WO2007029696A1 - 電子輸送材料およびこれを用いた有機電界発光素子 - Google Patents

電子輸送材料およびこれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2007029696A1
WO2007029696A1 PCT/JP2006/317545 JP2006317545W WO2007029696A1 WO 2007029696 A1 WO2007029696 A1 WO 2007029696A1 JP 2006317545 W JP2006317545 W JP 2006317545W WO 2007029696 A1 WO2007029696 A1 WO 2007029696A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
divalent
formulas
Prior art date
Application number
PCT/JP2006/317545
Other languages
English (en)
French (fr)
Inventor
Youhei Ono
Hiroshi Tamada
Akiko Kageyama
Manabu Uchida
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to KR1020087005354A priority Critical patent/KR101418840B1/ko
Priority to JP2007534427A priority patent/JP5076901B2/ja
Priority to US11/991,454 priority patent/US7964293B2/en
Publication of WO2007029696A1 publication Critical patent/WO2007029696A1/ja
Priority to US13/107,105 priority patent/US8202633B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to a novel electron transport material having a 2, 3 ′ bibilidyl group, and an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device). Etc.
  • Patent Document 1 JP 2003-123983 A (Patent Document 1) describes that an organic EL device can be driven at a low voltage by using a phenantorin phosphorus derivative as an electron transport material. Similarly, it is described that an organic EL device can be driven at a low voltage by using a 2, 2′-bibilidyl compound, which is an analog of phenantorin, as an electron transport material.
  • the 2,2′-bibilidyl compound described in Non-Patent Document 1 has a low glass transition temperature (hereinafter abbreviated as Tg) and is not practical.
  • Tg glass transition temperature
  • Patent Document 2 can drive an organic EL device at a relatively low voltage, but a further lower voltage is desired for practical use.
  • Patent Document 3 does not disclose a specific compound.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-123983
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-158093
  • Patent Document 3 Japanese Patent Publication No. 11-514143
  • An object of the present invention is to provide an electron transport material that contributes to a reduction in driving voltage and a longer life of an organic EL element. Furthermore, an object of the present invention is to provide an organic EL element using this electron transport material.
  • organic E that can be driven with high brightness, long life, and low voltage by using a compound having 2,3′-bibilidyl in the electron transport layer of an organic EL device.
  • G is an n-valent linking group that is not a single bond, and n is an integer of 2 to 4;
  • I ⁇ ⁇ R 4 is independently hydrogen, a monovalent group or a free valence bonded to G, and R 5 ⁇ R 8 are independently hydrogen or a monovalent group of forces I ⁇ ⁇ R 4 One is the free valence attached to G; and n 2, 3, 1 bibilidyl groups may be the same or different.
  • G is one selected from the group forces represented by the following formulas (G1) to (G3); one of R 9 to R 12 is a free valence bonded to G; The other is hydrogen; and one of R 13 to R 16 is the free valence bound to G, the other is hydrogen.
  • G 1 is independently derived from one selected from the group of compounds represented by formulas (A-1) to (A-20) and formulas (B-1) to (B-42) Is a divalent group.
  • R is independently hydrogen, methyl, ethyl, hexyl, cyclohexyl, phenyl, 1-naphthyl or 2-naphthyl; a compound force represented by formulas (A-1) to (A-20) and formulas (B-1) to (B-42). You may have a substituent at a position other than the atom you have!
  • G is a linking group represented by the formula (G1).
  • G 1 represents the formula (A Group force of the compound represented by the formula: one force selected is a divalent group derived, and this divalent group may have a substituent, as described in the above item [4] Compound.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to item [4], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is a group of divalent groups represented by the following formulas (C 1) to (C 15) The compound according to item [4], which is one selected.
  • R is independently hydrogen, methyl, ethyl, xyl, cyclohexyl, phenyl, 1-naphthyl or 2-naphthyl; in formulas (C-1) to (C-15)
  • the divalent group represented may have a substituent at a position other than the atom having a free valence.
  • G is a linking group represented by formula (G2), and in formula (G2), G 1 is represented by formulas (A— 1) to (A— 20) and formulas (B— 1) to (B— 42) are the same divalent groups derived from one selected from the group of compounds represented by 42), and these divalent groups may have a substituent, in the above item [4] The listed compounds.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-10)
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is a group of divalent groups represented by the following formulas (C 1) to (C 5)
  • the compound according to [4] above, which is the same selected group, and the divalent group may have a substituent.
  • R is independently hydrogen, methyl, ethyl, hexyl, cyclohexyl, phenyl, 1-naphthyl or 2-naphthyl; represented by the formulas (C-1) to (C-5)
  • the divalent group may have a substituent at a position other than the atom having a free valence.
  • G 1A is independently selected as the group power of the compounds represented by formulas (A-1) to (A-20)
  • a divalent group derived from one, and the divalent group may have a substituent;
  • G 1B is independently represented by the formulas (B-1) to (B-42);
  • G is a linking group represented by the formula (G3-1);
  • G 1B is a group of divalent groups represented by the following formulas (D 1) to (D 15)
  • D 1B is a group of divalent groups represented by the following formulas (D 1) to (D 15)
  • a divalent group represented by the formulas (D-1) to (D-15) has a substituent at a position other than an atom having a free valence, Yo ...
  • G is a linking group represented by the formula (G3-2);
  • G 1A is the same group selected from the group of divalent groups represented by the formulas (C 1) to (C 5)
  • G 1B is one selected from the group of divalent groups represented by formulas (D-1) to (D-15).
  • G is a linking group represented by the formula (G3-3); G 1A is represented by the formulas (C 1) to (C 5) G 1B is the same group that is selected as the group power of the divalent group represented by the formulas (D-1) to (D-15).
  • G is a linking group represented by the formula (G3-3); G 1A is represented by the formulas (C 1) to (C 5) G 1B is the same group that is selected as the group power of the divalent group represented by the formulas (D-1) to (D-15).
  • G is a linking group represented by the following formula (G3-4): G 1 B2_ G 1 B1_ Q 1 B2_ (G3-4) wherein G 1B1 Is the group force of the divalent group represented by the formulas (D-1) to (D-9), and G 1B2 is represented by the formulas (D-1) to (D-15).
  • the group power of the divalent group is the same group selected.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-20)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-10)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group of divalent groups represented by the formulas (C 1) to (C 15) The compound according to item [16], wherein
  • G is a linking group represented by formula (G2), and in formula (G2), G 1 is represented by formulas ( ⁇ —1) to ( ⁇ —20) and formulas (B—1) to (B— 42), the same divalent group derived from one selected from the group of compounds represented by 42), and the divalent group may have a substituent, in the above item [16].
  • the described compound is a linking group represented by formula (G2), and in formula (G2), G 1 is represented by formulas ( ⁇ —1) to ( ⁇ —20) and formulas (B—1) to (B— 42), the same divalent group derived from one selected from the group of compounds represented by 42), and the divalent group may have a substituent, in the above item [16]. The described compound.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound described in the above item [16], wherein one divalent group is induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by formula (G2), and in formula (G2), G 1 is represented by formulas (C 1) to (C 5) The group power of the divalent group represented.
  • the compound according to the above item [16], which is the same selected group, and the divalent group may have a substituent.
  • G 1A is independently selected as the group power of the compounds represented by formulas (A-1) to (A-20)
  • a divalent group derived from one, and the divalent group may have a substituent;
  • G 1B is independently represented by the formulas (B-1) to (B-42);
  • G is a linking group represented by the formula (G3-1);
  • G 1B is a group of divalent groups represented by the formulas (D 1) to (D-15) The compound according to item [23], which is a group.
  • G is a linking group represented by the formula (G3-2);
  • G 1A is the same group selected from the group of divalent groups represented by the formulas (C 1) to (C 5)
  • G 1B is one selected from the group of divalent groups represented by formulas (D-1) to (D-15).
  • G is a linking group represented by formula (G3-3);
  • G 1A is a group in which divalent groups represented by formulas (C 1) to (C 5) are also selected.
  • G is a linking group represented by the following formula (G3-4): Q 1 B2_ G 1 B1_ G 1 B2_ (G3-4) wherein G 1B1 Is the group force of the divalent group represented by the formulas (D-1) to (D-9), and G 1B2 is represented by the formulas (D-1) to (D-15).
  • the group power of the divalent group is the same group selected.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-20)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-10)
  • G is a linking group represented by the formula (G1), and in the formula (G1), the group force of the divalent group in which G 1 is represented by the formulas (C 1) to (C 15) is also selected.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is represented by the formulas (A— 1) to (A— 20) and the formulas (B— 1) to (B— 42)
  • the same divalent group derived from one selected from the group of compounds represented by 42), and the divalent group may have a substituent, in the above item [28]. The described compound.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to the item [28], wherein one divalent group is induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected from the group forces of divalent groups represented by the formulas (C 1) to (C 5) The compound according to item [28], wherein the divalent group may have a substituent.
  • G 1A is independently selected as the group power of the compounds represented by formulas (A-1) to (A-20)
  • a divalent group derived from one, and the divalent group may have a substituent;
  • G 1B is independently represented by the formulas (B-1) to (B-42);
  • G is a linking group represented by the formula (G3-1);
  • G 1B is a group of divalent groups represented by the formulas (D 1) to (D-15) The compound according to [35] above, which is a group.
  • G is a linking group represented by formula (G3-2);
  • G 1A is the same group selected from the group of divalent groups represented by formulas (C 1) to (C 5)
  • G 1B is one selected from the group of divalent groups represented by formulas (D-1) to (D-15).
  • G is a linking group represented by formula (G3-3);
  • G 1A is a group in which divalent groups represented by formulas (C 1) to (C 5) are also selected.
  • G is a linking group represented by the following formula (G3-4): G 1 B2_ G 1 B1_ Q 1 B2_ (G3-4) wherein G 1B1 Is the group force of the divalent group represented by the formulas (D-1) to (D-9), and G 1B2 is represented by the formulas (D-1) to (D-15).
  • G 3-4 a linking group represented by the following formula (G3-4)
  • G 1B1 Is the group force of the divalent group represented by the formulas (D-1) to (D-9)
  • G 1B2 is represented by the formulas (D-1) to (D-15).
  • Group power of divalent groups selected One identical group.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-20) The compound according to [40], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (Gl), and in the formula (G1), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to [40], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group of divalent groups represented by the formulas (C 1) to (C 15) The compound according to item [40], wherein
  • G is a linking group represented by formula (G2), and in formula (G2), G 1 is represented by formulas (A— 1) to (A— 20) and formulas (B— 1) to (B— 42), the same divalent group derived from one selected from the group of compounds represented by 42), and the divalent group may have a substituent, The described compound.
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-10)
  • G is a linking group represented by the formula (G2), and in the formula (G2), G 1 is selected from the group forces of divalent groups represented by the formulas (C 1) to (C 5) The compound according to [40] above, wherein the divalent group may have a substituent.
  • G 1A is independently a divalent group derived from one in which the group power of the compounds represented by formulas (A-1) to (A-20) is also selected.
  • the group may have a substituent;
  • G 1B is independently divalent derived from one selected from the group of compounds represented by formulas (B-1) to (B-42) This divalent group has a substituent! /, May! /.
  • G is a linking group represented by the formula (G3-1);
  • G 1B is a group of divalent groups represented by the formulas (D 1) to (D-15) The compound of the above-mentioned [47], which is a group.
  • G is a linking group represented by the formula (G3-2);
  • G 1A is represented by the formulas (C 1) to (C 5)
  • G 1B is one selected from the group of divalent groups represented by the formulas (D-1) to (D-15) The compound according to [47] above.
  • G is a linking group represented by formula (G3-3);
  • G 1A is a group in which divalent groups represented by formulas (C 1) to (C 5) are also selected.
  • G is a linking group represented by the following formula (G3-4): G 1 B2_ G 1 B1_ G 1 B2_ (G3-4) wherein G 1B1 Is the group force of the divalent group represented by the formulas (D-1) to (D-9), and G 1B2 is represented by the formulas (D-1) to (D-15).
  • the group power of the divalent group is the same group selected.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-20)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to [52], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G1), and in the formula (G1), the group force of the divalent group in which G 1 is represented by the formulas (C 1) to (C 17) is also selected.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas (A-1) to (A-20)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to [56], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G1), and in the formula (G1), the group force of the divalent group in which G 1 is represented by the formulas (C 1) to (C 17) is also selected.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group power of the compounds represented by the formulas ( ⁇ -1) to ( ⁇ -20)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected from the group forces of the compounds represented by the formulas (A-1) to (A-10) The compound according to item [60], wherein the compound is a divalent group induced by one force, and the divalent group has a substituent.
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group force of a divalent group represented by the formulas (C 1) to (C 17)
  • G is a linking group represented by the formula (G1), and in the formula (G1), G 1 is selected as a group force of a divalent group represented by the formulas (C 1) to (C 17)
  • G is a group represented by the following formula (G4) or (G5); one of R 17 to R 2U is a free valence bonded to G, and the other is hydrogen; One of R 21 to R 24 is a free valence bonded to G and the other is hydrogen; one of R 25 to R 28 is a free valence bonded to G and the other is hydrogen It is.
  • G 1 is independently a group force of the compounds represented by the formulas (A-1) to (A-20) and the formulas (B-1) to (B-42).
  • G 2A is one selected from a group of trivalent groups represented by the following formulas (E 1) to (E-10), G 2B is boron, A group selected from nitrogen, phosphoryl groups, or trivalent groups represented by formulas (E-1) to (E-10).
  • G is a group represented by the following formula (G6) or (G7); one of R 1 to R 3 is a free valence bonded to G, and the other is hydrogen; R 33 one to R 36 are Yu away valence that binds to G, the other is hydrogen; one of R 37 to R 4 ° is a free valence which binds to G, otherwise the hydrogen Yes; one of R 41 to R 44 is the free valence bound to G, the other is hydrogen.
  • G 1 is independently a group force of the compounds represented by the formulas (A-1) to (A-20) and the formulas (B-1) to (B-42).
  • G 3A is one selected from a group of tetravalent groups represented by the following formulas (F 1) to (F-8);
  • G 3B is carbon, The group force of the tetravalent group represented by the carbon or the formulas (F-1) to (F-8) is one selected.
  • an organic electroluminescent device having at least a hole transporting layer, a light emitting layer, and an electron transporting layer sandwiched between an anode and a cathode
  • the electron transporting layer comprises the items [1] to [77]
  • An organic electroluminescent device comprising the compound according to claim 1.
  • the compound of the present invention applies voltage in a thin film state! It is stable and has a high charge transport capability.
  • the compound of the present invention is suitable as a charge transport material in an organic EL device.
  • an organic EL device having a low driving voltage and a long lifetime can be obtained.
  • a high-performance display device such as a full-color display can be created.
  • the first invention of the present application is a compound having a 2,3 ′ bibilidyl group represented by the following formula (1).
  • G is an n-valent linking group that is not a single bond.
  • An n-valent linking group is a generic term that refers to a ring system having an n-valent atom, an n-valent group, and n free valences, and the n-valent linking group is a combination of these. Moh. Even when the n-valent linking group has an asymmetric structure, n 2,3 ′ bibilidyl groups may be bonded to any position of the linking group. n-valent linking group Details of G will be described later.
  • a group formed by Ri to R 8 and a 2,3,1 bibilidyl nucleus is referred to as a 2,3,1 bibilidyl group.
  • One of Ri to R 4 in the 2, 3, -bibilidyl group is a free valence bonded to G, and the others are independently hydrogen or a monovalent group.
  • R 5 to R 8 are independently hydrogen or a monovalent group.
  • the n 2,3′-bibilidyl groups may be the same or different. The forces are preferably the same.
  • the notation “n free valences” in the linking group G and “free valence bonded to G” in the 2, 3′-bibilidyl group are G and 2, 3′-bibilidyl groups It does not indicate that it exists as a free radical.
  • Free valence refers to a so-called “bond” that is covalently bonded to another group or atom. That is, the notation “one of Ri to R 4 in 2, 3, 1 bibilidyl group is the free valence bound to G” refers to any force of Ri to R 4 in 2, 3, bibilidyl group 1 One of them is bonded to an arbitrary position of the linking group G to represent the state.
  • the monovalent group in ⁇ ⁇ is a nitro group, a cyano group, a dimesitylboryl group, an aryl having 6 to 12 carbons, or an alkyl having 1 to 12 carbons.
  • This alkyl may be linear, branched or cyclic.
  • Specific examples of the monovalent group are phenyl, 2-biphenyl, 3-biphenyl, 4-biphenylyl, 1-naphthyl, 2-naphthyl, methyl, t-butyl, and cyclohexyl.
  • R 5 to R 8 are preferably hydrogen.
  • 2, 3, 1 bibilidyl group is R 2 or R 3 is preferably bonded to G. Do involved in binding to G, it is preferable that the I ⁇ to R 4 are hydrogen.
  • n 2 is most preferable, 3 is preferable, and then 4 is preferable.
  • the compound is easy to manufacture.
  • the second is that the molecular weight does not become extremely large and the sublimation property is considered to be relatively high, and the advantage that it is easy to form a film at the time of manufacturing an organic EL element can be expected.
  • R 9 to R 12 is a free valence bonded to G, and the other is hydrogen.
  • RR 1G or R 11 is preferably bonded to G.
  • One of R 13 to R 16 is a free valence bonded to G, and the other is hydrogen.
  • R 13 , R 14 or R 15 is preferably bonded to G.
  • the two 2, 3, 1 bibilidyl groups may be the same or different but are preferably the same.
  • G is one selected from the group power of the linking group represented by the following formulas (G1) to (G3).
  • G 1 may be the same or different.
  • G 1 is independently derived from one selected from the group of compounds represented by the following formulas (A-1) to (A-20) and formulas (B-1) to (B-42): It is a divalent group.
  • the group of compounds represented by formulas (A-1) to (A-20) is referred to as Group A
  • the group of compounds represented by Formulas (B-1) to (B-42) is referred to as Group B. There is.
  • R is independently hydrogen, methyl, ethynole, hexyl, cyclohexyl, phenyl, 1-naphthyl or 2-naphthyl.
  • the divalent group derived from the compounds represented by formulas (A-1) to (A-20) and formulas (B-1) to (B-42) is other than an atom having a free valence. It may have a substituent at the position. Specific examples of the substituent are phenyl, 2-biphenyl, 3-biphenyl, 4-biphenyl, 1-naphthyl, 2-naphthyl, methyl, t-butyl, and cyclohexyl.
  • R 17 to R 2U is the free valence linked to G, the other is hydrogen.
  • R 17 , R 18 or R 19 is preferably bonded to G.
  • One of R 21 to R 24 is a free valence linked to G, and the other is hydrogen.
  • R 21 , R 22 or R 23 is preferably bonded to G.
  • One of R 25 to R 28 is the free valence linked to G, the other is hydrogen.
  • R 25 , R 26 or R 27 is preferably bonded to G.
  • the three 2, 3, and 1 bipyridyl groups may be the same or different, but are preferably the same.
  • G is a linking group represented by the following formula (G4) or (G5).
  • G 5 may be the same or different, but is preferably the same.
  • G 1 is independently a divalent group derived from one selected from the group A and B compounds described above.
  • G 2A is one selected from the group forces of trivalent groups represented by the following formulas (E-1) to (E-10), and G 2B is boron, nitrogen, phosphoryl group, Or one selected from the group of trivalent groups represented by formulas (E-1) to (E-10).
  • R 29 to R d2 is a free valence linked to G, and the other is hydrogen.
  • R 29 , R 3G or R 31 is preferably bonded to G.
  • One of R 33 to R 36 is a free valence linked to G, and the other is hydrogen.
  • R 33 , R 34 or R 35 is preferably bonded to G.
  • One of R 37 to R 4 is the free valence linked to G, the other is hydrogen.
  • R 37 , R 38 or R 39 is bonded to G.
  • R 41 to R 44 is a free valence linked to G, and the other is hydrogen.
  • the four 2,3′-bibilidyl groups may be the same or different, but are preferably the same.
  • G is a linking group represented by the following formula (G6) or (G7).
  • G7 ! / And G 1 may be the same or different, but are preferably the same.
  • G 1 is independently a divalent group derived from one selected from the group A and B compounds described above.
  • G 3A is one selected from the group forces of tetravalent groups represented by the following formulas (F-1) to (F-8), and G 3B is carbon, The group power of the tetravalent group represented by the formulas (F-1) to (F-8) is selected.
  • n 2-7
  • the compound is represented by the following formulas (2-1) to (2-7).
  • G is preferably Formula (G1), then preferably Formula (G3), and then preferably Formula (G2) .
  • G 1 is a divalent group derived from one selected from the group A compounds.
  • group A it is more preferable that it is a divalent group derived from one selected from the group of compounds represented by formulas (A-1) to (A-10). More preferably, it is one selected from the group of divalent groups represented by the following formulas (C-1) to (C-15).
  • R is independently hydrogen, methyl, ethyl, hexyl, cyclohexyl, phenol, 1-naphthyl or 2-naphthyl.
  • the divalent group represented by the formulas (C1) to (C-15) may have a substituent at a position other than an atom having a free atomic value. Specific examples of substituents are , 2 biphenyl, 3 biphenyl, 4 biphenyl, 1-naphthyl, 2 naphthyl
  • G 1 is a compound force selected from the group A and the group B.
  • a divalent group is more preferable, and a group power of the divalent group represented by the formulas (C1) to (C5) is more preferably the same group that is selected.
  • G 1A is independently a divalent group derived from one selected from the group A compounds, and G 1B is independently from one selected from the group B compounds. It is a derived divalent group.
  • G 1B is represented by the following formulas (D-1) to (D—
  • the group power of the divalent group represented by 15) is preferably the same group selected.
  • R is hydrogen, methyl, ethyl, hexyl, cyclohexyl, phenol, 1-naphthyl or 2-naphthyl.
  • the divalent groups represented by the formulas (D-1) to (D-15) may have a substituent at a position other than an atom having a free valence. Specific examples of the substituent are phenyl, 2-biphenyl, 3-biphenyl, 4-biphenyl, 1-naphthyl, 2-naphthyl, methyl, t-butyl, and cyclohexyl.
  • G 1A represents the above formulas (C 1) to (C 5)
  • G 1B is selected from the group of divalent groups represented by the above formulas (D-1) to (D-15). One of them is preferable.
  • G 1A represents the above formulas (C 1) to (C 5)
  • G 1B is also selected as the group force of the divalent group represented by the above formulas (D-1) to (D-15). It is preferable that they are the same group.
  • G is a linking group represented by the formula (G3-1)
  • G is More specifically, a linking group represented by the formula (G3-4) is more preferable.
  • G 1B1 is one in which the group power of the divalent group represented by the above formulas (D-1) to (D-9) is also selected, and G 1B2 is the above formula (D-1) to ( D—the same group selected from the group of divalent groups represented by 15).
  • G is preferably the formula (G1).
  • G 1 is a compound force of the above-mentioned group A selected one force-derived divalent group.
  • C-1) to (C-15) which is more preferably a divalent group that is also induced by one force selected from the group of compounds represented by (A-10) More preferably, the group power of the divalent group represented is one selected.
  • R is independently hydrogen, methyl, ethyl, hexyl, cyclohexyl, phenol, 1-naphthyl or 2-naphthyl.
  • the divalent group represented by the formulas (C1) to (C-17) may have a substituent at a position other than an atom having a free atomic value. Specific examples of substituents are , 2-biphenyl, 3-biphenyl, 4-biphenyl, 1-naphthyl, 2-naphthyl, methyl, tert-butyl, and cyclohexyl.
  • Examples of the compound represented by the formula (2-1) are shown by the following formulas (2-111) to (2-139). Among these, preferred compounds are the formulas (2-11-1) to (2-1-25), (2-1-40), and (2-1-41). More preferred compounds are represented by formulas (2-1-1) to (2-1-1-13), (2 1-40), and (2-1-1-41). Further preferred compounds are the formulas (2-1-1), (2 15)-(2-1 8), (2-1-11), (2-1-40), and (2-141). .
  • the compound of the present invention can be synthesized by a known method such as Suzuki coupling reaction or Negishi coupling reaction.
  • a scheme for synthesizing the compound represented by the formula (2) by the Suzuki coupling reaction or the Negishi coupling reaction is illustrated below.
  • Scheme 1 Suzuki coupling
  • G is a divalent group or a ring system having two free valences
  • X is chlorine, bromine, iodine, or triflate.
  • G is a divalent group or a ring system having two free valences
  • X is chlorine, bromine, iodine, or triflate.
  • Scheme 1 includes G in which two sites are boronic acid or boronic ester, and a method in which 2, 3 ′ biviridine having a reactive group is reacted in two steps in the presence of a palladium catalyst and a base, and A method of reacting G having a reactive group with boronic acid of 2,3′-bipyridine in two steps in the presence of a palladium catalyst and a base was shown.
  • the above process may react with 2,3′-bipyridine having a reactive group twice the mole of G at one time. In this process, 2 times the mole of G You can react gin boronic acid at once.
  • Scheme 2 includes a method of reacting G, which is a zinc complex at two sites, with 2, 3'-biviridine having a reactive group in two steps in the presence of a palladium catalyst, and a reactive group at two sites.
  • G is a zinc complex at two sites
  • 2,3'-biviridine zinc complex was reacted in two steps in the presence of a palladium catalyst with G containing
  • the above process may react with 2,3'-biviridine having 2 moles of reactive groups of G at one time.
  • a zinc complex of 2,3, -biviridine at twice the mole of G may be reacted at once.
  • G When G is connected to a plurality of divalent groups, or a plurality of ring systems having two free valences are connected, or a divalent group and two free atoms
  • a combination of valent ring systems for example, —G 1 —G 1 —
  • the 2, 3′-bibilidyl group is linked to each single G 1 using the coupling reaction described above.
  • G 1 may be linked to each other by a known coupling reaction to synthesize the target compound.
  • the Suzuki coupling reaction or the Negishi coupling reaction is preferably used.
  • G 1 is a heterocycle such as oxadiazole
  • it is obtained from a hydrazide obtained by reacting a ring acid chloride having both 2, 3, and 1 bipyridyl group with hydrazine.
  • a method of synthesizing via a cyclization dehydration reaction can also be used.
  • the compound represented by the formula (3) or the compound represented by the formula (4) can also be synthesized by appropriately combining the synthesis methods described above. As mentioned above, although the synthesis method of the compound of this invention was illustrated, this invention is not restrict
  • palladium catalyst used in the Suzuki coupling reaction include Pd (PPh), PdCl
  • phosphine compound examples include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) 1-2- (di-t-butylphosphino) phenocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) phenocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) phenocene, 1,1, -bis (di-t-butylphosphino) F Erocene, 2,2,1-bis (di-t-butylphosphino) -1,1,1'-binaphthyl, 2-meth
  • Specific examples of the base used in this reaction are sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, acetic acid. Sodium, tripotassium phosphate, potassium fluoride and the like.
  • specific examples of the solvent used in this reaction include benzene, toluene, xylene, N, N dimethylformamide, tetrahydrofuran, jetyl ether, t-butyl methyl ether, 1,4 dioxane, methanol, ethanol, isopropyl alcohol, and the like. It is. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • palladium catalyst used in the Negishi coupling reaction include Pd (PPh), PdCl
  • Benzylideneacetone dipalladium (0), bis (tri-tert-butylphosphino) palladium (0), (1,1,1bis (diphenylphosphino) phenolic) dichloropalladium (II) and the like.
  • specific examples of the solvent used in this reaction are benzene, toluene, xylene, N, N-dimethylformamide, tetrahydrofuran, jetyl ether, t-butylmethyl ether, 1,4 dioxane and the like. These solvents can be appropriately selected, and may be used alone or as a mixed solvent.
  • the compound of the present invention When the compound of the present invention is used in an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied, and light emission can be obtained at a low voltage. These indicate that the compound of the present invention is excellent as an electron injection material or an electron transport material of an electroluminescent device.
  • the electron injection layer is a layer that receives electrons from the cathode layer to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the materials used for each layer are the electron injection material and the electron transport material.
  • a second invention of the present application is an organic EL device containing a compound represented by the formula (1) of the present invention in an electron injection layer or an electron transport layer.
  • the organic EL device of the present invention has a low driving voltage. High durability during driving.
  • the structure of the organic EL device of the present invention has various aspects. Basically, it has a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are: (1) anode Z hole transport layer Z light emitting layer Z electron transport layer Z cathode, (2) anode Z hole injection layer Z hole transport layer Z light emitting layer Z electron transport layer Z cathode, (3) anode z hole injection layer Z hole transport layer Z light emitting layer Z electron transport layer Z electron injection layer Z cathode, and the like.
  • the compound of the present invention has high electron injection and electron transport properties, it can be used in the electron injection layer or the electron transport layer alone or in combination with other materials.
  • Organic of the present invention is
  • the EL element can also emit blue, green, red and white light by combining the electron transport material of the present invention with a hole injection layer, hole transport layer, light emitting layer, etc. using other materials.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is as described in Polymer Science Society, Polymer Functional Materials Series "Optical Functional Materials", Joint Publication (1991), P236. Daylight fluorescent materials, fluorescent brighteners, laser dyes, organic scintillators, luminescent materials such as various fluorescent analysis reagents, supervised by Keiji Shinji, "Organic EL materials and displays", published by CMC Co., Ltd. (2001) P 155- 156 !, dopant materials such as those described above, and light materials of triplet materials such as those described in P 170-172.
  • the compound that can be used as the light-emitting material or the light-emitting dopant includes polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer-based light-emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, and boranes. Derivatives, oxazine derivatives, compounds having a spiro ring, oxaziazole derivatives, fluorene derivatives, and the like.
  • polycyclic aromatic compound examples include anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, taricene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds include oxadiazole derivatives having a dialkylamino group or a diarylamino group, pyrazoguchi quinoline derivatives, pyridine derivatives, pyran derivatives, phenanthorin derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, Quinacridone derivatives and the like.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc.
  • quinolinol derivatives benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, pyrrole derivatives, pyridine derivatives, phenanthorin derivatives.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanmethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, Examples thereof include pigments such as benzothiazole derivatives and benzimidazole derivatives.
  • the polymer light-emitting material are polyparaphenylene biylene derivatives, polythiophene derivatives, polybulur rubazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are ammine-containing styryl derivatives, styryl arylene derivatives, and the like.
  • Other electron transport materials used in the organic EL device of the present invention can be used as a compound that can be used as an electron transporting compound in a photoconductive material, and in an electron transport layer and an electron injection layer of the organic EL device. Any compound can be selected and used.
  • an electron transport material examples include quinolinol-based metal complexes, 2,2'-bibilidyl derivatives, phenanthorin derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazoles.
  • Derivatives thiadiazole derivatives, metal complexes of oxine derivatives, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole compounds, gallium complexes, pyrazole derivatives, perfluorinated phenylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinolines Derivatives, imidazopyridine derivatives, borane derivatives and the like.
  • a compound conventionally used as a charge transport material for holes or an organic material can be used. Any one of known materials used for the hole injection layer and the hole transport layer of the EL device can be selected and used. Specific examples thereof are force rubazol derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL device of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method.
  • a method such as a vapor deposition method, a spin coat method, or a cast method.
  • the thickness of each layer formed in this way is not particularly limited, and can be set as appropriate according to the nature of the material. Usually 2 ⁇ ! It is in the range of ⁇ 5000nm.
  • a method of thinning the light emitting material it is preferable to employ a vapor deposition method from the standpoint that a homogeneous film can be obtained and pinholes are not easily formed.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • the deposition conditions are generally boat heating temperature of 50 to 400 ° C, vacuum degree of 10 _6 to 10 _3 Pa, deposition rate 0. 01 ⁇ 50NmZ sec, a substrate temperature 150 to + 300 ° C, film thickness 5nm ⁇ 5 ⁇ m It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability and transparency, and glass, a transparent plastic film and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, Cul, indium tinoxide (hereinafter abbreviated as ITO), SnO, ZnO, and the like.
  • the cathode material metals, alloys, electrically conductive compounds having a work function smaller than 4 eV, and mixtures thereof can be used.
  • Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like.
  • Specific examples of the alloy are aluminum Z lithium fluoride, aluminum Z lithium, magnesium Z silver, magnesium Z indium and the like. It is desirable that at least one of the electrodes has a light transmittance of 10% or more in order to efficiently extract the light emitted from the organic EL device.
  • the sheet resistance as an electrode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is a force depending on the properties of the electrode material, and is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the above-described electrode material.
  • anode Z hole injection layer Z hole transport layer Z light emitting layer Z electron transport material Z cathode of the present invention A method for producing an organic EL device consisting of A thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A light emitting layer thin film is formed thereon. On top of this luminescent layer The electron transport material of the present invention is vacuum-deposited to form a thin film to form an electron transport layer.
  • the target organic EL device can be obtained by forming a thin film of material for the cathode by a vapor deposition method to form a cathode.
  • a vapor deposition method to form a cathode.
  • the concentrate was purified by silica gel chromatography and recrystallized with a tetrahydrofuran / heptane mixed solution. 9, 10 Bis (4, 4, 5, 5-tetramethyl-1, 3, 2 dioxaboral) —2 We obtained 6.3 g of Hueninoreanthracene.
  • the reaction solution was washed with saline water and the organic layer was concentrated with an evaporator.
  • the concentrate was purified by column chromatography to obtain 4.2 g of 6 bromo 2,3,1 bibiridine.
  • reaction solution was cooled to room temperature and filtered through celite.
  • the filtrate was concentrated by an evaporator, the concentrate was purified by silica gel column chromatography, and the yellow powder obtained by concentration again was washed with toluene, and 9, 10 bis (2, 3'-bibilidine 5 2) 800 mg of Hue-Lanthracene was obtained.
  • reaction solution was cooled to room temperature and washed with a saturated sodium chloride aqueous solution.
  • organic layer was concentrated by an evaporator, and the concentrate was purified by activated alumina column chromatography. Further, recrystallization was performed with ethyl acetate and toluene to obtain 670 mg of 9,10 bis (2,3′-biviridine-6-yl) 2 -phenolanthracene.
  • the flask was placed in LASCO and stirred at reflux temperature for 10 hours under an argon atmosphere. After heating, the reaction solution was cooled to room temperature and washed with a saturated aqueous sodium chloride solution. The organic layer was concentrated with an evaporator, and the concentrate was washed with methanol. After washing and purification by silica gel column chromatography, recrystallization from Kuroguchi Form Z ethyl acetate mixed solvent 3,6-bis (2,3'-biviridine 1-5-yl) 9 naphthalene 1-i One rubazole 475 mg was obtained.
  • the concentrate was purified by silica gel column chromatography, washed with ethanol, and 5, 9-bis (4, 4, 5, 5 (Chillu 1, 3, 2 dioxaboral)) 7, 7 Diphenol benzo [c] fluorene 9.8 was obtained.
  • the 2,7 dimethoxytriphenylene obtained was converted to 2,7 dihydroxytriphenylene with boron tribromide and reacted with trifluoromethanesulfonyl chloride to react with 2,7bis (trifluoromethanesulfonyloxy) triphenylene. did. This was reacted with bis (pinacolato) diboron to synthesize 2,7bis (4,4,5,5-tetramethyl-1,3,2 dioxaborol) triphenylene.
  • a 25 mm X 75 mm X 1.1 mm glass substrate (manufactured by Tokyo Sanyo Vacuum Co., Ltd.) on which ITO was deposited to a thickness of 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Vacuum Machine Co., Ltd.), and a molybdenum vapor deposition boat containing copper phthalocyanine, N, N, —Diferro-N, N, —Dinaphthyl — Tris (8-hydroxyquino), a molybdenum evaporation boat containing 4, 4'-diaminobiphenyl (hereinafter abbreviated as NPD).
  • a commercially available vapor deposition device manufactured by Vacuum Machine Co., Ltd.
  • NPD 4, 4'-diaminobiphenyl
  • a molybdenum vapor deposition boat containing phosphorous) aluminum (hereinafter abbreviated as ALQ), a molybdenum vapor deposition boat containing the compound synthesized in Example 1 (2-2-1), and lithium fluoride.
  • a molybdenum vapor deposition boat and a tungsten vaporization boat with aluminum were installed. Depressurize the vacuum chamber to 1 X 10 _3 Pa, heat the vapor deposition boat containing copper phthalocyanine and deposit it to a thickness of 20 nm to form a hole injection layer, and then deposit NPD. The boat was heated and NPD was deposited to a thickness of 30 nm to form a hole transport layer.
  • the molybdenum evaporation boat containing ALQ was heated and evaporated to a film thickness of 35 nm to form a light emitting layer.
  • the evaporation boat containing the compound (2-2-1) was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the above deposition rate was 0.1 to 0.2 nmZ seconds.
  • the vapor deposition boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.01 nm Z seconds so that the film thickness becomes 0.5 nm, and then the vapor deposition boat containing aluminum is heated to form a film.
  • An organic EL device was obtained by vapor deposition at a deposition rate of 0.2 to 0.5 nm and a second so as to have a thickness of lOOnm.
  • a DC voltage was applied using the ITO electrode as the anode and the lithium fluoride Z-aluminum electrode as the cathode, green light emission with a wavelength of about 520 nm was obtained.
  • a constant current drive test was performed using the current density to obtain the initial luminance lOOOcdZm 2 , the luminance after about 60 hours was 906 cdZm 2 o
  • a transparent support substrate was a 25 mm ⁇ 75 mm ⁇ l.1 mm glass substrate (manufactured by Tokyo Sanyo Vacuum Co., Ltd.) on which ITO was deposited to a thickness of 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Machine Co., Ltd.), and a molybdenum vapor deposition boat containing copper phthalocyanine, N, ⁇ '-diphenyl-N, ⁇ '— Molybdenum vapor deposition boat containing dinaphthyl-4,4'-diaminobiphenyl (hereinafter abbreviated as NPD), the following compound ( ⁇ ): 9—Fale 10— [6— (1, 1 ,; 3, 1,,) terferyl 5, 1 yl] naphthalene 1 2-yl] Molybdenum deposition boat with anthracene, st
  • the evaporation boat containing the compound (2-2-1) was heated and evaporated to a thickness of 20 nm to form an electron transport layer.
  • the above deposition rate was 0.001 to 3. OnmZ seconds.
  • the deposition boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.005 nm to a film thickness of 0.5 nm, and then the deposition boat containing aluminum is heated.
  • an organic EL element was obtained by vapor deposition at a vapor deposition rate of 0.1 to 1. OnmZ seconds so that the film thickness was 10 Onm.
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was changed to the compound (2-2-2).
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was replaced with the compound (2-140).
  • Example 15
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was changed to the compound (2-2-9).
  • Example 17 An organic EL device was obtained in the same manner as in Example 12, except that the compound (2-2-1) was replaced with the compound (2-2-2-29).
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was replaced with the compound (2-2-25).
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was changed to the compound (2-2-30).
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was replaced with the compound (2-11-1).
  • An organic EL device was obtained in the same manner as in Example 11 except that the compound (2-2-1) was replaced with the following compound (C) (Compound II 4 described in Patent Document 1).
  • a DC voltage of about 6 V was applied, a current of about 121 mAZcm 2 flowed, and a green light emission with a wavelength of 520 nm was obtained with a luminance of about 3920 cd Zm 2 .
  • An organic EL device was obtained in the same manner as in Example 12 except that the compound (2-2-1) was changed to the compound (C).
  • Driving test start voltage 3 luminance in 25 hours at 71V is 699cdZm 2, bright during the elapsed 80 hours The degree was 496 cdZm 2 .
  • An organic EL device was obtained in the same manner as in Example 12.
  • the drive test start voltage was 6.36V, and the brightness after 80 hours was 830cd, mC.
  • an organic EL element with better performance in terms of driving voltage and element lifetime.
  • a high performance display device equipped with the device can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

下記の式(1)で表される化合物は、有機EL素子の電子輸送材料として有用であり、この化合物を電子輸送層に含む有機EL素子は長寿命で、駆動電圧が低い。 式中、Gはn価の連結基であり、nは2~4の整数であり;R1~R4は独立して水素、1価の基またはGに結合する遊離原子価であり、R5~R8は独立して水素または1価の基であるが、R1~R4の1つはGに結合する遊離原子価であり;そして、n個の2,3’-ビピリジル基は同一でもよく、異なっていてもよい。

Description

明 細 書
電子輸送材料およびこれを用いた有機電界発光素子
技術分野
[0001] 本発明は、 2, 3 ' ビビリジル基を有する新規な電子輸送材料、この電子輸送材料 を用いた有機電界発光素子 (以下、有機 EL素子または単に素子と略記することがあ る。)等に関する。
背景技術
[0002] 近年、次世代のフルカラーフラットパネルディスプレイとして有機 EL素子が注目され 、活発な研究がなされている。有機 EL素子の実用化を促進するには、素子の駆動 電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子 輸送材料の開発がなされてきた。特開 2003— 123983号公報(:特許文献 1)には、 フエナント口リン誘導体を電子輸送材料に使用することで有機 EL素子を低電圧で駆 動させることができると記載されており、更に、フエナント口リンの類似体である 2, 2' —ビビリジルイ匕合物も同様に、電子輸送材料に使用することで有機 EL素子を低電圧 で駆動させることができると記載されている。し力しながらこの文献の実施例に報告さ れている素子の特性 (駆動電圧、発光効率など)は比較例を基準にした相対値のみ であり、実用的な値と判断できる実測値は記載されていない。他に、 2, 2' ビビリジ ル化合物を電子輸送材料に使用した例は、 Proceedings of the 10th International Wo rkshop on Inorganic and Organic Electroluminescence (:非特午文献 1)、特開 2002 — 158093号公報(:特許文献 2)、および特表平 11— 514143号公報(:特許文献 3 )に開示されている。非特許文献 1に記載されている 2, 2 '—ビビリジルイ匕合物はガラ ス転移温度(以下、 Tgと略記する。)が低ぐ実用的ではなかった。特許文献 2に記載 の 2, 2'—ビビリジルイ匕合物は比較的低電圧で有機 EL素子を駆動させることができ るが、実用化には更なる低電圧化が望まれる。特許文献 3には、具体的な化合物が 示されていない。
特許文献 1 :特開 2003— 123983号公報
特許文献 2 :特開 2002— 158093号公報 特許文献 3:特表平 11― 514143号公報
特 §午文献 1: Proceedings of the 10th International Worksnop on Inorganic and Org anic Electroluminescence
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は 、有機 EL素子の駆動電圧の低減、長寿命化等に寄与する電子輸送材料を提供す ることを課題とする。さらに本発明は、この電子輸送材料を用いた有機 EL素子を提 供することを課題とする。
課題を解決するための手段
[0004] 本発明者らは鋭意検討した結果、 2, 3'—ビビリジルを有する化合物を有機 EL素子 の電子輸送層に用いることにより、高輝度で長寿命、かつ低電圧で駆動できる有機 E
L素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
[0005] [1]下記の式(1)で表される化合物。
Figure imgf000003_0001
式中、 Gは単結合ではない n価の連結基であり、 nは 2〜4の整数であり;
I^〜R4は独立して水素、 1価の基または Gに結合する遊離原子価であり、 R5〜R8は 独立して水素または 1価の基である力 I^〜R4の 1つは Gに結合する遊離原子価で あり;そして、 n個の 2, 3,一ビビリジル基は同一でもよぐ異なっていてもよい。
[2]^〜1^4の 1つが Gに結合する遊離原子価であり、それ以外が水素であり、 R5〜R 8が水素である、前記 [1]項に記載の化合物。
[0006] [3]下記の式(2)で表される、前記 [2]項に記載の化合物。
Figure imgf000004_0001
式中、 Gは下記の式 (G1)〜(G3)で表される基の群力 選択される 1つであり; R9〜 R12の 1つは Gに結合する遊離原子価であり、それ以外は水素であり;そして、 R13〜R 16の 1つは Gに結合する遊離原子価であり、それ以外は水素である。
—— G1—— (G1 )
—— G1— G—— (G2)
—— G1— G1一 G1—— (G3)
式中、 G1は独立して、式 (A— 1)〜(A— 20)および式(B— 1)〜(B— 42)で表され る化合物の群から選択される 1つから誘導される 2価の基である。
Figure imgf000005_0001
Figure imgf000006_0001
R R (A-15)
Figure imgf000006_0002
Figure imgf000007_0001
B-1 B-2 B-3 B-4
Figure imgf000007_0002
B-5 B-6 B-7 B-8
Figure imgf000007_0003
B-9 B-10 B-1 1 B-12
Figure imgf000007_0004
Figure imgf000007_0005
Figure imgf000007_0006
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
(B-31 ) (B-32) (B-33) (B-34)
Figure imgf000008_0004
(B-39) (B-40) (B-41 ) (B-42) 上記の式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ- ル、 1 ナフチルまたは 2—ナフチルであり;式 (A— 1)〜(A— 20)および式(B— 1) 〜(B— 42)で表される化合物力 誘導される 2価の基は、遊離原子価を持つ原子以 外の位置に置換基を有して 、てもよ!/、。
Figure imgf000008_0005
式中、 Gの定義は式(2)における Gと同じである。
[5]Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が式 (A で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [4]項に記載の化合物。
[6] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A- 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [4]項に記載の化合物。
[7]Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が下記の式 (C 1)〜(C 15)で表される 2価の基の群力 選択される 1つである、前記 [4]項に記載の化合 物。
Figure imgf000010_0001
(C-13) (C-14) (C-15)
上記の式中、 Rは独立して水素、メチル、ェチル、 、キシル、シクロへキシル、フエ二 ル、 1 -ナフチルまたは 2—ナフチルであり;式(C— 1)〜(C— 15)で表される 2価の 基は、遊離原子価をもつ原子以外の位置に置換基を有して ヽてもよ 、。 [8] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 20) および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導され る同一の 2価の基であり、この 2価の基は置換基を有していてもよい、前記 [4]項に記 載の化合物。
[9] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の基であり、この 2価の基は置換基を有して 、てもよ 、、前記 [4]項に記載の化合物。
[10]Gが式(G2)で表される連結基であり、式(G2)中、 G1が下記の式(C 1)〜(C 5)で表される 2価の基の群力 選択される同一の基であり、この 2価の基は置換基 を有していてもよい、前記 [4]項に記載の化合物。
Figure imgf000011_0001
(C-4) (C-5)
上記の式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ- ル、 1―ナフチルまたは 2 ナフチルであり;式(C— 1)〜(C— 5)で表される 2価の基 は、遊離原子価をもつ原子以外の位置に置換基を有して ヽてもよ 、。
[11] Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、前記 [4]項に記 載の化合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、式 (A— 1)〜 (A— 20)で表される化合物の群力も選択される
1つから誘導される 2価の基であり、この 2価の基は置換基を有していてもよく; G1Bは 独立して、式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導 される 2価の基であり、この 2価の基は置換基を有して!/、てもよ!/、。
[12] Gが式 (G3— 1)で表される連結基であり; G1Bが下記の式 (D 1)〜(D 15) で表される 2価の基の群力 選択される同一の基である、前記 [11]項に記載の化合 物。
Figure imgf000012_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000012_0002
ナ フチルまたは 2 ナフチルであり;式(D— 1)〜(D— 15)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[ 13] Gが式 (G3— 2)で表される連結基であり; G1Aが式 (C 1)〜(C 5)で表され る 2価の基の群から選択される同一の基であり、 G1Bが式 (D— 1)〜(D— 15)で表さ れる 2価の基の群から選択される 1つである、前記 [11]項に記載の化合物。
[ 14] Gが式(G3— 3)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群力も選択される 1つであり、 G1Bが式 (D— 1)〜(D— 15)で表される 2 価の基の群力 選択される同一の基である、前記 [11]項に記載の化合物。
[ 15] Gが下記の式 (G3— 4)で表される連結基である、前記 [ 11]項に記載の化合物 G 1 B2_G 1 B1_Q 1 B2_ (G3-4) 式中、 G1B1は式 (D— 1)〜(D—9)で表される 2価の基の群力も選択される 1つであり 、 G1B2は式 (D— 1)〜(D— 15)で表される 2価の基の群力 選択される同一の基で ある。
[16]下記の式(2— 2)で表される、前記 [3]項に記載の化合物。
Figure imgf000013_0001
式中、 Gの定義は式(2)における Gと同じである。
[17]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [ 16]項に記載の化合物。
[18]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A- 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [ 16]項に記載の化合物。
[19]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 15) で表される 2価の基の群から選択される 1つである、前記 [ 16]項に記載の化合物。
[20] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (Α—1)〜(Α—20) および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導され る同一の 2価の基であり、この 2価の基は置換基を有していてもよい、前記 [16]項に 記載の化合物。
[21]Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の基であり、この 2価の基は置換基を有して 、てもよ 、、前記 [ 16]項に記載の化合物。
[22] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式(C 1)〜(C 5)で 表される 2価の基の群力 選択される同一の基であり、この 2価の基は置換基を有し ていてもよい、前記 [16]項に記載の化合物。
[23] Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、前記 [16]項に 記載の化合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G1 B一 G1A— G1 B一 (G3-3)
式中、 G1Aは独立して、式 (A— 1)〜 (A— 20)で表される化合物の群力も選択される
1つから誘導される 2価の基であり、この 2価の基は置換基を有していてもよく; G1Bは 独立して、式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導 される 2価の基であり、この 2価の基は置換基を有して!/、てもよ!/、。
[24] Gが式 (G3— 1)で表される連結基であり; G1Bが式 (D 1)〜(D— 15)で表さ れる 2価の基の群力 選択される同一の基である、前記 [23]項に記載の化合物。
[25] Gが式(G3— 2)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群から選択される同一の基であり、 G1Bが式 (D— 1)〜(D— 15)で表さ れる 2価の基の群から選択される 1つである、前記 [23]項に記載の化合物。
[26] Gが式(G3— 3)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群力も選択される 1つであり、 G1Bが式 (D— 1)〜(D— 15)で表される 2 価の基の群力も選択される同一の基である、前記 [23]項に記載の化合物。
[27] Gが下記の式 (G3-4)で表される連結基である、前記 [23]項に記載の化合物 Q 1 B2_G 1 B1_G 1 B2_ (G3-4) 式中、 G1B1は式 (D— 1)〜(D—9)で表される 2価の基の群力も選択される 1つであり 、 G1B2は式 (D— 1)〜(D— 15)で表される 2価の基の群力 選択される同一の基で ある。
[28]下記の式(2— 3)で表される、前記 [3]項に記載の化合物。
Figure imgf000015_0001
式中、 Gの定義は式(2)における Gと同じである。
[29] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [28]項に記載の化合物。
[30] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A- 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [28]項に記載の化合物。
[31]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 15) で表される 2価の基の群力も選択される 1つである、前記 [28]項に記載の化合物。
[32] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 20) および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導され る同一の 2価の基であり、この 2価の基は置換基を有していてもよい、前記 [28]項に 記載の化合物。
[33] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の基であり、この 2価の基は置換基を有して 、てもよ 、、前記 [28]項に記載の化合物。
[34] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式(C 1)〜(C 5)で 表される 2価の基の群力 選択される同一の基であり、この 2価の基は置換基を有し ていてもよい、前記 [28]項に記載の化合物。
[35]Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、前記 [28]項に 記載の化合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G1 B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、式 (A— 1)〜 (A— 20)で表される化合物の群力も選択される
1つから誘導される 2価の基であり、この 2価の基は置換基を有していてもよく; G1Bは 独立して、式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導 される 2価の基であり、この 2価の基は置換基を有して!/、てもよ!/、。
[36]Gが式 (G3— 1)で表される連結基であり; G1Bが式 (D 1)〜(D— 15)で表さ れる 2価の基の群力 選択される同一の基である、前記 [35]項に記載の化合物。
[37] Gが式(G3— 2)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群から選択される同一の基であり、 G1Bが式 (D— 1)〜(D— 15)で表さ れる 2価の基の群から選択される 1つである、前記 [35]項に記載の化合物。
[38] Gが式(G3— 3)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群力も選択される 1つであり、 G1Bが式 (D— 1)〜(D— 15)で表される 2 価の基の群力も選択される同一の基である、前記 [35]項に記載の化合物。
[39] Gが下記の式 (G3 -4)で表される連結基である、前記 [35]項に記載の化合物 G 1 B2_G 1 B1_Q 1 B2_ (G3-4) 式中、 G1B1は式 (D— 1)〜(D—9)で表される 2価の基の群力も選択される 1つであり 、 G1B2は式 (D— 1)〜(D— 15)で表される 2価の基の群力 選択される 1つ同一の基 である。
[40]下記の式(2— 4)で表される、前記 [3]項に記載の化合物。
Figure imgf000016_0001
式中、 Gの定義は式(2)における Gと同じである。
[41] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A- 1)〜(A— 20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [40]項に記載の化合物。 [42] Gが式(Gl)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [40]項に記載の化合物。
[43]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 15) で表される 2価の基の群から選択される 1つである、前記 [40]項に記載の化合物。
[44] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 20) および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導され る同一の 2価の基であり、この 2価の基は置換基を有していてもよい、前記 [40]項に 記載の化合物。
[45] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の基であり、この 2価の基は置換基を有して 、てもよ 、、前記 [40]項に記載の化合物。
[46] Gが式(G2)で表される連結基であり、式(G2)中、 G1が式(C 1)〜(C 5)で 表される 2価の基の群力 選択される同一の基であり、この 2価の基は置換基を有し ていてもよい、前記 [40]項に記載の化合物。
[47] Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、前記 [40]項に 記載の化合物。
-G1 B- -G1 B- -G1 B— (G3-1 )
-G A — G1 B- -G1A― (G3-2)
-G1 B- — G1A -G1 B— (G3-3)
式中、 G1Aは独立して、式 (A— 1)〜 (A— 20)で表される化合物の群力も選択される 1つから誘導される 2価の基であり、この 2価の基は置換基を有していてもよく; G1Bは 独立して、式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つから誘導 される 2価の基であり、この 2価の基は置換基を有して!/、てもよ!/、。
[48] Gが式 (G3— 1)で表される連結基であり; G1Bが式 (D 1)〜(D— 15)で表さ れる 2価の基の群力 選択される同一の基である、前記 [47]項に記載の化合物。
[49] Gが式 (G3— 2)で表される連結基であり; G1Aが式 (C 1)〜(C 5)で表され る 2価の基の群から選択される同一の基であり、 G1Bが式 (D— 1)〜(D— 15)で表さ れる 2価の基の群から選択される 1つである、前記 [47]項に記載の化合物。
[50] Gが式(G3— 3)で表される連結基であり; G1Aが式(C 1)〜(C 5)で表され る 2価の基の群力も選択される 1つであり、 G1Bが式 (D— 1)〜(D— 15)で表される 2 価の基の群力も選択される同一の基である、前記 [47]項に記載の化合物。
[51] Gが下記の式 (G3-4)で表される連結基である、前記 [47]項に記載の化合物 G 1 B2_G 1 B1_G 1 B2_ (G3-4) 式中、 G1B1は式 (D— 1)〜(D—9)で表される 2価の基の群力も選択される 1つであり 、 G1B2は式 (D— 1)〜(D— 15)で表される 2価の基の群力 選択される同一の基で ある。
Figure imgf000018_0001
式中、 Gの定義は式(2)における Gと同じである。
[53] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [52]項に記載の化合物。
[54] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [52]項に記載の化合物。
[55]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 17) で表される 2価の基の群力も選択される 1つである、前記 [52]項に記載の化合物。
[56]下記の式(2— 6)で表される、前記 [3]項に記載の化合物。
Figure imgf000019_0001
式中、 Gの定義は式(2)における Gと同じである。
[57] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [56]項に記載の化合物。
[58] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [56]項に記載の化合物。
[59]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 17) で表される 2価の基の群力も選択される 1つである、前記 [56]項に記載の化合物。
[0013] [60]下記の式(2— 7)で表される、前記 [3]項に記載の化合物。
Figure imgf000019_0002
式中、 Gの定義は式(2)における Gと同じである。
[61]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (Α—1)〜(Α—20) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [60]項に記載の化合物。
[62] Gが式(G1)で表される連結基であり、式(G1)中、 G1が式 (A— 1)〜(A— 10) で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の 基は置換基を有して 、てもよ 、、前記 [60]項に記載の化合物。
[63]Gが式(G1)で表される連結基であり、式(G1)中、 G1が式(C 1)〜(C 17) で表される 2価の基の群力も選択される 1つである、前記 [60]項に記載の化合物。
[0014] [64]下記の式(3)で表される、前記 [2]項に記載の化合物。
Figure imgf000020_0001
式中、 Gは下記の式(G4)または(G5)で表される基であり; R17〜R2Uの 1つは Gに結 合する遊離原子価であり、それ以外は水素であり; R21〜R24の 1つは Gに結合する遊 離原子価であり、それ以外は水素であり; R25〜R28の 1つは Gに結合する遊離原子価 であり、それ以外は水素である。
Figure imgf000020_0002
式中、 G1は独立して、式 (A— 1)〜(A— 20)および式(B— 1)〜(B— 42)で表され る化合物の群力 選択される 1つ力 誘導される 2価の基であり; G2Aは、下記の式 (E 1)〜(E— 10)で表される 3価の基の群力 選択される 1つであり、 G2Bはホウ素、窒 素、ホスホリル基、または式 (E— 1)〜(E— 10)で表される 3価の基の群力 選択され る 1つである。
Figure imgf000021_0001
(E-1 ) (E-2) (E-3) (E-4)
Figure imgf000021_0002
(E-9) (E-10)
[65]Gが式(G5)で表される連結基であり、式(G5)において G1が同一である、前記 [64]項に記載の化合物。
[66]下記の式 (4)で表される、前記 [2]項に記載の化合物。
Figure imgf000022_0001
式中、 Gは下記の式(G6)または(G7)で表される基であり; R 〜R の 1つは Gに結 合する遊離原子価であり、それ以外は水素であり; R33〜R36の 1つは Gに結合する遊 離原子価であり、それ以外は水素であり; R37〜R4°の 1つは Gに結合する遊離原子価 であり、それ以外は水素であり; R41〜R44の 1つは Gに結合する遊離原子価であり、 それ以外は水素である。
Figure imgf000022_0002
式中、 G1は独立して、式 (A— 1)〜(A— 20)および式(B— 1)〜(B— 42)で表され る化合物の群力 選択される 1つ力 誘導される 2価の基であり; G3Aは、下記の式 (F 1)〜 (F— 8)で表される 4価の基の群力 選択される 1つであり; G3Bは炭素、ケィ 素、または式 (F- 1)〜 (F—8)で表される 4価の基の群力 選択される 1つである。
Figure imgf000023_0001
(F-1 ) (F-2) (F-3) (F-4)
Figure imgf000023_0002
(F-8)
[67]Gが式 (G7)で表される連結基であり、式 (G7)において G1が同一である、前記 [66]項に記載の化合物。
[68]Gがアントラセン 9, 10 ジィルである、前記 [4]項に記載の化合物。
[69]Gがアントラセン 9, 10 ジィルである、前記 [16]項に記載の化合物。
[70]Gが 2—フエ-ルアントラセン—9, 10 ジィルである、前記 [4]項に記載の化 合物。
[71]Gが 2 フエ-ルアントラセン—9, 10 ジィルである、前記 [16]項に記載の化 合物。
[72]Gが 2—t—ブチルアントラセン—9, 10 ジィルである、前記 [4]項に記載の化 合物。
[73]Gが 2—t—ブチルアントラセン—9, 10 ジィルである、前記 [16]項に記載の 化合物。
[74]Gが 2—メチルアントラセン—9, 10 ジィルである、前記 [4]項に記載の化合 物。
[75]Gが 2—メチルアントラセン—9, 10 ジィルである、前記 [16]項に記載の化合 物。
[76]Gが 7, 7 ジフヱ-ルペンゾ [c]フルオレン 5, 9 ジィルである、前記 [4]項 に記載の化合物。
[77]Gが 7, 7 ジフエ-ルペンゾ [c]フルオレン—5, 9 ジィルである、前記 [16] 項に記載の化合物。
[0017] [78]前記 [ 1]〜 [77]項の 、ずれか 1項に記載の化合物を含有する有機電界発光 素子。
[79]陽極および陰極により挟持された、少なくとも正孔輸送層、発光層、および電子 輸送層を基板上に有する有機電界発光素子において、該電子輸送層が、前記 [1] 〜 [77]項の 、ずれか 1項に記載の化合物を含有する有機電界発光素子。
発明の効果
[0018] 本発明の化合物は薄膜状態で電圧を印力!]しても安定であり、また、電荷の輸送能力 が高いという特徴を持つ。本発明の化合物は有機 EL素子における電荷輸送材料と して適している。本発明の化合物を有機 EL素子の電子輸送層に用いることで、低い 駆動電圧、長い寿命を有する有機 EL素子を得ることができる。本発明の有機 EL素 子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。 発明を実施するための最良の形態
[0019] 以下、本発明をさらに詳細に説明する。
<化合物の説明 >
本願の第 1の発明は、下記の式(1)で表される、 2, 3' ビビリジル基を有する化合 物である。
Figure imgf000024_0001
式中、 Gは単結合ではない n価の連結基である。 n価の連結基とは n価の原子、 n価 の基および n個の遊離原子価をもつ環系を指す総称であり、かつ、 n価の連結基はこ れらを組み合わせて構成されてもょ ヽ。 n価の連結基が非対称な構造である場合も、 n個の 2, 3' ビビリジル基は該連結基の任意の位置に結合してよい。 n価の連結基 Gにつ 、ての詳し 、説明は後述する。
[0020] 本明細書中、 Ri〜R8と 2, 3,一ビビリジル核で形成される基のことを 2, 3,一ビビリジ ル基と称する。 2, 3,—ビビリジル基における Ri〜R4の 1つは Gに結合する遊離原子 価であり、それ以外は独立して水素または 1価の基である。 R5〜R8は独立して水素ま たは 1価の基である。 n個の 2, 3'—ビビリジル基は同一でもよぐ異なっていてもよい 力 同一であることが好ましい。なお、前記の連結基 Gにおける「n個の遊離原子価」 および、 2, 3'—ビビリジル基における「Gに結合する遊離原子価」という表記は、 Gお よび 2, 3'—ビビリジル基が遊離基 (ラジカル)で存在する事を表すものではない。「 遊離原子価」とは、共有結合によって他の基や原子と結合している、いわゆる「結合 手」のことを表す。すなわち、「2, 3,一ビビリジル基における Ri〜R4の 1つは Gに結 合する遊離原子価であり」という表記は、 2, 3,—ビビリジル基における Ri〜R4のどれ 力 1つが連結基 Gの任意の位置に結合して 、る状態を表すものである。
[0021] !^〜 における 1価の基は、ニトロ基、シァノ基、ジメシチルボリル基、炭素数 6〜12 のァリール、または炭素数 1〜12のアルキルである。このアルキルは直鎖でも分岐鎖 でも環状でもよい。 1価の基の具体例はフエ-ル、 2 ビフエ-リル、 3 ビフエ-リル 、 4ービフエ二リル、 1 ナフチル、 2 ナフチル、メチル、 tーブチル、シクロへキシル である。 R5〜R8は水素が好ましい。
[0022] 2, 3,一ビビリジル基は、
Figure imgf000025_0001
R2または R3が Gに結合することが好ましい。 Gとの結合 に関与しな 、I^〜R4は水素であることが好まし 、。
[0023] 式(1)において、 nは 2が最も好ましぐ次に 3が好ましぐその次に 4が好ましい。その 理由の 1つは化合物が製造し易いことである。 2つめは、分子量が極端に大きくなら ず比較的昇華性が高くなると考えられ、有機 EL素子の製造時製膜し易いという利点 が見込めることである。
[0024] <n= 2である化合物 >
nが 2である化合物は、詳しくは下記の式(2)で表される。
Figure imgf000025_0002
R9〜R12の 1つは Gに結合する遊離原子価であり、それ以外は水素である。ここで、 R R1Gまたは R11が Gに結合することが好ましい。 R13〜R16の 1つは Gに結合する遊離 原子価であり、それ以外は水素である。ここで、 R13、 R14または R15が Gに結合するこ とが好ましい。 2つの 2, 3,一ビビリジル基は同一でもよぐ異なっていてもよいが、同 一である方が好ましい。
[0025] Gは下記の式 (G1)〜(G3)で表される連結基の群力 選択される 1つである。式 (G 2)および(G3)において、 G1は同一でもよぐ異なっていてもよい。
—— G—— (G1 )
—— G1— G1—— (G2)
—— G1— G1— G1—— (G3)
G1は独立して、下記の式 (A— 1)〜(A— 20)および式(B— 1)〜(B— 42)で表され る化合物の群から選択される 1つから誘導される 2価の基である。以降、式 (A— 1)〜 (A— 20)で表される化合物の群を A群、式 (B— 1)〜(B— 42)で表される化合物の 群を B群と称することがある。
Figure imgf000027_0001
Figure imgf000028_0001
(A-18) (A-19) (A-20)
Figure imgf000029_0001
B-1 B-2 B-3 B-4
Figure imgf000029_0002
B-5 B-6 B-7 B-8
Figure imgf000029_0003
B-9 B-10 B-1 1 B-12
Figure imgf000029_0004
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0003
(B-31 ) (B-32) (B-33) (B-34)
Figure imgf000030_0004
(B-39) (B-40) (B-41 ) (B-42)
[0030] Rは独立して水素、メチル、ェチノレ、へキシル、シクロへキシル、フエニル、 1 ナフチ ルまたは 2—ナフチルである。
[0031] 式 (A— 1)〜 (A— 20)および式 (B— 1)〜(B— 42)で表される化合物から誘導され る 2価の基は、遊離原子価を持つ原子以外の位置に置換基を有していてもよい。置 換基の具体例はフエ-ル、 2 ビフエ-リル、 3 ビフエ-リル、 4 ビフエ-リル、 1— ナフチル、 2—ナフチル、メチル、 tーブチル、シクロへキシルである。
[0032] <n= 3である化合物 >
nが 3である化合物は、詳しくは下記の式(3)で表される。
Figure imgf000031_0001
R17〜R2Uの 1つは Gに連結する遊離原子価であり、それ以外は水素である。ここで、 R17、 R18または R19が Gに結合することが好ましい。 R21〜R24の 1つは Gに連結する遊 離原子価であり、それ以外は水素である。ここで、 R21、 R22または R23が Gに結合する ことが好ましい。 R25〜R28の 1つは Gに連結する遊離原子価であり、それ以外は水素 である。ここで、 R25、 R26または R27が Gに結合することが好ましい。 3つの 2, 3,一ビピ リジル基は同一でもよぐ異なっていてもよいが、同一である方が好ましい。
[0033] Gは下記の式 (G4)または(G5)で表される連結基である。式(G5)にお!/、て、 G1は 同一でもよぐ異なっていてもよいが、同一である方が好ましい。
Figure imgf000031_0002
G1は独立して、前記の A群および B群の化合物から選択される 1つから誘導される 2 価の基である。
[0034] G2Aは、下記の式 (E— 1)〜(E— 10)で表される 3価の基の群力 選択される 1つで あり、 G2Bはホウ素、窒素、ホスホリル基、または式 (E— 1)〜(E—10)で表される 3価 の基の群から選択される 1つである。
Figure imgf000032_0001
(E-1 ) (E-2) (E-3) (E-4)
Figure imgf000032_0002
<n=4である化合物 >
nが 4である化合物は、詳しくは下記の式 (4)で表される。
Figure imgf000032_0003
R29〜Rd2の 1つは Gに連結する遊離原子価であり、それ以外は水素である。ここで、 R29、 R3Gまたは R31が Gに結合することが好ましい。 R33〜R36の 1つは Gに連結する遊 離原子価であり、それ以外は水素である。ここで、 R33、 R34または R35が Gに結合する ことが好ましい。 R37〜R4の 1つは Gに連結する遊離原子価であり、それ以外は水素 である。ここで、 R37、 R38または R39が Gに結合することが好ましい。 R41〜R44の 1つは Gに連結する遊離原子価であり、それ以外は水素である。ここで、 R41、 R42または R43 力 に結合することが好ましい。 4つの 2, 3'—ビビリジル基は同一でもよぐ異なって いてもよいが、同一である方が好ましい。
[0036] Gは下記の式 (G6)または(G7)で表される連結基である。式(G7)にお!/、て、 G1は 同一でもよぐ異なっていてもよいが、同一である方が好ましい。
(G7)
Figure imgf000033_0001
G1は独立して、前記の A群および B群の化合物から選択される 1つから誘導される 2 価の基である。
[0037] G3Aは、下記の式 (F— 1)〜(F— 8)で表される 4価の基の群力 選択される 1つであ り、 G3Bは炭素、ケィ素、または式 (F— 1)〜(F— 8)で表される 4価の基の群力 選択 される 1つである。
Figure imgf000034_0001
(F-1 ) (F-2) (F-3) (F-4)
Figure imgf000034_0002
(F-8) <n= 2である化合物のさらに詳細な説明 >
nが 2である好まし 、化合物は下記の式(2— 1)〜(2— 7)で表される。
Figure imgf000034_0003
Figure imgf000035_0001
式(2— 1)〜(2— 7)においては、式(2— 1)、 (2— 2)および(2— 3)が好ましく、式( 2— 1)および(2— 2)がより好ましい。式(2— 1)〜(2— 7)においては、 Gは式(G1) であることが好ましぐ次いで式 (G3)であることが好ましぐ次いで式 (G2)であること が好ましい。
式(2—1)〜(2—4)において、 Gが式(G1)であるとき、 G1は前記の A群の化合物か ら選択される 1つから誘導される 2価の基であることが好ましぐ A群の中でも式 (A— 1)〜 (A— 10)で表される化合物の群から選択される 1つから誘導される 2価の基で あることがより好ましぐ下記の式 (C— 1)〜(C— 15)で表される 2価の基の群から選 択される 1つであることがさらに好ましい。
Figure imgf000036_0001
(C-7) (C-8) (C-9)
Figure imgf000036_0002
(C-13) (C-14) (C-15)
Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチ ルまたは 2 ナフチルである。式(C 1)〜(C—15)で表される 2価の基は、遊離原 子価をもつ原子以外の位置に置換基を有して 、てもよ 、。置換基の具体例はフエ- ル、 2 ビフエ-リル、 3 ビフエ-リル、 4 ビフエ-リル、 1—ナフチル、 2 ナフチル
、メチル、 tーブチル、シクロへキシルである。
[0040] 式(2—1)〜(2—4)において、 Gが式(G2)であるとき、 G1は前記の A群および B群 の化合物力 選択される 1つ力 誘導される同一の 2価の基であることが好ましぐ式
(A— 1)〜 (A— 10)で表される化合物の群力 選択される 1つから誘導される同一の
2価の基であることがより好ましく、前記の式(C 1)〜(C 5)で表される 2価の基の 群力も選択される同一の基であることがさらに好ましい。
[0041] 式(2— 1)〜(2— 4)において、 Gが式(G3)であるとき、さらに詳しくは下記の式(G3
1)〜(G3— 3)で表される連結基であることが好まし!/、。
—— G B— G1 B— G1 B— (G3-1 )
—— G A— G1 B— G1A— (G3-2)
—— G B— G1A— G1 B—— (G3-3)
G1Aは独立して、前記の A群の化合物から選択される 1つから誘導される 2価の基で あり、 G1Bは独立して、前記の B群の化合物から選択される 1つから誘導される 2価の 基である。
[0042] 式(2— 1)〜(2— 4)において、 Gが式(G3— 1)で表される連結基であるとき、 G1Bは 下記の式 (D— 1)〜(D— 15)で表される 2価の基の群力も選択される同一の基であ ることが好ましい。
Figure imgf000038_0001
(D-1 ) (D-2) (D-3)
Figure imgf000038_0002
(D-5) (D-6) (D-7) (D-8)
Figure imgf000038_0003
Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチルまたは 2 ナフチルである。式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子価をも つ原子以外の位置に置換基を有していてもよい。置換基の具体例はフエ-ル、 2- ビフエ-リル、 3 ビフエ-リル、 4ービフエ-リル、 1 ナフチル、 2 ナフチル、メチル 、 tーブチル、シクロへキシルである。
[0043] 式(2— 1)〜(2— 4)において、 Gが式(G3— 2)で表される連結基であるとき、 G1Aは 前記の式 (C 1)〜(C 5)で表される 2価の基の群力 選択される同一の基であり 、 G1Bは前記の式 (D— 1)〜(D— 15)で表される 2価の基の群から選択される 1つで あることが好ましい。
[0044] 式(2— 1)〜(2— 4)において、 Gが式(G3— 3)で表される連結基であるとき、 G1Aは 前記の式 (C 1)〜(C 5)で表される 2価の基の群力 選択される 1つであり、 G1B は前記の式 (D— 1)〜(D— 15)で表される 2価の基の群力も選択される同一の基で あることが好ましい。
[0045] 式(2—1)〜(2—4)において、 Gが式(G3— 1)で表される連結基であるとき、 Gはさ らに詳しくは式 (G3— 4)で表される連結基であることがより好ま 、。
G 1 B2_G 1 B1_Q 1 B2_ (G3-4)
G1B1は前記の式 (D— 1)〜(D— 9)で表される 2価の基の群力も選択される 1つであ り、 G1B2は前記の式 (D— 1)〜(D— 15)で表される 2価の基の群から選択される同一 の基である。
式(2— 5)〜(2— 7)においては、 Gが式(G1)であることが好ましい。 Gが式(G1)で あるとき、 G1は前記の A群の化合物力 選択される 1つ力 誘導される 2価の基である ことが好ましぐ A群の中でも式 (A— 1)〜 (A— 10)で表される化合物の群から選択 される 1つ力も誘導される 2価の基であることがより好ましぐ下記の式 (C— 1)〜(C— 15)で表される 2価の基の群力 選択される 1つであることがさらに好ましい。
Figure imgf000040_0001
(C-15) (C-16) (C-17)
Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチ ルまたは 2 ナフチルである。式(C 1)〜(C—17)で表される 2価の基は、遊離原 子価をもつ原子以外の位置に置換基を有して 、てもよ 、。置換基の具体例はフエ- ル、 2 ビフエ-リル、 3 ビフエ-リル、 4 ビフエ-リル、 1—ナフチル、 2 ナフチル 、メチル、 tーブチル、シクロへキシルである。
[0047] <化合物の具体例 >
本発明の化合物の具体例は以下に列記する式によって示されるが、本発明はこれら の具体的な構造の開示によって限定されることはない。
[0048] <式(2— 1)で表される化合物の具体例 >
式(2— 1)で表される化合物の具体例は下記の式(2— 1 1)〜(2— 1 39)で示さ れる。これらの中で好ましい化合物は式(2— 1 1)〜(2— 1— 25)、(2— 1—40)、 および(2— 1—41)である。より好ましい化合物は式(2— 1— 1)〜(2— 1— 13)、 (2 1—40)、および(2— 1—41)である。さらに好ましい化合物は式(2— 1— 1)、 (2 1 5)〜(2— 1 8)、 (2— 1— 11)、 (2— 1 40)、および(2— 1 41)である。
[0049]
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000044_0001
(2
Figure imgf000044_0002
Figure imgf000045_0001
ε003
Figure imgf000046_0001
Figure imgf000047_0001
(2-1-41)
<式(2— 2)で表される化合物の具体例 >
式(2— 2)で表される化合物の具体例は下記の式(2— 2— 1)〜(2— 2— 28)で示さ れる。これらの中で好ましい化合物は式(2— 2— 1)〜(2— 2— 11)、(2— 2— 22)、 (2— 2— 25)〜(2— 2— 27)、(2— 2— 29)、および(2— 2— 30)である。より好まし い化合物は式(2— 2— 1)〜(2— 2— 3)、 (2— 2— 5)、 (2— 2— 6)、 (2— 2— 9)、 ( 2— 2— 29)、および(2— 2— 30)である。
Figure imgf000048_0001
(2-2-6)
Figure imgf000049_0001
[0058]
Figure imgf000050_0001
(2-2-18)
[0059] /v:/ O/j£900ifcl£ 9696Ζ0/-00ΖAV 09
Figure imgf000051_0001
0900
Figure imgf000052_0001
(2-2-30)
<式(2— 3)で表される化合物の具体例 >
式(2— 3)で表される化合物の具体例は下記の式(2— 3— 1)〜(2— 3— 14)で示さ
Figure imgf000053_0001
9s i-
Figure imgf000054_0001
[0064] <式(2— 4)で表される化合物の具体例 >
式(2— 4)で表される化合物の具体例は下記の式(2— 4 1)〜(2— 4 5)で示さ れる。
Figure imgf000055_0001
(2-4-4) (2-4-5)
[0065] <式(2— 5)で表される化合物の具体例 >
式(2— 5)で表される化合物の具体例は下記の式(2— 5— 1)〜(2— 5— 5)で示さ れる。
Figure imgf000056_0001
(2-5-3)
Figure imgf000056_0002
<式(2— 6)で表される化合物の具体例 >
式(2— 6)で表される化合物の具体例は下記の式(2— 6— 1)〜(2— 6— 5)で示さ れる。
Figure imgf000057_0001
<式(2— 7)で表される化合物の具体例 >
式(2— 7)で表される化合物の具体例は下記の式(2— 7— 1)〜(2— 7— 5)で示さ れる。
Figure imgf000058_0001
<式(3)で表される化合物の具体例 > 式(3)で表される化合物の具体例は下記の式(3
(9-£)
Figure imgf000059_0001
Sl7S.lC/900Zdf/X3d 89 9696Z0/.00Z OAV [0069] 式 (4)で表される化合物の具体例は下記の式 (4 1)〜 (4 4)で示される。
Figure imgf000060_0001
[0070] <化合物の合成法 >
本発明の化合物は既知の方法、例えば鈴木カップリング反応や根岸カップリング反 応を利用して合成することができる。式(2)で表される化合物を、鈴木カップリング反 応または根岸カップリング反応で合成するスキームを以下に例示する。 Scheme 1: Suzuki coupling
Figure imgf000061_0001
Pd-catalyst / base Pd-catalyst / base
上記式中、 Gは 2価の基または 2個の遊離原子価をもつ環系であり、 Xは塩素、臭素 、ヨウ素、またはトリフラートである。
Scheme 2: egisln coupling
CIZ
Figure imgf000061_0002
Pd-catalyst Pd-catalyst
上記式中、 Gは 2価の基または 2個の遊離原子価をもつ環系であり、 Xは塩素、臭素 、ヨウ素、またはトリフラートである。
スキーム 1には、 2箇所をボロン酸またはボロン酸エステルにした Gに、パラジウム触 媒と塩基の存在下、反応性基を有する 2, 3 ' ビビリジンを 2段階に反応させる方法 、および 2箇所に反応性基を有する Gにパラジウム触媒と塩基の存在下、 2, 3 '—ビ ピリジンのボロン酸を 2段階に反応させる方法を示した。 Gに同一の 2, 3 '—ビビリジ ル基を導入する場合、上のプロセスでは Gの 2倍モルの反応性基を有する 2, 3 '—ビ ピリジンを一度に反応させてもよいし、下のプロセスでは Gの 2倍モルの 2, 3,—ビビリ ジンのボロン酸を一度に反応させてもよ 、。
[0073] スキーム 2には、 2箇所を亜鉛錯体にした Gに、パラジウム触媒の存在下、反応性基 を有する 2, 3'—ビビリジンを 2段階に反応させる方法、および 2箇所に反応性基を 有する Gにパラジウム触媒の存在下、 2, 3'—ビビリジンの亜鉛錯体を 2段階に反応 させる方法を示した。 Gに同一の 2, 3'—ビビリジル基を導入する場合、上のプロセス では Gの 2倍モルの反応性基を有する 2, 3'—ビビリジンを一度に反応させてもよい し、下のプロセスでは Gの 2倍モルの 2, 3,—ビビリジンの亜鉛錯体を一度に反応さ せてもよい。
[0074] Gが複数の 2価の基が連結している場合、または複数の 2個の遊離原子価をもつ環 系が連結して 、る場合、あるいは 2価の基と 2個の遊離原子価をもつ環系の組み合 わせである場合、たとえば— G1— G1—である場合には、それぞれ単体の G1に上記 のカップリング反応を用いて 2, 3'—ビビリジル基を連結した後、既知のカップリング 反応で G1同士を連結して目的の化合物を合成してもよい。このカップリング反応の際 にも、鈴木カップリング反応または根岸カップリング反応は好ましく用いられる。
[0075] また、 G1がたとえばォキサジァゾールのようなへテロ環である場合、共に 2, 3,一ビピ リジル基を有する環系の酸クロリドとヒドラジンを反応させて得たヒドラジドから、分子 内環化脱水反応を経て合成するような方法を用いることもできる。
[0076] 式(3)で表される化合物または式 (4)で表される化合物も、上記の合成法を適宜組 み合わせて合成することができる。以上、本発明の化合物の合成法を例示したが、本 発明はこれら例示した合成法によって制限されることはない。
[0077] 鈴木カップリング反応で用いられるパラジウム触媒の具体例は、 Pd(PPh ) 、PdCl
3 4 2
(PPh ) 、Pd (OAc) 、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジべ
3 2 2
ンジリデンアセトン)二パラジウムクロ口ホルム錯体 (0)等である。反応促進するため、 場合によりこれらのパラジウム化合物にホスインィ匕合物をカ卩えてもよい。そのホスイン 化合物の具体例は、トリ(tーブチル)ホスフィン、トリシクロへキシルホスフィン、 1—(N , N—ジメチルァミノメチル)一2— (ジ t—ブチルホスフイノ)フエ口セン、 1— (N, N— ジブチルアミノメチル) - 2- (ジ t—ブチルホスフイノ)フエ口セン、 1— (メトキシメチル )—2— (ジ t—ブチルホスフイノ)フエ口セン、 1, 1,—ビス(ジ t—ブチルホスフイノ)フ エロセン、 2, 2,一ビス(ジ t—ブチルホスフイノ)一 1, 1 '—ビナフチル、 2—メトキシ一 2, - (ジ t—ブチルホスフイノ)一 1, 1 '—ビナフチル、 2—ジシクロへキシルホスフイノ - 2' , 6'—ジメトキシビフヱ-ル等である。この反応で用いられる塩基の具体例は、 炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸ィ匕ナトリウム、 水酸ィ匕カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウム t—ブトキシド、酢酸 ナトリウム、リン酸三カリウム、フッ化カリウム等である。さらに、この反応で用いられる 溶媒の具体例は、ベンゼン、トルエン、キシレン、 N, N ジメチルホルムアミド、テトラ ヒドロフラン、ジェチルエーテル、 t ブチルメチルエーテル、 1, 4 ジォキサン、メタ ノール、エタノール、イソプロピルアルコール等である。これらの溶媒は適宜選択でき 、単独で用いてもよぐ混合溶媒として用いてもよい。
[0078] 根岸カップリング反応で用いられるパラジウム触媒の具体例は、 Pd(PPh ) 、 PdCl
3 4 2
(PPh ) 、 Pd (OAc) 、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジべ
3 2 2
ンジリデンアセトン)二パラジウム(0)、ビス(トリ tーブチルホスフイノ)パラジウム(0)、 ( 1, 1,一ビス(ジフエ-ルホスフイノ)フエ口セン)ジクロロパラジウム(II)等である。さら に、この反応で用いられる溶媒の具体例は、ベンゼン、トルエン、キシレン、 N, N— ジメチルホルムアミド、テトラヒドロフラン、ジェチルエーテル、 t ブチルメチルエーテ ル、 1, 4 ジォキサン等である。これらの溶媒は適宜選択でき、単独で用いてもよぐ 混合溶媒として用いてもよい。
[0079] 本発明の化合物を、有機 EL素子における、電子注入層または電子輸送層に用いた 場合、電界印加時において安定であり、また、低電圧で発光を得ることが可能となる 。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送 材料として優れていることを表す。ここで言う電子注入層とは陰極カゝら有機層へ電子 を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層 である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に 用いる材料を、電子注入材料および電子輸送材料と ヽぅ。
[0080] <有機 EL素子の説明 >
本願の第 2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表され る化合物を含有する有機 EL素子である。本発明の有機 EL素子は、駆動電圧が低く 、駆動時の耐久性が高い。
[0081] 本発明の有機 EL素子の構造は各種の態様がある力 基本的には陽極と陰極との間 に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の 具体的な構成の例は、(1)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極、 (2) 陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極、 (3)陽極 z正孔 注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極、等である。
[0082] 本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又 は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機
EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、 発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもでき る。
[0083] 本発明の有機 EL素子に使用できる発光材料または発光性ドーパントは、高分子学 会編、高分子機能材料シリーズ"光機能材料"、共同出版 (1991)、 P236に記載され ているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の 蛍光分析試薬等の発光材料、城戸淳ニ監修、 "有機 EL材料とディスプレイ"シーェ ムシ一社出版 (2001) P 155〜 156に記載されて!、るようなドーパント材料、 P 170〜 172に記載されているような 3重項材料の発光材料等である。
[0084] 発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、 ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、 芳香族ァミン誘導体、クマリン誘導体、ボラン誘導体、ォキサジン誘導体、スピロ環を 有する化合物、ォキサジァゾール誘導体、フルオレン誘導体等である。多環芳香族 化合物の例は、アントラセン誘導体、フ ナントレン誘導体、ナフタセン誘導体、ピレ ン誘導体、タリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等であ る。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジァリールアミノ基を有す るォキサジァゾール誘導体、ピラゾ口キノリン誘導体、ピリジン誘導体、ピラン誘導体、 フエナント口リン誘導体、シロール誘導体、トリフエ-ルァミノ基を有するチォフェン誘 導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリ ゥム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等 と、キノリノール誘導体、ベンゾキサゾール誘導体、ベンゾチアゾール誘導体、ォキサ ジァゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘 導体、ピリジン誘導体、フエナント口リン誘導体等との錯体である。色素の例は、キサ ンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシァノメチ レンピラン誘導体、ジシァノメチレンチォピラン誘導体、ォキソベンズアントラセン誘導 体、カルボスチリル誘導体、ペリレン誘導体、ベンゾォキサゾール誘導体、ベンゾチ ァゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光 材料の例は、ポリパラフエ二ルビ-レン誘導体、ポリチォフェン誘導体、ポリビュル力 ルバゾ―ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフエ-レン誘 導体等である。スチリル誘導体の例は、ァミン含有スチリル誘導体、スチリルァリーレ ン誘導体等である。
[0085] 本発明の有機 EL素子に使用される他の電子輸送材料は、光導電材料において電 子伝達ィヒ合物として使用できる化合物、有機 EL素子の電子輸送層および電子注入 層に使用できる化合物の中から任意に選択して用いることができる。
[0086] このような電子輸送材料の具体例は、キノリノール系金属錯体、 2, 2'—ビビリジル誘 導体、フエナント口リン誘導体、ジフエ二ルキノン誘導体、ペリレン誘導体、ォキサジァ ゾール誘導体、チオフ ン誘導体、トリァゾール誘導体、チアジアゾール誘導体、ォ キシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベン ザゾール類ィ匕合物、ガリウム錯体、ピラゾール誘導体、パーフルォロ化フエ-レン誘 導体、トリァジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘 導体、ボラン誘導体等である。
[0087] 本発明の有機 EL素子に使用される正孔注入材料および正孔輸送材料にっ ヽては 、光導電材料において、正孔の電荷輸送材料として従来力 慣用されている化合物 や、有機 EL素子の正孔注入層および正孔輸送層に使用されて ヽる公知のものの中 から任意のものを選択して用いることができる。それらの具体例は、力ルバゾ一ル誘 導体、トリアリールァミン誘導体、フタロシアニン誘導体等である。
[0088] 本発明の有機 EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピン コート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。こ のようにして形成された各層の膜厚については特に限定はなぐ材料の性質に応じ て適宜設定することができる力 通常 2ηπ!〜 5000nmの範囲である。なお、発光材 料を薄膜化する方法は、均質な膜が得やすぐかつピンホールが生成しにくい等の 点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着 条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱 温度 50〜400°C、真空度 10_6〜10_3Pa、蒸着速度 0. 01〜50nmZ秒、基板温度 150〜 + 300°C、膜厚 5nm〜5 μ mの範囲で適宜設定することが好ましい。
[0089] 本発明の有機 EL素子は、前記のいずれの構造であっても、基板に支持されているこ とが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく 、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は 4eVより大き な仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いる ことができる。その具体例は、 Au等の金属、 Cul、インジウムチンォキシド(以下、 IT Oと略記する)、 SnO、 ZnO等である。
2
[0090] 陰極物質は 4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれ らの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リ チウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミ-ゥ ム Z弗化リチウム、アルミニウム Zリチウム、マグネシウム Z銀、マグネシウム Zインジ ゥム等である。有機 EL素子の発光を効率よく取り出すために、電極の少なくとも一方 は光透過率を 10%以上にすることが望ま 、。電極としてのシート抵抗は数百 Ω / 口以下にすることが好ましい。なお、膜厚は電極材料の性質にもよる力 通常 10nm 〜1 μ m、好ましくは 10〜400nmの範囲に設定される。このような電極は、上述の電 極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作 製することができる。
[0091] 次に、本発明の発光材料を用いて有機 EL素子を作成する方法の一例として、前述 の陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z本発明の電子輸送材料 Z陰極から なる有機 EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を 蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸 送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に 本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに 陰極用物質力 なる薄膜を蒸着法により形成させて陰極とすることにより、目的の有 機 EL素子が得られる。なお、上述の有機 EL素子の作製においては、作製順序を逆 にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製す ることち可會である。
[0092] このようにして得られた有機 EL素子に直流電圧を印加する場合には、陽極を +、陰 極を一の極性として印加すればよぐ電圧 2〜40V程度を印加すると、透明又は半透 明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機 EL 素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意 でよい。
以下に、本発明を実施例に基づいて更に詳しく説明する。
実施例 1
[0093] 合成例 1 :式(2— 2— 1)の化合物の合成
< 9, 10 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボロラニル)アントラセ ンの合成 >
9, 10 ジブロモアントラセン 5. 38g、ビス(ピナコラート)ジボロン 10g、 [1, 1, 一ビス (ジフエ-ルホスフイノ)フエ口セン]パラジウム(II)ジクロリド 784mg、酢酸カリウム 9. 4 g、およびジメチルスルホキシド 100mlをフラスコに入れ、アルゴン雰囲気下 100°Cで 16時間攪拌した。加熱終了後反応液をエバポレータにより濃縮し、濃縮物をシリカゲ ルカラムクロマトグラフィーにより精製して、 9, 10 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボロラニル)アントラセン 4. 38gを得た。
[0094] く 5—ブロモ 2, 3, 一ビビリジンの合成 >
3 ピリジンボロン酸 20g、 2, 5 ジブロモピリジン 50g、 Pd (PPh ) 5. 5g、炭酸ナト
3 4
リウム 33. 9g、トルエン 500ml、エタノール 150ml、および純水 150mlを 11のフラスコ に入れ、還流温度で 3時間半攪拌した。加熱終了後、反応液を室温まで冷却して有 機層を抽出した。有機層をエバポレーターにて濃縮し、濃縮物をカラムクロマトグラフ ィ一にて精製し、次いでヘプタン力も再結晶して、 5 ブロモ—2, 3,—ビビリジン 27 gを得た。 [0095] く 9, 10 ビス(2, 3,一ビビリジン一 5—ィル)アントラセンの合成〉
9, 10 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボロラニル)アントラセン 2. 53g、 5 ブロモ 2, 3,一ビビリジン 2g、 Pd(PPh ) 960mg、リン酸三カリウム 3
3 4
. 81g、ジォキサン 60mlおよび純水 15mlをフラスコに入れて、アルゴン雰囲気下、 還流温度で 3日間攪拌した。加熱終了後、反応液を室温まで冷却して純水を加え有 機層を抽出した。有機層をエバポレータにより濃縮し、濃縮物をカラムクロマトグラフィ 一にて精製し、再度濃縮して得た黄色の粉体をトルエンで洗浄し、 9,10 ビス(2, 3 ,一ビビリジン一 5—ィル)アントラセン 800mgを得た。
1H-NMR (CDC1 ) δ (7.4— 7.6m,6H)、 7.2— 7.3(m,4H
3 )、 8.0(d,4H)、 8.5(s,2H)、 8.
8(d,4H)、 9.4(s,2H).
実施例 2
[0096] 合成例 2 :式(2— 2— 2)の化合物の合成
< 2 フエ二ノレアントラセンの合成 >
2 クロ口アントラセン 5. OOg、フエ-ルボロン酸 4. 3g、トリス(ジベンジリデンアセトン )二パラジウム(0) 538mg、トリシクロへキシルホスフィン 494mg、リン酸三カリウム 9. 98g、およびトルエン 75mlをフラスコに入れ、アルゴン雰囲気下、還流温度で 2時間 攪拌した。加熱終了後、反応液に 1. 5リットルのトルエンを加え、室温まで冷却後濾 別し、濾液をシリカゲルカラムクロマトグラフィーにより精製した。エバポレーターにより 濃縮し、濃縮物をトルエンで再結晶することで、 2 フエ-ルアントラセン 5. Ogを得た
[0097] < 9, 10 ジブ口モー 2 フエ-ルアントラセンの合成〉
窒素雰囲気下のフラスコ中に、 2 フエ-ルアントラセン 3. 32gを 400mlのジクロロメ タンに溶かした。そこに、 5. 00gの臭素を 30mlの四塩ィ匕炭素に溶かした物を、 15分 掛けて滴下した。滴下終了後、 2時間室温で攪拌し、チォ硫酸ナトリウム水溶液で反 応を停止した。分液ロートで有機層を抽出し、エバポレーターで濃縮した。濃縮物を トルエン 50mlで再結晶し、 9, 10 ジブ口モー 2 フエ-ルアントラセン 4. 4gを得た
[0098] < 9, 10 ビス(4, 4, 5, 5—テトラメチル一 1, 3, 2 ジォキサボ口ラ-ル) 2 フ ェ-ルアントラセンの合成 >
9, 10 ジブ口モー 2 フエ-ルアントラセン 10. Og、ビス(ピナコラート)ジボロン 14. 8g、ビス(ジベンジリデンアセトン)パラジウム(0) 838mg、トリシクロへキシルホスフィ ン 1. 02g、酢酸カリウム 7. 15gおよび 1,4 ジォキサン 50mlをフラスコに入れ、アル ゴン雰囲気下、還流温度で 8時間攪拌した。加熱終了後、反応液にトルエンを加え、 室温まで冷却後濾別し、濾液をエバポレータにより濃縮した。濃縮物をシリカゲル力 ラムクロマトグラフィーにより精製した後、テトラヒドロフラン/ヘプタン混合溶液で再 結晶し、 9, 10 ビス(4, 4, 5, 5—テトラメチル— 1, 3, 2 ジォキサボ口ラ-ル)—2 フエ二ノレアントラセン 8. 3gを得た。
[0099] く 6 ブロモー 2, 3,一ビビリジンの合成〉
窒素雰囲気下、 3 ブロモピリジン 6. 32gを脱水トルエン 400ml〖こ溶力した。この溶 液を—78°Cに冷却し、 2. 6Mのノルマルブチルリチウム 17mlを滴下した。 0. 5時間 後、塩ィ匕亜鉛テトラメチルエチレンジァミン 12. 6gと脱水 THF200mlをカ卩えた。室温 まで昇温し 2, 6 ジブロモピリジン 10. 63gと Pd (PPh ) 0. 6gをカ卩ぇ 24時間攪拌し
3 4
た。反応液を塩ィ匕アンモ-ゥム水で洗浄し、有機層をエバポレーターにて濃縮した。 濃縮物をカラムクロマトグラフィーにて精製し、 6 ブロモ 2, 3,一ビビリジン 4. 2gを 得た。
[0100] く 9, 10 ビス(2, 3 '—ビビリジン一 5—ィノレ)一 2 フエ二ノレアントラセンの合成 > 9, 10 ビス(4, 4, 5, 5—テトラメチル一 1, 3, 2 ジォキサボ口ラニル) 2 フエ 二ルアントラセン 2. 00g、 5 ブロモ 2, 3 '—ビビリジン 2. 04g、トリス(ジベンジリデ ンアセトン)二パラジウム(0) 181mg、トリシクロへキシルホスフィン 167mg、リン酸三 カリウム 3. 35g、トルエン 75mlをフラスコに入れて、アルゴン雰囲気下、還流温度で 24時間攪拌した。加熱終了後、反応液を室温まで冷却し、セライトで濾過を行った。 濾液をエバポレータにより濃縮し、濃縮物をシリカゲルカラムクロマトグラフィーにて精 製し、再度濃縮して得た黄色の粉体をトルエンで洗浄し、 9, 10 ビス(2, 3'—ビビリ ジン 5 ィル) 2 フエ-ルアントラセン 800mgを得た。
1H— NMR (CDC1 ) δ 7.2-8.2 (m, 18H), 8.5 (m, 2H), 8.7 (s, 2H), 8.9(s, 2H), 9
3
.4 (s, 2H) 実施例 3
[0101] 合成例 3 :式(2— 1 40)の化合物の合成
く 9, 10 ビス(2, 3 '—ビビリジン一 6—ィノレ) 2 フエ-ノレアントラセンの合成〉 9, 10 ビス(4, 4, 5, 5—テトラメチル一 1, 3, 2 ジォキサボ口ラニル) 2 フエ 二ルアントラセン 1. 5g、 6 ブロモ 2, 3 '—ビビリジン 1. 9g、トリス(ジベンジリデン アセトン)二パラジウム(0) 201mg、トリシクロへキシルホスフィン 187mg、リン酸三力 リウム 4. 7g、トルエン 50mlをフラスコに入れて、アルゴン雰囲気下、還流温度で 9時 間攪拌した。加熱終了後、反応液を室温まで冷却し、飽和塩ィ匕ナトリウム水溶液で洗 浄した。有機層をエバポレータにより濃縮し、濃縮物を活性アルミナカラムクロマトグ ラフィ一にて精製した。更に酢酸ェチル、トルエンで再結晶し、 9,10 ビス(2, 3' - ビビリジン一 6 ィル) 2 フエ-ルアントラセン 670mgを得た。
1H— NMR (CDC1 ) δ 7.3-7.4 (m, 7H), 7.5-7.7 (m, 7H), 7.8 (m, 1H), 7.9(s, 1
3
H), 8.0 (m, 2H), 8.1(m, 2H), 8.4 (m, 2H), 8.6 (m, 2H), 9.3(s, 2H)
実施例 4
[0102] 合成例 4 :式(2— 2— 9)の化合物の合成
く 3 , 6 ジブロモ 9 ナフタレン— 1—ィル 力ルバゾールの合成 >
3,6 ジブ口モー 9H—力ルバゾール 10. 00g、 1—フルォロナフタレン 4. 1ml、炭酸 セシウム 12. 06gおよびジメチルスルホキシド 300mlをフラスコに入れ、窒素雰囲気 下、 145°Cで 36時間攪拌した。加熱終了後、室温まで冷却後濾別し、濾液を真空ポ ンプで濃縮した。濃縮物をシリカゲルカラムクロマトグラフィーにより精製した後、メタノ ールで洗浄することで、 3,6 ジブロモ 9 ナフタレン 1 ィル 力ルバゾール 5 . 5gを得た。
< 3, 6 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボ口ラニル) 9 ナフ タレン 1ーィルー力ルバゾールの合成 >
3,6 ジブ口モー 9 ナフタレンー1ーィルー力ルバゾール 2. 00g、ビス(ピナコラー ト)ジボロン 2. 46g、ビス(ジベンジリデンアセトン)パラジウム(0) 304mg、トリシクロへ キシルホスフィン 358mg、酢酸カリウム 1. 30gおよび 1,4 ジォキサン 30mlをフラス コに入れ、アルゴン雰囲気下、還流温度で 7時間攪拌した。加熱終了後、反応液にト ルェンを加え、室温まで冷却後濾別し、濾液をエバポレータにより濃縮した。濃縮物 をシリカゲルカラムクロマトグラフィーにより精製し、 3, 6—ビス (4, 4, 5, 5—テトラメ チルー 1 , 3, 2 ジォキサボ口ラニル)ー9 ナフタレンー1ーィルー力ルバゾール 82 Omgを得た。
[0103] く 3, 6 ビス(2, 3 '—ビビリジン一 5—ィル) 9 ナフタレン一 1—ィル一カルバゾー ルの合成 >
3, 6 ビス(4, 4, 5, 5—テトラメチルー 1 , 3, 2 ジォキサボ口ラニル) 9 ナフタ レン— 1—ィル—力ルバゾール 1. 50g、 5 ブロモ 2, 3 '—ビビリジン 1. 32g、 Pd ( PPh ) 194mg、リン酸三カリウム 2. 40gおよび 1 , 4 ジォキサン 25ml、水 5mlをフ
3 4
ラスコに入れて、アルゴン雰囲気下、還流温度で 10時間攪拌した。加熱終了後、反 応液を室温まで冷却し、飽和塩化ナトリウム水溶液で洗浄した。有機層をエバポレー タにより濃縮し、濃縮物をメタノールで洗浄した。洗浄後、シリカゲルカラムクロマトグ ラフィーにより精製した後、クロ口ホルム Z酢酸ェチル混合溶媒で再結晶し、 3,6—ビ ス(2, 3 '—ビビリジン一 5—ィル) 9 ナフタレン一 1—ィル一力ルバゾール 475mg を得た。
1H -NMR (CDC1 ) δ 7.1 (d, 2H), 7.3-7.5 (m, 4H), 7.6 (t, 1H), 7.6— 7.8(m, 4H
3
), 7.9 (d, 2H), 8.0 8.2(m, 4H), 8.4 (d, 2H), 8.5 (s, 2H), 8.6 (d, 2H), 9.1 (s, 2H) , 9. 3 (s, 2H)
実施例 5
[0104] 合成例 5 :式(2— 2— 29)の化合物の合成
< 5, 9 ビス(4, 4, 5, 5—テトラメチル— 1 , 3, 2 ジォキサボ口ラ-ル)—7, Ί— ジフエ-ルペンゾ〔c〕フルオレンの合成 >
5, 9 ビス(トリフルォロメタンスホ-ルォキシ) 7, 7—ジフエ-ルペンゾ〔c〕フルォ レン 13. lg、ビス(ピナコラート)ジボロン 11. 2g、ビス(ジベンジリデンアセトン)パラ ジゥム(0) 1. 2g、トリシクロへキシルホスフィン 1. 4g、酢酸カリウム 6. 5gおよび 1 ,4— ジォキサン 300mlをフラスコに入れ、アルゴン雰囲気下、 80°Cで 4時間半攪拌した。 加熱終了後、反応液をエバポレータにより濃縮した。濃縮物をシリカゲルカラムクロマ トグラフィ一により精製した後、エタノールで洗浄し、 5, 9—ビス (4, 4, 5, 5—テトラメ チルー 1, 3, 2 ジォキサボ口ラ-ル)ー 7, 7 ジフエ-ルペンゾ〔c〕フルオレン 9. 8 を得た。
[0105] < 5, 9 ビス(2, 3 '—ビビリジン一 5—ィル) 7, 7 ジフエ-ルペンゾ〔c〕フルォレ ンの合成 >
5, 9 ビス(4, 4, 5, 5—テトラメチル一 1, 3, 2 ジォキサボ口ラニル) 7, 7 ジフ ェ-ルベンゾ〔c〕フルオレン 2. 0g、 5 ブロモ 2, 3'—ビピリジン 1. 65g、 Pd(PPh )
3
222mg、リン酸三カリウム 2. 72gおよび 1, 4 ジォキサン 25ml、水 5mlをフラスコ
4
に入れて、アルゴン雰囲気下、還流温度で 7時間半攪拌した。加熱終了後、反応液 を室温まで冷却し、飽和塩化ナトリウム水溶液で洗浄した。有機層をエバポレータに より濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。クロ口ホルム Z酢酸ェ チル混合溶媒で再結晶し、 5, 9 ビス(2, 3 '—ビビリジン— 5—ィル)—7, 7 ジフ ェ-ルベンゾ〔c〕フルオレン 345mgを得た。
1H— NMR (CDC1 ) δ 7.3 (m, 10H), 7.4(m, 2H), 7.5 (m, 2H), 7.7— 8.0(m, 8H),
3
7.9 (m, 2H), 8.5(d, 1H), 8.6 (m, 2H), 8.8 (s, 1H), 8.9 (d, 1H), 9.0 (s, 1H) , 9.3(s, 1H) , 9.4(s, 1H)
実施例 6
[0106] 合成例 6 :式(2— 2— 25)の化合物の合成
< 2, 7 ビス(2, 3 '—ビビリジン一 5—ィル) 9, 9 ジへキシルフルオレンの合成 >
9, 9ージへキシルーフルオレン 2, 7 ジボロニックアシッド 0. 6g、 5 ブロモー 2, 3' ビピジジン 0. 5g、 Pd (PPh ) 115mg、ジン酸三カジクム 1. 27gお Jび卜ノレェン 20
3 4
mlをフラスコに入れて、アルゴン雰囲気下、還流温度で 6時間半攪拌した。加熱終了 後、反応液を室温まで冷却し、飽和塩化ナトリウム水溶液で洗浄した。有機層をエバ ポレータにより濃縮し、活性アルミナカラムクロマトグラフィーにより精製した。ヘプタン /酢酸ェチル混合溶媒で再結晶し、 2, 7 ビス(2, 3' ビビリジン— 5—ィル)—9, 9 ジへキシルフルオレン 150mgを得た。
1H— NMR (CDC1 ) δ 0.7 (m, 10H), 1.1 (m, 12H), 2.0 (m, 4H), 7.4(m, 2H), 7.
3
6 (m, 4H), 7.8 (m, 4H), 8.0 (m, 2H), 8.4 (m, 2H), 8.6 (m, 2H), 9.0 (s, 2H), 9.2 (s, 2 H)
実施例 7
[0107] 合成例 7 :式(2— 2— 30)の化合物の合成
< 1, 4 ビス(2, 3 '—ビビリジン一 5—ィル)一ナフタレンの合成〉
1, 4 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボロラニル) ナフタレン 2. 2g、 5 ブロモ 2, 3 '—ビビリジン 2. 8g、トリス(ジベンジリデンアセトン)二パラジ ゥム(0) 450mg、トリシクロへキシルホスフィン 280mg、リン酸三カリウム 9. 6g、トルェ ン 50mlをフラスコに入れて、アルゴン雰囲気下、還流温度で 16時間攪拌した。加熱 終了後、反応液を室温まで冷却し、飽和塩化ナトリウム水溶液で洗浄した。有機層を エバポレータにより濃縮し、濃縮物を活性アルミナカラムクロマトグラフィーにて精製し た。更に酢酸ェチルで洗浄した後、トルエンで再結晶し、 1, 4 ビス(2, 3 '—ビビリジ ン一 5—ィル)一ナフタレン 250mgを得た。
1H-NMR (CDC1 ) δ 7.4-7.6 (m, 6H), 7.9-8.1 (m, 6H), 8.4 (m, 2H), 8.7(m, 2
3
H), 8.9 (s, 2H), 9.3 (s, 2H)
実施例 8
[0108] 合成例 8 :式(2— 1 1)の化合物の合成
く 9 , 10 ビス( 2, 3 ' ビビリジン 6 ィノレ)アントラセンの合成 >
9, 10 ビス(4, 4, 5, 5—テトラメチルー 1, 3, 2 ジォキサボロラニル)アントラセン 1. 56g、 6 ブ Pモー 2, 3' ビピジジン 1. 86g、卜ジス(ジベンジジデンァセ卜ン)ニノ ラジウム(0) 198mg、トリシクロへキシルホスフィン 182mg、リン酸三カリウム 4. 6g、ト ルェン 60mlをフラスコに入れて、アルゴン雰囲気下、還流温度で 12時間攪拌した。 加熱終了後、反応液を室温まで冷却し水で洗浄した。有機層をエバポレータにより 濃縮し、濃縮物を活性アルミナカラムクロマトグラフィーにて精製し、 9,10 ビス(2, 3' -ビビリジン一 6 ィル)アントラセン 960mgを得た。
1H-NMR (CDC1 ) δ 7.2— 7.8(m,12H
3 )、 7.9— 8.1(m,4H)、 8.4(s,2H)、 8.6(s,2H)、 9.
3(s,2H)
実施例 9
[0109] 合成例 9 :式(2— 1 41)の化合物の合成 く 3, 9 ビス(4, 4, 5, 5—テトラメチル— 1 , 3, 2 ジォキサボ口ラ-ル)— 11 , 11 ジフエ-ルペンゾ〔 α〕フルオレンの合成 >
3, 9 ビス(トリフルォロメタンスホ -ルォキシ) 11 , 11 -ジフエ-ルペンゾ〔 α〕フ ルオレン 5. 2g、ビス(ピナコラート)ジボロン 4. 6g、ビス(ジベンジリデンアセトン)パラ ジゥム(0) 0. 48g、トリシクロへキシルホスフィン 0. 56g、酢酸カリウム 2. 6gおよび 1 , 4 ジォキサン 100mlをフラスコに入れ、アルゴン雰囲気下、 80°Cで 3時間半攪拌し た。加熱終了後、反応液を室温まで冷却し、酢酸ェチルを加え濾過した。得られた固 体をシリカゲルカラムクロマトグラフィーにより精製し、 3, 9—ビス (4, 4, 5, 5—テトラ メチルー 1 , 3, 2 ジォキサボ口ラ-ル)ー 11 , 11ージフエ-ルペンゾ〔α〕フルォレ ン 2. 0を得た。
[0110] < 3, 9 ビス(2, 3 '—ビビリジン一 6—ィル) 11 , 11—ジフエ-ルペンゾ〔 α〕フル オレンの合成 >
3, 9 ビス(4, 4, 5, 5—テトラメチル— 1 , 3, 2 ジォキサボ口ラ-ル)— 11 , 11— ジフエ-ルペンゾ〔ひ〕フルオレン 1. 8g、 6 ブロモ 2, 3'—ビピリジン 1. 60g、 Pd ( PPh ) 215mg、リン酸三カリウム 2. 63gおよび 1 , 4 ジォキサン 25ml、水 5mlをフ
3 4
ラスコに入れて、アルゴン雰囲気下、還流温度で 4時間半攪拌した。加熱終了後、反 応液を室温まで冷却し水で洗浄した。続いてメタノールで洗浄した後、活性アルミナ カラムクロマトグラフィーにより精製した。更に Ν,Ν ジメチルホルムアミド及びクロ口べ ンゼンで再結晶し、 3, 9 ビス(2, 3 '—ビビリジン— 6—ィル)—11 , 11—ジフエ-ル ベンゾ〔 a〕フルオレン 142mgを得た。
1H—NMR (CDC1 ) δ 7.3-7.4 (m, 6H), 7.4(m, 6H), 7.55 (d, 1H), 7.65(d, 1H),
3
7.7 (s, 1H), 7.8(d, 1H), 7.85 (d, 1H), 7.9 (d, 1H), 7.95 (d, 1H), 8.0 (d, 1H) , 8.0—8. Km, 3H) , 8.2(s, 1H) , 8.3—8.4 (m, 2H) , 8.6 - 8.7(m, 2H) , 8.9(s, 1H) , 9.0(s, 1H) , 9.2(s, 1H) , 9.25(s, 1H)
実施例 10
[0111] 合成例 10 :式(2— 1 42)の化合物の合成
< 2, 7 ビス(4, 4, 5, 5—テトラメチル一 1 , 3, 2 ジォキサボロラニル)トリフエニレ ンの合成 > 1, 2 ビス(3—メトキシフエ-ル)ベンゼン 2g、をフラスコに入れ、窒素雰囲気下 100 mlのジクロロメタンに溶解させた。この溶液に塩化鉄(III) 3. 25gを加え、室温で 56 時間半攪拌した。メタノールを加え反応を終了させた後、水で洗浄した。有機層をシ リカゲルカラムクロマトグラフィーにより精製した後、トルエン Zヘプタン混合溶媒で再 結晶し、 2, 7 ジメトキシトリフエ-レン 1. 4を得た。
得られた 2, 7 ジメトキシトリフエ-レンを三臭化ホウ素で 2, 7 ジヒドロキシトリフエ- レンとし、トリフルォロメタンスルホ-ルクロリドと反応させ 2, 7 ビス(トリフルォロメタン スホニルォキシ)トリフエ-レンとした。これを、ビス(ピナコラート)ジボロンと反応させ、 2, 7 ビス(4, 4, 5, 5—テトラメチル— 1, 3, 2 ジォキサボロラ -ル)トリフエ-レン を合成した。
[0112] < 2, 7 ビス(2, 3 '—ビビリジン一 6—ィル)トリフエ-レンの合成〉
2, 7 ビス(4, 4, 5, 5—テトラメチル— 1, 3, 2 ジォキサボロラ -ル)トリフエ-レン 0. 4g、 6 ブロモ 2, 3 '—ビビリジン 0. 43g、 Pd (PPh ) 58mg、炭酸ナトリウム 353
3 4
mgおよびトルエン 15ml、エタノール 5ml、水 5mlをフラスコに入れて、アルゴン雰囲 気下、還流温度で 14時間半攪拌した。加熱終了後、反応液を室温まで冷却した後、 水を加えた。この溶液をジクロロメタンで抽出し、有機層をエバポレータにより濃縮し た。濃縮物を活性アルミナカラムクロマトグラフィーにて精製し、クロ口ベンゼンで再結 晶し、 2, 7 ビス(2, 3 '—ビビリジン一 6—ィル)トリフエ-レン 96mgを得た。
1H—NMR (CDC1 ) δ 7.5 (m, 2H), 7.7- 7.8(m, 4H), 7.9-8.0 (m, 4H), 8.45 (d,
3
2H), 8.55(d, 2H), 8.7 (m, 2H), 8.8— 9.0(m, 4H), 9.4—9.6 (m, 4H)
[0113] 原料の化合物を適宜選択することにより、上記の合成例に準じた方法で、本発明の 他の発光材料を合成することができる。
実施例 11
[0114] ITOを 150nmの厚さに蒸着した 25mm X 75mmX 1.1mmのガラス基板(東京三容 真空 (株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置 (真空機 ェ (株)製)の基板ホルダーに固定し、銅フタロシアニンを入れたモリブデン製蒸着用 ボート、 N, N,—ジフエ-ルー N, N,—ジナフチル— 4, 4'—ジアミノビフエ-ル(以 下、 NPDと略記する。)を入れたモリブデン製蒸着用ボート、トリス(8—ヒドロキシキノ リン)アルミニウム(以下、 ALQと略記する。)を入れたモリブデン製蒸着用ボート、実 施例 1で合成した化合物(2— 2— 1)を入れたモリブデン製蒸着用ボート、弗化リチウ ムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸 着用ボートを装着した。真空槽を 1 X 10_3Paまで減圧し、銅フタロシアニンが入った 蒸着用ボートを加熱して、膜厚 20nmになるように蒸着して正孔注入層を形成し、次 いで、 NPD入りの蒸着用ボートを加熱して、膜厚 30nmになるように NPDを蒸着して 正孔輸送層を形成した。次に、 ALQを入れたモリブデン製蒸着用ボートを加熱して、 膜厚 35nmになるように蒸着して発光層を形成した。次に化合物(2— 2— 1)入りの 蒸着用ボートを加熱して、膜厚 15nmになるように蒸着して電子輸送層を形成した。 以上の蒸着速度は 0.1〜0.2nmZ秒であった。その後、弗化リチウム入りの蒸着用 ボートを加熱して、膜厚 0.5nmになるように 0.003〜0.01nmZ秒の蒸着速度で蒸 着し、次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚 lOOnmになるように 0.2〜0.5nm,秒の蒸着速度で蒸着することにより、有機 EL素子を得た。 ITO電極 を陽極、弗化リチウム Zアルミニウム電極を陰極として、直流電圧を印加すると、約波 長 520nmの緑色発光を得た。また、初期輝度 lOOOcdZm2を得るための電流密度 により、定電流駆動試験を実施したところ、約 60時間経過時の輝度は 906cdZm2だ つた o
約 6Vの直流電圧を印加すると、約 149mAZcm2の電流が流れ、輝度は約 4300cd Zm2で波長 520nmの緑色発光を得た。
実施例 12
ITOを 150nmの厚さに蒸着した 25mm X 75mmX l. 1mmのガラス基板(東京三 容真空 (株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置 (真空 機ェ (株)製)の基板ホルダーに固定し、銅フタロシアニンを入れたモリブデン製蒸着 用ボート、 N, Ν'—ジフエ-ル— N, Ν'—ジナフチル— 4, 4'—ジアミノビフエ-ル(以 下、 NPDと略記する。)を入れたモリブデン製蒸着用ボート、下記化合物 (Α) : 9—フ ェ-ル 10—〔6— (1, 1,;3, 1,,)ターフェ-ル一 5, 一ィル〕ナフタレン一 2—ィル〕 アントラセンを入れたモリブデン製蒸着用ボート、下記スチリルァミン誘導体 (Β): Ν, Ν, Ν' , Ν,—テトラ(4—ビフエ-リル)— 4, 4,—ジアミノスチルベンを入れたモリブ デン製蒸着用ボート、化合物(2— 2— 1)を入れたモリブデン製蒸着用ボート、弗化リ チウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン 製蒸着用ボートを装着した。
Figure imgf000077_0001
真空槽を 1 X 10_dPaまで減圧し、銅フタロシアニンが入った蒸着用ボートを加熱して 、膜厚 20nmになるように蒸着して正孔注入層を形成し、次いで、 NPD入りの蒸着用 ボートを加熱して、膜厚 30nmになるように NPDを蒸着して正孔輸送層を形成した。 次に、化合物 (A)を入れた蒸着用ボートと化合物 (B)を入れた蒸着用ボートを同時 に加熱して、膜厚 30nmになるように蒸着して発光層を形成した。化合物 (A)と化合 物 (B)の重量比がおよそ 95対 5になるように蒸着速度を調節した。次に化合物(2— 2—1)入りの蒸着用ボートを加熱して、膜厚 20nmになるように蒸着して電子輸送層 を形成した。以上の蒸着速度は 0. 001〜3. OnmZ秒であった。その後、弗化リチウ ム入りの蒸着用ボートを加熱して、膜厚 0. 5nmになるように 0. 003〜0. OlnmZ秒 の蒸着速度で蒸着し、次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚 10 Onmになるように 0. 1〜1. OnmZ秒の蒸着速度で蒸着することにより、有機 EL素 子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、直流電 圧を印加すると、約波長 455nmの青色発光を得た。また、初期輝度 lOOOcd/m2を 得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は 4. 7 5 Vで、 80時間経過時の輝度は 931 cdZm2だつた。
実施例 13
[0117] 化合物(2— 2— 1)をィ匕合物(2— 2— 2)に替えた以外は実施例 12と同様にして有機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、初 期輝度 lOOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。駆 動試験開始電圧は 5. 53Vで 80時間経過時の輝度は 849cdZm2であった。
実施例 14
[0118] 化合物(2— 2— 1)を化合物(2— 1 40)に替えた以外は実施例 12と同様にして有 機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、 初期輝度 1 OOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。 駆動試験開始電圧は 4. 92Vで 80時間経過時の輝度は 881cdZm2であった。 実施例 15
[0119] 化合物(2— 2— 1)をィ匕合物(2— 2— 9)に替えた以外は実施例 12と同様にして有機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、初 期輝度 lOOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。駆 動試験開始電圧は 5. 72 Vで 25時間経過時の輝度は 767cdZm2であつた。
実施例 16
[0120] 化合物(2— 2— 1)を化合物(2— 2— 29)に替えた以外は実施例 12と同様にして有 機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、 初期輝度 1 OOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。 駆動試験開始電圧は 4. 62 Vで 80時間経過時の輝度は 617cdZm2であつた。 実施例 17
[0121] 化合物(2— 2— 1)を化合物(2— 2— 25)に替えた以外は実施例 12と同様にして有 機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、 初期輝度 1 OOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。 駆動試験開始電圧は 4. 54Vで 80時間経過時の輝度は 680cdZm2であった。 実施例 18
[0122] 化合物(2— 2— 1)を化合物(2— 2— 30)に替えた以外は実施例 12と同様にして有 機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、 初期輝度 1 OOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。 駆動試験開始電圧は 4. 80Vで 80時間経過時の輝度は 700cdZm2であつた。 実施例 19
[0123] 化合物(2— 2— 1)を化合物(2— 1 1)に替えた以外は実施例 12と同様にして有機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、初 期輝度 lOOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。駆 動試験開始電圧は 4. 34Vで 25時間経過時の輝度は 885cdZm2であった。
[0124] (比較例 1)
化合物(2— 2— 1)を下記化合物(C) (特許文献 1に記載の化合物 II 4)に替えた以 外は実施例 11と同様にして有機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zァ ルミ-ゥム電極を陰極として、初期輝度 lOOOcdZm2を得るための電流密度により、 定電流駆動試験を実施したところ、約 60時間経過時の輝度は 884cdZm2だった。 約 6Vの直流電圧を印加すると、約 121mAZcm2の電流が流れ、輝度は約 3920cd Zm2で波長 520nmの緑色発光を得た。
Figure imgf000079_0001
(比較例 2)
化合物(2— 2— 1)を化合物 (C)替えた以外は実施例 12と同様にして有機 EL素子 を得た。 ITO電極を陽極、弗化リチウム Zアルミニウム電極を陰極として、初期輝度 1 OOOcdZm2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開 始電圧は 3. 71Vで 25時間経過時の輝度は 699cdZm2であり、 80時間経過時の輝 度は 496cdZm2であった。
[0126] (比較例 3)
化合物(2— 2— 1)をトリス(8—キノリノール)アルミニウム (Alq )に替えた以外は実
3
施例 12と同様にして有機 EL素子を得た。 ITO電極を陽極、弗化リチウム Zアルミ- ゥム電極を陰極として、初期輝度 lOOOcdZm2を得るための電流密度により、定電流 駆動試験を実施した。駆動試験開始電圧は 6. 36Vで 80時間経過時の輝度は 830c d, m C、めった。
産業上の利用可能性
[0127] 本発明の好ましい態様によれば、駆動電圧、素子寿命において更に性能のよい有 機 EL素子を提供することができる。殊に青色発光の素子の駆動電圧、素子寿命を 改善できるので、それを備えた高性能なディスプレイ装置などを提供することができる

Claims

請求の範囲
下記の式(1)で表される化合物。
Figure imgf000081_0001
式中、 Gは n価の連結基であり、 nは 2〜4の整数であり;
I^〜R4は独立して水素、 1価の基または Gに結合する遊離原子価であり、 R5〜R8は 独立して水素または 1価の基である力 I^〜R4の 1つは Gに結合する遊離原子価で あり;そして、 n個の 2, 3,一ビビリジル基は同一でもよぐ異なっていてもよい。
[2] I^〜R4の 1つが Gに結合する遊離原子価であり、それ以外が水素であり、 R5〜R8が 水素である、請求項 1に記載の化合物。
[3] 下記の式(2)で表される、請求項 2に記載の化合物。
Figure imgf000081_0002
式中、 Gは下記の式 (G1)〜(G3)で表される基の群力も選択される 1つであり; ΙΤ〜 R12の 1つは Gに結合する遊離原子価であり、それ以外は水素であり;そして、 R13〜R 16の 1つは Gに結合する遊離原子価であり、それ以外は水素である。
—— G—— (G1 )
—— G1— G1—— (G2)
—— G1— G1— G1— (G3)
式中、 G1は独立して、下記の式(八ー1)〜(八ー20)ぉょび式(8—1)〜(8—42)で 表される化合物の群から選択される 1つから誘導される 2価の基である。
Figure imgf000082_0001
Figure imgf000083_0001
R R (A-15)
Figure imgf000083_0002
Figure imgf000084_0001
B-1 B-2 B-3 B-4
Figure imgf000084_0002
B-5 B-6 B-7 B-8
Figure imgf000084_0003
B-9 B-10 B-1 1 B-12
Figure imgf000084_0004
Figure imgf000084_0005
Figure imgf000084_0006
Figure imgf000085_0001
Figure imgf000085_0002
Figure imgf000085_0003
(B-31 ) (B-32) (B-33) (B-34)
Figure imgf000085_0004
(B-39) (B-40) (B-41 ) (B-42)
上記の式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ- ル、 1 ナフチルまたは 2—ナフチルであり;式 (A— 1)〜(A— 20)および式(B— 1) 〜(B— 42)で表される化合物力 誘導される 2価の基は、遊離原子価を持つ原子以 外の位置に置換基を有して 、てもよ!/、。
[4] 下記の式(2— 1)で表される、請求項 3に記載の化合物。
Figure imgf000085_0005
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[5] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 4に記載の化合物。
[6] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 4に記載の化合物。
[7] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が下記の式 (C— 1)〜(C— 15 )で表される 2価の基の群力も選択される 1つである、請求項 4に記載の化合物。
Figure imgf000087_0001
Figure imgf000087_0002
(C-4) (C-5) (C-6)
Figure imgf000087_0003
(C-7) (C-8) (C-9)
Figure imgf000087_0004
(C-13) (C-14) (C-15)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 -ナフチルであり;式(C—:!)〜(C— 15)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有してレヽてもよ ヽ。 [8] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 20)および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つ 力 誘導される同一の 2価の基であり、この 2価の基は置換基を有していてもよい、請 求項 4に記載の化合物。
[9] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の 基であり、この 2価の基は置換基を有していてもよい、請求項 4に記載の化合物。
[10] Gが式(G2)で表される連結基であり、式(G2)中、 G1が下記の式(C 1)〜(C 5) で表される 2価の基の群力も選択される同一の基である、請求項 4に記載の化合物。
Figure imgf000088_0001
(C-4) (C-5)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1 - ナフチルまたは 2 ナフチルであり;式(C 1)〜(C— 5)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、請求項 4に記載の化 合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G1 B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、請求項 3に記載の式 (A— 1)〜 (A— 20)で表される化合物 の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を有し ていてもよく; G1Bは独立して、請求項 3に記載の式 (B— 1)〜(B— 42)で表される化 合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を 有していてもよい。
[12] Gが式 (G3— 1)で表される連結基であり; G1Bが下記の式 (D 1)〜(D— 15)で表さ れる 2価の基の群力も選択される同一の基である、請求項 11に記載の化合物。
Figure imgf000089_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000089_0002
(D-13) (D-14) (D-15)
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2 ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[13] Gが式 (G3— 2)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群力も選択される同一の基であり、 G1Bが下記の式 (D— 1)〜(D— 1 5)で表される 2価の基の群から選択される 1つである、請求項 11に記載の化合物。
Figure imgf000090_0001
Figure imgf000090_0002
(C-5)
Figure imgf000090_0003
(D-5) (D-6) (D-7) (D-8)
Figure imgf000090_0004
ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて もよい。 Gが式 (G3— 3)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群から選択される 1つであり、 G1Bが下記の式 (D— 1)〜(D— 15)で 表される 2価の基の群力 選択される同一の基である、請求項 11に記載の化合物。
Figure imgf000091_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000091_0002
(D-13) (D-14) (D-15)
式中、 Rは独立して水素、メチル、ェチル、 、キシル、シクロへキシル、フエニル、 ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて ちょい。
[15] Gが下記の式 (G3-4)で表される連結基である、請求項 11に記載の化合物。
Figure imgf000092_0001
式中、 G皿は下記の式 (D— 1)〜(D— 9)で表される 2価の基の群から選択される 1 つであり、 G11 ^は下記の式 (D 15)で表される 2価の基の群から選択され る同一の基である。
Figure imgf000092_0002
(D-5) ( D-6) ( D-7) (D-8)
Figure imgf000092_0003
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2—ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[16] 下記の式(2— 2)で表される、請求項 3に記載の化合物。
Figure imgf000092_0004
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[17] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 16に記載の化合物。
[18] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 16に記載の化合物。
[19] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 15 )で表される 2価の基の群から選択される 1つである、請求項 16に記載の化合物。
Figure imgf000094_0001
Figure imgf000094_0002
(C-4) (C-5) (C-6)
Figure imgf000094_0003
(C-7) (C-8) (C-9)
Figure imgf000094_0004
(C-13) (C-14) (C-15)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 -ナフチルであり;式(C—:!)〜(C— 15)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有してレヽてもよ ヽ。 [20] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 20)および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つ 力 誘導される同一の 2価の基であり、この 2価の基は置換基を有していてもよい、請 求項 16に記載の化合物。
[21] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の 基であり、この 2価の基は置換基を有していてもよい、請求項 16に記載の化合物。
[22] Gが式(G2)で表される連結基であり、式(G2)中、 G1が下記の式(C 1)〜(C 5) で表される 2価の基の群力 選択される同一の基である、請求項 16に記載の化合物
Figure imgf000095_0001
(C-4) (C-5)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 ナフチルであり;式(C 1)〜(C— 5)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、請求項 16に記載の化 合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、請求項 3に記載の式 (A— 1)〜 (A— 20)で表される化合物 の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を有し ていてもよく; G1Bは独立して、請求項 3に記載の式 (B— 1)〜(B— 42)で表される化 合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を 有していてもよい。
[24] Gが式 (G3— 1)で表される連結基であり; G1Bが下記の式 (D 1)〜(D— 15)で表さ れる 2価の基の群力も選択される同一の基である、請求項 23に記載の化合物。
Figure imgf000096_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000096_0002
(D-13) (D-14) (D-15)
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2 ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[25] Gが式 (G3— 2)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群力も選択される同一の基であり、 G1Bが下記の式 (D— 1)〜(D— 1 5)で表される 2価の基の群力も選択される 1つである、請求項 23に記載の化合物。
Figure imgf000097_0001
Figure imgf000097_0002
(C-5)
Figure imgf000097_0003
(D-5) (D-6) (D-7) (D-8)
Figure imgf000097_0004
ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて もよい。 Gが式 (G3— 3)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群から選択される 1つであり、 G1Bが下記の式 (D— 1)〜(D— 15)で 表される 2価の基の群力も選択される同一の基である、請求項 23に記載の化合物。
Figure imgf000098_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000098_0002
(D-13) (D-14) (D-15)
式中、 Rは独立して水素、メチル、ェチル、 、キシル、シクロへキシル、フエニル、 ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて ちょい。
[27] Gが下記の式 (G3— 4)で表される連結基である、請求項 23に記載の化合物。
Figure imgf000099_0001
式中、 G皿は下記の式 (D— 1)〜(D— 9)で表される 2価の基の群から選択される 1 つであり、 G11 ^は下記の式 (D 15)で表される 2価の基の群から選択され る同一の基である。
Figure imgf000099_0002
(D-5) ( D-6) ( D-7) (D-8)
Figure imgf000099_0003
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2—ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[28] 下記の式(2— 3)で表される、請求項 3に記載の化合物。
Figure imgf000100_0001
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[29] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 28に記載の化合物。
[30] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 28に記載の化合物。
[31] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 15 )で表される 2価の基の群から選択される 1つである、請求項 28に記載の化合物。
Figure imgf000101_0001
Figure imgf000101_0002
(C-4) (C-5) (C-6)
Figure imgf000101_0003
(C-7) (C-8) (C-9)
Figure imgf000101_0004
(C-13) (C-14) (C-15)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 -ナフチルであり;式(C—:!)〜(C— 15)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有してレヽてもよ ヽ。 [32] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 20)および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つ 力 誘導される同一の 2価の基であり、この 2価の基は置換基を有していてもよい、請 求項 28に記載の化合物。
[33] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の 基であり、この 2価の基は置換基を有していてもよい、請求項 28に記載の化合物。
[34] Gが式(G2)で表される連結基であり、式(G2)中、 G1が下記の式(C 1)〜(C 5) で表される 2価の基の群力 選択される同一の基であり、この 2価の基は置換基を有 していてもよい、請求項 28に記載の化合物。
Figure imgf000102_0001
(C-4) (C-5)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 ナフチルであり;式(C 1)〜(C— 5)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、請求項 28に記載の化 合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、請求項 3に記載の式 (A— 1)〜 (A— 20)で表される化合物 の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を有し ていてもよく; G1Bは独立して、請求項 3に記載の式 (B— 1)〜(B— 42)で表される化 合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を 有していてもよい。
[36] Gが式 (G3— 1)で表される連結基であり; G1Bが下記の式 (D 1)〜(D— 15)で表さ れる 2価の基の群力も選択される同一の基である、請求項 35に記載の化合物。
Figure imgf000103_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000103_0002
(D-13) (D-14) (D-15)
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2 ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[37] Gが式 (G3— 2)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群力も選択される同一の基であり、 G1Bが下記の式 (D— 1)〜(D— 1 5)で表される 2価の基の群から選択される 1つである、請求項 35に記載の化合物。
Figure imgf000104_0001
Figure imgf000104_0002
(C-5)
Figure imgf000104_0003
(D-5) (D-6) (D-7) (D-8)
Figure imgf000104_0004
ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて もよい。 Gが式 (G3— 3)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群から選択される 1つであり、 G1Bが下記の式 (D— 1)〜(D— 15)で 表される 2価の基の群力も選択される同一の基である、請求項 35に記載の化合物。
Figure imgf000105_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000105_0002
(D-13) (D-14) (D-15)
式中、 Rは独立して水素、メチル、ェチル、 、キシル、シクロへキシル、フエニル、 ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて ちょい。
[39] Gが下記の式 (G3— 4)で表される連結基である、請求項 35に記載の化合物。
Figure imgf000106_0001
式中、 G皿は下記の式 (D— 1)〜(D— 9)で表される 2価の基の群から選択される 1 つであり、 G11 ^は下記の式 (D 15)で表される 2価の基の群から選択され る同一の基である。
Figure imgf000106_0002
(D-5) ( D-6) ( D-7) (D-8)
Figure imgf000106_0003
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2—ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[40] 下記の式(2— 4)で表される、請求項 3に記載の化合物。
Figure imgf000107_0001
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[41] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 40に記載の化合物。
[42] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 40に記載の化合物。
[43] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 15 )で表される 2価の基の群力も選択される 1つである、請求項 40に記載の化合物。
Figure imgf000108_0001
Figure imgf000108_0002
(C-4) (C-5) (C-6)
Figure imgf000108_0003
(C-7) (C-8) (C-9)
Figure imgf000108_0004
(C-13) (C-14) (C-15)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 -ナフチルであり;式(C—:!)〜(C— 15)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有してレヽてもよ ヽ。 [44] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 20)および式 (B— 1)〜(B— 42)で表される化合物の群から選択される 1つ 力 誘導される同一の 2価の基であり、この 2価の基は置換基を有していてもよい、請 求項 40に記載の化合物。
[45] Gが式 (G2)で表される連結基であり、式 (G2)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される同一の 2価の 基であり、この 2価の基は置換基を有していてもよい、請求項 40に記載の化合物。
[46] Gが式(G2)で表される連結基であり、式(G2)中、 G1が下記の式(C 1)〜(C 5) で表される 2価の基の群力も選択される同一の基である、請求項 40に記載の化合物
Figure imgf000109_0001
(C-4) (C-5)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2 ナフチルであり;式(C 1)〜(C— 5)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
Gが下記の式 (G3— 1)〜(G3— 3)で表される連結基である、請求項 40に記載の化 合物。
—— G B— G1 B— G1 B— (G3-1 )
G1A一 G1 B一 G1A— (G3-2)
—— G B一 G1A— G1 B一 (G3-3) 式中、 G1Aは独立して、請求項 3に記載の式 (A— 1)〜 (A— 20)で表される化合物 の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を有し ていてもよく; G1Bは独立して、請求項 3に記載の式 (B— 1)〜(B— 42)で表される化 合物の群力 選択される 1つ力 誘導される 2価の基であり、この 2価の基は置換基を 有していてもよい。
[48] Gが式 (G3— 1)で表される連結基であり; G1Bが下記の式 (D 1)〜(D— 15)で表さ れる 2価の基の群力 選択される同一の基である、請求項 47に記載の化合物。
Figure imgf000110_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000110_0002
(D-13) (D-14) (D-15)
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2 ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[49] Gが式 (G3— 2)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群から選択される 1つであり、 G1Bが下記の式 (D 1)〜(D 15)で 表される 2価の基の群力も選択される同一の基である、請求項 47に記載の化合物。
Figure imgf000111_0001
Figure imgf000111_0002
(C-5)
Figure imgf000111_0003
(D-5) (D-6) (D-7) (D-8)
Figure imgf000111_0004
ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて もよい。 Gが式 (G3— 3)で表される連結基であり; G1Aが下記の式 (C 1)〜(C 5)で表さ れる 2価の基の群から選択される 1つであり、 G1Bが下記の式 (D— 1)〜(D— 15)で 表される 2価の基の群力も選択される同一の基である、請求項 47に記載の化合物。
Figure imgf000112_0001
(D-5) (D-6) (D-7) (D-8)
Figure imgf000112_0002
(D-13) (D-14) (D-15)
式中、 Rは独立して水素、メチル、ェチル、 、キシル、シクロへキシル、フエニル、 ナフチルまたは 2 -ナフチルであり;式(C— 1)〜(C— 5)および式(D— 1)〜(D— 1 5)で表される 2価の基は、遊離原子価をもつ原子以外の位置に置換基を有していて ちょい。
[51] Gが下記の式 (G3— 4)で表される連結基である、請求項 47に記載の化合物。
Figure imgf000113_0001
式中、 G皿は下記の式 (D— 1)〜(D— 9)で表される 2価の基の群から選択される 1 つであり、 G11 ^は下記の式 (D 15)で表される 2価の基の群から選択され る同一の基である。
Figure imgf000113_0002
(D-5) ( D-6) ( D-7) (D-8)
Figure imgf000113_0003
式中、 Rは水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1—ナフチル または 2—ナフチルであり;式 (D— 1)〜(D— 15)で表される 2価の基は、遊離原子 価をもつ原子以外の位置に置換基を有して 、てもよ 、。
[52] 下記の式(2— 5)で表される、請求項 3に記載の化合物。
Figure imgf000114_0001
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[53] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 52に記載の化合物。
[54] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 52に記載の化合物。
[55] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 17 )で表される 2価の基の群から選択される 1つである、請求項 52に記載の化合物。
Figure imgf000115_0001
Figure imgf000115_0002
(C-1 1 )
Figure imgf000115_0003
(C-15) (C-16) (C-17)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2—ナフチルであり;式(C— 1)〜(C— 17)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。 下記の式(2— 6)で表される、請求項 3に記載の化合物。
Figure imgf000116_0001
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[57] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 56に記載の化合物。
[58] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A—1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 56に記載の化合物。
[59] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 17 )で表される 2価の基の群力も選択される 1つである、請求項 56に記載の化合物。
Figure imgf000117_0001
Figure imgf000117_0002
(C-1 1 )
Figure imgf000117_0003
(C-15) (C-16) (C-17)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2—ナフチルであり;式(C— 1)〜(C— 17)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。 下記の式(2— 7)で表される、請求項 3に記載の化合物。
Figure imgf000118_0001
式中、 Gの定義は請求項 3に記載の式(2)における Gと同じである。
[61] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜(A— 20)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 60に記載の化合物。
[62] Gが式 (G1)で表される連結基であり、式 (G1)中、 G1が請求項 3に記載の式 (A— 1) 〜 (A— 10)で表される化合物の群力 選択される 1つ力 誘導される 2価の基であり 、この 2価の基は置換基を有していてもよい、請求項 60に記載の化合物。
[63] Gが式(G1)で表される連結基であり、式(G1)中、 G1が下記の式(C 1)〜(C 17 )で表される 2価の基の群から選択される 1つである、請求項 60に記載の化合物。
Figure imgf000119_0001
Figure imgf000119_0002
(C-1 1 )
Figure imgf000119_0003
(C-15) (C-16) (C-17)
式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ-ル、 1— ナフチルまたは 2—ナフチルであり;式(C— 1)〜(C— 17)で表される 2価の基は、遊 離原子価をもつ原子以外の位置に置換基を有して 、てもよ 、。
Figure imgf000120_0001
式中、 Gは下記の式 (G4)または(G5)で表される基であり; R 〜R Uの 1つは Gに結 合する遊離原子価であり、それ以外は水素であり; R21〜R24の 1つは Gに結合する遊 離原子価であり、それ以外は水素であり; R25〜R28の 1つは Gに結合する遊離原子価 であり、それ以外は水素である。
Figure imgf000120_0002
式中、 G1は独立して、下記の式(八ー1)〜(八ー20)ぉょび式(8—1)〜(8—42)で 表される化合物の群から選択される 1つから誘導される 2価の基であり; G2Aは、下記 の式 (E— 1)〜(E— 10)で表される 3価の基の群力 選択される 1つであり、 G2Bはホ ゥ素、窒素、ホスホリル基、または式 (E— 1)〜(E— 10)で表される 3価の基の群から 選択される 1つである。
Figure imgf000121_0001
Figure imgf000122_0001
R R (A-15)
Figure imgf000122_0002
Figure imgf000123_0001
B-1 B-2 B-3 B-4
Figure imgf000123_0002
B-5 B-6 B-7 B-8
Figure imgf000123_0003
B-9 B-10 B-1 1 B-12
Figure imgf000123_0004
Figure imgf000123_0005
Figure imgf000123_0006
Figure imgf000124_0001
Figure imgf000124_0002
Figure imgf000124_0003
(B-31 ) (B-32) (B-33) (B-34)
Figure imgf000124_0004
(B-39) (B-40) (B-41 ) (B-42)
上記の式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ- ル、 1 ナフチルまたは 2—ナフチルであり;式 (A— 1)〜(A— 20)および式(B— 1) 〜(B— 42)で表される化合物力 誘導される 2価の基は、遊離原子価を持つ原子以 外の位置に置換基を有して 、てもよ!/、。
Figure imgf000125_0001
(E-1 ) (E-2) (E-3) (E-4)
Figure imgf000125_0002
(E-9) (E-10)
[65] Gが式(G5)で表される連結基であり、式(G5)において G1が同一である、請求項 64 に記載の化合物。
[66] 下記の式 (4)で表される、請求項 2に記載の化合物。
Figure imgf000126_0001
式中、 Gは下記の式(G6)または(G7)で表される基であり; R 〜R の 1つは Gに結 合する遊離原子価であり、それ以外は水素であり; R33〜R36の 1つは Gに結合する遊 離原子価であり、それ以外は水素であり; R37〜R4°の 1つは Gに結合する遊離原子価 であり、それ以外は水素であり; R41〜R44の 1つは Gに結合する遊離原子価であり、 それ以外は水素である。
Figure imgf000126_0002
式中、 G1は独立して、式 (A— 1)〜(A— 20)および式(B— 1)〜(B— 42)で表され る化合物の群力 選択される 1つ力 誘導される 2価の基であり; G3Aは、下記の式 (F 1)〜 (F— 8)で表される 4価の基の群力 選択される 1つであり; G3Bは炭素、ケィ 素、または式 (F- 1)〜 (F—8)で表される 4価の基の群力 選択される 1つである。
Figure imgf000127_0001
Figure imgf000128_0001
R R (A-15)
Figure imgf000128_0002
Figure imgf000129_0001
B-1 B-2 B-3 B-4
Figure imgf000129_0002
B-5 B-6 B-7 B-8
Figure imgf000129_0003
B-9 B-10 B-1 1 B-12
Figure imgf000129_0004
Figure imgf000129_0005
Figure imgf000129_0006
Figure imgf000130_0001
Figure imgf000130_0002
Figure imgf000130_0003
(B-31 ) (B-32) (B-33) (B-34)
Figure imgf000130_0004
(B-39) (B-40) (B-41 ) (B-42)
上記の式中、 Rは独立して水素、メチル、ェチル、へキシル、シクロへキシル、フエ- ル、 1 ナフチルまたは 2—ナフチルであり;式 (A— 1)〜(A— 20)および式(B— 1) 〜(B— 42)で表される化合物力 誘導される 2価の基は、遊離原子価を持つ原子以 外の位置に置換基を有して 、てもよ!/、。
Figure imgf000131_0001
(F-1 ) (F-2) (F-3) (F-4)
Figure imgf000131_0002
(F-8)
[67] Gが式(G7)で表される連結基であり、式(G7)において G1が同一である、請求項 66 に記載の化合物。
[68] Gがアントラセン— 9, 10 ジィルである、請求項 4に記載の化合物。
[69] Gがアントラセン— 9, 10 ジィルである、請求項 16に記載の化合物。
[70] Gが 2 フエ-ルアントラセン— 9, 10 ジィルである、請求項 4に記載の化合物。
[71] Gが 2 フエ-ルアントラセン— 9, 10 ジィルである、請求項 16に記載の化合物。
[72] Gが 2—t—ブチルアントラセン 9, 10 ジィルである、請求項 4に記載の化合物。
[73] Gが 2— t—ブチルアントラセン— 9, 10 ジィルである、請求項 16に記載の化合物。
[74] Gが 2—メチルアントラセン—9, 10 ジィルである、請求項 4に記載の化合物。
[75] Gが 2—メチルアントラセン— 9, 10 ジィルである、請求項 16に記載の化合物。
[76] Gが 7, 7—ジフエ-ルペンゾ [c]フルオレン—5, 9—ジィルである、請求項 4に記載 の化合物。
[77] Gが 7, 7 ジフエ-ルペンゾ [c]フルオレン—5, 9 ジィルである、請求項 16に記載 の化合物。
[78] 請求項 1〜77のいずれか 1項に記載の化合物を含有する有機電界発光素子。
[79] 陽極および陰極により挟持された、少なくとも正孔輸送層、発光層、および電子輸送 層を基板上に有する有機電界発光素子であって、該電子輸送層が、請求項 1〜77 のいずれか 1項に記載の化合物を含有する有機電界発光素子。
PCT/JP2006/317545 2005-09-05 2006-09-05 電子輸送材料およびこれを用いた有機電界発光素子 WO2007029696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020087005354A KR101418840B1 (ko) 2005-09-05 2006-09-05 전자 수송 재료 및 이것을 이용한 유기 전계발광 소자
JP2007534427A JP5076901B2 (ja) 2005-09-05 2006-09-05 電子輸送材料およびこれを用いた有機電界発光素子
US11/991,454 US7964293B2 (en) 2005-09-05 2006-09-05 Electron transport material and organic electroluminescent device using the same
US13/107,105 US8202633B2 (en) 2005-09-05 2011-05-13 Electron transport material and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005255794 2005-09-05
JP2005-255794 2005-09-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/991,454 A-371-Of-International US7964293B2 (en) 2005-09-05 2006-09-05 Electron transport material and organic electroluminescent device using the same
US13/107,105 Division US8202633B2 (en) 2005-09-05 2011-05-13 Electron transport material and organic electroluminescent device using the same

Publications (1)

Publication Number Publication Date
WO2007029696A1 true WO2007029696A1 (ja) 2007-03-15

Family

ID=37835815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317545 WO2007029696A1 (ja) 2005-09-05 2006-09-05 電子輸送材料およびこれを用いた有機電界発光素子

Country Status (5)

Country Link
US (2) US7964293B2 (ja)
JP (1) JP5076901B2 (ja)
KR (1) KR101418840B1 (ja)
TW (1) TW200720253A (ja)
WO (1) WO2007029696A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144632A (ja) * 1997-07-28 1999-02-16 Toa Medical Electronics Co Ltd 粒子計測装置のデータ異常判定方法
WO2008114690A1 (ja) * 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
JP2009023962A (ja) * 2007-07-20 2009-02-05 Chisso Corp フルオレン化合物、該化合物を用いた発光素子用材料及び有機電界発光素子
EP2055702A1 (en) * 2007-10-30 2009-05-06 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
WO2009096549A1 (ja) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. 置換されたピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
JP2009184993A (ja) * 2008-02-08 2009-08-20 Chisso Corp ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP2009209133A (ja) * 2008-02-05 2009-09-17 Chisso Corp ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
WO2009151039A1 (ja) * 2008-06-11 2009-12-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2010064963A (ja) * 2008-09-09 2010-03-25 Tosoh Corp アミン誘導体及びその用途
JP2010070495A (ja) * 2008-09-18 2010-04-02 Tosoh Corp アミン誘導体及びその用途
KR20100063713A (ko) * 2007-08-08 2010-06-11 유니버셜 디스플레이 코포레이션 인광성 발광 다이오드의 단일 트리페닐렌 발색단
JP2010150169A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
JP2010150167A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
JP2010535809A (ja) * 2007-08-08 2010-11-25 ユニバーサル ディスプレイ コーポレイション トリフェニレン基を含むベンゾ縮合チオフェンまたはベンゾ縮合フラン化合物
EP2269987A1 (en) * 2008-02-26 2011-01-05 Hodogaya Chemical Co., Ltd. Substituted bipyridyl compound and organic electroluminescent element
US20110108770A1 (en) * 2008-04-25 2011-05-12 Sumitomo Chemical Company, Limited Composition comprising nitrogen-containing heterocyclic compound
JP2011136989A (ja) * 2009-12-03 2011-07-14 Jnc Corp ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
JP2011168550A (ja) * 2010-02-19 2011-09-01 Jnc Corp アントラセン誘導体およびこれを用いた有機電界発光素子
EP2376594A1 (en) * 2008-12-24 2011-10-19 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
US8153277B2 (en) * 2006-03-24 2012-04-10 Hodogaya Chemical Co., Ltd. Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescent device
US8183771B2 (en) 2008-06-05 2012-05-22 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method of fabricating the same
WO2012114745A1 (ja) * 2011-02-23 2012-08-30 保土谷化学工業株式会社 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
US8367220B2 (en) 2007-10-30 2013-02-05 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
JP2013131767A (ja) * 2013-01-24 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子
US20130231489A1 (en) * 2007-04-04 2013-09-05 Basf Se Novel organometallic complexes which emit in the red to green spectral region and their use in oleds
WO2013128818A1 (ja) * 2012-02-28 2013-09-06 保土谷化学工業株式会社 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
US8586205B2 (en) 2009-09-16 2013-11-19 Nitto Denko Corporation Compounds for organic light emitting diode emissive layers
WO2014002871A1 (ja) * 2012-06-28 2014-01-03 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JP2014156556A (ja) * 2013-02-18 2014-08-28 Sumitomo Chemical Co Ltd 電極形成用の組成物
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
CN105143398A (zh) * 2013-05-16 2015-12-09 第一毛织株式会社 用于有机光电元件的发光材料、有机光电元件及显示元件
US9296695B2 (en) 2008-04-15 2016-03-29 Samsung Display Co., Ltd. Bipyridine-based compound and organic light emitting diode employing organic layer comprising the same
US10062849B2 (en) 2015-04-13 2018-08-28 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012250A1 (en) * 2006-07-28 2008-01-31 Ciba Holding Inc. Novel polymers
CN102532105A (zh) * 2010-12-17 2012-07-04 清华大学 一种含有吡啶基团的三亚苯类化合物及其应用
KR101335548B1 (ko) * 2011-12-08 2013-12-02 케이에스랩(주) 인광재료용 백금 착체 및 이를 포함하는 유기전계발광소자
JP5978843B2 (ja) 2012-02-02 2016-08-24 コニカミノルタ株式会社 イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
US9105852B2 (en) * 2012-02-17 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Bipyridine compound, light-emitting element material, organic semiconductor material, light-emitting element, display module, lighting module, light-emitting device, lighting device, display device and electronic device
JP6217642B2 (ja) 2012-08-24 2017-10-25 コニカミノルタ株式会社 透明電極、電子デバイス、および透明電極の製造方法
JP6350518B2 (ja) 2013-03-29 2018-07-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
JP6314974B2 (ja) 2013-03-29 2018-04-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
KR102285387B1 (ko) 2014-11-14 2021-08-04 삼성디스플레이 주식회사 유기 발광 소자
JP5831654B1 (ja) 2015-02-13 2015-12-09 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR102500272B1 (ko) 2015-09-16 2023-02-16 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
JP6788314B2 (ja) 2016-01-06 2020-11-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325329A (ja) * 1994-06-01 1995-12-12 Mitsubishi Electric Corp 有機超格子材料、その製造方法および該材料を用いた素子
EP1690847A1 (en) * 2005-02-15 2006-08-16 Tosoh Corporation pi-Conjugated compound having cardo structure, process for the preparation thereof and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628719B4 (de) * 1996-07-17 2006-10-05 Hans-Werner Prof. Dr. Schmidt Elektronenleitende Schicht in organischen, elektrolumineszierenden Anordnungen
DE60100187T2 (de) * 2000-09-07 2004-04-01 Chisso Corp. Organische Elektrolumineszenzanordung mit einem Dipyridylthiophenderivat
JP2003077671A (ja) * 2001-09-03 2003-03-14 Canon Inc 有機発光素子
JP4172172B2 (ja) 2001-10-10 2008-10-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325329A (ja) * 1994-06-01 1995-12-12 Mitsubishi Electric Corp 有機超格子材料、その製造方法および該材料を用いた素子
EP1690847A1 (en) * 2005-02-15 2006-08-16 Tosoh Corporation pi-Conjugated compound having cardo structure, process for the preparation thereof and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PABST G.R. ET AL.: "A new and simple "LEGO" system for the synthesis of branched oligopyridines", TETRAHEDRON LETT., vol. 39, no. 37, 1998, pages 6691 - 6694, XP004132579 *
PABST G.R. ET AL.: "The new and simple 'LEGO' system: Its application to the synthesis of superbranched oligopyridines", TETRAHEDRON LETT., vol. 39, no. 48, 1998, pages 8817 - 8820, XP004140938 *
SHAKER R.W. ET AL.: "Synthesis of 4,4'-(1,4-phenylene)di-pyridine and -pyrimidine derivatives", J. CHEM. RES. (SYNOPSES), no. 8, 1997, pages 294 - 295, XP003003271 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144632A (ja) * 1997-07-28 1999-02-16 Toa Medical Electronics Co Ltd 粒子計測装置のデータ異常判定方法
US8153277B2 (en) * 2006-03-24 2012-04-10 Hodogaya Chemical Co., Ltd. Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescent device
WO2008114690A1 (ja) * 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
US8252431B2 (en) 2007-03-15 2012-08-28 Hodogaya Chemical Co., Ltd. Compound wherein substituted bipyridyl group is connected with pyridoindole ring structure through phenylene group, and organic electroluminescent device
US9522895B2 (en) 2007-04-04 2016-12-20 Udc Ireland Limited Organometallic complexes which emit in the red to green spectral region and their use in OLEDs
JP2014101366A (ja) * 2007-04-04 2014-06-05 Basf Se 赤から緑までのスペクトル領域において発光する新規の有機金属錯体中のトリフェニレン誘導体およびそのoledにおける使用
US20130231489A1 (en) * 2007-04-04 2013-09-05 Basf Se Novel organometallic complexes which emit in the red to green spectral region and their use in oleds
JP2009023962A (ja) * 2007-07-20 2009-02-05 Chisso Corp フルオレン化合物、該化合物を用いた発光素子用材料及び有機電界発光素子
JP2015164919A (ja) * 2007-08-08 2015-09-17 ユニバーサル ディスプレイ コーポレイション リン光発光ダイオード中の単一トリフェニレン発色団
KR101665726B1 (ko) 2007-08-08 2016-10-12 유니버셜 디스플레이 코포레이션 인광성 발광 다이오드의 단일 트리페닐렌 발색단
KR20100063713A (ko) * 2007-08-08 2010-06-11 유니버셜 디스플레이 코포레이션 인광성 발광 다이오드의 단일 트리페닐렌 발색단
TWI501943B (zh) * 2007-08-08 2015-10-01 Universal Display Corp 磷光發光二極體內之單聯伸三苯發色團
JP2010535809A (ja) * 2007-08-08 2010-11-25 ユニバーサル ディスプレイ コーポレイション トリフェニレン基を含むベンゾ縮合チオフェンまたはベンゾ縮合フラン化合物
JP2010535806A (ja) * 2007-08-08 2010-11-25 ユニバーサル ディスプレイ コーポレイション リン光発光ダイオード中の単一トリフェニレン発色団
JP2016121181A (ja) * 2007-08-08 2016-07-07 ユニバーサル ディスプレイ コーポレイション トリフェニレン基を含むベンゾ縮合チオフェンまたはベンゾ縮合フラン化合物
EP2055702A1 (en) * 2007-10-30 2009-05-06 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
US8367220B2 (en) 2007-10-30 2013-02-05 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
US8367219B2 (en) 2007-10-30 2013-02-05 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
US8377573B2 (en) 2008-01-31 2013-02-19 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
EP2463288A1 (en) * 2008-01-31 2012-06-13 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
WO2009096549A1 (ja) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. 置換されたピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
JPWO2009096549A1 (ja) * 2008-01-31 2011-05-26 保土谷化学工業株式会社 置換されたピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
JP2009209133A (ja) * 2008-02-05 2009-09-17 Chisso Corp ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP2009184993A (ja) * 2008-02-08 2009-08-20 Chisso Corp ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
EP2269987A1 (en) * 2008-02-26 2011-01-05 Hodogaya Chemical Co., Ltd. Substituted bipyridyl compound and organic electroluminescent element
JPWO2009107651A1 (ja) * 2008-02-26 2011-07-07 保土谷化学工業株式会社 置換されたビピリジル化合物および有機エレクトロルミネッセンス素子
EP2269987A4 (en) * 2008-02-26 2012-03-28 Hodogaya Chemical Co Ltd SUBSTITUTED BIPYRIDYL COMPOUND AND ORGANIC ELECTROLUMINESCENT ELEMENT
US8642189B2 (en) 2008-02-26 2014-02-04 Hodogaya Chemical Co., Ltd. Substituted bipyridyl compound and organic electroluminescent device
US9296695B2 (en) 2008-04-15 2016-03-29 Samsung Display Co., Ltd. Bipyridine-based compound and organic light emitting diode employing organic layer comprising the same
US20110108770A1 (en) * 2008-04-25 2011-05-12 Sumitomo Chemical Company, Limited Composition comprising nitrogen-containing heterocyclic compound
US8183771B2 (en) 2008-06-05 2012-05-22 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method of fabricating the same
JP5373787B2 (ja) * 2008-06-11 2013-12-18 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2009151039A1 (ja) * 2008-06-11 2009-12-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US8716698B2 (en) 2008-06-11 2014-05-06 Hodogaya Chemical Co., Ltd. Organic electroluminescent device containing arylamine compound and bipyridyl compound
JP2010064963A (ja) * 2008-09-09 2010-03-25 Tosoh Corp アミン誘導体及びその用途
JP2010070495A (ja) * 2008-09-18 2010-04-02 Tosoh Corp アミン誘導体及びその用途
US9199966B2 (en) 2008-12-24 2015-12-01 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device, and display device including the same
JP2010150169A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
EP2376594A1 (en) * 2008-12-24 2011-10-19 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
JP2010150167A (ja) * 2008-12-24 2010-07-08 Tosoh Corp アミン誘導体及びその用途
EP2376594A4 (en) * 2008-12-24 2012-06-27 Cheil Ind Inc NEW CONNECTION FOR ORGANIC PHOTOELECTRIC ARRANGEMENT AS WELL AS ORGANIC PHOTOELECTRIC ARRANGEMENT CONTAINING IT
JP2012513987A (ja) * 2008-12-24 2012-06-21 チェイル インダストリーズ インコーポレイテッド 新規な有機光電素子用化合物およびこれを含む有機光電素子
US8586205B2 (en) 2009-09-16 2013-11-19 Nitto Denko Corporation Compounds for organic light emitting diode emissive layers
JP2011136989A (ja) * 2009-12-03 2011-07-14 Jnc Corp ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
JP2011168550A (ja) * 2010-02-19 2011-09-01 Jnc Corp アントラセン誘導体およびこれを用いた有機電界発光素子
KR20140047592A (ko) * 2011-02-23 2014-04-22 호도가야 가가쿠 고교 가부시키가이샤 치환된 트리페닐렌환 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자
WO2012114745A1 (ja) * 2011-02-23 2012-08-30 保土谷化学工業株式会社 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
US10797242B2 (en) 2011-02-23 2020-10-06 Hodogaya Chemical Co., Ltd. Compound having substituted triphenylene ring structure, and organic electroluminescent device
KR101975067B1 (ko) * 2011-02-23 2019-05-03 호도가야 가가쿠 고교 가부시키가이샤 치환된 트리페닐렌환 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자
JP2014088399A (ja) * 2011-02-23 2014-05-15 Hodogaya Chem Co Ltd 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI508958B (zh) * 2011-02-23 2015-11-21 Hodogaya Chemical Co Ltd 具有經取代之聯伸三苯環結構之化合物及有機電致發光元件
JP5453621B2 (ja) * 2011-02-23 2014-03-26 保土谷化学工業株式会社 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
US10026903B2 (en) 2011-02-23 2018-07-17 Hodogaya Chemical Co., Ltd. Compound having substituted triphenylene ring structure, and organic electroluminescent device
US9685612B2 (en) 2011-02-23 2017-06-20 Hodogaya Chemical Co., Ltd. Compound having substituted triphenylene ring structure, and organic electroluminescent device
WO2013128818A1 (ja) * 2012-02-28 2013-09-06 保土谷化学工業株式会社 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JPWO2013128818A1 (ja) * 2012-02-28 2015-07-30 保土谷化学工業株式会社 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2014002871A1 (ja) * 2012-06-28 2014-01-03 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JPWO2014002871A1 (ja) * 2012-06-28 2016-05-30 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JP2013131767A (ja) * 2013-01-24 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子
JP2014156556A (ja) * 2013-02-18 2014-08-28 Sumitomo Chemical Co Ltd 電極形成用の組成物
US9520567B2 (en) 2013-05-16 2016-12-13 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
CN105143398B (zh) * 2013-05-16 2017-12-19 第一毛织株式会社 用于有机光电元件的发光材料、有机光电元件及显示元件
CN105143398A (zh) * 2013-05-16 2015-12-09 第一毛织株式会社 用于有机光电元件的发光材料、有机光电元件及显示元件
JPWO2015141608A1 (ja) * 2014-03-17 2017-04-06 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
US10062849B2 (en) 2015-04-13 2018-08-28 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
TW200720253A (en) 2007-06-01
KR101418840B1 (ko) 2014-07-11
US7964293B2 (en) 2011-06-21
JPWO2007029696A1 (ja) 2009-03-19
US8202633B2 (en) 2012-06-19
US20090134780A1 (en) 2009-05-28
US20110215310A1 (en) 2011-09-08
KR20080052573A (ko) 2008-06-11
JP5076901B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2007029696A1 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5176343B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5119929B2 (ja) 新規化合物およびこれを用いた有機電界発光素子
JP5262081B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5262192B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5805862B2 (ja) 新規な化合物およびこれを用いた有機電子素子
JP4788202B2 (ja) 発光材料およびこれを用いた有機電界発光素子
TWI429650B (zh) Organic electroluminescent elements
JP5373787B2 (ja) 有機エレクトロルミネッセンス素子
JP4947142B2 (ja) 発光素子材料及び発光素子
JP5807637B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5979873B2 (ja) ベンゾトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2008214306A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP2013526014A (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
TW201105771A (en) Material for use in phosphorescent device and organic electroluminescent device using same
JP2009269909A (ja) 新規な電子材料用化合物及びこれを使用する有機電子素子
JP5907069B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5176366B2 (ja) 新規ビピリジン誘導体、およびこれを含む有機電界発光素子
JP2008156266A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP2013227251A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6136311B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP4392721B2 (ja) 燐光を利用した有機電界発光素子
JP2007291088A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6070047B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087005354

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991454

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06797451

Country of ref document: EP

Kind code of ref document: A1