WO2012114745A1 - 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子 - Google Patents

置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012114745A1
WO2012114745A1 PCT/JP2012/001217 JP2012001217W WO2012114745A1 WO 2012114745 A1 WO2012114745 A1 WO 2012114745A1 JP 2012001217 W JP2012001217 W JP 2012001217W WO 2012114745 A1 WO2012114745 A1 WO 2012114745A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
compound
atom
different
Prior art date
Application number
PCT/JP2012/001217
Other languages
English (en)
French (fr)
Inventor
安達 千波矢
和法 富樫
紀昌 横山
真太朗 野村
Original Assignee
保土谷化学工業株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, 国立大学法人九州大学 filed Critical 保土谷化学工業株式会社
Priority to EP12749099.3A priority Critical patent/EP2679581B1/en
Priority to CN2012800104052A priority patent/CN103402981A/zh
Priority to KR1020137024211A priority patent/KR101975067B1/ko
Priority to JP2013500895A priority patent/JP5453621B2/ja
Priority to US14/001,041 priority patent/US9685612B2/en
Publication of WO2012114745A1 publication Critical patent/WO2012114745A1/ja
Priority to US15/604,075 priority patent/US10026903B2/en
Priority to US15/604,088 priority patent/US10797242B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems

Definitions

  • the present invention relates to a compound suitable for an organic electroluminescence element (hereinafter abbreviated as an organic EL element) which is a self-luminous element suitable for various display devices and the element, and more specifically, a substituted bipyridyl group. And a compound having a triphenylene ring structure, and an organic EL device using the compound.
  • an organic electroluminescence element hereinafter abbreviated as an organic EL element
  • organic EL elements are self-luminous elements, they have been actively researched because they are brighter and more visible than liquid crystal elements and are capable of clear display.
  • Non-Patent Document 1 To date, many improvements have been made for practical application of organic EL devices, and various roles have been further subdivided, and sequentially on the substrate, anode, hole injection layer, hole transport layer, light emitting layer, electron transport High efficiency and durability are achieved by an electroluminescent element provided with a layer, an electron injection layer, and a cathode (see, for example, Non-Patent Document 1).
  • Non-Patent Document 2 the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent emitters has been studied (for example, see Non-Patent Document 2).
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission.
  • the hole moving speed is faster than the electron moving speed, some of the holes pass through the light emitting layer. There is a problem of efficiency reduction due to passing through. Therefore, an electron transport material having a high electron moving speed is demanded.
  • Tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq 3 ), which is a typical luminescent material, is generally used as an electron transport material, but has a slow electron mobility and a work function of 5. Since it is 6 eV, it cannot be said that the hole blocking performance is sufficient.
  • a method for preventing a part of holes from passing through the light emitting layer and improving the probability of charge recombination in the light emitting layer is to insert a hole blocking layer.
  • a hole blocking material triazole derivatives (for example, refer to Patent Document 3), bathocuproine (hereinafter abbreviated as BCP), mixed ligand complexes of aluminum [aluminum (III) bis (2-methyl-8) -Quinolinato) -4-phenylphenolate (hereinafter abbreviated as BAlq)] (for example, see Non-Patent Document 2).
  • TAZ 3- (4-biphenylyl) -4-phenyl-5- (4-t-butylphenyl) -1,2,4-triazole
  • TAZ has a large work function of 6.6 eV and high hole blocking ability
  • an electron transporting hole blocking layer laminated on the cathode side of a fluorescent light emitting layer or phosphorescent light emitting layer produced by vacuum deposition or coating contributes to high efficiency of the organic EL element (see, for example, Non-Patent Document 3).
  • BCP also has a high work function of 6.7 eV and a high hole blocking ability, but its glass transition point (Tg) is as low as 83 ° C., so that the stability of the thin film is poor and it functions sufficiently as a hole blocking layer. I can't say that. Therefore, it has been proposed to use BAlq as a hole blocking layer as a measure for extending the lifetime of phosphorescent light emitting devices. In this device, although the life extension is improved, since the work function of BAlq is as small as 5.8 eV, the holes are not efficiently confined in the light emitting layer, and the efficiency is reduced as compared with the device using BCP. Seen, not enough.
  • JP-A-8-048656 Japanese Patent No. 3194657 Japanese Patent No. 2734341 WO2003 / 060956
  • An object of the present invention is to provide an organic compound having characteristics excellent in electron injection / transport performance as a material for a low power consumption organic EL element, and further using this compound, a low power consumption organic EL element Is to provide.
  • the physical properties that the organic compound to be provided by the present invention should have include (1) good electron injection properties, (2) fast electron transfer speed, and (3) high molecular orientation. And (4) excellent heat resistance.
  • the physical characteristics that the organic EL element to be provided by the present invention should have include (1) high power efficiency, (2) low light emission starting voltage, and (3) low practical driving voltage. I can give you something.
  • the present inventors have high flatness, that is, good intermolecular packing in a thin film state can be expected, and good electron transportability is expected due to the abundance of ⁇ electrons.
  • the present invention is a compound having a substituted bipyridyl group represented by the general formula (1) or (2) and a triphenylene ring structure.
  • R 1 to R 18 may be the same or different and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or an optionally substituted carbon atom
  • 1 to 6 linear or branched alkyl groups substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups or substituted or unsubstituted condensed polycyclic aromatic groups
  • n1 and n2 may be the same or different and each represents 2 or 3.
  • a plurality of R 3 to R 8 may be the same or different from each other.
  • R 19 to R 39 may be the same or different and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or a carbon atom which may have a substituent) 1 to 6 linear or branched alkyl groups, substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups or substituted or unsubstituted condensed polycyclic aromatic groups, n3, n4 and n5 may be the same or different and each represents 2 or 3.
  • a plurality of R 22 to R 30 may be the same or different from each other.
  • the present invention is also a compound having a substituted bipyridyl group and a triphenylene ring structure represented by the following general formula (1 ').
  • R 1 to R 18 may be the same or different and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or an optionally substituted carbon atom
  • 1 to 6 linear or branched alkyl groups substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups or substituted or unsubstituted condensed polycyclic aromatic groups
  • n1 and n2 may be the same or different and each represents 2 or 3.
  • a plurality of R 3 to R 8 may be the same or different from each other.
  • the present invention is a compound having a substituted bipyridyl group represented by the following general formula (1 ′′) and a triphenylene ring structure.
  • R 1 to R 18 may be the same or different and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or an optionally substituted carbon atom
  • 1 to 6 linear or branched alkyl groups substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups or substituted or unsubstituted condensed polycyclic aromatic groups
  • n1 and n2 may be the same or different and each represents 2 or 3.
  • a plurality of R 3 to R 8 may be the same or different from each other.
  • the present invention is a compound having a substituted bipyridyl group represented by the following general formula (1 ′ ′′) and a triphenylene ring structure.
  • R 3 to R 18 and R 40 to R 47 may be the same or different and have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, or substituent.
  • the present invention is a compound having a substituted bipyridyl group and a triphenylene ring structure represented by the following general formula (1 '' '' ').
  • R 3 to R 18 and R 40 to R 47 may be the same or different and have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, or substituent.
  • the present invention is a compound having a substituted bipyridyl group and a triphenylene ring structure represented by the following general formula (2 ').
  • R 19 to R 39 may be the same or different and each represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or a carbon atom which may have a substituent) 1 to 6 linear or branched alkyl groups, substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups or substituted or unsubstituted condensed polycyclic aromatic groups, n3, n4 and n5 may be the same or different and each represents 2 or 3.
  • a plurality of R 22 to R 30 may be the same or different from each other.
  • the present invention provides an organic EL device having a pair of electrodes and at least one organic layer sandwiched therebetween, wherein at least one of the organic layers is represented by the general formula (1) to the general formula (1 ′′ ′′),
  • An organic EL device comprising a compound having a substituted bipyridyl group represented by the general formula (2) or the general formula (2 ′) and a triphenylene ring structure.
  • the “alkyl group” in the “straight or branched alkyl group having 1 to 6 atoms” specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, Examples thereof include a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, and an n-hexyl group.
  • the number of carbon atoms having a substituent is 1 to 6 represented by R 1 to R 47 in the general formula (1) to the general formula (1 ′′ ′′), the general formula (2), or the general formula (2 ′).
  • substituents in the “straight-chain or branched alkyl group” include a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a straight-chain group having 1 to 6 carbon atoms or Branched alkyl group, cyclopentyl group, cyclohexyl group, dialkylamino group substituted with linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl Group, naphthyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group,
  • ⁇ aromatic group '' specifically phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group, anthryl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, pyridyl group, Bipyridyl, triazyl, pyrimidyl, furanyl,
  • the “substituted or unsubstituted aromatic heterocyclic group” represented by R 1 to R 8 , R 19 to R 27 , R 40 to R 47 is preferably a substituted or unsubstituted pyridyl group, Improvement of injection characteristics can be expected.
  • the “substituent” in the “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” specifically, a deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, nitro group, Straight chain or branched alkyl group having 1 to 6 carbon atoms, cyclopentyl group, cyclohexyl group, straight chain or branched alkoxy group having 1 to 6 carbon atoms, straight chain having 1 to 6 carbon atoms Or a dialkylamino group substituted with a branched alkyl group, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group, fluoren
  • the compound having a substituted bipyridyl group and a triphenylene ring structure represented by the general formula (1) to the general formula (1 ′′ ′′), the general formula (2), or the general formula (2 ′) of the present invention is novel.
  • This compound has a function of moving electrons faster than conventional electron transport materials, maintaining a stable thin film state, improving luminous efficiency, and lowering driving voltage.
  • the bipyridyl group bonded to the triphenylene ring (when n1 to n5 are 2 in the general formula (1) or (2)) is a 2,2′-bipyridyl group or a 2,3′-bipyridyl group.
  • Group, 2,4′-bipyridyl group and 3,2′-bipyridyl group are preferable, and 2,2′-bipyridyl group and 2,4′-bipyridyl group are particularly preferable.
  • the compound having a substituted bipyridyl group and a triphenylene ring structure represented by the general formula (1) to the general formula (1 ′′ ′′), the general formula (2), or the general formula (2 ′) of the present invention is: It can be used as a constituent material of an electron injection layer and / or an electron transport layer of an organic EL element.
  • a material having a higher electron injection / movement speed than conventional materials the electron transport efficiency from the electron transport layer to the light emitting layer is improved, the light emission efficiency is improved, and the driving voltage is lowered, It has the effect
  • the compound having a substituted bipyridyl group and a triphenylene ring structure represented by the general formula (1) to the general formula (1 ′′ ′′), the general formula (2), or the general formula (2 ′) of the present invention is: It can also be used as a constituent material of a light emitting layer of an organic EL element.
  • the material of the present invention which has excellent electron transport properties and a wide band gap, is used as a host material for a light emitting layer, and a phosphor or phosphorescent light emitter called a dopant is supported to form a light emitting layer. By using it, the drive voltage is lowered, and an organic EL element with improved luminous efficiency can be realized.
  • the organic EL device of the present invention uses a compound having a substituted bipyridyl group and a triphenylene ring structure, which has a faster electron movement than a conventional electron transport material and a stable thin film state, and thus has high efficiency and high durability. It became possible to realize.
  • the compound having a substituted bipyridyl group and a triphenylene ring structure of the present invention has a fast electron movement and a stable thin film state, it can be used as a constituent material for an electron injection layer, an electron transport layer, or a light emitting layer of an organic EL device.
  • An organic EL device manufactured using a compound having a substituted bipyridyl group and a triphenylene ring structure can improve the light emission efficiency and reduce the driving voltage, thereby improving the durability.
  • FIG. 1 is a 1 H-NMR chart of the compound of Example 1 of the present invention (Compound 3).
  • 2 is a 1 H-NMR chart of the compound of Example 2 of the present invention (Compound 4).
  • FIG. FIG. 3 is a 1 H-NMR chart of the compound of Example 3 of the present invention (Compound 11).
  • FIG. 3 is a 1 H-NMR chart of the compound of Example 4 of the present invention (Compound 12).
  • FIG. 6 is a diagram showing EL element configurations of Examples 8 to 11 and Comparative Examples 1 to 5.
  • the compound having a substituted bipyridyl group and a triphenylene ring structure of the present invention is a novel compound, and these compounds can be synthesized, for example, as follows.
  • the corresponding boronate ester form is synthesized by subjecting the corresponding triphenylene compound dihalide to boronic esterification with bis (pinacolato) diboron or the like (see, for example, Non-Patent Document 5), and further, the corresponding boron.
  • a compound having a substituted bipyridyl group and a triphenylene ring structure is obtained by performing a cross-coupling reaction such as Suzuki coupling between an acid ester and a halogenobipyridine having various substituents (see, for example, Non-Patent Document 6). Can be synthesized.
  • boronic acid ester of bipyridine having various substituents is synthesized by subjecting halogenobipyridine having various substituents to boronic acid esterification with bis (pinacolato) diboron or the like.
  • a compound having a substituted bipyridyl group and a triphenylene ring structure can be synthesized by carrying out a cross-coupling reaction such as Suzuki coupling between a boronic acid ester of bipyridine having a dipyridine and a dihalide of a corresponding triphenylene compound.
  • melting point is an index of vapor deposition
  • glass transition point (Tg) is an index of stability in a thin film state
  • work function is an index of hole blocking ability
  • Tg Melting point and glass transition point (Tg) were measured with a high sensitivity differential scanning calorimeter (Bruker AXS, DSC3100S) using powder.
  • the work function was measured using a photoelectron spectrometer (AC-3, manufactured by Riken Keiki Co., Ltd.) in the atmosphere after forming a 100 nm thin film on the ITO substrate.
  • an anode, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode are sequentially formed on the substrate, and the anode and the hole transport layer Examples include those having a hole injection layer between them, those having an electron injection layer between the electron transport layer and the cathode, and those having an electron blocking layer between the light emitting layer and the hole transport layer.
  • several organic layers can be omitted.
  • a structure having an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode sequentially on a substrate can be used. .
  • the light emitting layer, the hole transport layer, and the electron transport layer may have a structure in which two or more layers are laminated.
  • an electrode material having a large work function such as ITO or gold is used.
  • a hole injection layer of the organic EL device of the present invention in addition to a porphyrin compound typified by copper phthalocyanine, a starburst type triphenylamine derivative, three or more triphenylamine structures in the molecule, single bond or heteroatom
  • triphenylamine trimers and tetramers such as arylamine compounds having a structure linked by a divalent group not containing an acceptor, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials Can do.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • N, N′-diphenyl-N, N′-di (m-tolyl) -benzidine (hereinafter abbreviated as TPD) or N, N′-diphenyl-N , N′-di ( ⁇ -naphthyl) -benzidine (hereinafter abbreviated as NPD)
  • TPD N, N′-diphenyl-N , N′-di ( ⁇ -naphthyl) -benzidine
  • NPD benzidine derivatives such as N, N, N ′, N′-tetrabiphenylylbenzidine, 1,1-bis [(di-4 -Tolylamino) phenyl] cyclohexane
  • TAPC 1,1-bis [(di-4 -Tolylamino) phenyl] cyclohexane
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrene sulfonate)
  • a material that is usually used for the layer is further P-doped with trisbromophenylamine hexachloroantimony or the like, or a TPD structure having a partial structure. Molecular compounds and the like can be used.
  • TCTA 4,4 ′, 4 ′′ -tri (N-carbazolyl) triphenylamine
  • TCTA 9,9-bis [4- (carbazole- 9-yl) phenyl] fluorene
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • Carbazole derivatives such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene
  • a compound having an electron blocking action such as a compound having a triarylamine structure can be used.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • various metal complexes and anthracene derivatives in addition to metal complexes of quinolinol derivatives including Alq 3 Bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like can be used.
  • the light emitting layer may be composed of a host material and a dopant material, and in addition to the light emitting material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used as the host material.
  • a dopant material quinacridone, coumarin, rubrene, perylene, and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, and the like can be used. These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • a phosphorescent light emitting material can be used as the light emitting material.
  • a phosphorescent emitter of a metal complex such as iridium or platinum can be used.
  • Green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6, red phosphorescent emitters such as Btp 2 Ir (acac), and the like are used as host materials.
  • As the hole injecting / transporting host material carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, mCP, and the like can be used.
  • UGH2 p-bis (triphenylsilyl) benzene
  • TPBI 2,2 ′, 2 ′′-(1,3,5-phenylene) -tris (1-phenyl) -1H-benzimidazole
  • the phosphorescent light-emitting material into the host material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • phenanthroline derivatives such as bathocuproin (hereinafter abbreviated as BCP), and quinolinol such as BAlq
  • BCP bathocuproin
  • quinolinol such as BAlq
  • various rare earth complexes, oxazole derivatives, triazole derivatives, triazine derivatives, and other compounds having a hole blocking action can be used. These materials may also serve as the material for the electron transport layer.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the electron transport layer of the organic EL device of the present invention in addition to the substituted bipyridyl group and the compound having a triphenylene ring structure of the present invention, in addition to metal complexes of quinolinol derivatives including Alq 3 and BAlq, various metal complexes, Triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, and the like can be used.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • an alkali metal salt such as lithium fluoride and cesium fluoride
  • an alkaline earth such as magnesium fluoride
  • metal oxides such as metal salts and aluminum oxide can be used, this can be omitted in the preferred selection of the electron transport layer and the cathode.
  • a material usually used for the layer and further doped with a metal such as cesium can be used.
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: n-hexane) and white powder of 3,3 ′′ -bis (trimethylsilyl) -1,1 ′: 2 ′, 1 ′′ -terphenyl 23.3 g (84% yield) was obtained.
  • Chloroform 200 ml, n-hexane 600 ml, and silica gel 36.6 g were added to the crude product, followed by adsorption purification, followed by washing with chloroform to obtain 5.5 g of light yellow powder of 2,7-dibromotriphenylene (yield 46%).
  • the reaction solution was added to a 10% disodium dihydrogen tetraacetate aqueous solution and stirred for 6 hours, and then 300 ml of chloroform was added and the organic layer was collected by performing a liquid separation operation.
  • the organic layer was dehydrated with anhydrous magnesium sulfate and concentrated to obtain a crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: toluene) to obtain 11.1 g (yield 63%) of 6-bromo-2,2′-bipyridine as a white powder.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: n-hexane), and white powder of 4,4 ′′ -bis (trimethylsilyl) -1,1 ′: 2 ′, 1 ′′ -terphenyl 21.1 g (yield 93%) was obtained.
  • the crude product was purified by recrystallization using ethanol and then washed with methanol to obtain a white powder of 4,4 ′′ -dibromo-1,1 ′: 2 ′, 1 ′′ -terphenyl. 9 g (68% yield) was obtained.
  • the glass transition point of the compound of the present invention was not observed. This indicates that the thin film state is stable in the compound of the present invention.
  • the compound of the present invention has a value deeper than the work function 5.4 eV of a general hole transport material such as NPD or TPD, and has a large hole blocking ability.
  • the organic EL element has a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and an electron injection layer 6 on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2.
  • the cathode (silver electrode) 7 was deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 100 nm was formed was washed with an organic solvent, and then the surface was washed by UV ozone treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, NPD was formed as a hole transport layer 3 so as to cover the transparent anode 2 so as to have a film thickness of 50 nm at a deposition rate of 2 ⁇ / s. On this hole transport layer 3, Alq 3 was formed as a light emitting layer 4 so as to have a film thickness of 20 nm at a deposition rate of 2 ⁇ / s.
  • the compound of Example 1 of the present invention (Compound 3) was formed as an electron transport layer 5 so as to have a film thickness of 30 nm at a deposition rate of 2 ⁇ / s.
  • a magnesium silver alloy was formed as the electron injection layer 6 so as to have a film thickness of 100 nm at a deposition rate of 3.3 ⁇ / s.
  • silver was deposited to a thickness of 10 nm to form the cathode 7.
  • the characteristic measurement was performed at normal temperature in air
  • Example An organic EL device was produced under the same conditions as in Example 8 by replacing the material of the electron transport layer 5 in Example 8 with the compound of Example 3 of the present invention (Compound 11). About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example An organic EL device was produced under the same conditions as in Example 8 by replacing the material of the electron transport layer 5 in Example 8 with the compound of Example 5 of the present invention (Compound 55). About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 1 For comparison, instead of the material of the electron transport layer 5 in Example 8 to Alq 3, to produce an organic EL element under the same conditions as in Example 8. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 2 For comparison, an organic EL device was produced under the same conditions as in Example 8 by replacing the material of the electron transport layer 5 in Example 8 with the comparative compound 1. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 3 For comparison, an organic EL device was produced under the same conditions as in Example 8 by replacing the material of the electron transport layer 5 in Example 8 with the comparative compound 2. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 4 For comparison, an organic EL device was produced under the same conditions as in Example 8 by replacing the material of the electron transport layer 5 in Example 8 with the comparative compound 3. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the driving voltage at a current density of 10 mA / cm 2 was 5.70 V of Comparative Example 1 using Alq 3, and 6.2 of Comparative Examples 2 to 4 using Comparative Compound 1 to Comparative Compound 3. Compared to 60 V to 7.50 V, the voltage was greatly reduced to 4.10 V in Example 8, 4.40 V in Example 9, and 4.60 V in Example 10. Furthermore, all of the luminance, light emission efficiency, and power efficiency at a current density of 10 mA / cm 2 were greatly improved.
  • the glass substrate 1 on which the ITO film having a thickness of 100 nm was formed was washed with an organic solvent, the surface was washed by UV ozone treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, NPD was formed as a hole transport layer 3 so as to cover the transparent anode 2 so as to have a film thickness of 60 nm at a deposition rate of 2 ⁇ / s.
  • a magnesium silver alloy was formed as the electron injection layer 6 so as to have a film thickness of 100 nm at a deposition rate of 3.3 ⁇ / s. Finally, silver was deposited to a thickness of 10 nm to form the cathode 7. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Table 2 summarizes the measurement results of the light emission characteristics when a DC voltage was applied to the organic EL device produced using the compound of Example 1 (Compound 3) of the present invention.
  • Example 5 For comparison, instead of the material of the electron transport layer 5 in Example 11 to Alq 3, to produce an organic EL element under the same conditions as in Example 11. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the driving voltage at a current density of 10 mA / cm 2 was greatly reduced to 4.80 V in Example 11 compared to 8.80 V in Comparative Example 5 using Alq 3 . Furthermore, all of the power efficiency at a current density of 10 mA / cm 2 was greatly improved.
  • the organic EL device using a compound having a bipyridyl group and a triphenylene ring structure of the present invention typical electron transport is used as a material Alq 3, and the central skeleton nonplanar structure It was found that a large improvement in power efficiency and a significant reduction in practical driving voltage can be achieved as compared with the devices using Comparative Compounds 1 to 3 as described above.
  • the speed of electron transfer of the compound having bipyridyl group and triphenylene ring structure of the present invention is generally It is expected to be faster at each stage than Alq 3 which is a typical electron transport material.
  • the compound having a bipyridyl group and a triphenylene ring structure of the present invention is excellent as a compound for an organic EL device because it has good electron injection / transport performance and a stable thin film state.
  • an organic EL element using the compound, high efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

 低消費電力の有機エレクトロルミネッセンス素子用の材料として、電子の注入・輸送性能に優れた特性を有する有機化合物を提供し、さらにこの化合物を用いて、低消費電力の有機エレクトロルミネッセンス素子を提供する。一般式(1)または(2)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物であり、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、該化合物が、少なくとも1つの有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子である。

Description

置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以後、有機EL素子と略称する)に適した化合物と該素子に関するものであリ、詳しくは置換されたビピリジル基とトリフェニレン環構造を有する化合物と、該化合物を用いた有機EL素子に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度を得た(例えば、特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されている(例えば、非特許文献1参照)。
 また、発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている(例えば、非特許文献2参照)。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。上記の非特許文献1および2に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、電子の移動速度より正孔の移動速度が速いため、正孔の一部が発光層を通り抜けてしまうことによる効率低下が問題となる。そのため電子の移動速度の速い電子輸送材料が求められている。
 代表的な発光材料であるトリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)は電子輸送材料としても一般的に用いられるが、電子の移動度が遅く、また仕事関数が5.6eVなので正孔阻止性能が十分とはいえない。
 正孔の一部が発光層を通り抜けてしまうことを防ぎ、発光層での電荷再結合の確率を向上させる方策には、正孔阻止層を挿入する方法がある。正孔阻止材料としてはこれまでに、トリアゾール誘導体(例えば、特許文献3参照)やバソクプロイン(以後、BCPと略称する)、アルミニウムの混合配位子錯体[アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)](例えば、非特許文献2参照)などが提案されている。
 一方、正孔阻止性に優れた電子輸送材料として、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(以後、TAZと略称する)が提案されている(例えば、特許文献3参照)。
 TAZは仕事関数が6.6eVと大きく正孔阻止能力が高いために、真空蒸着や塗布などによって作製される蛍光発光層や燐光発光層の、陰極側に積層する電子輸送性の正孔阻止層として使用され、有機EL素子の高効率化に寄与している(例えば、非特許文献3参照)。
 しかし、電子輸送性が低いことがTAZにおける大きな課題であり、より電子輸送性の高い電子輸送材料と組み合わせて、有機EL素子を作製することが必要であった(例えば、非特許文献4参照)。
 また、BCPにおいても仕事関数が6.7eVと大きく正孔阻止能力が高いものの、ガラス転移点(Tg)が83℃と低いことから、薄膜の安定性に乏しく、正孔阻止層として十分に機能しているとはいえない。このため、燐光発光素子においては長寿命化の方策として、BAlqを正孔阻止層として用いることも提案されている。この素子においては、長寿命化は改善されるものの、BAlqの仕事関数は5.8eVと小さいため、正孔が発光層に効率よく閉じ込められず、BCPを使用した素子に比較し、効率低下が見られ、十分とはいえない。
 いずれの材料も膜安定性が不足しており、もしくは正孔を阻止する機能が不十分である。有機EL素子の素子特性を改善させるために、電子の注入・輸送性能と正孔阻止能力に優れ、薄膜状態での安定性が高い有機化合物が求められている。
 これらを改良した化合物として、アントラセン環構造とベンズイミダゾール環構造を有する化合物が提案されている(例えば、特許文献4参照)。
 しかしながら、これらの化合物を電子注入層または/および電子輸送層に用いた素子では、発光効率などの改良はされているものの、まだ十分とはいえず、低駆動電圧化や、さらなる高発光効率化、特に高電力効率化が求められている。
特開平8-048656号公報 特許第3194657号公報 特許第2734341号公報 WO2003/060956号公報
応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001) 第50回応用物理学関係連合講演会28p-A-6講演予稿集1413ページ(2003) 応用物理学会有機分子・バイオエレクトロニクス分科会会誌11巻1号13~19ページ(2000) J.Org.Chem.,60,7508(1995) Synth.Commun.,11,513(1981)
 本発明の目的は、低消費電力の有機EL素子用の材料として、電子の注入・輸送性能に優れた特性を有する有機化合物を提供し、さらにこの化合物を用いて、低消費電力の有機EL素子を提供することにある。
 本発明が提供しようとする有機化合物が具備すべき物理的な特性としては、(1)電子の注入特性がよいこと、(2)電子の移動速度が速いこと、(3)分子配向性が高いこと、(4)耐熱性に優れていること、をあげることができる。また、本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)電力効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いことをあげることができる。
 そこで、本発明者らは上記の目的を達成するために、平面性が高く、すなわち薄膜状態における良好な分子間パッキングが期待でき、π電子が豊富に存在することで良好な電子輸送性が期待できるトリフェニレン環構造と、平面性が高く、電子親和力の大きいビピリジル基を組み合わせた化合物を設計して化学合成し、該化合物を用いて種々の有機EL素子を試作し、素子の特性評価を鋭意行なった結果、本発明を完成するに至った。
 すなわち、本発明は一般式(1)または(2)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
                       (1)
 (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000002
                       (2)
 (式中、R19~R39は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3、n4、n5は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR22~R30はそれぞれ互いに同一でも異なってもよい。)
 また本発明は、下記一般式(1’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000003
                       (1’)
 (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
 また、本発明は下記一般式(1’’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000004
                       (1’’)
 (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
 また本発明は、下記一般式(1’’’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000005
                       (1’’’)
 (式中、R~R18、R40~R47は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
 また本発明は、下記一般式(1’’’’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000006
                       (1’’’’)
 (式中、R~R18、R40~R47は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
 また本発明は、下記一般式(2’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000007
                       (2’)
 (式中、R19~R39は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3、n4、n5は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR22~R30はそれぞれ互いに同一でも異なってもよい。)
 また本発明は、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機EL素子において、前記有機層の少なくとも一層が前記一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物を含む、有機EL素子である。
 一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)中のR~R47で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」における「アルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などをあげることができる。
 一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)中のR~R47で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基で置換されたジアルキルアミノ基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ビピリジル基、トリアジル基、ピリミジル基、キノリル基、イソキノリル基、インドリル基、ピリドインドリル基、カルバゾリル基、キノキサリル基、ピラゾリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよく、これらの置換基同士が互いに結合し、環を形成していてもよい。
 一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)中のR~R47で表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的にフェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ビピリジル基、トリアジル基、ピリミジル基、フラニル基、ピロニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ピリドインドリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基のような基をあげることができる。
 ここで、R~R、R19~R27、R40~R47で表される、「置換もしくは無置換の芳香族複素環基」として、置換もしくは無置換のピリジル基が好ましく、電子注入特性の向上が期待できる。
 一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)中のR~R47で表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルコキシ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基で置換されたジアルキルアミノ基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ビピリジル基、トリアジル基、ピリミジル基、キノリル基、イソキノリル基、インドリル基、ピリドインドリル基、カルバゾリル基、キノキサリル基、ピラゾリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよい。
 本発明の一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)で表される、置換されたビピリジル基とトリフェニレン環構造を有する化合物は新規な化合物であり、従来の電子輸送材料より電子の移動が速く、安定な薄膜状態を維持でき、発光効率が向上すると共に、駆動電圧が低下するという作用を有する。
 ここで、トリフェニレン環に結合するビピリジル基(一般式(1)もしくは一般式(2)において、n1~n5が2である場合)としては、2,2’-ビピリジル基、2,3’-ビピリジル基、2,4’-ビピリジル基、3,2’-ビピリジル基が好ましく、2,2’-ビピリジル基、2,4’-ビピリジル基が特に好ましい。
 本発明の一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)で表される、置換されたビピリジル基とトリフェニレン環構造を有する化合物は、有機EL素子の電子注入層および/または電子輸送層の構成材料として使用することができる。従来の材料に比べて電子の注入・移動速度の高い材料を用いることにより、電子輸送層から発光層への電子輸送効率が向上して、発光効率が向上すると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという作用を有する。
 本発明の一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)で表される、置換されたビピリジル基とトリフェニレン環構造を有する化合物は、有機EL素子の発光層の構成材料としても使用することができる。従来の材料に比べて電子輸送性に優れ、かつバンドギャップの広い本発明の材料を発光層のホスト材料として用い、ドーパントと呼ばれている蛍光体や燐光発光体を担持させて、発光層として用いることにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できるという作用を有する。
 本発明の有機EL素子は、従来の電子輸送材料より電子の移動が速く、薄膜状態が安定な、置換されたビピリジル基とトリフェニレン環構造を有する化合物を用いているため、高効率、高耐久性を実現することが可能となった。
 本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物は、電子の移動が速く、薄膜状態が安定であるので、有機EL素子の電子注入層、電子輸送層、あるいは発光層の構成材料として有用である。置換されたビピリジル基とトリフェニレン環構造を有する化合物を用いて作製した有機EL素子は発光効率が向上すると共に駆動電圧が低下して、耐久性を向上させることができる。
本発明実施例1の化合物(化合物3)のH-NMRチャート図である。 本発明実施例2の化合物(化合物4)のH-NMRチャート図である。 本発明実施例3の化合物(化合物11)のH-NMRチャート図である。 本発明実施例4の化合物(化合物12)のH-NMRチャート図である。 実施例8~11、比較例1~5のEL素子構成を示した図である。
 本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物は、新規な化合物であり、これらの化合物は例えば、以下のように合成できる。まず、相当するトリフェニレン化合物のジハライドをビス(ピナコラート)ジボロンなどによるボロン酸エステル化を行うことによって、相当するボロン酸エステル体を合成し(例えば、非特許文献5参照)、さらに、この相当するボロン酸エステル体と種々の置換基を有するハロゲノビピリジンとをSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献6参照)を行うことによって、置換されたビピリジル基とトリフェニレン環構造を有する化合物を合成することができる。
 一方、種々の置換基を有するハロゲノビピリジンをビス(ピナコラート)ジボロンなどによるボロン酸エステル化を行うことによって、種々の置換基を有するビピリジンのボロン酸エステル体を合成し、さらに、この種々の置換基を有するビピリジンのボロン酸エステル体と相当するトリフェニレン化合物のジハライドとをSuzukiカップリングなどのクロスカップリング反応を行うことによって、置換されたビピリジル基とトリフェニレン環構造を有する化合物を合成することができる。
 一般式(1)~一般式(1’’’’)、一般式(2)または一般式(2’)で表される置換されたビピリジル基とトリフェニレン環構造を有する化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
                       (化合物3)
Figure JPOXMLDOC01-appb-C000009
                       (化合物4)
Figure JPOXMLDOC01-appb-C000010
                       (化合物5)
Figure JPOXMLDOC01-appb-C000011
                       (化合物6)
Figure JPOXMLDOC01-appb-C000012
                       (化合物7)
Figure JPOXMLDOC01-appb-C000013
                       (化合物8)
Figure JPOXMLDOC01-appb-C000014
                       (化合物9)
Figure JPOXMLDOC01-appb-C000015
                       (化合物10)
Figure JPOXMLDOC01-appb-C000016
                       (化合物11)
Figure JPOXMLDOC01-appb-C000017
                       (化合物12)
Figure JPOXMLDOC01-appb-C000018
                       (化合物13)
Figure JPOXMLDOC01-appb-C000019
                       (化合物14)
Figure JPOXMLDOC01-appb-C000020
                       (化合物15)
Figure JPOXMLDOC01-appb-C000021
                       (化合物16)
Figure JPOXMLDOC01-appb-C000022
                       (化合物17)
Figure JPOXMLDOC01-appb-C000023
                       (化合物18)
Figure JPOXMLDOC01-appb-C000024
                       (化合物19)
Figure JPOXMLDOC01-appb-C000025
                       (化合物20)
Figure JPOXMLDOC01-appb-C000026
                       (化合物21)
Figure JPOXMLDOC01-appb-C000027
                       (化合物22)
Figure JPOXMLDOC01-appb-C000028
                       (化合物23)
Figure JPOXMLDOC01-appb-C000029
                       (化合物24)
Figure JPOXMLDOC01-appb-C000030
                       (化合物25)
Figure JPOXMLDOC01-appb-C000031
                       (化合物26)
Figure JPOXMLDOC01-appb-C000032
                       (化合物27)
Figure JPOXMLDOC01-appb-C000033
                       (化合物28)
Figure JPOXMLDOC01-appb-C000034
                       (化合物29)
Figure JPOXMLDOC01-appb-C000035
                       (化合物30)
Figure JPOXMLDOC01-appb-C000036
                       (化合物31)
Figure JPOXMLDOC01-appb-C000037
                       (化合物32)
Figure JPOXMLDOC01-appb-C000038
                       (化合物33)
Figure JPOXMLDOC01-appb-C000039
                       (化合物34)
Figure JPOXMLDOC01-appb-C000040
                       (化合物35)
Figure JPOXMLDOC01-appb-C000041
                       (化合物36)
Figure JPOXMLDOC01-appb-C000042
                       (化合物37)
Figure JPOXMLDOC01-appb-C000043
                       (化合物38)
Figure JPOXMLDOC01-appb-C000044
                       (化合物39)
Figure JPOXMLDOC01-appb-C000045
                       (化合物40)
Figure JPOXMLDOC01-appb-C000046
                       (化合物41)
Figure JPOXMLDOC01-appb-C000047
                       (化合物42)
Figure JPOXMLDOC01-appb-C000048
                       (化合物43)
Figure JPOXMLDOC01-appb-C000049
                       (化合物44)
Figure JPOXMLDOC01-appb-C000050
                       (化合物45)
Figure JPOXMLDOC01-appb-C000051
                       (化合物46)
Figure JPOXMLDOC01-appb-C000052
                       (化合物47)
Figure JPOXMLDOC01-appb-C000053
                       (化合物48)
Figure JPOXMLDOC01-appb-C000054
                       (化合物49)
Figure JPOXMLDOC01-appb-C000055
                       (化合物50)
Figure JPOXMLDOC01-appb-C000056
                       (化合物51)
Figure JPOXMLDOC01-appb-C000057
                       (化合物52)
Figure JPOXMLDOC01-appb-C000058
                       (化合物53)
Figure JPOXMLDOC01-appb-C000059
                       (化合物54)
Figure JPOXMLDOC01-appb-C000060
                       (化合物55)
 これらの化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行った。化合物の同定は、NMR分析、質量分析、元素分析などによって行なった。物性値として、融点、ガラス転移点(Tg)と仕事関数の測定を行った。融点は蒸着性の指標となるものであり、ガラス転移点(Tg)は薄膜状態の安定性の指標となるものであり、仕事関数は正孔阻止能力の指標となるものである。
 融点とガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって測定した。
 また、仕事関数はITO基板の上に100nmの薄膜を作製して、大気中光電子分光装置(理研計器製、AC-3型)を用いて測定した。
 本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極からなるもの、また、陽極と正孔輸送層の間に正孔注入層を有するもの、電子輸送層と陰極の間に電子注入層を有するもの、発光層と正孔輸送層の間に電子阻止層を有するものがあげられる。これらの多層構造においては有機層を何層か省略することが可能であり、例えば基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層、陰極を有する構成とすることもできる。
 前記発光層、前記正孔輸送層、前記電子輸送層においては、それぞれが2層以上積層された構造であってもよい。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。本発明の有機EL素子の正孔注入層として、銅フタロシアニンに代表されるポルフィリン化合物のほか、スターバースト型のトリフェニルアミン誘導体、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物などのトリフェニルアミン3量体および4量体、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔輸送層として、N,N’-ジフェニル-N,N’-ジ(m-トリル)-ベンジジン(以後、TPDと略称する)やN,N’-ジフェニル-N,N’-ジ(α-ナフチル)-ベンジジン(以後、NPDと略称する)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)、種々のトリフェニルアミン3量体および4量体やカルバゾール誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものや、TPDの構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の電子阻止層として、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層として、本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物のほか、Alqをはじめとするキノリノール誘導体の金属錯体の他、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成してもよく、ホスト材料として前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。
 また、発光材料として燐光性の発光材料を使用することも可能である。燐光性の発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔阻止層として、本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物のほか、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、BAlqなどのキノリノール誘導体の金属錯体のほか、各種の希土類錯体、オキサゾール誘導体、トリアゾール誘導体、トリアジン誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物のほか、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子注入層として、本発明の置換されたビピリジル基とトリフェニレン環構造を有する化合物のほか、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 さらに、電子注入層あるいは電子輸送層において、該層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。
 本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン(化合物3)の合成>
 窒素置換した反応容器に、2,5-ジブロモピリジン19.5g、2-ピリジルジンクブロマイド150ml、テトラヒドロフラン90ml、テトラキス(トリフェニルホスフィン)パラジウム(0)4.33gを加えて冷却し、0℃で2時間攪拌した後、さらに室温で3時間攪拌した。反応溶液を10%エチレンジアミン四酢酸二水素二ナトリウム水溶液に加えて6時間攪拌した後、クロロホルム300mlを加え、分液操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン)によって精製し、5-ブロモ-2,2’-ビピリジンの白色粉末11.1g(収率63%)を得た。
 一方、窒素置換した反応容器に、1,2-ジヨードベンゼン24.4g、3-トリメチルシリルフェニルボロン酸30g、水酸化ナトリウム8.8g、テトラキス(トリフェニルホスフィン)パラジウム(0)4.3g、ジエチレングリコールジメチルエーテル160ml、水40mlを加えて加熱し、95℃で15時間撹拌した。室温まで冷却した後、水100mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:n-ヘキサン)によって精製し、3,3’’-ビス(トリメチルシリル)-1,1’:2’,1’’-ターフェニルの白色粉末23.3g(収率84%)を得た。
 得られた3,3’’-ビス(トリメチルシリル)-1,1’:2’,1’’-ターフェニル23g、臭素12.6ml、クロロホルム180mlを窒素置換した反応容器に加えて冷却し、-5℃で3時間攪拌した後、さらに室温で4時間撹拌した。飽和亜硫酸ナトリウム水溶液90mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物に対しエタノールを用いた再結晶による精製を行った後、メタノール洗浄することによって、3,3’’-ジブロモ-1,1’:2’,1’’-ターフェニルの白色粉末15.4g(収率65%)を得た。
 得られた3,3’’-ジブロモ-1,1’:2’,1’’-ターフェニル12.0g、塩化モリブデン(V)16.9g、ジクロロメタン20mlを窒素置換した反応容器に加え、室温で19時間撹拌した。反応溶液に水100mlを加え、30分攪拌した後、析出物をろ過によって採取し、メタノール洗浄を行うことによって粗製物を得た。粗製物にクロロホルム200ml、n-ヘキサン600ml、シリカゲル36.6gを加え、吸着精製を行った後、クロロホルム洗浄を行うことによって2,7-ジブロモトリフェニレンの淡黄色粉末5.5g(収率46%)を得た。
 得られた2,7-ジブロモトリフェニレン5.5g、ビス(ピナコラート)ジボロン7.9g、酢酸カリウム4.2g、予めモレキュラーシーブス4Aで脱水した1,4-ジオキサン50ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド-ジクロロメタン錯体(1:1)0.4gを窒素置換した反応容器に加えて加熱し、80℃で10時間攪拌した。50℃まで冷却した後、クロロホルム150mlを加え、30分攪拌した。ろ過によって不溶物を除き、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/5(v/v)]によって精製し、2,7-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレンの白色粉末4.8g(収率70%)を得た。
 得られた2,7-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレン2.4g、および、前記5-ブロモ-2,2’-ビピリジン2.5g、2M炭酸カリウム水溶液7.7ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.3g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら9時間還流した。室温まで冷却し、析出物をろ過によって採取した。析出物にクロロホルム2000mlを加えて溶解し、シリカゲル11.5gを加えて吸着精製を行った後、1,2-ジクロロベンゼンからの再結晶を行うことによって2,7-ビス(2,2’-ビピリジン-5-イル)トリフェニレン(化合物3)1.6g(収率60%)の黄色粉末を得た。
 得られた黄色粉末についてNMRを使用して構造を同定した。H-NMR測定結果を図1に示した。
 H-NMR(DMSO-d)で以下の24個の水素のシグナルを検出した。δ(ppm)=9.28(2H)、9.15(2H)、9.02-9.03(2H)、8.93-8.96(2H)、8.72(2H)、8.47-8.56(6H)、8.14-8.16(2H)、7.94-7.98(2H)、7.78-7.79(2H)、7.43-7.46(2H)。
 <2,7-ビス(2,2’-ビピリジン-6-イル)トリフェニレン(化合物4)の合成>
 窒素置換した反応容器に、2,6-ジブロモピリジン19.5g、2-ピリジルジンクブロマイド150ml、テトラヒドロフラン90ml、テトラキス(トリフェニルホスフィン)パラジウム(0)4.33gを加えて冷却し、0℃で2時間攪拌した後、さらに室温で3時間攪拌した。反応溶液を10%エチレンジアミン四酢酸二水素二ナトリウム水溶液に加えて6時間撹拌した後、クロロホルム300mlを加え、分液操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン)によって精製し、6-ブロモ-2,2’-ビピリジンの白色粉末11.1g(収率63%)を得た。
 得られた6-ブロモ-2,2’-ビピリジン2.4g、実施例1で合成した2,7-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレン2.3g、2M炭酸カリウム水溶液7.4ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.3g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら9時間還流した。室温まで冷却し、析出物をろ過によって採取した。析出物にクロロホルム1300mlを加え、不溶物をろ過によって除いた後、1,2-ジクロロベンゼンによる再結晶によって精製し、2,7-ビス(2,2’-ビピリジン-6-イル)トリフェニレン(化合物4)の淡黄白色粉末1.7g(収率66%)を得た。
 得られた淡黄白色粉末についてNMRを使用して構造を同定した。H-NMR測定結果を図2に示した。
 H-NMR(DMSO-d)で以下の24個の水素のシグナルを検出した。δ(ppm)=9.50(2H)、8.92-8.98(4H)、8.64-8.70(4H)、8.54-8.57(2H)、8.38-8.40(2H)、8.28-8.30(2H)、8.06-8.10(2H)、7.98-8.01(2H)、7.78-7.80(2H)、7.43-7.45(2H)。
 <2,11-ビス(2,2’-ビピリジン-5-イル)トリフェニレン(化合物11)の合成>
 窒素置換した反応容器に、1,2-ジブロモベンゼン10g、ビス(ピナコラート)ジボロン23.7g、酢酸カリウム12.5g、予めモレキュラーシーブス4Aで脱水した1,4-ジオキサン150ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド-ジクロロメタン錯体(1:1)1.0gを窒素置換した反応容器に加えて加熱し、80℃で10時間攪拌した。50℃まで冷却した後、クロロホルム150mlを加え、30分攪拌した。ろ過によって不溶物を除き、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/4(v/v)]によって精製し、1,2-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ベンゼンの白色粉末7.2g(収率54%)を得た。
 一方、窒素置換した反応容器に、3,3’-ジメトキシ-1,1’-ビフェニル30g,臭素15.8ml、酢酸250mlを加え、室温で2時間撹拌した。反応溶液に飽和亜硫酸ナトリウム水溶液90mlを加えた後、クロロホルム200mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって、粗製物を得た。粗製物をエタノールで洗浄することによって、2,2’-ジブロモ-3,3’-ジメトキシ-1,1’-ビフェニルの白色粉末36.3g(収率70%)を得た。
 得られた2,2’-ジブロモ-3,3’-ジメトキシ-1,1’-ビフェニル2.8g、および、前記1,2-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)ベンゼン3.0g、りん酸カリウム9.6g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.43g、テトラヒドロフラン50ml、水15mlを窒素置換した反応容器に加えて加熱し、60℃で48時間攪拌した。室温まで冷却した後、クロロホルム100mlを加え、分液操作を行うことによって有機層を採取した。有機層を水50mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン/塩化メチレン=1/10/1(v/v/v)]によって精製した後、メタノール洗浄を行うことによって、2,11-ジメトキシトリフェニレンの白色粉末1.72g(65.6%)を得た。
 得られた2,11-ジメトキシトリフェニレン1.5g、三臭化ホウ素:ジクロロメタン溶液(1mol/L)10.9ml、ジクロロメタン50mlを窒素置換し、-78℃まで冷却した反応容器に加え、室温まで加温した後、20時間撹拌した。反応溶液に水50mlを加え、30分攪拌した後、ろ過によって析出物を採取した。析出物をメタノール洗浄することによって、トリフェニレン-2,11-ジオールの白色粉末1.25g(収率93%)を得た。
 得られたトリフェニレン-2,11-ジオール1.25g、N-フェニル-ビス(トリフルオロメタンスルホンイミド)6.87g、炭酸ナトリウム5.1g、ジメチルホルムアミド50mlを窒素置換した反応容器に加え、室温で12時間撹拌した。反応溶液に水50ml加え、30分撹拌した後、ろ過によって析出物を採取した。析出物をメタノール洗浄することによって、トリフェニレン-2,11-ジイル-ビス(トリフルオロメタンスルホネート)の白色粉末2.38g(収率91%)を得た。
 得られたトリフェニレン-2,11-ジイル-ビス(トリフルオロメタンスルホネート)2.3g、ビス(ピナコラート)ジボロン2.5g、酢酸カリウム1.3g、予めモレキュラーシーブス4Aで脱水した1,4-ジオキサン50ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド-ジクロロメタン錯体(1:1)0.1gを窒素置換した反応容器に加えて加熱し、80℃で10時間攪拌した。50℃まで冷却した後、クロロホルム150mlを加え、30分攪拌した。ろ過によって不溶物を除き、ろ液を濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/5(v/v)]によって精製し、2,11-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレンの白色粉末1.1g(収率52%)を得た。
 得られた2,11-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレン0.9g、実施例1で合成した5-ブロモ-2,2’-ビピリジン0.9g、2M炭酸カリウム水溶液2.9ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.1g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら9時間還流した。室温まで冷却し、析出物をろ過によって採取した。析出物にクロロホルム1000mlを加えて溶解し、シリカゲル11.5gを加えて吸着精製を行った後、1,2-ジクロロベンゼンからの再結晶を行うことによって、2,11-ビス(2,2’-ビピリジン-5-イル)トリフェニレン(化合物11)の黄色粉末0.7g(収率70%)を得た。
 得られた黄色粉末についてNMRを使用して構造を同定した。H-NMR測定結果を図3に示した。
 H-NMR(DMSO-d)で以下の24個の水素のシグナルを検出した。δ(ppm)=9.41(2H)、9.37(2H)、9.95(2H)、8.88-8.85(2H)、8.71(2H)、8.60-8.57(2H)、8.56-8.54(2H)、8.52-8.45(2H)、8.16(2H)、7.95-7.98(2H)、7.74(2H)、7.45(2H)。
 <2,11-ビス(2,2’-ビピリジン-6-イル)トリフェニレン(化合物12)の合成>
 実施例3で合成した2,11-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレン0.8g、実施例2で合成した6-ブロモ-2,2’-ビピリジン0.8g、2M炭酸カリウム水溶液2.3ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.1g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら9時間還流した。室温まで冷却し、析出物をろ過によって採取した。析出物にクロロホルム1300mlを加え、不溶物をろ過によって除いた後、1,2-ジクロロベンゼンによる再結晶によって精製し、2,11-ビス(2,2’-ビピリジン-6-イル)トリフェニレン(化合物12)の淡黄白色粉末0.6g(収率71%)を得た。
 得られた淡黄白色粉末についてNMRを使用して構造を同定した。H-NMR測定結果を図4に示した。
 H-NMR(DMSO-d)で以下の24個の水素のシグナルを検出した。δ(ppm)=9.74(2H)、8.98(2H)、8.90-8.87(2H)、8.70(2H)、8.66-8.62(4H)、8.48(2H)、8.41(2H)、8.17-8.13(2H)、7.79-7.75(4H)、7.43-7.40(2H)。
 <2,7-ジ([2,4’-ビピリジン]-5-イル)トリフェニレン(化合物55)の合成>
 窒素置換した反応容器に、2,5-ジブロモピリジン9.6g、4-ピリジンボロン酸2.5g、トルエン50ml、エタノール40ml、2M炭酸カリウム水溶液15.2ml、テトラキス(トリフェニルホスフィン)パラジウム(0)1.50gを加えて加熱し、攪拌しながら24時間還流した。室温まで冷却した後、クロロホルム500mlと水300mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水した後、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:トルエン:酢酸エチル=1:1(v/v)]によって精製し、5-ブロモ-2,4’-ビピリジンの白色粉末3.3g(収率69%)を得た。
 得られた、5-ブロモ-2,4’-ビピリジン2.4g、実施例1で合成した2,7-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)トリフェニレン2.0g、2M炭酸カリウム水溶液6.3ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.3g、トルエン40ml、エタノール25mlを窒素置換した反応容器に加えて加熱し、攪拌しながら24時間還流した。室温まで冷却し、析出物をろ過によって採取した。析出物にクロロホルム1300mlを加え、不溶物をろ過によって除いた後、1,2-ジクロロベンゼンによる再結晶によって精製し、2,7-ジ([2,4’-ビピリジン]-5-イル)トリフェニレン(化合物55)の淡黄白色粉末1.1g(収率50%)を得た。
 得られた淡黄白色粉末についてマトリクス支援レーザー脱離イオン化飛行時間型質量分析装置(AXIMA-CFR Plus、島津製作所製)と元素分析装置(ヤナコCHNコーダーMT-5型 柳本製作所製)を使用して構造を同定した。
 MS(m/z)537[計算値(m/z)536.20]、
 元素分析、測定値:C;85.08、H;4.42、N;10.39、計算値(C3824):C;85.05、H;4.51、N;10.44。
[比較合成例1]
 <3,3’’-ビス(2,2’-ビピリジン-5-イル)-1,1’:2’,1’’-ターフェニル(比較化合物1)の合成>
 実施例1で合成した3,3’’-ジブロモ-1,1’:2’,1’’-ターフェニル5.0g、ビス(ピナコラート)ジボロン6.9g、酢酸カリウム3.8g、予めモレキュラーシーブス4Aで脱水した1,4-ジオキサン50ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド-ジクロロメタン錯体(1:1)0.3gを窒素置換した反応容器に加えて加熱し、80℃で11時間攪拌した。50℃まで冷却した後、クロロホルム100mlを加え、30分攪拌した。ろ過によって不溶物を除き、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/20(v/v)によって精製し、3,3’’-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)-1,1’:2’,1’’-ターフェニルの白色粉末3.8g(収率61%)を得た。
 得られた3,3’’-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)-1,1’:2’,1’’-ターフェニル1.8g、実施例1で合成した5-ブロモ-2,2’-ビピリジン1.8g、2M炭酸カリウム水溶液5.8ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.2g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら20時間還流した。室温まで冷却した後、水30ml、クロロホルム100mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:NHシリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/5(v/v)]によって精製し、下記構造式の3,3’’-ビス(2,2’-ビピリジン-5-イル)-1,1’:2’,1’’-ターフェニル(比較化合物1)1.5g(収率80%)の白色粉末を得た。
Figure JPOXMLDOC01-appb-C000061
                       (比較化合物1)
 得られた白色粉末についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の26個の水素のシグナルを検出した。δ(ppm)=8.65-8.66(2H)、8.51-8.53(2H)、8.31-8.33(2H)、8.08(2H)、7.99-8.01(2H)、7.71-7.79(4H)、7.59-7.61(2H)、7.54-7.56(2H)、7.50-7.52(2H)、7.34-7.38(2H)、7.25-7.28(4H)。
[比較合成例2]
 <3,3’’-ビス(2,2’-ビピリジン-6-イル)-1,1’:2’,1’’-ターフェニル(比較化合物2)の合成>
 比較合成例1で合成した3,3’’-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)-1,1’:2’,1’’-ターフェニル1.8g、実施例2で合成した6-ブロモ-2,2’-ビピリジン1.8g、2M炭酸カリウム水溶液5.8ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.2g、トルエン40ml、エタノール10mlを窒素置換した反応容器に加えて加熱し、攪拌しながら8時間還流した。室温まで冷却した後、水30ml、トルエン40mlを加え、分液操作を行うことによって有機層を採取した。有機層を水30mlで洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:NHシリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/5(v/v)]によって精製し、下記構造式の3,3’’-ビス(2,2’-ビピリジン-6-イル)-1,1’:2’,1’’-ターフェニル(比較化合物2)の白色粉末1.5g(収率75%)を得た。
Figure JPOXMLDOC01-appb-C000062
                       (比較化合物2)
 得られた白色粉末についてNMRを使用して構造を同定した。
 H-NMR(CDCl3)で以下の26個の水素のシグナルを検出した。δ(ppm)=8.66-8.68(4H)、8.35-8.40(4H)、7.79-7.83(2H)、7.69-7.72(2H)、7.45-7.58(8H)、7.35-7.39(4H)、7.28-7.31(2H)。
[比較合成例3]
 <4,4’’-ビス(2,2’-ビピリジン-6-イル)-1,1’:2’,1’’-ターフェニル(比較化合物3)の合成>
 窒素置換した反応容器に、1,2-ジヨードベンゼン20g、4-トリメチルシリルフェニルボロン酸25g、水酸化ナトリウム7.4g、テトラキス(トリフェニルホスフィン)パラジウム(0)3.6g、ジエチレングリコールジメチルエーテル240ml、水60mlを加えて加熱し、95℃で15時間撹拌した。室温まで冷却した後、水100mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:n-ヘキサン)によって精製し、4,4’’-ビス(トリメチルシリル)-1,1’:2’,1’’-ターフェニルの白色粉末21.1g(収率93%)を得た。
 得られた4,4’’-ビス(トリメチルシリル)-1,1’:2’,1’’-ターフェニル21g、臭素11.5ml、クロロホルム150mlを窒素置換した反応容器に加えて冷却し、-5℃で3時間攪拌した後、さらに室温で4時間撹拌した。飽和亜硫酸ナトリウム水溶液90mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物に対しエタノールを用いた再結晶による精製を行った後、メタノール洗浄することによって、4,4’’-ジブロモ-1,1’:2’,1’’-ターフェニルの白色粉末14.9g(収率68%)を得た。
 得られた4,4’’-ジブロモ-1,1’:2’,1’’-ターフェニル5.0g、ビス(ピナコラート)ジボロン7.2g、酢酸カリウム3.8g、予めモレキュラーシーブス4Aで脱水した1,4-ジオキサン50ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド-ジクロロメタン錯体(1:1)0.3gを窒素置換した反応容器に加えて加熱し、80℃で10時間攪拌した。50℃まで冷却した後、クロロホルム150mlを加え、30分攪拌した。ろ過によって不溶物を除き、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル/n-ヘキサン=1/5(v/v)]によって精製し、4,4’’-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)-1,1’:2’,1’’-ターフェニルの白色粉末3.5g(収率56%)を得た。
 得られた4,4’’-ビス(4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル)-1,1’:2’,1’’-ターフェニル2.0g、実施例2で合成した6-ブロモ-2,2’-ビピリジン2.0g、2M炭酸カリウム水溶液6.0ml、テトラキス(トリフェニルホスフィン)パラジウム(0)0.2g、トルエン32ml、エタノール8mlを窒素置換した反応容器に加えて加熱し、攪拌しながら9時間還流した。室温まで冷却した後、水100mlを加え、分液操作を行うことによって有機層を採取した。有機層を水100mlで2回洗浄した後、無水硫酸マグネシウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:クロロホルム)によって精製した後、トルエンによる再結晶を行うことによって、下記構造式の4,4’’-ビス(2,2’-ビピリジン-6-イル)-1,1’:2’,1’’-ターフェニル(比較化合物3)の白色粉末1.6g(収率74%)を得た。
Figure JPOXMLDOC01-appb-C000063
                       (比較化合物3)
 得られた白色粉末についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の26個の水素のシグナルを検出した。δ(ppm)=8.67(2H)、8.60(2H)、8.33(2H),8.06(4H)、7.78-7.86(4H)、7.74(2H)、7.53-7.48(4H)、7.36(4H)、7.30-7.28(2H)。
 本発明の化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって融点とガラス転移点を求めた。
               融点     ガラス転移点
 本発明実施例1の化合物  338℃     なし
 本発明実施例2の化合物  285℃     なし
 本発明の化合物はガラス転移点が認められなかった。このことは、本発明の化合物において薄膜状態が安定であることを示すものである。
 本発明の化合物を用いて、ITO基板の上に膜厚50nmの蒸着膜を作製して、大気中光電子分光装置(理研計器製、AC-3型)で仕事関数を測定した。
              仕事関数
 本発明実施例1の化合物  5.74eV
 本発明実施例2の化合物  5.69eV
 本発明実施例3の化合物  5.82eV
 本発明実施例4の化合物  5.73eV
 本発明実施例5の化合物  6.21eV
 このように本発明の化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVより深い値を有しており、大きな正孔阻止能力を有している。
 有機EL素子は、図5に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層3、発光層4、電子輸送層5、電子注入層6、陰極(銀電極)7の順に蒸着して作製した。
 具体的には、膜厚100nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UVオゾン処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔輸送層3として、NPDを蒸着速度2Å/sで膜厚50nmとなるように形成した。この正孔輸送層3の上に、発光層4としてAlqを蒸着速度2Å/sで膜厚20nmとなるように形成した。この発光層4の上に、電子輸送層5として本発明実施例1の化合物(化合物3)を蒸着速度2Å/sで膜厚30nmとなるように形成した。この電子輸送層5の上に、電子注入層6としてマグネシウム銀合金を蒸着速度3.3Å/sで膜厚100nmとなるように形成した。最後に、銀を膜厚10nmとなるように蒸着して陰極7を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。
 本発明の実施例1の化合物(化合物3)を使用して作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
 実施例8における電子輸送層5の材料を本発明実施例3の化合物(化合物11)に代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
 実施例8における電子輸送層5の材料を本発明実施例5の化合物(化合物55)に代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例1]
 比較のために、実施例8における電子輸送層5の材料をAlqに代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例2]
 比較のために、実施例8における電子輸送層5の材料を前記比較化合物1に代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例3]
 比較のために、実施例8における電子輸送層5の材料を前記比較化合物2に代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例4]
 比較のために、実施例8における電子輸送層5の材料を前記比較化合物3に代え、実施例8と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、電流密度10mA/cm時における駆動電圧は、Alqを用いた比較例1の5.70V、比較化合物1~比較化合物3を用いた比較例2~4の6.60V~7.50Vに対して実施例8では4.10V、実施例9では4.40V、実施例10では4.60Vと大きく低電圧化した。さらに、電流密度10mA/cm時における輝度、発光効率、電力効率のいずれも大きく向上した。
 膜厚100nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UVオゾン処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔輸送層3として、NPDを蒸着速度2Å/sで膜厚60nmとなるように形成した。この正孔輸送層3の上に、発光層4として2-(tert-ブチル)-9,10-ジフェニルアントラセン(TBADN)と青色蛍光発光体DPAVBを、蒸着速度比がTBADN:DPAVB=95:5となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この発光層4の上に、電子輸送層5として本発明実施例1の化合物(化合物3)を蒸着速度2Å/sで膜厚30nmとなるように形成した。この電子輸送層5の上に、電子注入層6としてマグネシウム銀合金を蒸着速度3.3Å/sで膜厚100nmとなるように形成した。最後に、銀を膜厚10nmとなるように蒸着して陰極7を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。
 本発明の実施例1の化合物(化合物3)を使用して作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
[比較例5]
 比較のために、実施例11における電子輸送層5の材料をAlqに代え、実施例11と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す様に、電流密度10mA/cm時における駆動電圧は、Alqを用いた比較例5の8.80Vに対して実施例11では4.80Vと大きく低電圧化した。さらに、電流密度10mA/cm時における電力効率のいずれも大きく向上した。
 これらの結果から明らかなように、本発明のビピリジル基とトリフェニレン環構造を有する化合物を用いた有機EL素子は、一般的な電子輸送材料として用いられているAlq、そして中心骨格が非平面構造である比較化合物1~3を用いた素子と比較して、電力効率の大きな向上や、実用駆動電圧の顕著な低下を達成できることがわかった。
 このように本発明のビピリジル基とトリフェニレン環構造を有する化合物を用いた有機EL素子における顕著な駆動電圧の低下から、本発明のビピリジル基とトリフェニレン環構造を有する化合物の電子移動の速度は、一般的な電子輸送材料であるAlqより各段に速いものと予測される。
 本発明のビピリジル基とトリフェニレン環構造を有する化合物は、電子の注入・輸送性能がよく、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。
 1 ガラス基板
 2 透明陽極
 3 正孔輸送層
 4 発光層
 5 電子輸送層
 6 電子注入層
 7 陰極

Claims (10)

  1. 下記一般式(1)または(2)で表される、置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000064
                           (1)
    (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
    Figure JPOXMLDOC01-appb-C000065
                           (2)
    (式中、R19~R39は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3、n4、n5は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR22~R30はそれぞれ互いに同一でも異なってもよい。)
  2. 下記一般式(1’)で表される、請求項1記載の置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000066
                           (1’)
    (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
  3. 下記一般式(1’’)で表される、請求項1記載の置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000067
                           (1’’)
    (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
  4. 下記一般式(1’’’)で表される、請求項1記載の置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000068
                           (1’’’)
    (式中、R~R18、R40~R47は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
  5. 下記一般式(1’’’’)で表される、請求項1記載の置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000069
                           (1’’’’)
    (式中、R~R18、R40~R47は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
  6. 下記一般式(2’)で表される、請求項1記載の置換されたビピリジル基とトリフェニレン環構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000070
                           (2’)
    (式中、R19~R39は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3、n4、n5は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR22~R30はそれぞれ互いに同一でも異なってもよい。)
  7.  一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1)または(2)で表される、置換されたビピリジル基とトリフェニレン環構造を有する化合物が、少なくとも1つの有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000071
                           (1)
    (式中、R~R18は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n1、n2は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR~Rはそれぞれ互いに同一でも異なってもよい。)
    Figure JPOXMLDOC01-appb-C000072
                           (2)
    (式中、R19~R39は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、n3、n4、n5は、同一でも異なってもよく2または3を表す。ここで、複数個存在するR22~R30はそれぞれ互いに同一でも異なってもよい。)
  8.  前記した有機層が電子輸送層であり、上記一般式(1)または(2)で表される化合物が、該電子輸送層中に、少なくとも一つの構成材料として用いられていることを特徴とする請求項7記載の有機エレクトロルミネッセンス素子。
  9.  前記した有機層が電子注入層であり、上記一般式(1)または(2)で表される化合物が、該電子注入層中に、少なくとも一つの構成材料として用いられていることを特徴とする請求項7記載の有機エレクトロルミネッセンス素子。
  10.  前記した有機層が発光層であり、上記一般式(1)または(2)で表される化合物が、該発光層中に、少なくとも一つの構成材料として用いられていることを特徴とする請求項7記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/001217 2011-02-23 2012-02-23 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子 WO2012114745A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12749099.3A EP2679581B1 (en) 2011-02-23 2012-02-23 Compound containing substituted triphenyle ring structure, and organic electroluminescent element
CN2012800104052A CN103402981A (zh) 2011-02-23 2012-02-23 具有被取代的三亚苯环结构的化合物以及有机电致发光器件
KR1020137024211A KR101975067B1 (ko) 2011-02-23 2012-02-23 치환된 트리페닐렌환 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자
JP2013500895A JP5453621B2 (ja) 2011-02-23 2012-02-23 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
US14/001,041 US9685612B2 (en) 2011-02-23 2012-02-23 Compound having substituted triphenylene ring structure, and organic electroluminescent device
US15/604,075 US10026903B2 (en) 2011-02-23 2017-05-24 Compound having substituted triphenylene ring structure, and organic electroluminescent device
US15/604,088 US10797242B2 (en) 2011-02-23 2017-05-24 Compound having substituted triphenylene ring structure, and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011037322 2011-02-23
JP2011-037322 2011-02-23

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/001,041 A-371-Of-International US9685612B2 (en) 2011-02-23 2012-02-23 Compound having substituted triphenylene ring structure, and organic electroluminescent device
US15/604,075 Division US10026903B2 (en) 2011-02-23 2017-05-24 Compound having substituted triphenylene ring structure, and organic electroluminescent device
US15/604,088 Continuation US10797242B2 (en) 2011-02-23 2017-05-24 Compound having substituted triphenylene ring structure, and organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2012114745A1 true WO2012114745A1 (ja) 2012-08-30

Family

ID=46720537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001217 WO2012114745A1 (ja) 2011-02-23 2012-02-23 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (3) US9685612B2 (ja)
EP (2) EP3255040A1 (ja)
JP (2) JP5453621B2 (ja)
KR (1) KR101975067B1 (ja)
CN (1) CN103402981A (ja)
TW (1) TWI508958B (ja)
WO (1) WO2012114745A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128818A1 (ja) * 2012-02-28 2013-09-06 保土谷化学工業株式会社 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
EP2860783A1 (en) * 2013-10-11 2015-04-15 Cheil Industries Inc. Organic optoelectric device and display device
JP2015126115A (ja) * 2013-12-26 2015-07-06 日立化成株式会社 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置
JP2016526291A (ja) * 2013-05-16 2016-09-01 チェイル インダストリーズ インコーポレイテッド 有機光電子素子用発光材料、有機光電子素子および表示装置
CN109575937A (zh) * 2018-12-01 2019-04-05 四川师范大学 一种吐昔烯酮-苯并菲盘状液晶化合物及其制备方法
JP2019091748A (ja) * 2017-11-13 2019-06-13 東ソー株式会社 ジナフトテトラフェニレン化合物を含む有機エレクトロルミネッセンス素子
US10431766B2 (en) * 2014-05-02 2019-10-01 Samsung Display Co., Ltd. Organic light-emitting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144632A (ja) * 1997-07-28 1999-02-16 Toa Medical Electronics Co Ltd 粒子計測装置のデータ異常判定方法
EP3255040A1 (en) * 2011-02-23 2017-12-13 Hodogaya Chemical Co., Ltd. Compound having substituted triphenylene ring structure, and organic electroluminescent device
KR101618683B1 (ko) * 2013-05-16 2016-05-09 제일모직 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
KR102245164B1 (ko) * 2014-08-22 2021-04-27 엘지디스플레이 주식회사 유기 발광 소자 및 그의 제조 방법
TWI665286B (zh) 2016-07-27 2019-07-11 南韓商Lg化學股份有限公司 多環化合物以及包含此化合物的有機發光裝置
CN112409374B (zh) * 2020-11-20 2022-10-14 四川师范大学 一种刚性核直连的类石墨烯苯并菲盘状液晶的制备方法及介晶性

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2734341B2 (ja) 1993-03-26 1998-03-30 住友電気工業株式会社 有機エレクトロルミネッセンス素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2007029696A1 (ja) * 2005-09-05 2007-03-15 Chisso Corporation 電子輸送材料およびこれを用いた有機電界発光素子
JP2008150365A (ja) * 2006-11-20 2008-07-03 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214306A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214307A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008247895A (ja) * 2007-03-07 2008-10-16 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011743B2 (ja) * 2005-02-15 2012-08-29 東ソー株式会社 カルド構造を有するπ共役化合物並びにその製造方法及び用途
JP4843321B2 (ja) * 2006-01-31 2011-12-21 Jnc株式会社 クマリン系化合物、発光素子用材料及び有機電界発光素子
JP2008156266A (ja) * 2006-12-22 2008-07-10 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
KR101551207B1 (ko) * 2008-09-04 2015-09-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고 있는 유기 발광 소자
EP3255040A1 (en) * 2011-02-23 2017-12-13 Hodogaya Chemical Co., Ltd. Compound having substituted triphenylene ring structure, and organic electroluminescent device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734341B2 (ja) 1993-03-26 1998-03-30 住友電気工業株式会社 有機エレクトロルミネッセンス素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2007029696A1 (ja) * 2005-09-05 2007-03-15 Chisso Corporation 電子輸送材料およびこれを用いた有機電界発光素子
JP2008150365A (ja) * 2006-11-20 2008-07-03 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214306A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008214307A (ja) * 2007-03-07 2008-09-18 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2008247895A (ja) * 2007-03-07 2008-10-16 Chisso Corp 電子輸送材料およびこれを用いた有機電界発光素子

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
28P-A-6 LECTURE PREPRINTS, 2003, pages 1413
9TH LECTURE PREPRINTS, 2001, pages 22 - 31
9TH LECTURE PREPRINTS, 2001, pages 55 - 61
J.ORG. CHEM., vol. 60, 1995, pages 7508
MOLECULAR ELECTRONICS AND BIOELECTRONICS JOURNAL, vol. 11, no. 1, 2000, pages 13 - 19
See also references of EP2679581A4
SYNTH. COMMUN., vol. 11, 1981, pages 513

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128818A1 (ja) * 2012-02-28 2013-09-06 保土谷化学工業株式会社 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2016526291A (ja) * 2013-05-16 2016-09-01 チェイル インダストリーズ インコーポレイテッド 有機光電子素子用発光材料、有機光電子素子および表示装置
EP2860783A1 (en) * 2013-10-11 2015-04-15 Cheil Industries Inc. Organic optoelectric device and display device
US10050212B2 (en) 2013-10-11 2018-08-14 Cheil Industries, Inc. Organic optoelectric device and display device
JP2015126115A (ja) * 2013-12-26 2015-07-06 日立化成株式会社 電荷輸送性材料、該材料を用いたインク組成物、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、表示装置及び照明装置
US10431766B2 (en) * 2014-05-02 2019-10-01 Samsung Display Co., Ltd. Organic light-emitting device
US11316124B2 (en) 2014-05-02 2022-04-26 Samsung Display Co., Ltd. Organic light-emitting device
US11882714B2 (en) 2014-05-02 2024-01-23 Samsung Display Co., Ltd. Organic light-emitting device
JP2019091748A (ja) * 2017-11-13 2019-06-13 東ソー株式会社 ジナフトテトラフェニレン化合物を含む有機エレクトロルミネッセンス素子
JP7002925B2 (ja) 2017-11-13 2022-01-20 東ソー株式会社 ジナフトテトラフェニレン化合物を含む有機エレクトロルミネッセンス素子
CN109575937A (zh) * 2018-12-01 2019-04-05 四川师范大学 一种吐昔烯酮-苯并菲盘状液晶化合物及其制备方法

Also Published As

Publication number Publication date
US20170271595A1 (en) 2017-09-21
JP2014088399A (ja) 2014-05-15
US20140034936A1 (en) 2014-02-06
CN103402981A (zh) 2013-11-20
EP3255040A1 (en) 2017-12-13
TWI508958B (zh) 2015-11-21
KR101975067B1 (ko) 2019-05-03
US10797242B2 (en) 2020-10-06
KR20140047592A (ko) 2014-04-22
EP2679581A4 (en) 2014-08-13
US10026903B2 (en) 2018-07-17
JPWO2012114745A1 (ja) 2014-07-07
EP2679581A1 (en) 2014-01-01
US9685612B2 (en) 2017-06-20
JP5861843B2 (ja) 2016-02-16
EP2679581B1 (en) 2017-08-09
TW201240989A (en) 2012-10-16
JP5453621B2 (ja) 2014-03-26
US20170338417A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP5861843B2 (ja) 置換されたトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
TWI676623B (zh) 嘧啶衍生物及有機電致發光元件
WO2011105373A1 (ja) 置換されたピリジル化合物および有機エレクトロルミネッセンス素子
WO2016117429A1 (ja) ピリミジン誘導体および有機エレクトロルミネッセンス素子
JPWO2009107651A1 (ja) 置換されたビピリジル化合物および有機エレクトロルミネッセンス素子
WO2014024446A1 (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5955228B2 (ja) 置換されたビピリジル基とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6294866B2 (ja) 新規なナフトトリアゾール誘導体および有機エレクトロルミネッセンス素子
WO2014024447A1 (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5870346B2 (ja) 置換されたオルトターフェニル構造を有する化合物および有機エレクトロルミネッセンス素子
JP6126577B2 (ja) 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6479770B2 (ja) キノリノトリアゾール誘導体および有機エレクトロルミネッセンス素子
JP5499227B1 (ja) トリフェニルシリルピリジル基とカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749099

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013500895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024211

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012749099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012749099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14001041

Country of ref document: US