カもシリンダ室 3a内に供給されたエアは、シリンダヘッド 2の内壁面に形成された凹 部 2aの中央部に向けて集中的に流れる。
[0048] さらに、本典型的実施例においては、燃焼室 10の頂部 10aが、シリンダ軸 A上にな ぐシリンダ軸 Aから排気口 21側にオフセットされている。このため、シリンダ室 3a内 において、シリンダ軸 Aを挟んで排気口 21が設けられている側と、その反対側とで、 圧力場の偏りがさらに大きくなる。したがって、図 4に矢印で示すように、掃気出口 33 力も供給されたエアは、縦渦状の流れの形成がさらに促され、排気制御ノ レブ 24か ら回り込むようにして流れ、シリンダヘッド 2の内壁面に形成された凹部 2aに向けてよ り集中的に流れる。
[0049] このように掃気出口 33からのエアがシリンダヘッド 2の内壁面に形成される凹部 2a の中央部に集中的に流れ込んだ状態にお 、て、 ECU40から出力された作動制御 信号に基づ ヽて、ピストン 5が上死点近傍に位置したところで燃料噴射弁 9のノズル 部 9aから燃料が噴射される。燃料噴射弁 9のノズル部 9aは、燃焼室 10の頂部 10aか ら所定量下方に突出している。このため、上記のようにして燃焼室 10内に集められた 掃気出口 33からのエアに向けて燃料が噴射される。そして、このような燃料噴射時期 tfに設定されているため、燃焼室 10内に噴射された燃料は燃焼室 10の全体に充分 に行き渡らずに圧縮行程が終了する。
[0050] これにより、図 5に示すように、燃焼室 10内の 3組成は、中央部 10cにエアおよび燃 料が多く分布し、その外側 10bに掃気されずに残留した既燃ガスが多く分布し、略成 層化された成層混合気場を形成する。このとき、低負荷低回転域にあることから、燃 焼室 10の全体でみると、すなわち、燃焼室 10内で 3組成が均一に混合されたと仮定 すると、 EGR率が図 9に示す所定値 EGR を上回り、自着火燃焼が行えないような
AR
状態となっている。し力しながら、略成層化されることによって中央部においては EG R率が低くなつている。このため、既燃ガスによる燃焼抑制効果が大きく働かず、自着 火燃焼が行われる。
[0051] このように局所的に低 、EGR率となって自着火燃焼が行われた箇所にお!、ては、 燃焼後においても燃焼抑制効果が大きく働かず、燃焼行程終了後のガス温度が高 温に保持される。このため、次の圧縮行程では、既燃ガスとして高い熱エネルギーを 保持し、シリンダ室 3a内に供給されたエアおよび燃料の温度が自着火燃焼可能な温 度 T まで上昇する。このようにして低負荷低回転域において成層給気圧縮自着火
AR
燃焼が継続して行われる。
[0052] このように、本典型的実施例のエンジン 1にお 、ては、従来の燃焼形態では自着火 燃焼できず、また、掃気出口 33から供給されるエアの流れに乱れが少ない低負荷低 回転域において、排気口 21の開度 θ EXを調整して排気圧の調整を行い、供給され たエアが縦渦状の流れを形成するようになっている。これにより、供給されるエアがシ リンダ室 3a内でよく混合されず、燃焼室 10の中央部に導かれて成層化が促される。 このため、燃焼室内に EGR率が低い状態が局所的に形成され、従来のように略均一 に混合された状態では燃焼させることができなカゝつた負荷領域にっ 、ても自着火燃 焼を継続して行わせることができるようになる。したがって、不整燃焼が解消され、燃 費の向上などが図られた 2サイクルエンジンを提供することができる。
[0053] さらに、燃焼室 10の頂部 10aがシリンダ軸 Aに対して排気口 21側にオフセットされ ている。これにより、シリンダ軸 Aに対して排気口 21が設けられる側と、その反対側と で、圧力場に大きな偏りを形成することができ、縦渦状の流れの形成を促すことがで きる。このため、掃気出口 33から供給されたエアをより集中的に燃焼室 10に向けて 流れさせることができ、成層混合気場の形成をより確実に行うことができる。
[0054] また、燃料噴射弁 9により、燃料がシリンダ室 3a内に直接噴射されるようになってい る。このため、最適な燃料噴射時期ぱ〖こ最適な燃料噴射量 Fで燃料を噴射させること ができ、自着火燃焼を最適な状態で行わせることができる。低負荷低回転域におい ては、燃料噴射時期 tl¾ 圧縮行程が終了する直前となっており、他の領域よりも遅 くなつている。これにより、噴射された燃料が燃焼室 10の全体の行き渡ることがなぐ 成層混合気場の形成をより確実に行うことができる。
[0055] そして、低負荷低回転域にお!、て負荷が低下すると、これに応じてサブスロットル バルブ 18の開度 Θ THsを大きくし、吸気サブ通路力もエアが補給されるようになって いる。これにより、掃気出口 33からシリンダ室 3a内に供給されるエアの量が安定し、 掃気出口 33から供給されたエアの流れを安定して制御することができる。これにより 、成層混合気場を継続して安定して形成することができるとともに、成層圧縮自着火 燃焼を安定して行わせることができる。
[0056] ただし、このように成層給気圧縮自着火燃焼を行わせるとしても、エンジン Eの始動 時やアイドリング時など、エンジン Eの温度や燃焼室 10内の残留ガスの温度が低 、と きには、供給エアおよび供給燃料が自着火燃焼に必要な熱エネルギーを残留ガス 力も十分に得られなくなるおそれがある。このような場合であってもより確実に不整燃 焼を解消可能なエンジンとして、図 6,図 7を参照して本発明に係る 2サイクルェンジ ンの第 2の典型的実施例について説明する。本典型的実施例は、第 1典型的実施例 に対して ECU40における制御内容を変更したものであり、エンジン Eの構成や ECU 40に係る電気的接続関係は図 1に示した第 1典型的実施例と同一である。なお、点 火プラグ 8については、点火部 8aを燃焼室 10の中央部 10cに位置させるようにして シリンダヘッド 2に取り付けられて!/、ることが好まし!/、。
[0057] 本典型的実施例では、図 6に示すように、成層給気圧縮自着火燃焼を行わせて ヽ た低負荷低回転域内における低負荷且つ低回転域 (極低負荷低回転域と称する) にお 1、て、成層給気圧縮自着火燃焼に替えて成層給気火花点火燃焼を行わせるよ うになつている。この成層給気火花点火燃焼は、燃焼室 10内に成層混合気場が形 成された状態において、点火プラグ 8を用いてエアおよび燃料力もなる混合気を火花 点火燃焼させるものである。なお、その他の領域においては、第 1典型的実施例と同 様に、予混合火花点火燃焼、予混合圧縮自着火燃焼、および、成層給気圧縮自着 火燃焼が行われるようになって 、る。 [0058] 図 7には、図 6に破線 VIIで示す所定のエンジン回転速度 Neにおけるエンジントル
1
ク Teと各出力値との関係を示している。極低負荷低回転域では、他の領域と比較し て、供給燃料が燃焼室 10の全体に十分に拡散しないように燃料噴射時期 tl ^遅く設 定され、最適な空燃比に設定するため燃料噴射量 Fが少なく設定され、吸気スロット ルバルブ 16の開度 Θ THmがほぼゼロであることから、エア量を補給調整するため、 負荷が低くなるにしたがってサブスロットルバルブ 18の開度 Θ THsが大きくなるように 設定され、また、 EGR率を増大させ過ぎると既燃ガスの燃焼抑制効果が大きく働くこ とから、負荷が低くなるにしたがって排気口 θ EXの開度が大きくなるように設定され ている。
[0059] このような作動制御により、極低負荷低回転域においては、このように各出力値が 設定されるため、燃焼室 10の内部には第 1典型的実施例と同様にして成層混合気 場が形成される。そして、所定の火花点火時期 tsで作動するように制御された点火プ ラグ 8により、中央部 10cに集められた混合気が火花点火燃焼される。なお、点火プ ラグ 8の点火部 8aを中央部 10cに位置させて 、るため、中央部 10cに集められた混 合気が着火されやすくなつて!/ヽる。
[0060] 本典型的実施例では、残留ガスの温度が低く自着火燃焼に必要な熱エネルギー を得られな ヽような極低負荷低回転域にぉ ヽては、成層混合気場を形成した上で、 火花点火燃焼を行わせるようになつている。このため、成層給気圧縮自着火燃焼が 行われていた領域で生じるおそれのあった不整燃焼をより確実に解消することができ るよつになる。
[0061] また、エンジン回転速度とエンジン負荷に応じて 4つの燃焼形態を行うようになって いおり、極低負荷低回転域から高負荷域に至るまでの間で、最適な燃焼形態が細か く選択設定され、燃費の向上や走行性の向上が図られる。このとき、適切な供給エア 量や EGR率は燃焼形態間で異なるが、この燃焼形態を細力べ設定しているため、燃 焼形態を遷移させるときに、供給エア量や EGR率を極端に変化させる必要がなくな り、燃焼形態に合わせた各種装置の作動制御をスムーズに移行させることができ、走 行性などを向上させることができる。
[0062] 以上、本発明に係る 2サイクルエンジンの典型的実施例を説明したが、必ずしも上 記構成に限られず、適宜変更可能である。例えば、上記実施形態では、頂部 10aを 排気口 21側にオフセットして燃焼室 10を形成したが、排気口 21の反対側にオフセッ トして燃焼室 10を形成しても、同様に作用して同様の効果を得ることができる。また、 ECU40は、上記のようにエンジン負荷条件を入力パラメータとする演算式から求め られた各出力値に対し、エンジン温度条件や吸気の環境条件に応じて補正をかける 制御を行うように構成されていてもよい。例えば、エンジン温度が低いと、既燃ガスの 熱エネルギーの損失が大きくなり、既燃ガスの温度を高く保ちに《なるといつた問題 がある。
[0063] このような問題に対して、冷却水温度 Twゃシリンダ内周面温度 Tcなどの入力値に 基づき、演算式から求められた排気口 21の開度 θ EXに対して補正をかけ、補正値 に基づいてサーボモータを作動制御し、エンジン温度がより高くなるように排気口 21 の開度 θ EXを調整する制御を行うように ECU40を構成してもよい。このようにェンジ ン温度条件を取り入れた補正制御を行うことにより、より適切な状態で自着火燃焼を 行わせることができる。特に、第 2典型的実施例においては、このようにエンジン温度 条件に応じて燃焼形態を設定する構成が有効となる。すなわち、エンジン温度が低 い状態のときには、自着火燃焼を行わせることが難しくなるため、成層給気火花点火 燃焼を行わせる領域を高負荷側に拡大するように、さらに成層圧縮自着火燃焼を行 わせる領域を高負荷側に拡大するように各出力値の補正を行うように設定することが 好ましい。これにより、低負荷低回転域における不整燃焼をより確実に解消すること ができるようになる。
[0064] なお、図 3に示したエンジントルク Teと各出力値との関係は、所定のエンジン回転 速度 Neに対応するものを例として線図に示したものである。したがって、 ECU40に
1
記憶される演算式に入力されるエンジン回転速度 Neの値が変化すれば、演算式か ら求められる各出力値は変化して線図の傾向が変更され、各種装置の制御状態は 変化する。また、各出力値を求める演算式はエンジンの出力特性に応じて適宜変更 可能であり、同じ所定のエンジン回転速度 Neに対応するエンジントルク Teと各出力
1
値との関係を示したものであっても、求められる各出力値が変化して線図の傾向が適 宜変更される。 [0065] 本発明の精神と範囲を逸脱することなく本発明の上記実施例に様々な変更や修正 をカロえることができることは当業者にとって明らかである。このため、請求項およびそ の均等物と一致する本発明の全ての変更や修正を本発明がカバーすることが意図さ れている。
[0066] 本出願は、 2005年 9月 9日出願の日本特許出願(特願 2005— 261769)および 2006 年 6月 16日出願の日本特許出願 (特願 2006— 167360)に基づくものであり、その内容 はここに参照として取り込まれる。
産業上の利用可能性
[0067] 本発明は、排気口の開度を調整可能な排気制御弁を有し、この排気制御弁を作動 させて燃焼室内の供給エアおよび供給燃料を自着火燃焼させることができる 2サイク ルエンジンに利用可能である。

Claims

請求の範囲
[1] シリンダ室が形成されて前記シリンダ室内にピストンを収容したシリンダと、
点火部を前記ピストンおよび前記シリンダ室の内周面により形成される燃焼室内に 臨ませる点火装置と、
前記シリンダ室の内周面に開口する排気口に繋がる排気通路の開度を調整する排 気制御弁と、
前記点火装置および前記排気制御弁の作動制御を行う制御装置であって、高負 荷域では前記点火装置を作動させて前記シリンダ室内に供給された供給エアおよび 供給燃料カゝらなる混合気を前記燃焼室内で火花点火燃焼させる制御を行 ヽ、低負 荷域では前記排気口の開度の調整により前記シリンダ室内の圧力を調整し、前記燃 焼室内で前記混合気を自着火燃焼させる制御を行なう制御装置と、
前記低負荷域内における低回転域である低負荷低回転域において、前記燃焼室 の中央部に前記混合気が多く分布し、前記燃焼室の前記中央部の外側に前記燃焼 室内に残留した既燃ガスが多く分布する成層混合気場を形成する成層混合気場形 成手段と、
を具備し、
前記制御装置は、前記低負荷低回転域では、前記成層混合気場形成手段により 前記成層混合気場を形成させて前記混合気を自着火燃焼させる制御を行う、
2サイクルエンジン。
[2] 前記制御装置は、前記低負荷低回転域内における低負荷且つ低回転域である極 低負荷低回転域にお!ヽては、前記点火装置を作動させて前記成層混合気場を形成 して ヽる前記混合気を火花点火燃焼させる制御を行う、請求項 1に記載の 2サイクル エンジン。
[3] 前記成層混合気場形成手段が、前記排気制御弁を有してなり、
前記制御装置が、
前記低負荷低回転域では、前記排気口の開度が小さくなるように前記排気制御弁 を作動させ、
前記低負荷域内における中回転域である低負荷中回転域では、前記低負荷低回 転域と比べて前記排気口の開度が大きくなり、かつ、負荷の上昇に伴って前記排気 口の開度が上昇するように前記排気制御弁を作動させ、
前記高負荷域では、前記低負荷中回転域と比べて前記排気口の開度が大きくなり 、かつ、負荷の上昇に伴って前記排気口の開度が上昇するように前記排気制御弁を 作動させる制御を行う、
請求項 1又は 2に記載の 2サイクルエンジン。
[4] 前記成層混合気場形成手段が、頂部を前記シリンダ室の円筒軸に対して前記排 気口側またはその反対側にオフセットして設けられた前記燃焼室を有する、
請求項 1〜3のいずれかに記載の 2サイクルエンジン。
[5] 前記成層混合気場形成手段が、前記制御装置により作動制御されて前記供給燃 料を前記シリンダ室内に直接噴射して供給する直噴装置を有してなり、
前記制御装置が、前記低負荷低回転域では、前記供給燃料を前記シリンダ室内に 供給する時期を低負荷中回転域および高負荷域と比べて遅くなるように前記直噴装 置を作動させる制御を行う、
請求項 1〜4のいずれかに記載の 2サイクルエンジン。
[6] 前記成層混合気場形成手段が、開度に応じて前記燃焼室内への前記供給エアの 供給量を調整可能に構成されたサブスロットルバルブを有してなり、
前記制御装置が、前記低負荷低回転域では、負荷の低下に伴って前記サブスロッ トルバルブの開度が大きくなるように前記サブスロットルバルブを作動させ、前記供給 エアの供給量を増加させる制御を行う、
請求項 1〜5のいずれかに記載の 2サイクルエンジン。
[7] 更に、
負荷を検出する負荷検出装置と、
エンジン温度を検出する温度検出装置と、
を具備し、
前記制御装置が、前記負荷検出装置により検出された負荷および前記温度検出 装置により検出されたエンジン温度に基づいて、前記燃焼室内に前記供給燃料が供 給される時期、前記供給燃料の供給量、および、前記排気口の開度を調整する制御 を行う、
請求項 1〜6のいずれかに記載の 2サイクルエンジン,
PCT/JP2006/317765 2005-06-16 2006-09-07 2サイクルエンジン WO2007029782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/065,866 US7685989B2 (en) 2005-06-16 2006-09-07 Two-cycle engine
BRPI0615641-0A BRPI0615641A2 (pt) 2005-09-09 2006-09-07 motor de dois ciclos

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-167360 2005-06-16
JP2005-261769 2005-09-09
JP2005261769 2005-09-09
JP2006167360A JP4881658B2 (ja) 2005-09-09 2006-06-16 2サイクルエンジン

Publications (1)

Publication Number Publication Date
WO2007029782A1 true WO2007029782A1 (ja) 2007-03-15

Family

ID=37835897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317765 WO2007029782A1 (ja) 2005-06-16 2006-09-07 2サイクルエンジン

Country Status (5)

Country Link
US (1) US7685989B2 (ja)
JP (1) JP4881658B2 (ja)
BR (1) BRPI0615641A2 (ja)
TW (1) TWI312028B (ja)
WO (1) WO2007029782A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998400B2 (ja) * 2008-07-25 2012-08-15 トヨタ自動車株式会社 内燃機関の始動制御装置
WO2011139932A1 (en) * 2010-05-05 2011-11-10 Ross Richard T High power to weight two stroke engine and exhaust system
KR101251528B1 (ko) * 2011-09-29 2013-04-05 현대자동차주식회사 2기통 엔진의 서지 방지 구조
JP6050130B2 (ja) * 2013-01-25 2016-12-21 本田技研工業株式会社 予混合圧縮自着火式エンジン
JP6255318B2 (ja) * 2014-08-01 2017-12-27 本田技研工業株式会社 ユニフロー2ストロークエンジン
JP6586334B2 (ja) * 2015-09-24 2019-10-02 川崎重工業株式会社 乗物の製造方法
US10526997B2 (en) * 2018-01-17 2020-01-07 Chun-Li Chen Cylinder structure of internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171981A (ja) * 1991-12-24 1993-07-09 Toyota Motor Corp 内燃機関の給気制御装置
JPH0771279A (ja) * 1993-01-08 1995-03-14 Honda Motor Co Ltd 火花点火式2サイクルエンジンの燃焼制御装置
JPH07150981A (ja) * 1993-11-27 1995-06-13 Honda Motor Co Ltd 火花点火式2サイクルエンジンの絞り弁制御装置
JPH07158447A (ja) * 1993-12-06 1995-06-20 Honda Motor Co Ltd 2サイクルエンジン
JPH11182295A (ja) * 1997-12-18 1999-07-06 Sanshin Ind Co Ltd 筒内燃料噴射式エンジンの制御装置
JP2002147237A (ja) * 2000-11-14 2002-05-22 Fuji Heavy Ind Ltd 2サイクルエンジンの燃焼制御装置
JP2003286880A (ja) * 2002-03-28 2003-10-10 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2004028022A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016839A (en) 1975-02-07 1977-04-12 Morton Clyde M Method for fueling combustion engines
JPS54148926A (en) 1978-05-12 1979-11-21 Toyota Motor Corp Two-cycle engine
US4399778A (en) 1982-01-18 1983-08-23 Antonio Ancheta Two cycle internal combustion engine
DE3617603C2 (de) * 1985-05-24 2001-08-09 Orbital Eng Pty Zweitakt-Verbrennungsmaschine
JPS62189953A (ja) 1986-02-14 1987-08-19 Fanuc Ltd デイスク状同期電動機のロ−タの製作法
JP3215104B2 (ja) * 1990-03-23 2001-10-02 ヤマハ発動機株式会社 筒内噴射式2サイクルエンジンの排気タイミング制御装置
FR2671137A1 (fr) 1990-12-28 1992-07-03 Inst Francais Du Petrole Moteur a deux temps a balayage retarde du cylindre.
AU668307B2 (en) * 1993-06-30 1996-04-26 Honda Giken Kogyo Kabushiki Kaisha Combustion controller for a spark ignition type two-cycle engine
JP3597658B2 (ja) * 1996-12-25 2004-12-08 ヤマハ発動機株式会社 水上走行船用エンジン
JPH10339147A (ja) * 1997-06-06 1998-12-22 Yamaha Motor Co Ltd 滑走艇用エンジン
TW403811B (en) 1998-04-01 2000-09-01 Maruyama Mfg Co Two-stroke cycle engine
US6079379A (en) 1998-04-23 2000-06-27 Design & Manufacturing Solutions, Inc. Pneumatically controlled compressed air assisted fuel injection system
FR2780099B1 (fr) 1998-06-22 2001-01-05 Daniel Drecq Moteur a combustion interne a deux temps muni d'un dispositif de suralimentation et de recirculation partielle de gaz d'echappement
US6481394B1 (en) * 1999-09-27 2002-11-19 Sanshin Kogyo Kabushiki Kaisha Control system for two-cycle engine
JP3911945B2 (ja) * 2000-01-28 2007-05-09 日産自動車株式会社 圧縮自己着火式内燃機関
JP3991714B2 (ja) * 2002-03-01 2007-10-17 国産電機株式会社 排気制御バルブ付き2サイクル内燃機関の電子式制御装置
JP4051261B2 (ja) * 2002-10-28 2008-02-20 株式会社日立製作所 理論空燃比成層燃焼内燃機関の制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171981A (ja) * 1991-12-24 1993-07-09 Toyota Motor Corp 内燃機関の給気制御装置
JPH0771279A (ja) * 1993-01-08 1995-03-14 Honda Motor Co Ltd 火花点火式2サイクルエンジンの燃焼制御装置
JPH07150981A (ja) * 1993-11-27 1995-06-13 Honda Motor Co Ltd 火花点火式2サイクルエンジンの絞り弁制御装置
JPH07158447A (ja) * 1993-12-06 1995-06-20 Honda Motor Co Ltd 2サイクルエンジン
JPH11182295A (ja) * 1997-12-18 1999-07-06 Sanshin Ind Co Ltd 筒内燃料噴射式エンジンの制御装置
JP2002147237A (ja) * 2000-11-14 2002-05-22 Fuji Heavy Ind Ltd 2サイクルエンジンの燃焼制御装置
JP2003286880A (ja) * 2002-03-28 2003-10-10 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2004028022A (ja) * 2002-06-27 2004-01-29 Toyota Motor Corp 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法

Also Published As

Publication number Publication date
US20090138174A1 (en) 2009-05-28
BRPI0615641A2 (pt) 2011-05-24
TW200716856A (en) 2007-05-01
US7685989B2 (en) 2010-03-30
JP4881658B2 (ja) 2012-02-22
TWI312028B (en) 2009-07-11
JP2007100692A (ja) 2007-04-19

Similar Documents

Publication Publication Date Title
US6990947B2 (en) Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP4645456B2 (ja) 予混合圧縮自着火燃焼機関の制御装置
JP3991789B2 (ja) 混合気を圧縮自着火させる内燃機関
JP3881243B2 (ja) 可変速度soc制御を有する予混合チャージ圧縮点火エンジン及び作動方法
WO2006090884A1 (ja) 内燃機関
KR101114812B1 (ko) 예혼합 압축 착화 엔진
JP4126971B2 (ja) 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法
JP4881658B2 (ja) 2サイクルエンジン
JPH07189875A (ja) 2サイクルエンジンの燃料噴射装置
JP2004019456A (ja) 筒内噴射型エンジンおよび筒内噴射型エンジンの制御方法
JP2020128746A (ja) 補助ブロワを備えた大型エンジン及び運転方法
JP3953346B2 (ja) 副室式希薄燃焼ガスエンジン
KR940011340B1 (ko) 연료분사시기제어식 층형상연소내연기관
JP4010822B2 (ja) 予混合圧縮自着火エンジン及びその起動運転方法
JP2007192235A (ja) 火花点火内燃機関の制御装置及び方法
JP2005163686A (ja) 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP2001182586A (ja) 排気昇温装置
JPH0893599A (ja) 2サイクルエンジンの燃料噴射装置
JP2002038995A (ja) ディーゼルエンジンの燃料噴射装置
JP4007181B2 (ja) 予混合圧縮自着火式内燃機関
JP4175243B2 (ja) 予混合圧縮着火内燃機関
JP4073314B2 (ja) エンジン
JP2006266182A (ja) ディーゼルエンジンの作動方法
JP2003232245A (ja) 予混合圧縮自着火エンジンとその起動運転方法
JP2000297681A (ja) 圧縮着火式内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032504.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12065866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1162/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0615641

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080310