JP3911945B2 - 圧縮自己着火式内燃機関 - Google Patents

圧縮自己着火式内燃機関 Download PDF

Info

Publication number
JP3911945B2
JP3911945B2 JP2000020549A JP2000020549A JP3911945B2 JP 3911945 B2 JP3911945 B2 JP 3911945B2 JP 2000020549 A JP2000020549 A JP 2000020549A JP 2000020549 A JP2000020549 A JP 2000020549A JP 3911945 B2 JP3911945 B2 JP 3911945B2
Authority
JP
Japan
Prior art keywords
layer
fuel
intake
egr
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000020549A
Other languages
English (en)
Other versions
JP2001214741A (ja
Inventor
幸大 ▲吉▼沢
健 内藤
淳 寺地
英治 青地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000020549A priority Critical patent/JP3911945B2/ja
Priority to DE60019392T priority patent/DE60019392T2/de
Priority to EP00127388A priority patent/EP1108868B1/en
Priority to US09/734,890 priority patent/US6390057B2/en
Publication of JP2001214741A publication Critical patent/JP2001214741A/ja
Application granted granted Critical
Publication of JP3911945B2 publication Critical patent/JP3911945B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃焼室に直接燃料を噴射する燃料噴射弁を備え、ピストンの圧縮作用により燃焼室内の混合気を自己着火して燃焼させる圧縮自己着火式内燃機関に関する。
【0002】
【従来の技術】
ガソリン内燃機関の熱効率を改善するために、混合気をリーン化することでポンプ損失を低減するとともに、作動ガスの比熱比を大きくして理論熱効率を向上する手法が知られている。しかしながら、従来の火花点火式内燃機関では、空燃比をリーン化すると、燃焼期間が長期化して燃焼安定度が悪化する。このため、空燃比のリーン化には限界がある。
【0003】
このような燃焼安定度の悪化を避けながら空燃比をリーン化する技術として、特開平7−332141号公報には、予混合圧縮自己着火燃焼を起こさせる圧縮自己着火内燃機関が開示されている。予混合圧縮自己着火燃焼では、燃焼室の複数の位置から燃焼反応が起こるため、空燃比がリーン化した場合においても火花点火に比べると、燃焼期間が長期化せずに、よりリーンな空燃比でも安定した燃焼が可能となる。また、空燃比がリーンのために燃焼温度が低下し、NOxも大幅に低減できる。
【0004】
ところが、自己着火燃焼は、空燃比の影響を強く受ける。例えば高負荷運転を考慮して空燃比をリッチ化した場合には、燃焼反応を起こす燃料量が増加し、燃焼が激しくなりノッキングを起こす。このため、高負荷での自己着火燃焼による運転が、困難であるという問題がある。
【0005】
また、低負荷運転を考慮して空燃比をリーン化した場合には、燃料の濃度が低下して自己着火に至る反応が充分進展せずに、燃焼が不安定となり運転性が悪化する。
【0006】
自己着火燃焼において燃料の着火性を改善する技術として、従来では特開平11−182246号公報に、高温の排気を吸気系に導入してシリンダ内の温度を上昇させるものが開示されている。これは、二つの吸気通路の一方に、排気通路に一端が接続される排気還流通路の他端を接続し、この一方の吸気通路を介して燃焼室に排気を導入し、他方の吸気通路には燃料を噴射してその混合気を燃焼室に導入する。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来の内燃機関では、シリンダ内に高温の排気(EGRガス)を導入する構成となっているものの、燃料は、吸入空気中に噴射されるので、高温のEGRガスによる熱の影響を受けにくく、着火性が充分に改善されないものとなる。
【0008】
これに対し、例えば、EGRガス中に燃料を噴射するようにした場合には、ERGガス中の燃料が一気に燃焼を起こし、燃焼が激しくなり、ノッキングを引き起こす要因となる。
【0009】
そこで、この発明は、広い運転範囲にてノッキングを発生させることなく自己着火性を向上させることを目的としている。
【0010】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、燃焼室に直接燃料を噴射する燃料噴射弁を備え、ピストンの圧縮作用により前記燃焼室内の混合気を自己着火して燃焼させる圧縮自己着火式内燃機関において、前記燃焼室から排出されて該燃焼室に還流させた排気を含むEGR層と、吸気通路から導入された新気で構成される空気層とで、これら各層相互間の境界部分がピストン移動方向に沿って形成されるよう成層化し、前記EGR層と前記空気層との前記境界部分の前記燃焼室内における温度勾配が大きい領域に前記燃料噴射弁により燃料を噴射し、前記温度勾配の大きい領域から温度の低い領域へと自己着火燃焼させる構成としてある。
【0011】
このような構成の圧縮自己着火式内燃機関によれば、高温側のEGR層と低温側の空気層との境界部分に燃料が噴射され、燃料が噴射された温度勾配の大きい領域から予反応が開始される。このとき温度勾配があるために、最初に着火するための着火源に必要な燃料は、ノッキングを起こすほど多くはない。また、着火後も、温度勾配に従って順次自己着火が温度の低い領域に進んでいくため、急激な燃焼が回避され、緩やかな燃焼となる。
【0014】
請求項の発明は、請求項の発明の構成において、吸気通路を二つ設け、一方の吸気通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の吸気通路を経て排気を還流させる構成としてある。
【0015】
上記構成によれば、排気が排気還流通路から一方の吸気通路を経て燃焼室に還流され、これにより燃焼室内にEGR層が形成され、他方の吸気通路からは新気が燃焼室に導入されて空気層が形成される。
【0016】
請求項の発明は、請求項の発明の構成において、二つの吸気通路に対応してそれぞれ設けられた二つの吸気弁の開時期を相互に異ならせた構成としてある。
【0017】
上記構成によれば、燃焼室への排気の導入時期と新気の導入時期とが相互にずれ、先に導入したガスと後に導入したガスとで、EGR層と空気層との成層化が容易となる。
【0018】
請求項の発明は、請求項の発明の構成において、排気弁の閉時期を排気上死点後の吸気行程途中とし、排気弁および吸気弁が共に開いているオーバラップ期間を設定し、このオーバラップ期間中に、吸気導入によって空気層を形成するとともに、排気通路から排気を逆流させてEGR層を形成する構成としてある。
【0019】
上記構成によれば、オーバラップ期間中に、ピストンが下降することで、吸気通路から新気が、排気通路から排気が、それぞれ燃焼室に導入されて、空気層およびEGR層をそれぞれ形成する。
【0020】
請求項の発明は、請求項の発明の構成において、吸気通路内を二つの通路に分割する隔壁を設け、前記分割した一方の通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の通路からのみ排気を還流させる構成としてある。
【0021】
上記構成によれば、排気が、排気還流通路から、隔壁によって分割された一方の通路を経て燃焼室に還流され、これにより燃焼室内にEGR層が形成され、他方の通路からは新気が燃焼室に導入されて空気層が形成される。この場合は特に、燃焼室内でタンブル流を形成する場合には、EGR層と空気層との成層化が容易となる。
【0022】
請求項の発明は、請求項ないしのいずれか1項の発明の構成において、機関負荷が高くなるほど、EGR層の割合を低くする構成としてある。
【0023】
EGR層の割合が高くなると、当然空気層の割合が減少するため、燃焼室内の酸素量が減少し、これに伴い燃焼室に噴射できる燃料量が減少するため、機関負荷が低下する。また、燃料の着火性を考慮した場合には、燃料量が少ない低負荷では、EGR層の割合を高くした方が有利である。
【0024】
請求項の発明は、請求項ないしのいずれか1項の発明の構成において、機関回転数が高くなるほど、EGR層の割合を高くする構成としてある。
【0025】
機関回転数が高くなるほど、予反応燃焼が進む実時間が少なくなるため、燃焼反応が進みにくくなる。これは、高回転ほど、燃料の着火性が悪化することを意味している。したがって、燃料の着火性を促進するためには、EGR層の割合を高くした方が有利である。
【0026】
請求項の発明は、請求項ないしのいずれか1項の発明の構成において、EGR層と空気層との割合の変化に応じて燃料噴射時期を変化させる構成としてある。
【0027】
上記構成によれば、EGR層と空気層との割合が変化すると、両層相互の境界部分の位置も変化し、これに対応して燃料噴射時期を変化させることで、境界部分への燃料供給が確実になされる。例えば、圧縮工程後半の上死点付近で燃料を噴射すると、圧縮上死点付近では背圧が高いので、燃料噴霧の貫徹力が抑えられることから、燃料噴射弁付近に前記境界部分が形成されている場合に有効となる。一方、上記した時期より早期に燃料噴射を行うと、背圧がより低い状態であるため、燃料噴霧の貫徹力は大きくなり、したがってこの場合には、燃料噴射弁から離れた位置に境界部分がある場合に有効となる。
【0028】
【発明の効果】
請求項1の発明によれば、燃焼室に直接燃料を噴射する燃料噴射弁を備え、ピストンの圧縮作用により前記燃焼室内の混合気を自己着火して燃焼させる圧縮自己着火式内燃機関において、燃焼室から排出されて該燃焼室に還流させた排気を含むEGR層と、吸気通路から導入された新気で構成される空気層とで、これら各層相互間の境界部分がピストン移動方向に沿って形成されるよう成層化し、前記高温側のEGR層と前記低温側の空気層との前記境界部分の前記燃焼室内における温度勾配が大きい領域に前記燃料噴射弁により燃料を噴射し、前記温度勾配の大きい領域から温度の低い領域へと自己着火燃焼させるようにしたため、自己着火燃焼は、前記境界部分から順次発生し、急激な燃焼によるノッキング発生を防止することができ、より広い運転範囲にて安定した自己着火燃焼を生起させることができる。
【0030】
請求項の発明によれば、吸気通路を二つ設け、一方の吸気通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の吸気通路を経て排気を還流させるようにしたため、排気が排気還流通路を通して一方の吸気通路から燃焼室に導入されてEGR層を形成するとともに、他方の吸気通路からは新気が導入されて空気層を形成し、これにより、温度勾配の大きい領域を形成することができる。
【0031】
請求項の発明によれば、二つの吸気通路に対応してそれぞれ設けられた二つの吸気弁の開時期を相互に異ならせたため、燃焼室への排気の導入時期と新気の導入時期とが相互にずれ、EGR層と空気層との成層化が容易となり、温度勾配の大きい領域を確実に形成することができる。
【0032】
請求項の発明によれば、排気弁の閉時期を排気上死点後の吸気行程途中として、排気弁および吸気弁が共に開いているオーバラップ期間を設定し、このオーバラップ期間中に、吸気導入によって空気層を形成するとともに、排気通路から排気を逆流させてEGR層を形成するようにしたため、専用の排気還流装置を設けることなく、より簡素な構造で燃焼室内にて空気層およびEGR層をそれぞれ形成することができる。
【0033】
請求項の発明によれば、吸気通路内を二つの通路に分割する隔壁を設け、前記分割した一方の通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の通路からのみ排気を還流させるようにしたため、排気が排気還流通路を通して一方の通路から燃焼室に導入されてEGR層を形成するとともに、他方の通路からは新気が導入されて空気層を形成し、これにより、温度勾配の大きい領域を形成することができる。
【0034】
請求項の発明によれば、機関負荷が高くなるほど、EGR層の割合を低くするようにしたため、低負荷時での着火性が向上するなど、負荷条件が変化しても、EGR層と空気層とを最適に形成することができて、より広い負荷領域において安定した圧縮自己着火運転が可能となる。
【0035】
請求項の発明によれば、機関回転数が高くなるほど、EGR層の割合を高くするようにしたため、高回転数域での燃焼反応が進みやすくなって燃料の着火性が向上するなど、機関回転数が変化しても、EGR層と空気層とを最適に形成することができて、より広い回転領域において安定した圧縮自己着火運転が可能となる。
【0036】
請求項の発明によれば、EGR層と空気層との割合の変化に応じて燃料噴射時期を変化させるようにしたため、EGR層と空気層との割合が変化して、両層相互の境界部分の位置が変化しても、前記境界部分に燃料を確実に噴射することができる。
【0037】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0038】
図1は、この発明の第1の実施の形態を示す圧縮自己着火式内燃機関の全体システム構成図、図2は、その機関本体1周辺の簡略化した平面図である。機関本体1は、ピストン3、燃焼室5、吸気通路を構成する二つの吸気ポート7、排気通路を構成する二つの排気ポート9、二つの吸気ポート7に対応してそれぞれ設けられた二つの吸気弁11、二つの排気ポート9に対応してそれぞれ設けられた二つの排気弁13をそれぞれ備え、燃焼室5の上部中央には、ガソリン燃料を燃焼室5に噴射供給する燃料噴射弁15が設置され、燃料噴射弁15に隣接して火花点火燃焼時に作動する点火プラグ17が設置されている。
【0039】
一方の吸気ポート7と一方の排気ポート9とは、排気還流通路19によって接続され、排気還流通路19には、排気還流制御弁21が設けられている。この排気還流制御弁21および前記した燃料噴射弁15、点火プラグ17は、電子制御ユニット(ECU)23からの出力信号を受けて作動し、ECU23は、機関回転数を検出するクランク角センサ25および、アクセル開度(機関負荷)を検出するアクセル開度センサ27の各出力信号の入力を受ける。
【0040】
ECU23は、燃焼パターン判定部29、火花点火燃焼制御部31、自己着火燃焼制御部33、EGR制御部35および燃料噴射時期制御部37をそれぞれ備え、例えばマイクロコンピュータのプログラムとして実現されている。
【0041】
燃焼パターン判定部29は、図3に示すように、中低負荷および中回転数以下の運転領域において圧縮自己着火運転を行い、高負荷または高回転数域において火花点火燃焼を行うよう燃焼パターンを判定する。火花点火燃焼制御部31は、燃焼パターン判定部29によって火花点火燃焼と判定されたときに、燃料噴射弁15、点火プラグ17を制御して火花点火燃焼を行わせ、一方自己着火燃焼制御部33は、燃焼パターン判定部29によって自己着火燃焼と判定されたときに、EGR制御部35および燃料噴射時期制御部37をそれぞれ制御して自己着火燃焼を行わせる。EGR制御部35は、排気還流制御弁21を制御して排気を吸気系に還流させる排気還流量を変更し、燃料噴射時期制御部37は燃料噴射弁15を制御して燃料噴射時期を変更する。
【0042】
図4は、空燃比(A/F)に対する自己着火燃焼が成立する範囲を斜線部で示している。空燃比をリーンにしていくと燃焼安定度が悪化し、機関のトルク変動が大きくなる。このため内燃機関として設計値、またはこの内燃機関を搭載し車両の性格などとして許容できる安定度限界が安定度限界値Sthとなる空燃比AFLがリーン限界となる。一方、空燃比をリッチにしていくと、ノッキング強度が増大する。これにより、ノッキング強度限界Nthにおける空燃比AFRがリッチ限界となる。
【0043】
したがって、燃焼安定度限界AFLとノッキング強度限界AFRで囲まれる空燃比領域が、自己着火燃焼成立範囲となる。このように、自己着火燃焼は限られた空燃比範囲でしか成立しない。なお、ここではガスと燃料との割合を示す指標として空燃比A/Fを例に説明したが、燃焼残留ガスあるいはEGRガス(排気還流ガス)からなる既燃ガスが含まれる場合についても同様の傾向を示し、この場合には、図4における横軸は、新気と既燃ガスとを合わせたトータルのガス量と燃料量との割合G/Fとなる。
【0044】
自己着火燃焼は、低温酸化反応であるため、中間生成部ができる予反応を経過した後、最終的な酸化反応である熱炎に至る。したがって、予反応の進展度を見ると、自己着火燃焼成立の可能性を予測できる。図5(a)および(b)は、ある圧力条件において、一定時間経過後の予反応の進展度を、当量比(混合気濃度)および温度に対してそれぞれ示している。当量比が大きくなると、予反応の進展度が高くなっているが、その変化傾向は緩やかである。一方、温度に対しては、高温になるほど予反応の進展度が高く、その変化傾向は指数関数的であり、温度に関する予反応進展度の感度が当量比に比べて極めて高いことがわかる。
【0045】
したがって、高温の燃焼ガスを使って自己着火燃焼を促進することは有効であり、ここでは、燃焼ガスとして排気を吸気系に還流させた排気還流ガス(EGRガス)を利用している。
【0046】
図6は、一方の排気ポート9から排気還流通路19を経て一方の吸気ポート7に排気を還流させたときの吸気行程後の燃焼室5内のガス分布である。図中で右側の一方の吸気ポート7に対応する燃焼室5における右側半分には新気とともにEGRガスAが、同左側半分には他方の吸気ポート7から吸入された新気Bがそれぞれ取り込まれている。
【0047】
すなわち、燃焼室5内には、EGRガスAを含むEGRガス層と、新気Bからなる空気層との成層化が実現しており、各層の境界部分の中心Cに、図1に示してある燃焼噴射弁15により燃料を噴射する。なお、この成層化を実現するためには、二つの吸気ポート7から吸入されるガス流をピストン頂部に設けた凹部に沿って旋回させる、いわゆるタンブル流を、EGR層側と空気層側とで別々に形成することで、より効果が上がる。なお、EGR層と空気層の配置は左右逆にしてもよい。
【0048】
図7は、上記図6における燃焼室5内の温度分布(a)と、当量比(b)と、予反応進展度(c)をそれぞれ示しており、横軸が図6のD−D線に対応している。図7(a)に示すように、EGR層と空気層との境界部分である燃焼室5の中心L付近には温度勾配が大きい領域が存在する。ここに燃料を噴射することで、図7(b)のように中心部の当量比が大きくなる。
【0049】
予反応燃焼は、燃料がリッチでかつ温度が高い領域から進展していくので、図7(c)に示すように、予反応進展度の高い着火点S点で開始され、このとき温度勾配があるために最初に着火する燃料量はノッキングを起こすほど多くはない。また、着火後も、温度勾配に従って、順次自己着火が温度の低い領域に進んでいくため、急激な燃焼とはならず、ノッキングは発生しない。その結果、自己着火燃焼の成立負荷範囲がより高負荷側に拡大され、より広範囲にて安定した自己着火運転が可能となる。
【0050】
これに対し、図8に示す例は、従来例における、燃料をEGR層に噴射した場合に対応するもので、この場合には、高温のEGR層にある燃料は、急激に予反応の進展が行われる。したがって、これをガソリンの自己着火燃焼に適用した場合には、図8(b)に示すように高温のEGR層にある燃料のリッチな領域が、図8(c)におけるEで示すように、一度に自己着火を起こし、急激な燃焼となり、ノッキングを誘発してしまう。
【0051】
一方、図9に示す例は、従来例における、燃料を吸入空気中に噴射したものに対応するもので、燃料を空気層に噴射したものである。この場合には、低温の空気層にある燃料は、予反応の進展がなされない。したがって、これをガソリンの自己着火燃焼に適用した場合には、図9(b)に示すように低温の空気層にある燃料のリッチな領域が、図9(c)におけるFで示すように、反応が進まずに自己着火が起こらず、失火してしまう。
【0052】
図10は、この発明の第2の実施の形態を示す、前記図2に相当する平面図である。この実施の形態は、前記第1の実施の形態に対し、図中で左側の他方の吸気ポート7に吸気量を制限する吸気量制御弁39を追加して設けるとともに、燃料噴射弁15を燃焼室5の中心から、他方の吸気ポート7と他方の排気ポート9との間に移動させ、機関の運転負荷条件に応じ、EGR層と空気層との割合を変化させるものである。
【0053】
図11は、EGR層の割合に対する酸素量と機関負荷との関係を示している。EGR層の割合が高くなると、新気の割合が減少するため、燃焼室5内の酸素量が減少する。この結果、燃焼室5内に噴射できる燃料量が減少するので、負荷が低下する。また、燃料の着火性を考慮した場合には、燃料量が少ない低負荷では、EGR層の割合を高くした方が有利である。したがって、負荷に応じてEGR層と空気層との割合を変化させることが必要となる。
【0054】
図12は、低負荷時での燃焼室5内のガス分布である。低負荷時で吸気量制御弁39を閉じ気味にすることで、他方の吸気ポート7から導入される新気Bの量が減少し、これに対応して図中で右側の一方の吸気ポート7から導入されるERGガスAの量が増加してEGR層の割合が、前記図6に比べて高くなる。
【0055】
図13は、高負荷時での燃焼室5内のガス分布である。吸気量制御弁39を全開にする一方、排気還流制御弁21の開度を小さくすることで、EGR層の割合を小さくしている。
【0056】
図14は、図12に示した低負荷時でのガス分布における燃料噴射弁15により噴射された燃料Gを、図15は、図13に示した高負荷時でのガス分布における燃焼噴射弁15により噴射された燃料Gを、それぞれ示している。いずれにおいても、燃料Gは、EGR層と空気層との境界部分に噴射されている。これによって、前述した第1の実施の形態と同様な理由により、温度勾配を利用して自己着火が順次行われていき、ノッキングを起こすことなく緩やかな自己着火燃焼が実現できる。なお、燃料Gは、中心部分のgで示す領域がリッチであり、その周囲の領域がややリッチとなっている。
【0057】
また、図14および図15のように、燃料GをEGR層と空気層との境界部分に噴射するためには、燃料噴射時期を変更することが必要である。低負荷条件では、圧縮行程後半の上死点付近で燃料噴射を行う。圧縮行程上死点付近では、背圧が高いため、燃料噴霧の貫徹力が抑えられるため、図14のように、燃料噴射弁15の近くにコンパクトな混合気が形成される。このようなコンパクトな混合気は、噴射燃料量の少ない低負荷時には、着火を促進するために有利である。
【0058】
一方、高負荷条件では、低負荷条件に比べて早期に燃料噴射を行う。早期噴射を行う場合には、背圧が低い条件となるので、燃料噴霧の貫徹力が大きくなる。この結果、図15のように、燃料噴射弁15から離れた位置に混合気が形成される。高負荷条件では、噴射燃料量が多いため、燃料の拡散を促進するためにも、早期噴射が有利である。
【0059】
図16に、機関負荷に対する燃料噴射時期を示す。負荷が高くなるほど燃料噴射時期が進角されている。このように、EGR層と空気層との割合に応じて、燃料噴射時期を変化させることによって、負荷条件が変わった場合においても、EGRガス層と空気層との境界部分に燃料を噴射することができ、圧縮自己着火燃料を成立させることができる。
【0060】
次に、第3の実施の形態について説明する。この第3の実施の形態の構成は、前記図10に示した第2の実施の形態と同様であるが、機関回転数に応じて EGR層と空気層とを変化させる点が、第2の実施の形態と異なる。そして、この場合においても、EGR層と空気層との境界部分に燃料を噴射するよう、燃料噴射時期を変更する。
【0061】
図17は、特定クランク角条件における機関回転数に対する予反応進展度を示している。機関回転数が高くなるほど、予反応が進む実時間が少なくなるため、予反応進展度が低下する。これは、高回転ほど、燃料の着火性が悪化することを示している。したがって、高回転域では、着火性を促進させるために、EGR層を高くした方が有利である。
【0062】
このように、機関回転数に応じてEGR層と空気層との割合を変更するとともに、燃料噴射時期を変更することで、機関回転数が変化した場合においても、EGR層と空気層との境界部分に燃料を噴射することができ、圧縮自己着火燃焼を成立させることができる。
【0063】
図18は、機関負荷および機関回転数に対するEGR層と空気層との割合を示す。低負荷で、高回転ほどEGR層の割合を大きくする。図19は、機関負荷および機関回転数に対する燃料噴射時期を示す。低負荷で、高回転ほど燃料噴射時期を遅角する。これは、前述したように、EGR層の割合が高くなるほど、EGR層と空気層との境界部分が燃料噴射弁15に近づくためである。
【0064】
図20は、圧縮自己着火燃焼の成立範囲を示す。実線で囲まれた範囲が、低負荷で、高回転ほどEGR層の割合を大きくした場合の本実施例による圧縮自己着火燃焼領域で、破線で囲まれた従来の圧縮自己着火燃焼領域に比べると、低負荷側および高負荷側でそれぞれ拡大され、機関回転数についても、より高回転側に拡大されている。
【0065】
図21は、この発明の第4の実施の形態を示す、前記図2に相当する平面図である。この実施の形態は、前記第1の実施の形態に対し、図中で左側の他方の吸気ポート7にも、排気還流通路19を同左側の他方の排気ポート9に接続するとともに、二つの吸気ポート7に、燃焼室5の開口部から排気還流通路19の接続部よりやや上流側まで延長される隔壁41を設けている。燃料噴射弁15は、第1の実施例と同様に燃焼室5の中央である。
【0066】
図22は、上記した第4の実施の形態における燃焼室5内のガス分布である。図中で右側の一方の吸気ポート7では、隔壁41の右側の通路に排気が還流されてERGガスAが導入されるので、燃焼室5内では、図中で右側の内壁に沿った位置にEGR層が形成される。また、図中で左側の他方の吸気ポート7では、隔壁41の左側の通路に排気が還流されてERGガスAが導入されるので、燃焼室5内では、図中で左側の内壁に沿った位置にEGR層が形成される。そして、左右のEGR層に挟まれた中央部分には、新気Bが導入されて空気層が形成される。なお、EGR層と空気層の配置は逆にしてもよい。
【0067】
図23は、図22に示したガス分布において燃焼噴射弁15により噴射された燃料Gを示している。この場合の燃料噴射弁15は、左右の境界部分に指向する噴射孔をそれぞれ備え、これによって燃料Gは、EGR層と空気層との境界部分に噴射することが可能となっている。なお、この場合、左右の境界部分に指向する噴射孔を備えていなくても、通常の拡散型の噴射弁であっても構わない。
【0068】
上記した第4の実施の形態においても、運転条件によって排気還流制御弁21の開度を制御してEGR層と空気層との割合を変更したときに、EGR層と空気層との境界部分が左右に変化するが、燃料噴射時期を変えることで、容易にEGR層と空気層との境界部分に燃料を噴射することが可能となる。
【0069】
図24は、この発明の第5の実施の形態を示す圧縮自己着火式内燃機関の全体システム構成図である。この実施の形態は、第1の実施の形態に対し、排気還流通路19および排気還流制御弁21がなく、排気弁13に対する可変バルブタイミング機構43を追加しており、排気弁13の開閉タイミングを変更することによって、EGR層と空気層とを形成するようにしている。可変バルブタイミング機構43は、例えば電磁コイルによる電磁駆動弁機構を用いてもよく、機械的な公知の可変動弁機構を用いてもよい。燃料噴射弁15は、吸気ポート7側に設置している。
【0070】
図25(a)〜(d)は、吸気行程から排気行程までの4行程のガス分布を示す。図25(a)の吸気行程では吸気弁11および排気弁13がともに開いているため、吸気ポート7からは新気が、排気ポート9からは排気が、燃焼室5内にそれぞれ流入し、燃焼室5内では、図中で右側の排気ポート9側の半分がEGRガスAが導入されたEGR層となり、左側の吸気ポート7側の半分が新気Bが導入された空気層となる。図25(b)の圧縮行程の上死点付近では、燃料噴射弁15によりEGR層と空気層との境界部分に燃料を噴射し、自己着火燃焼した後に、同図(c)の膨張行程および同図(d)の排気行程に移行する。
【0071】
図26(a)は、圧縮自己着火燃焼時でのバルブリフト特性であり、同図(b)で示す火花点火燃焼時での同特性に対し、排気弁13の閉時期を、排気行程上死点(TDC)後に充分遅角してある。このように、可変バルブタイミング機構43により排気弁13の閉時期を変更することで、火花点火燃焼と圧縮自己着火燃焼とを実現することができる。
【0072】
図27(a),(b)は、この発明の第6の実施の形態を示している。この実施の形態は、前記図24に示した第5の実施の形態と同様に、可変バルブタイミング機構により排気弁13の閉時期を遅らせてEGR層と空気層とを形成するものであるが、第5の実施の形態に対し、燃料噴射弁15を吸気ポート7側に移動させるとともに、排気弁13の閉時期を変更してEGR層と空気層との割合を変更している。
【0073】
図28(a),(b)は、共に圧縮自己着火燃焼時でのバルブリフト特性を示している。同図(a)は、排気弁13の閉時期を図26(a)の場合に対し、さらに吸気下死点(BDC)側に遅角させて、図27(a)に示すように、EGRガスAの導入によるEGR層の割合を高くするものである。一方図28(b)は、排気弁13の閉時期を図26(a)の場合に対し、排気上死点(TDC)側に進角させて、図27(b)に示すように、EGR層の割合を低くするものである。
【0074】
このように、排気弁13の閉時期を制御することで、EGR層と空気層との割合を変更でき、広い運転範囲での圧縮自己着火燃焼が可能となる。
【0075】
また、燃料噴射弁15を吸気ポート7側に設置してあるので、EGR層と空気層との境界部分が、図27(a)のように、吸気ポート7側に位置する場合や、図27(b)のように、排気ポート13側に位置する場合など、変化しても、前記図14および図15で示したように、燃料噴射時期を変更することで、境界部分に燃料Gを噴射することが可能となる。すなわち、図27(a)のように、EGR層と空気層との境界部分が燃焼噴射弁15に近い場合は、燃焼室5内の背圧が高い圧縮上死点付近で燃料を噴射し、図27(b)のように、EGR層と空気層との境界部分が燃料噴射弁15から離れている場合は、図27(a)の場合よりも早期に燃料噴射を行う。
【0076】
図29は、この発明の参考例を示す、図2に相当する平面図である。この参考例は、二つの吸気ポート7の燃焼室5に対する接続方向が、燃焼室5内のガス流れが内壁に沿って周方向に旋回するスワール流となるよう傾斜している。なお、吸気ポート7を傾斜させる代わりにヘリカルポートを用いても構わない。
【0077】
図30は、燃焼室5内のガス分布を示している。図中下部側のピストン3に接する側がEGRガスAが導入されたEGR層で、上部側が新気Bが導入された空気層となっている。なお、EGR層と空気層の配置は上下逆でもよい。燃焼噴射弁15は、燃焼室5の中央上部に配置されており、噴射された燃料GはEGR層と空気層との境界部分に噴射している。この場合、燃焼噴射弁15は、ピストン3が最も上昇した圧縮上死点付近で、かつ図中でほぼ水平方向に向けて噴射することで、より確実に上記境界部分に燃料を噴射することが可能となる。
【0078】
燃焼室5内の上下に空気層とEGR層とを成層化するには、図31(a),(b)に示すように、二つの吸気ポート7を開閉するそれぞれの吸気弁が開となっている時期を異ならせることで、達成可能となる。すなわち、排気還流通路19が接続されている一方の吸気ポート7側の吸気弁を先に開弁することで、図30のようにEGRガスAが燃焼室5の下部側に導入されてEGR層が形成され、続いて図29中で左側の他方の吸気ポート7側の吸気弁の開弁により新気Bが導入されて、EGR層の上部に空気層が形成される。
【0079】
図31(a)は、同図(b)のものに比べ、EGR層を形成する側の吸気弁の開弁時間を長く、空気層を形成する側の吸気弁の開弁時間を短くして、EGR層の割合を図31(b)より多くしている。
【0080】
なお、空気層側の吸気弁を先に開き、EGR層の吸気弁を後に開くようにすることで、図30とは逆に、ピストン3に接する下部側を空気層とし、上部側をEGR層となるようにしてもよい。
【0081】
また、燃焼室5内にスワール流を形成することなく、二つの吸気弁が開となっている時期を異ならせるだけでも、EGR層と空気層との成層化が可能である。さらに、二つの吸気弁が開となっている時期を異ならせることなく、スワール流を形成するだけでも、EGR層と空気層とを成層化できる。
【0082】
なお、上記した各実施の形態におけるEGR層と空気層との境界部分は、燃焼室内における温度勾配の大きい領域に相当する。このため、ERG層を形成せずに、単に空気層のみによって燃焼室内の温度勾配の大きい領域に燃料を噴射するようにしても、同様の効果が得られる。
【0083】
一般に、燃焼室内では、内壁から外部に熱が放出されるので、この内壁付近の温度勾配が最も大きくなる。したがって、この内壁付近に燃料を噴射することで、内壁付近が燃料リッチとなり、この燃料リッチな温度勾配の大きい領域で自己着火が開始され、ここから温度の低い領域に向かって順次自己着火して緩やかな燃焼となる。これにより、急激な燃焼の発生によるノッキングが防止される。
【0084】
このような温度勾配の大きい領域を形成するには、燃焼室内にスワール流を形成することでより一層効果がある。図32(a)は、燃焼室内の中心から内壁にわたる温度勾配の変化を、実線で示すスワール有りの場合と、破線で示すスワール無しの場合とで示している。これによれば、スワール有りの場合の方が、内壁に沿う旋回流によって熱が外側に逃げるので、内壁付近にて温度勾配が大きく、したがって、同図(b)のように、この内壁付近に燃料を噴射してこの付近を燃料リッチにすることで、急激な燃焼の発生によるノッキングが防止される。
【0085】
また、図33に示すように、ピストン3の形状を、ピストン頂部に凹部3aを形成することでも、中央部分がより高温に保持され、内壁付近の温度勾配を大きくすることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態を示す圧縮自己着火式内燃機関の全体システム構成図である。
【図2】図1の圧縮自己着火式内燃機関における機関本体周辺の簡略化した平面図である。
【図3】図1の圧縮自己着火式内燃機関における運転条件に対する燃焼パターン特性図である。
【図4】空燃比(A/F)に対する自己着火燃焼が成立する範囲を示す説明図である。
【図5】自己着火燃焼における予反応進展度特性図であり、(a)は当量比に対するもの、(b)は温度に対するものである。
【図6】この発明の第1の実施の形態における燃焼室内のガス分布を示す説明図である。
【図7】図6のガス分布において、燃料をEGR層と空気層との境界部分に噴射した場合の燃焼室内の温度(a)、当量比(b)、予反応進展度(c)を示す説明図である。
【図8】図6のガス分布において、燃料をEGR層に噴射した場合の燃焼室内の温度(a)、当量比(b)、予反応進展度(c)を示す説明図である。
【図9】図6のガス分布において、燃料を空気層に噴射した場合の燃焼室内の温度(a)、当量比(b)、予反応進展度(c)を示す説明図である。
【図10】この発明の第2の実施の形態を示す、図2に相当する平面図である。
【図11】第2の実施の形態に係わるもので、EGR割合に対する酸素量と負荷との相関図である。
【図12】第2の実施の形態における機関低負荷時での燃焼室内のガス分布を示す説明図である。
【図13】第2の実施の形態における機関高負荷時での燃焼室内のガス分布を示す説明図である。
【図14】第2の実施の形態における機関低負荷時での燃料分布を示す説明図である。
【図15】第2の実施の形態における機関高負荷時での燃料分布を示す説明図である。
【図16】第2の実施の形態における機関負荷に対する燃料噴射時期特性図である。
【図17】第3の実施の形態に係わるもので、機関回転数に対する予反応進展度特性図である。
【図18】機関負荷と機関回転数に対するEGR層割合を示す説明図である。
【図19】機関負荷と機関回転数に対する燃料噴射時期を示す説明図である。
【図20】機関負荷および機関回転数に応じてEGR層割合および燃料噴射時期を変更した場合の圧縮自己着火燃焼領域を従来のものと比較して示した説明図である。
【図21】この発明の第4の実施の形態を示す、図2に相当する平面図である。
【図22】第4の実施の形態における燃焼室内のガス分布を示す説明図である。
【図23】第4の実施の形態における燃焼室内の燃料分布を示す説明図である。
【図24】この発明の第5の実施形態を示す圧縮自己着火式内燃機関の全体システム構成図である。
【図25】第5の実施形態における4サイクル行程図である。
【図26】第5の実施形態におけるバルブリフト特性であり、(a)は圧縮自己着火燃焼時でのもの、(b)は火花点火燃焼時でのものである。
【図27】第5の実施の形態における燃焼室内のガス分布および燃料分布を示す説明図であり、(a)はEGR層の割合が大、(b)はEGR層の割合が小のものである。
【図28】この発明の第6の実施の形態を示すバルブリフト特性図であり、(a)はEGR層の割合が大、(b)はEGR層の割合が小のものである。
【図29】この発明の第7の実施の形態を示す、図2に相当する平面図である。
【図30】第7の実施の形態における燃焼室内のガス分布および燃料分布を示す説明図である。
【図31】第7の実施形態におけるバルブリフト特性であり、(a)はEGR層の割合が大、(b)はEGR層の割合が小のものである。
【図32】(a)は燃焼室内における温度勾配特性図、(b)は(a)の温度勾配の大きい領域に燃料を噴射した場合の当量比特性図である。
【図33】燃焼室内に温度勾配を形成するためのピストン形状を示す断面図である。
【符号の説明】
3 ピストン
5 燃焼室
7 吸気ポート(吸気通路)
9 排気ポート(排気通路)
11 吸気弁
13 排気弁
15 燃料噴射弁
19 排気還流通路
41 隔壁
A EGRガス
B 新気

Claims (8)

  1. 燃焼室に直接燃料を噴射する燃料噴射弁を備え、ピストンの圧縮作用により前記燃焼室内の混合気を自己着火して燃焼させる圧縮自己着火式内燃機関において、前記燃焼室から排出されて該燃焼室に還流させた排気を含むEGR層と、吸気通路から導入された新気で構成される空気層とで、これら各層相互間の境界部分がピストン移動方向に沿って形成されるよう成層化し、前記EGR層と前記空気層との前記境界部分の前記燃焼室内における温度勾配が大きい領域に前記燃料噴射弁により燃料を噴射し、前記温度勾配の大きい領域から温度の低い領域へと自己着火燃焼させることを特徴とする圧縮自己着火式内燃機関。
  2. 吸気通路を二つ設け、一方の吸気通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の吸気通路を経て排気を還流させることを特徴とする請求項記載の圧縮自己着火式内燃機関。
  3. 二つの吸気通路に対応してそれぞれ設けられた二つの吸気弁の開時期を相互に異ならせたことを特徴とする請求項記載の圧縮自己着火式内燃機関。
  4. 排気弁の閉時期を排気上死点後の吸気行程途中とし、排気弁および吸気弁が共に開いているオーバラップ期間を設定し、このオーバラップ期間中に、吸気導入によって空気層を形成するとともに、排気通路から排気を逆流させてEGR層を形成することを特徴とする請求項記載の圧縮自己着火式内燃機関。
  5. 吸気通路内を二つの通路に分割する隔壁を設け、前記分割した一方の通路に、排気通路に一端が接続する排気還流通路の他端を接続し、前記一方の通路からのみ排気を還流させることを特徴とする請求項記載の圧縮自己着火式内燃機関。
  6. 機関負荷が高くなるほど、EGR層の割合を低くすることを特徴とする請求項ないしのいずれか1項に記載の圧縮自己着火式内燃機関。
  7. 機関回転数が高くなるほど、EGR層の割合を高くすることを特徴とする請求項ないしのいずれか1項に記載の圧縮自己着火式内燃機関。
  8. EGR層と空気層との割合の変化に応じて燃料噴射時期を変化させることを特徴とする請求項ないしのいずれか1項に記載の圧縮自己着火式内燃機関。
JP2000020549A 1999-12-14 2000-01-28 圧縮自己着火式内燃機関 Expired - Lifetime JP3911945B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000020549A JP3911945B2 (ja) 2000-01-28 2000-01-28 圧縮自己着火式内燃機関
DE60019392T DE60019392T2 (de) 1999-12-14 2000-12-13 Ottobrennkraftmaschine mit Selbstzündung
EP00127388A EP1108868B1 (en) 1999-12-14 2000-12-13 Compression self-ignition gasoline engine
US09/734,890 US6390057B2 (en) 1999-12-14 2000-12-13 Compression self-ignition gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020549A JP3911945B2 (ja) 2000-01-28 2000-01-28 圧縮自己着火式内燃機関

Publications (2)

Publication Number Publication Date
JP2001214741A JP2001214741A (ja) 2001-08-10
JP3911945B2 true JP3911945B2 (ja) 2007-05-09

Family

ID=18547091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020549A Expired - Lifetime JP3911945B2 (ja) 1999-12-14 2000-01-28 圧縮自己着火式内燃機関

Country Status (1)

Country Link
JP (1) JP3911945B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033160B2 (ja) 2004-03-30 2008-01-16 トヨタ自動車株式会社 予混合圧縮自着火運転が可能な内燃機関の制御装置
JP4881658B2 (ja) * 2005-09-09 2012-02-22 本田技研工業株式会社 2サイクルエンジン
JP4618181B2 (ja) * 2006-03-30 2011-01-26 三菱自動車工業株式会社 予混合圧縮自己着火型のガソリン内燃機関
JP4836088B2 (ja) * 2007-11-08 2011-12-14 日立オートモティブシステムズ株式会社 圧縮自己着火式内燃機関の制御装置および制御方法
JP5457095B2 (ja) * 2009-07-16 2014-04-02 国立大学法人 千葉大学 予混合圧縮着火ガソリンエンジン
JP5589763B2 (ja) * 2010-10-28 2014-09-17 トヨタ自動車株式会社 内燃機関
US8555834B2 (en) 2011-03-22 2013-10-15 Robert Bosch Gmbh Device and method configured to control valve operation in a piston engine
JP5845817B2 (ja) * 2011-10-31 2016-01-20 スズキ株式会社 内燃機関
JP6003231B2 (ja) * 2012-05-25 2016-10-05 マツダ株式会社 圧縮自己着火式ガソリンエンジン
JP6300186B2 (ja) * 2016-03-29 2018-03-28 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP2001214741A (ja) 2001-08-10

Similar Documents

Publication Publication Date Title
EP1108868B1 (en) Compression self-ignition gasoline engine
JP4253426B2 (ja) 圧縮自己着火式ガソリン機関
US7681550B2 (en) Internal combustion engine
JP5447435B2 (ja) 火花点火式ガソリンエンジン
JP5423717B2 (ja) 火花点火式ガソリンエンジン
JP6458814B2 (ja) 内燃機関
US10704523B2 (en) Control system of compression-ignition engine
JP4062870B2 (ja) 内燃機関の燃焼制御装置
JP5447423B2 (ja) ガソリンエンジン
US10895215B2 (en) Control system for pre-mixture compression-ignition engine
JP2002004913A (ja) 圧縮自己着火式内燃機関
JP4122630B2 (ja) 圧縮自己着火式ガソリン機関
JP2001323828A (ja) 圧縮自己着火式ガソリン機関
JP5585533B2 (ja) ガソリンエンジン
US10704524B2 (en) Control system of compression-ignition engine
JP5505368B2 (ja) ガソリンエンジン
JP3911945B2 (ja) 圧縮自己着火式内燃機関
JP5447434B2 (ja) 火花点火式ガソリンエンジン
JP2001263067A (ja) 圧縮自己着火式ガソリン機関
JP6583370B2 (ja) 過給システム付きエンジン
JP6555310B2 (ja) 過給システム付き予混合圧縮着火式エンジン
JP6614216B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP6244881B2 (ja) 直噴エンジンの制御装置
JP2015124738A (ja) 直噴エンジンの制御装置
JP7354805B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3911945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

EXPY Cancellation because of completion of term