WO2007026448A1 - ダイレクトタッチ型メタルダイヤフラム弁 - Google Patents

ダイレクトタッチ型メタルダイヤフラム弁 Download PDF

Info

Publication number
WO2007026448A1
WO2007026448A1 PCT/JP2006/309369 JP2006309369W WO2007026448A1 WO 2007026448 A1 WO2007026448 A1 WO 2007026448A1 JP 2006309369 W JP2006309369 W JP 2006309369W WO 2007026448 A1 WO2007026448 A1 WO 2007026448A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
metal diaphragm
stroke
touch type
maximum
Prior art date
Application number
PCT/JP2006/309369
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Tanikawa
Michio Yamaji
Tadayuki Yakushijin
Hiroshi Fukuchi
Original Assignee
Fujikin Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Incorporated filed Critical Fujikin Incorporated
Priority to US11/914,517 priority Critical patent/US8256744B2/en
Priority to CN2006800280294A priority patent/CN101233350B/zh
Priority to EP06746186A priority patent/EP1921358A1/en
Priority to KR1020077029374A priority patent/KR100982705B1/ko
Publication of WO2007026448A1 publication Critical patent/WO2007026448A1/ja
Priority to IL187800A priority patent/IL187800A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1225Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston with a plurality of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1226Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston the fluid circulating through the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat

Definitions

  • the present invention relates to a direct-touch type metal diaphragm valve mainly used in a gas supply system of a semiconductor manufacturing facility, etc.
  • the present invention relates to a highly durable direct-touch type metal diaphragm valve that makes it possible to reduce fluctuations in flow rate characteristics by maintaining a stable coefficient.
  • a direct touch type metal diaphragm valve (hereinafter abbreviated as "metal diaphragm valve”) generally has a structure as shown in Fig. 10 and is excellent in responsiveness and fluid replacement. Since it is close to particle-free and has features, it is widely used in fields such as semiconductor manufacturing equipment, chemical industry equipment, and food industry equipment.
  • 21 is a body
  • 22 is a metal diaphragm
  • 23 is a stopper mechanism
  • 24 is a bonnet
  • 25 is a bonnet nut
  • 26 is a disk
  • 27 is a diaphragm presser
  • 28 is a stem
  • 29 is a handle 30
  • 31 is a fluid inlet / outlet
  • 32 is a valve chamber
  • 33 is a valve seat
  • the fluid passage is closed by pressing the metal diaphragm 22 against the valve seat 33 from above via the diaphragm presser 27. Further, by pulling up the diaphragm retainer 27 upward, the metal diaphragm 22 is restored to the original shape of the inverted dish, and the fluid passage is opened.
  • the metal diaphragm 22 is usually formed from a laminate of 2 to 3 stainless steel thin plates having a thickness of 0.1 to 0.2 mm, and the central portion of the laminate cut out in a circular shape has an inverted dish shape. Formed by bulging and forming!
  • the maximum height A h of the bulging portion of the inverted dish-shaped metal diaphragm 22 is about 1.1 to 1.3 mm for the 9.52 mm metal diaphragm (outer diameter: about 26 mm ⁇ ) 22. It is set.
  • the valve seat 33 is manufactured by molding an engineering plastic (for example, PFA) into a desired shape, and is fitted into a valve seat holding groove formed integrally with the valve body 21 to hold the holding groove. It is fixed by applying a part of it.
  • this type of metal diaphragm valve uses an inverted dish-shaped metal diaphragm 22 as shown in FIG. 10, it is necessary to increase the amount of gas flowing through the fluid passage. Naturally, it is necessary to increase the valve stroke ⁇ S (that is, the amount of deformation of the metal diaphragm 22). For this reason, the maximum bulge height ⁇ ⁇ ⁇ ⁇ ⁇ of the metal diaphragm 22 which is normally bulged and deformed in an inverted dish shape is increased, and a distance substantially equal to the height A h is set as the full stroke AS of the valve.
  • the metal diaphragm 22 is always pressed and deformed by a dimension close to the maximum bulge height A h so that it has a substantially flat plate shape. When the valve is opened, it is restored to the original swelled inverted dish shape due to the elastic force and fluid pressure of the catalyst diaphragm 22.
  • the maximum flow rate of this kind of metal diaphragm valve is closely related to the valve stroke ⁇ S of the metal diaphragm 22 as described above, and if the valve stroke ⁇ S is increased, the flow rate is selected to be large. I can do it.
  • the amount of elastic deformation of the metal diaphragm 22 has its own limit, and the maximum expansion is usually achieved with a valve metal diaphragm (outer diameter 26. ⁇ ) 2 2 with an inside diameter of 9.52 mm ⁇ .
  • the height A h is limited to about 1.2 to 1.3 mm. This is because the larger the maximum bulge height A h, the easier the cracks and the like due to deformation of the metal diaphragm 22 occur.
  • the Cv value of the valve is defined as “a numerical value expressed by galZmin when the flow rate when flowing the fresh water with the differential pressure at the valve inlet / outlet being kept at lpsi”.
  • the Cv value of the valve is based on the same concept as that when the fluid is a fluid.
  • the Cv value is usually calculated by using equation (2) while measuring the gas flow rate Qg and the like using a Cv value measurement test apparatus as shown in FIG.
  • N is a test fluid (nitrogen gas)
  • B is a pressure reducing valve
  • C is a filter
  • D is a mass flow meter
  • E is a pressure gauge
  • F is a test valve (valve under test). The secondary side of the test valve F is open to the atmosphere.
  • valve opening It is performed under the conditions of force (open to the atmosphere) and valve opening (arbitrarily set 10-100% valve opening).
  • the Cv value required for a metal diaphragm valve is about 0.55 to 0.8.
  • the Cv is about 0.7.
  • this type of conventional metal diaphragm valve has a problem that it is easy to cause cracks in the metal diaphragm. That is, in general, the durability of this kind of metal diaphragm valve expressed by the number of continuous opening and closing operations is about 1.5 to 2 million times for a 9.52 ⁇ valve with a fluid passage, and about 8 to 10 million times for a 6.35 mm ⁇ valve. When the number of opening and closing operations exceeds the above number, Usually, the metal diaphragm 22 is damaged due to repeated displacement, resulting in an increase in the frequency of conversion of the metal diaphragm valve.
  • the conventional metal diaphragm valve still has a problem that the Cv value is easy to change with time, that is, the Cv value is likely to change with time.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-80858
  • the present invention relates to the above-described problems in the conventional metal diaphragm valve, that is, in the semiconductor manufacturing equipment using the thick layer deposition method (ALD method) or the like in the processing process, the metal diaphragm valve is opened and closed. Since the frequency increases significantly, metal diaphragm valves with a durability of about 1 million to 2.5 million times expressed by the number of continuous open / close operations have increased the frequency of replacement of the valves, resulting in a reduction in repair costs and the number of repairs. Increasing and mouth due to aging of valve seat shape The Cv value will change and this will solve problems such as the unstable flow characteristics of the valve.
  • the main object of the present invention is to provide a direct touch type metal diaphragm valve which can be reduced.
  • the inventors of the present application show that the durability (number of continuous opening and closing operations) of the metal diaphragm valve is deeply related to the valve stroke ⁇ S, and the nozzle stroke ⁇ S is directly related to the flow coefficient Cv (Cv value).
  • Cv value the flow coefficient
  • Table 1 FIG. 6, FIG. 7, Table 2, Table 3, and FIG. 9, which will be described later, show an example.
  • the valve stroke of the conventional metal diaphragm valve is shown. If the AS exceeds a certain value, the increase in the Cv value will saturate. Therefore, to obtain the specified Cv value, the valve stroke ⁇ S is set to the full stroke AS corresponding to the maximum bulge height ⁇ h of the metal diaphragm 22. It has been found that a Cv value exceeding 0.55-0.7 can be obtained with a valve stroke AS having a dimension of about 55 to 70% of the maximum height A h.
  • the invention of claim 1 is a body in which a valve seat 13 is provided on the bottom surface of a concave valve chamber 12 communicating with a fluid inlet 10 and a fluid outlet 11.
  • the metal diaphragm 2 is disposed above the valve seat 13 to maintain the airtightness of the valve chamber 12, and the central portion thereof moves up and down to directly contact the valve seat 13, and can be moved up and down above the metal diaphragm 2.
  • a stem 8 that lowers the central portion of the metal diaphragm 2 downward, an actuator 9 that lowers or raises the stem 8, and a bottom surface of the valve chamber 12 that is disposed above the outer peripheral edge of the metal diaphragm 2.
  • the metal diaphragm 2 is airtightly clamped between the valve and a direct touch type metal diaphragm valve composed of a press adapter 3 that regulates the descending of the stem 8 when the valve is fully closed.
  • the upper central portion comprises a Iyafuramu 2 from a laminate of a plurality of thin stainless steel and nickel 'cobalt alloy sheet
  • the distance between the maximum bulge height A h of the metal diaphragm 2 is regulated to the maximum valve stroke ⁇ S of the valve. This is a basic configuration.
  • the invention of claim 2 is the invention of claim 1, wherein the Cv value of the valve at the maximum valve stroke ⁇ S is from 0.55 to 0.8.
  • the invention of claim 3 is the invention of claim 1 or claim 2, wherein the metal diaphragm 2 is
  • the outer diameter is 15 mm and the bulge curvature is 66 to 65 mm, or the outer diameter is 18 to 20 mm and the bulge curvature is 62 to 63 mm, or the outer diameter is 24 to 26 mm and the bulge curvature is 59 to 61 mm. This is what I did.
  • the invention of claim 4 is the invention of claim 1, wherein the metal diaphragm 2 is a circular laminate of three stainless steel sheets and one nickel 'cobalt alloy sheet, and the outer diameter is 24.
  • the maximum bulge height A h is 1.2 to 1.3 mm and the maximum valve stroke AS ⁇ O. 65 to 0.8 mm.
  • the invention of claim 5 is the invention of claims 1 to 4, wherein the valve seat 13 is a PFA valve seat, the stem 8 is provided with a valve stroke adjusting mechanism 16, and the valve is made 3000 to 3000.
  • the valve stroke ⁇ S is adjusted and fixed to a predetermined set value by the stroke adjusting mechanism 16 after the opening and closing operation is performed 100000 times.
  • the minimum bulge height ⁇ h of the metal diaphragm is not necessary to obtain the desired flow coefficient Cv without setting the valve full-stoke ⁇ S.
  • the maximum bulge height ⁇ h of 55 to 70% (distance) is set to the maximum valve stroke ⁇ S! /, So the amount of strain and stress applied to the metal diaphragm during valve opening / closing operation can be reduced.
  • the required flow coefficient (Cv value) required can be completely secured. As a result, it is possible to increase the possible number of continuous opening and closing operations that show the durability of the metal diaphragm valve to about 20 to 30 times the previous possible number.
  • a stroke adjustment mechanism is provided, and before opening the valve, the valve seat made of synthetic resin is habituated by performing a continuous opening and closing operation of about 300,000 to: L0000 times. Make it stable. As a result, the so-called valve seat change with time is greatly reduced, and the flow coefficient Cv (Cv value) becomes a more stable value.
  • FIG. 1 is a schematic cross-sectional view when a direct touch type metal diaphragm valve according to the present invention is an NC (normally closed) type.
  • FIG. 2 is an explanatory view showing a deformed state of the metal diaphragm when the valve is closed at a stroke ⁇ S of 1.5 mm in FIG.
  • FIG. 5 is an explanatory view showing a deformed state of the metal diaphragm at the time of valve opening when the valve stroke A S of FIG. 1 is 0.7 mm.
  • FIG. 6 is a diagram showing the relationship between the valve stroke ⁇ S (valve lift) and the flow rate in the valve of FIG.
  • FIG. 7 is a diagram showing the relationship between the valve stroke ⁇ S (valve lift) of the valve of FIG. 1 and the Cv value.
  • FIG. 8 is a block system diagram of a Cv value measurement test apparatus used in the present invention.
  • FIG. 10 is a schematic cross-sectional view of a conventional direct touch type metal diaphragm valve. Explanation of symbols
  • A is the driving fluid (air)
  • ⁇ h is the maximum bulge height of the bulge
  • ⁇ S is the valve stroke (valve lift)
  • N nitrogen gas source
  • B is a pressure reducing valve
  • FIG. 1 shows a dire according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of a NC type (normally closed) type of a tactile type metal diaphragm valve (hereinafter referred to as a metal diaphragm valve).
  • FIGS. 4 and 5 are enlarged views showing deformation states of the valve of FIG. 1 when the valve stroke AS is 0.7 mm and when the metal diaphragm is closed and opened.
  • 1 is a body
  • 2 is a metal diaphragm
  • 3 is a presser adapter
  • 4 is a bonnet
  • 5 is a threaded part
  • 6 is a spring
  • 7 is a diaphragm presser
  • 8 is a stem
  • 9 is an actuator
  • 10 is a fluid.
  • An inlet, 11 is a fluid outlet
  • 12 is a valve chamber
  • 13 is a valve seat
  • 14 is a drive shaft
  • 15 is a stroke adjusting mechanism
  • 16 is a solenoid valve
  • 17 is a proximity sensor.
  • the body 1 is formed in a substantially cross shape from stainless steel, and is a concave valve in which the fluid inlet 10 and the fluid outlet 11 force on both sides and the upper part communicating with the fluid inlet 10 and the fluid outlet 11 on the upper side is opened.
  • Chamber 12 is formed.
  • a valve seat 13 made of synthetic resin (PFA, PA, PI, PCTFE, etc.) is fitted and fixed to the bottom surface of the valve chamber 12.
  • valve seat 13 is fixed in the valve fitting groove by so-called force staking.
  • the metal diaphragm 2 is disposed above the valve seat 13, and maintains the airtightness of the valve chamber 12, and the central portion thereof moves up and down to contact and separate from the valve seat 13.
  • the metal diaphragm 2 is made of a metal thin plate (thickness 0.1 to 0.2 mm) such as a special stainless steel (Inconel Nashbronn's trade name) and a nickel 'cobalt alloy thin plate (thickness 0. 1 to 0.2 mm) is formed into a circular inverted dish by bulging the center of the center upward, and 3 sheets of special stainless steel sheets of this inverted dish form and 1 nickel 'cobalt alloy sheet It is formed in an inverted dish shape by laminating in a shape.
  • the peripheral edge of the metal diaphragm 2 is placed on the protrusion on the inner peripheral surface of the valve chamber 12, and the lower end portion of the bonnet 4 inserted into the valve chamber 12 is screwed into the screw portion 5 of the body 1. Thus, it is pressed to the protruding side of the body 1 via the stainless steel presser adapter 3 and is held and fixed in an airtight state.
  • the nickel 'cobalt alloy thin film is disposed on the gas contact side. More specifically, in the case of a valve having a fluid passage inner diameter of 9.52 mm ⁇ , the metal diaphragm 2 is formed with an outer diameter of 26 mm and a curvature of the bulging portion of 60 mm.
  • the maximum bulge height ⁇ A A h) in Fig. 3 described later is 1.2 mm.
  • the outer diameter for 6.35mm ⁇ valve is 20mm.
  • the bonnet 4 is formed in a cylindrical shape, is inserted into the valve chamber 12 of the body 1, and is tightened into a screw portion 5 provided on the inner peripheral surface of the valve chamber 12, whereby the body 1 It is fixed to the side.
  • the stem 8 is inserted into the lower end portion of the bonnet 4 so as to be movable up and down, and a synthetic resin diaphragm presser 7 that is in contact with the upper surface of the central portion of the metal diaphragm 2 is fitted to the lower end surface.
  • the stem 8 is inserted into the bonnet 4 so as to be movable up and down so as to abut against the polyimide diaphragm retainer 7 force S metal diaphragm 2 attached to the lower end surface. Is pressed downward through the diaphragm retainer 7 and the central portion of the metal diaphragm 2 is brought into contact with the valve seat 13.
  • a drive shaft 14 of a stem operating actuator 9 is fixed to the upper end of the stem 8.
  • a flange 8a is provided in the lower part of the stem 8, and when the valve is fully closed (when the central portion of the metal diaphragm 2 comes into contact with the valve seat 13), the flange 8a Is brought into contact with the upper surface of the presser adapter 3, so that the forcible lowering of the stem 8 is restricted.
  • the stroke adjusting mechanism 15 includes a lock nut 15a screwed to the support cylinder 9a of the actuator 9 screwed and fixed to the upper surface of the bonnet 4, and a lock nut provided on the outer peripheral surface of the support cylinder 9a. 15a threading screw 9b equal force. Adjusting the height of screwing into the bonnet 4 of the supporting cylinder 9a, the size of the nozzle stroke ⁇ S is adjusted.
  • the solenoid valve 16 is directly fixed to the upper surface of the actuator 9 and controls the flow of the driving fluid (air) A supplied into the actuator 9. It should be noted that attaching the actuator 9 directly to the solenoid valve 16 reduces the space of the driving fluid passage as will be described later. This is to improve the responsiveness of the valve opening / closing operation (shortening the opening / closing operation time).
  • the proximity sensor 17 is for detecting the change state of the valve stroke ⁇ S during the valve opening / closing operation and the valve stroke AS itself, and is fixed to the upper surface side of the actuator 9, The stroke AS is detected by measuring the gap AG with respect to 9c.
  • the valve shown in FIG. 1 is configured as a so-called NC (normally closed) type. Normally, the metal diaphragm 2 is pressed downward via the stem 8 by the elasticity of the spring 6, and its lower surface (contact gas surface). The nickel 'cobalt alloy sheet is in contact with the valve seat 3. The pressing force of the stem 8 is adjusted by the spring 6, and the descending amount of the stem 8 is regulated by the presser adapter 3.
  • NC normally closed
  • FIG. 2 is a partially enlarged view showing the valve closed state using the metal diaphragm 2 of the first embodiment
  • FIG. 3 shows the operation when the valve stroke AS is 1.5 mm. It is the elements on larger scale which show the valve opening state of the valve using the metal diaphragm 2 of Example 1.
  • Metal diaphragm 2 will be completely restored to its original form.
  • FIGS. 4 and 5 show the valve closed state when the valve stroke AS is 0.7 mm in the valve of FIG. 1 using the metal diaphragm 2 of Example 1 described in the above 0041 (FIG. 4). ) And a partially enlarged view showing the valve open state (FIG. 5).
  • the metal diaphragm 2 is not restored to the complete original state as shown in FIG. 3, but is slightly deformed. That is, when the valve stroke AS is reduced, the amount of deformation of the metal diaphragm 2 is reduced, and the strain stress applied to the metal diaphragm 2 is relatively reduced.
  • FIGS. 6 and 7 show the flow rate measurement for the metal diaphragm valve of FIG. 1 using the metal diaphragm 2 of Example 1 using the Cv value measurement test apparatus of FIG. ) Shows the result of Cv value calculation, and Table 1 is a list of lift, flow rate and Cv value.
  • test was conducted under the conditions of an operating air pressure of 0.55 MPa and a valve seat protrusion height of 0.128 mm (height after baking at 80 ° C).
  • Table 2 shows the valves with the same diaphragm specifications as Table 1 in the metal diaphragm 2 of Example 1 described in the above 0041, and only the pipe connected to the fluid inlet 10 is 6.35 mm ⁇ . The result of having performed the same test is shown.
  • the Nol valve had a height of 0.174 mm for the valve seat 3
  • the No2 Noreb was 0.176 mm
  • the No3 Noreb was 0.068 mm.
  • the valve was opened and closed 10,000 times in advance, and the valve seat surface was struck for contact.
  • the operating air pressure was set to 0.55 MPa (upper limit).
  • Tables 3 and 4 show the change in the Cv value due to the change in the valve seat configuration over the years, when the valve seat is struck in advance by opening and closing the valve under a high temperature condition of 200 ° C. This data shows the relationship between the number of opening and closing operations and the Cv value. Table 3 shows the Cv value measured at 200 ° C and Table 4 shows the Cv value measured at room temperature.
  • the valve should be continuously opened and closed about 10,000 times or more in advance. As a result, the change in the shape of the valve seat 13 is settled, the Cv value increases, and the increase in the Cv value is almost saturated.
  • Table 5 shows the stroke ⁇ S in the case of continuous opening / closing operation using the valve using the metal diaphragm 2 of Example 1 described in the above 0041, and the number of opening / closing operations until the metal diaphragm is damaged. It shows the relationship with (the number of durable opening and closing operations). However, the opening / closing operation speed of the valve is 3 times Z seconds to 4 times Z seconds.
  • the direct touch type metal diaphragm valve using a metal diaphragm having an outer diameter of 20 to 26 mm with a maximum bulge height A h of about 1.2 is It can be seen that by setting the valve stroke AS to a value between 55 and 70% of the maximum bulge height A h, the number of continuous continuous opening and closing operations can be greatly increased while maintaining the required Cv value.
  • the present invention can be applied not only to semiconductor manufacturing equipment but also to the chemical industry, the pharmaceutical industry, the food industry, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Diaphragms And Bellows (AREA)
  • Cookers (AREA)

Abstract

 ダイレクトタッチ型のメタルダイヤフラム弁において、適宜の流量係数Cvを保持した状態下でバルブの耐久性即ち保証のできるバルブの連続開閉作動回数を大幅に増加させると共に、弁座の経時変形を押えて前記Cv値の経時変動をより少なくする。  ダイレクトタッチ型の金属ダイヤフラム弁において、前記メタルダイヤフラムを複数枚のステンレス鋼薄板とニッケル・コバルト合金薄板との積層体より成り且つ中央部を上方へ膨出させた円形の逆皿形に形成すると共に、前記メタルダイヤフラムの最大膨出高さΔhの55~70%の距離をバルブの最大バルブストロークに規制する。

Description

明 細 書
ダイレクトタツチ型メタルダイヤフラム弁
技術分野
[0001] 本発明は、主として半導体製造設備のガス供給系等に於いて使用されるダイレクト タツチ型のメタルダイヤフラム弁に関するものであり、バルブ開閉回数の大幅な増加 を可能にすると共に、バルブの流量係数を安定して保持することにより流量特性の変 動をより少なくすることを可能とした、高耐久性のダイレクトタツチ型メタルダイヤフラム 弁に関するものである。
背景技術
[0002] ダイレクトタツチ型のメタルダイヤフラム弁(以下、メタルダイヤフラム弁と略称する) は、一般に図 10に示す如き構造を具備しており、応答性や流体の置換性に優れて V、るだけでなくパーティクルフリーに近 、特徴を有して 、るため、半導体製造設備や 化学産業設備、食品産業設備等の分野で広く実用に供されている。
[0003] 即ち、図 10において 21はボディ、 22はメタルダイヤフラム、 23はストッパー機構、 2 4はボンネット、 25はボンネットナット、 26はディスク、 27はダイヤフラム押え、 28はス テム、 29はノヽンドル、 30· 31は流体入口'出口、 32は弁室、 33は弁座であり、ダイヤ フラム押え 27を介してメタルダイヤフラム 22を上方より弁座 33へ押し付けることにより 、流体通路が閉鎖される。また、ダイヤフラム押え 27を上方へ引上げることにより、メ タルダイヤフラム 22は逆皿形の原型に復元し、流体通路が開放される。
尚、この種のメタルダイヤフラム弁のものは、公知(例えば特開平 5— 80858号等) であるため、ここではその詳細説明を省略する。
[0004] 前記メタルダイヤフラム 22は、通常厚さ 0. 1〜0. 2mmのステンレス鋼薄板 2〜3枚 の積層体から形成されており、円形に切り抜いた積層体の中央部を逆皿形に膨出成 型することにより形成されて!ヽる。
また、逆皿形のメタルダイヤフラム 22の膨出部の最大高さ A hは、前記 9. 52mm のメタルダイヤフラム(外径約 26mm φ ) 22にあっては、約 1. 1〜1. 3mmに設定さ れている。 [0005] 前記弁座 33はエンジニアリングプラスチック (例えば PFA)を所望の形状に成型す ることにより製作されており、バルブボディ 21と一体的に形成した弁座保持溝内へ嵌 合され、保持溝の一部を力しめることにより固定されて 、る。
[0006] 而して、この種のメタルダイヤフラム弁は、図 10に示すように逆皿形のメタルダイヤ フラム 22を用いているため、流体通路を流通するガスの流通量を増加させるには必 然的にバルブストローク Δ S (即ち、メタルダイヤフラム 22の変形量)を大きくする必要 がある。そのため、通常は逆皿形に膨出変形せしめたメタルダイヤフラム 22の最大膨 出高さ Δ ΐιを大きくすると共にこの高さ A hに略等しい距離をバルブのフルストローク A Sとするようにしている。
[0007] その結果、 NO (常時開放)型のメタルダイヤフラム弁においては、その全閉時にメ タルダイヤフラム 22が膨出高さ A hに近い寸法分だけ押圧により変形され、ほぼ平板 状に近い形態で弁座 33へ押し付けられることになる。
尚、このことは NC (常時閉鎖)型のメタルダイヤフラム弁においても同様であり、メタ ルダイヤフラム 22は、常時最大膨出高さ A hに近い寸法分だけ押圧変形されること により略平板状になっていて、開弁時にはこれカ タルダイヤフラム 22の弾性力や流 体圧によって元の膨出した逆皿形の形状に復元されることになる。
[0008] 一方、この種メタルダイヤフラム弁の最大流量は、前述の通り主としてメタルダイヤ フラム 22のバルブストローク Δ Sと密接な関連があり、バルブストローク Δ Sを大きくす れば流通流量を大きく選定することが出来る。
しかし、上述したように、メタルダイヤフラム 22の弾性変形量には自ら限界があり、 通常は流体通路の内径が 9. 52mm φの弁のメタルダイヤフラム(外径 26. πιπι ) 2 2では、最大膨出高さ A hを 1. 2〜1. 3mm位に制限している。何故なら、最大膨出 高さ A hが大きくなるほど、メタルダイヤフラム 22の変形による割れ等が発生し易くな るカゝらである。
[0009] 尚、前記メタルダイヤフラム弁のバルブストローク Δ Sと流体流量等との関係は、公 知の如く流量係数 (Cv値)をもって一般に表示されて 、る。
即ち、前記バルブの Cv値は「バルブ出入口の差圧を lpsiに保って清水を流した時 の流量を galZminで表した数値」と定義されており、流体が水の場合には、 [数 1]
0'
Figure imgf000005_0001
■ ■ ■ (1) 式として求められる。 但し Q' =流量 gal/min、 P' =入口圧力 psi、P' =出口圧力 psi、Gf は流体の比重(
1 2
水 =1とした時の)である。
[0010] また、流体がガス体の場合に於いては、前記流体が流体の場合と同じような考え方 に基づいて、バルブの Cv値は、
[数 2] cv= ¾ | 3Tt) . ■ ■ ( 2)
4140 V (pi-p2jp2
で求めらている。但し、(2)式において Qg〔m3/h (標準状態)〕は標準状態(15°C、 760 mmHg abs)に於ける気体の流量、 t[°C]はガスの温度、 Ggはガスの比重(空気 =1と した時の)、 P [MPa abs]は一次側絶対圧力、 P [MPa abs]は二次側絶対圧力である
1 2
[0011] 更に、前記 Cv値は、通常図 8に示すような Cv値測定試験装置を用いてガス流量 Q g等を測定すると共に、その測定結果を用いて (2)式により演算される。
尚、図 8において、 Nは試験用流体(窒素ガス)、 Bは減圧弁、 Cはフィルタ、 Dは質 量流量計、 Eは圧力計、 Fは供試弁 (被試験弁)であり、供試弁 Fの 2次側は大気開 放である。
また、試験は、窒素ガス温度(20°C室温)、一次側圧力 P =0.01MPa、二次側圧
1
力(大気開放)、弁の開度 (任意に設定した 10〜100%の弁開度)の条件下で行わ れる。
尚、メタルダイヤフラム弁に要求される Cv値は 0.55〜0.8位であり、 9.52mm バルブの場合、メタルダイヤフラム 22の最大膨出高さ Ah=l.2mm (フルストローク AS = 1. Omm)のときの Cvは、約 0.7となる。
[0012] ところで、従前のこの種メタルダイヤフラム弁には、メタルダイヤフラムにクラックを生 じ易いと云う問題がある。即ち、一般に、この種メタルダイヤフラム弁の連続開閉動作 回数で表した弁の耐久性は、流体通路 9.52πιπιφの弁で約 150〜200万回、 6.3 5mm φの弁で約 800〜 1000万回位であり、開閉動作回数が上記回数を超えると、 通常はメタルダイヤフラム 22の変位の繰り返しによる破損が発生し、結果としてメタル ダイヤフラム弁の変換の頻度が増加すると云う問題がある。
[0013] 特に、プロセス内に ALD (atomic layer Deposition)法を採用する近年の半導体製 造設備にあっては、ガス供給系内のメタルダイヤフラム弁の開閉回数が大幅に増加 する。その結果、従前のメタルダイヤフラム弁における連続開閉動作の耐久性 (外径 26πιπι φの 9. 52mm φのメタルダイヤフラム 22の場合、フルストローク A S = 1. 2m mで約 150万回、ストローク A S = 1. Ommで約 250万回程度)程度では、実用上様 々な問題が生ずることになる。
[0014] また、従前のこの種メタルダイヤフラム弁には、流量特性の経年変化、即ち Cv値の 経年変化が生じ易ぐ Cv値が安定し難いと云う問題が残されている。
即ち、従前のメタルダイヤフラム弁では、図 10に示したように、弁座 33に合成樹脂 材 (PFA)が使用されているためその経年変形が避けられず、特に流通する流体が 高温度の場合には、上記経年変形が大きくなる傾向にある。
例えば、従前の 9. 52mm φのバルブの場合、流体温度が 20°Cから 150°Cに上昇 することにより弁座 33が膨張し、ステムの移動量 (リフトストローク)を一定に固定した 場合には、流体流量が約 18%減少することになる。また、高温条件で開閉を行なうと 全開時の流量が経年変化によって増大する。その結果、全閉又は全開の切換えの みを行うメタルダイヤフラム弁にあっては、流量が増大し、また、流量'圧力制御用の メタルダイヤフラム弁では、弁開度と流量との関係が経年変化することにより、高精度 な流量'圧力の制御ができなくなると云う問題がある。
[0015] 特許文献 1 :特開平 5— 80858号
発明の開示
発明が解決しょうとする課題
[0016] 本発明は、従前のメタルダイヤフラム弁における上述の如き問題、即ち、ィ.厚子層 蒸着法 (ALD法)等を処理プロセスに用いる半導体製造設備等にあっては、メタルダ ィャフラム弁の開閉頻度が大幅に増加するため、従前の連続開閉動作回数で表した 耐久性が 100万〜 250万回程度のメタルダイヤフラム弁では、弁の取替え頻度が増 カロして、補修コストや補修の手数が増加すること及び口.弁座形状の経年変化により Cv値が変化することになり、弁の流量特性が安定しないこと等の問題を解決せんと するものであり、従前と同一の構成のメタルダイヤフラム弁を用いて、弁の流量特性 の低下を招くことなしに (即ち、 Cv値の大幅な低下を招くことなしに)、連続開閉動作 で表したバルブの耐久性を大幅に高めると共に、流量特性を安定ィ匕させて Cv値の 経年変化をより少なくすることを可能とした、ダイレクトタツチ型のメタルダイヤフラム弁 を提供することを発明の主目的とするものである。
課題を解決するための手段
[0017] 本願発明者等は、メタルダイヤフラム弁の耐久性 (連続開閉動作回数)がバルブス トローク Δ Sと深い関係にあり、しかもノ レブストローク Δ Sは流量係数 Cv(Cv値)に 直接関係するものであることに着目して、各種のメタルダイヤフラム弁について、耐久 性とバルブストローク Δ Sと流量係数 Cvとの相関関係の調査検討を、前記図 8に示し た Cv値測定試験装置を用いて行った。
[0018] 後述する表 1、図 6、図 7及び表 2、表 3、図 9はその一例を示すものであり、当該各 種の試験を通して、従前のメタルダイヤフラム弁に於いては、バルブストローク A Sが 一定値を越えれば、 Cv値の増加が飽和するため、所定の Cv値を得るには、バルブ ストローク Δ Sをメタルダイヤフラム 22の最大膨出高さ Δ hに相当するフルストローク A Sとする必要は無ぐ最大高さ A hの約 55〜70%の寸法のバルブストローク A Sで もって、 0. 55-0. 7を越える Cv値が得られることを知得した。
[0019] 本願発明は上記知見に基づいて創作されたものであり、請求項 1の発明は、流体 入口 10及び流体出口 11に連通する凹状の弁室 12の底面に弁座 13を設けたボディ と、弁座 13の上方に配設され、弁室 12の気密を保持すると共に、その中央部が上下 動して直接弁座 13へ当接するメタルダイヤフラム 2と、メタルダイヤフラム 2の上方に 昇降自在に配設され、メタルダイヤフラム 2の中央部を下方へ下降させるステム 8と、 ステム 8を下降若しくは上昇させるァクチユエータ 9と、メタルダイヤフラム 2の外周縁 部の上方に配設され、弁室 12の底面との間でメタルダイヤフラム 2を気密状に挟圧 すると共に、バルブ全閉時のステム 8の下降を規制する押えアダプタ 3とから構成した ダイレクトタツチ型メタルダイヤフラム弁にぉ 、て、前記メタルダイヤフラム 2を複数枚 のステンレス鋼薄板とニッケル 'コバルト合金薄板との積層体より成り且つ中央部を上 方へ膨出させた円形の逆皿形に形成すると共に、前記メタルダイヤフラム 2の最大膨 出高さ A hの 55〜70%の距離をバルブの最大バルブストローク Δ Sに規制したことを 発明の基本構成とするものである。
[0020] 請求項 2の発明は、請求項 1の発明において、最大バルブストローク Δ Sの時のバ ルブの Cv値が 0. 55〜0. 8となるようにしたものである。
[0021] 請求項 3の発明は、請求項 1又は請求項 2の発明において、メタルダイヤフラム 2を
、外径が 15mm φで膨出曲率が 66〜65mm、又は外径が 18〜20mm φで膨出曲 率が 62〜63mm若しくは外径が 24〜26mm φで膨出曲率が 59〜61mmとするよう にしたものである。
[0022] 請求項 4の発明は、請求項 1の発明において、メタルダイヤフラム 2を 3枚のステンレ ス鋼薄板と 1枚のニッケル 'コバルト合金薄板の円形積層体とすると共に、その外径を 24〜26πιπι φに、最大膨出高さ A hを 1. 2〜1. 3mmに及び最大バルブストローク A S^O. 65〜0. 8mmとするようにしたちのである。
[0023] 請求項 5の発明は、請求項 1乃至請求項 4の発明において、弁座 13を PFA製の弁 座とすると共に、ステム 8にバルブストロークの調整機構 16を設け、弁を 3000〜100 00回連続開閉作動させたあと、前記ストローク調整機構 16によりバルブストローク Δ Sを所定の設定値に調整固定するようにしたものである。
発明の効果
[0024] 本発明にお 、ては、メタルダイヤフラムの最大膨出高さ Δ hを、バルブのフルスト口 ーク Δ Sとすることなしに、所望の流量係数 Cvを得るのに最低限必要な最大膨出高 さ Δ hの 55〜70%の寸法(距離)を、最大バルブストローク Δ Sとするようにして!/、る ため、弁の開閉動作時にメタルダイヤフラムにかかる歪量や歪応力をより小さくできる と同時に、必要とする所定の流量係数 (Cv値)を完全に確保することができる。その 結果、メタルダイヤフラム弁の耐久性を示す連続開閉動作の可能回数を従前の可能 回数の約 20〜30倍に高めることが可能となる。
[0025] また、本発明においては、ストローク調整機構を設けると共に、弁の出荷前に約 30 00〜: L0000回の連続開閉動作を行って合成樹脂製弁座の馴らしを行い、その形態 をより安定ィ匕させるようにして 、る。 その結果、所謂弁座の経時変化が大幅に減少することになり、これにより流量係数 Cv (Cv値)もより安定した値となる。
図面の簡単な説明
[0026] [図 1]本発明に係るダイレクトタツチ型メタルダイヤフラム弁を NC (常時閉鎖)型とした 場合の断面概要図である。
[図 2]図 1のバルブのストローク Δ S = 1. 5mmにおける閉弁時のメタルダイヤフラムの 変形状態を示す説明図である。
[図 3]図 1のバルブのストローク Δ S = 1. 5mmにおける開弁時のメタルダイヤフラム 変形状態を示す説明図である。
[図 4]図 1のバルブのストローク Δ S = 0. 7mmにおける閉弁時のメタルダイヤフラムの 変形状態を示す説明図である。
[図 5]図 1のバルブのストローク A S = 0. 7mmにおける開弁時のメタルダイヤフラムの 変形状態を示す説明図である。
[図 6]図 1のバルブにおけるバルブストローク Δ S (バルブリフト)と流量の関係を示す 線図である。
[図 7]図 1のバルブのバルブストローク Δ S (バルブリフト)と Cv値の関係を示す線図で ある。
[図 8]本発明で使用した Cv値測定試験装置のブロック系統図である。
[図 9]は、表 2の結果を図示したものである。
[図 10]は、従前のダイレクトタツチ型メタルダイヤフラム弁の断面概要図である。 符号の説明
[0027] Aは駆動用流体 (空気)
Δ hは膨出部の最大膨出高さ
Δ Sはバルブストローク(バルブリフト)
Gは間隙
Nは窒素ガス源
Bは減圧弁
Cはフィルタ Dは流量計
Eは圧力計
Fは供試弁
Pは一次側圧力
1
1はボディ
2はメタルダイヤフラム
3は押えアダプタ (SUS630)
4はボンネット
5はねじ部
6はスプリング
7はダイヤフラム押え (ポリイミド)
8はステム
8aは鍔部
9はァクチユエータ
9aは支持用筒部
9bはねじ
9cはピストン
10は流体入口
11は流体出口
12は弁室
13は弁座
14は駆動軸
15はストローク調整機構
15aiまロックナツ卜
16は電磁弁
17は近接センサ
発明を実施するための最良の形態
以下、図面に基づいて本発明の実施形態を説明する。図 1は、本発明に係るダイレ クトタツチ型メタルダイヤフラム弁(以下、メタルダイヤフラム弁と云う)を NC (常時閉鎖 )型とした場合の断面概要図である。
また、図 2及び図 3は、図 1のバルブにおいて、バルブストローク A S = 1. 5mmとし た場合のメタルダイヤフラムの閉弁時と開弁時の変形状態を示す拡大図である。 更に、図 4及び図 5は、図 1のバルブにおいて、バルブストローク A Sを 0. 7mmとし た場合のメタルダイヤフラムの閉弁時と開弁時の変形状態を示す拡大図である。
[0029] 図 1において、 1はボディ、 2はメタルダイヤフラム、 3は押えアダプタ、 4はボンネット 、 5はねじ部、 6はスプリング、 7はダイヤフラム押え、 8はステム、 9はァクチユエータ、 10は流体入口、 11は流体出口、 12は弁室、 13は弁座、 14は駆動軸、 15はストロー ク調整機構、 16は電磁弁、 17は近接センサである。
[0030] 前記ボディ 1はステンレス鋼により略十字状に形成されており、両側に流体入口 10 及び流体出口 11力 上部に流体入口 10及び流体出口 11に連通する上方が開放さ れた凹状の弁室 12が形成されている。又、弁室 12の底面には合成樹脂(PFA、 PA 、 PI、 PCTFE等)製の弁座 13が嵌合固定されている。
尚、本実施例では、所謂力しめ加工により弁座 13が弁揷着溝内に固定されている
[0031] 前記メタルダイヤフラム 2は、弁座 13の上方に配設されており、弁室 12の気密を保 持すると共に、その中央部が上下動して弁座 13に当離座する。本実施例では、メタ ルダイヤフラム 2は、特殊ステンレス鋼 (インコネルゃスブロン'商標名)等の金属製薄 板(厚さ 0. 1〜0. 2mm)及びニッケル 'コバルト合金薄板(厚さ 0. 1〜0. 2mm)の中 央部を上方へ膨出させることにより円形の逆皿形に形成し、この逆皿形の特殊ステン レス鋼薄板 3枚とニッケル 'コバルト合金薄板 1枚とを密着状に積層することにより逆 皿形に形成されている。
また、このメタルダイヤフラム 2は、その周縁部が弁室 12の内周面の突部上に載置 され、弁室 12内へ挿入したボンネット 4の下端部をボディ 1のねじ部 5へねじ込むこと により、ステンレス鋼製の押えアダプタ 3を介してボディ 1の突部側へ押圧され、気密 状態で挾持固定されている。尚、ニッケル 'コバルト合金薄膜は、接ガス側に配置さ れている。 [0032] より具体的には、メタルダイヤフラム 2は、流体通路内径 9. 52mm φのバルブ用の 場合には、外径 26mm、膨出部の曲率 60mmに形成されており、前記膨出部の最 大膨出高さ Δ Μ後述する図 3の A h)は 1. 2mmとなる。
尚、メタルダイヤフラム 2の実施例としては、 6. 35mm φのバルブ用の外径 20mm
、曲率 62. 6mmのもの、及び 6. 35mm φの/ J、型ノ ノレブ用の外径 15mm、曲率 62.
6mmのもの等が存在する。
[0033] 前記ボンネット 4は、筒形状に形成されており、ボディ 1の弁室 12内に挿入され、弁 室 12の内周面に設けたねじ部 5へ締め込みされることにより、ボディ 1側に固定され ている。
[0034] 前記ステム 8は、ボンネット 4の下端部内へ昇降自在に挿入されており、下端面には メタルダイヤフラム 2の中央部上面に当接する合成樹脂製のダイヤフラム押え 7が嵌 着されている。
[0035] より具体的には、ステム 8は、下端面に取付けしたポリイミド製のダイヤフラム押え 7 力 Sメタルダイヤフラム 2に当接すべくボンネット 4内に昇降自在に挿着されており、スプ リング 6の弾性力にダイヤフラム押え 7を介して下方へ押し圧され、メタルダイヤフラム 2の中央部を弁座 13に当座させる。又、ステム 8の上端部にはステム操作用のァクチ ユエータ 9の駆動軸 14が固定されている。
[0036] 尚、前記ステム 8の下方部には鍔部 8aが設けられており、バルブの全閉時 (メタル ダイヤフラム 2の中央部が弁座 13に当座したとき)には、当該鍔部 8aが前記押えァダ プター 3の上面へ当接することにより、ステム 8の無理な下降が規制されている。
[0037] 前記ストローク調整機構 15は、ボンネット 4の上面にねじ込み固定したァクチユエ一 タ 9の支持用筒部 9aに螺着したロックナット 15aと、支持用筒部 9aの外周面に設けた ロックナット 15aの螺着用ねじ 9b等力 構成されており、支持用筒部 9aのボンネット 4 内へのねじ込み高さ位置を調整することにより、ノ レブストローク Δ Sの大きさを調整 する。
[0038] 前記電磁弁 16は、ァクチユエータ 9の上面に直接固定されており、ァクチユエータ 9 内へ供給する駆動用流体 (空気) Aの流通を制御する。尚、電磁弁 16にァクチユエ ータ 9を直付けするのは、後述するように駆動用流体通路の空間部をより少なくして、 バルブ開閉作動の応答性を高めるためである(開閉作動時間の短縮)。
[0039] また、前記近接センサ 17はバルブ開閉作動時のバルブストローク Δ Sの変化の状 態やバルブストローク A S自体を検出するためのものであり、ァクチユエータ 9の上面 側に固定されていて、ピストン 9cとの間隙 A Gの測定することにより、前記ストローク A Sを検出する。
[0040] 次に、本発明に係るメタルダイヤフラム弁の作動について説明する。
図 1に示したバルブは所謂 NC (常時閉)型に構成されており、常時はスプリング 6の 弾力によりステム 8を介してメタルダイヤフラム 2が下方へ押圧され、その下側面 (接ガ ス面)のニッケル 'コバルト合金薄板が弁座 3へ当接している。尚、ステム 8の押圧力 はスプリング 6により調整され、またステム 8の下降量は押えアダプター 3により規制さ れている。
[0041] ァクチユエータ 9へ駆動用エア Aが供給されると、ピストン 9cを介して駆動軸 14が上 方へバルブストローク A Sだけ引上げられる。これにより、メタルダイヤフラム 2はその 弾性力により元の中央部が上方へ膨出した形態に復元し、バルブが開弁されること になる。
また、前記バルブストローク A Sは、ストローク調整機構 15のロックナット 15aにより 所定の値に調整される。具体的には、後述するように、 9. 52 φ用バルブのメタルダ ィャフラム(外径 26mm φ、曲率 60mm、膨出部の最大高さ A h= 1. 2mm、 0. 15 mm特殊ステンレス鋼板 3枚と 0. 15mmニッケル 'コバルト合金薄板 1枚'以下、実施 例 1のメタルダイヤフラムと呼ぶ) 2の場合には、バルブストローク A Sは 0. 65〜0. 8 mm (好ましくは 0. 7mm)に設定される。
[0042] 次に、本発明におけるメタルダイヤフラム 2のバルブストローク Δ Sの決定につ!、て 説明する。
[具体例 1]
図 2を参照して、図 2は前記実施例 1のメタルダイヤフラム 2を用いたバルブの閉弁 状態を示す部分拡大図であり、図 3は、バルブストローク A Sを 1. 5mmとしたときの 実施例 1のメタルダイヤフラム 2を用いたバルブの開弁状態を示す部分拡大図である 図 2及び図 3においては、バルブストローク A Sが 1. 5mmに選定されており、メタル ダイヤフラム 2の膨出部の最大高さ Δ h= 1. 2mmよりバルブストローク Δ Sの方が大 きいため、金属ダイヤフラム 2は元の形態に完全に復元されることになる。
[0043] [具体例 2]
これに対して、図 4及び図 5は、前記 0041に記載の実施例 1のメタルダイヤフラム 2 を用いた図 1のバルブにおいて、バルブストローク A Sを 0. 7mmとした場合の閉弁 状態(図 4)及び開弁(図 5)状態を示す部分拡大図であり、閉弁時に於 、てもメタル ダイヤフラム 2は、図 3の如き完全な原状態に復元せず、若干変形した状態となる。 即ち、バルブストローク A Sを小さくした場合には、メタルダイヤフラム 2の変形量が 小さくなり、メタルダイヤフラム 2にかかる歪み応力が相対的に小さくなる。
[0044] ところで、バルブストローク Δ S = 1. 5mmとした場合と Δ S = 0. 7mmとした場合と では、メタルダイヤフラム 2の形態には前述の通り大きな差異が見られるものの、弁座 3とメタノレダイヤフラム 2の内表面との間隙 Gの方は、あまり大きな変化をしていないこ とが判る。
[0045] [具体例 3]
図 6及び図 7は、前記実施例 1のメタルダイヤフラム 2を用いた図 1のメタルダイヤフ ラム弁について、前記図 8の Cv値測定試験装置を用いて流量測定をすると共に、前 記(2)式を用いて Cv値を求めた結果を示すものであり、また、表 1は前記リフトと流量 と Cv値との一覧表である。
但し、試験は、作動用空気圧 0. 55MPa、弁座の突出高さ 0. 128mm (80°Cベー キング後の高さ)の条件下で行われたものである。
[0046] [表 1]
Figure imgf000015_0001
[0047] 図 6及び図 7からも明らかなように、バルブストローク A S = 0. 65〜0. 8位で、当該 バルブに必要とする Cv値 =0. 55〜0. 6が達成されることが判る。即ち、望ましくは、 バルブストローク A S = 0. 7mmとすることにより、 Cv値 0. 6を達成することが可能と なり、バルブストローク Δ S = 1. 3mm (最大値)にまでしてメタルダイヤフラム 2を最大 限に変形させる必要の無 、ことが判る。
[0048] [具体例 4]
表 2は、前記 0041に記載の実施例 1のメタルダイヤフラム 2に於ける表 1と同じダイ ャフラム仕様で、流体入口 10へ接続する配管路のみを 6. 35mm φにしたバルブに ついて、表 1と同じ試験を行った結果を示すものである。
但し、供試バルブとして三種のバルブを製作し、 Nolバルブは弁座 3の突出高さ 0 . 174mm, No2ノ ノレブは 0. 176mm, No3ノ ノレブは 0. 068mmとした。良卩ち、 No 3 ノ レブにあっては、予め弁の開閉動作を 10000回行い、弁座面をたたいて当り付け を行ったものである。また、作動用空気圧は 0. 55MPa (上限値)とした。
[0049] [表 2] リ フ 卜 供試品 No.1 供試品 No.2 供試品 No.3
(國) 至 Cv値 至 Cv値 至 Cv値
0.000 0.0 0.000 0.0 0.000 0.0 0.000
0.100 0.0 0.000 0.0 0.000 0.0 0.000 o o
0.200 10.7 0.087 13.1 0.107 12.0 0.098
0.300 30.0 0.245 30.5 0.249 28.3 0.231
0.400 43.9 0.358 43.7 0.357 46.7 0.381
0.500 51.0 0.416 50.0 0.408 56.0 0.457
0.600 58.0 0.473 61.0 0.498 64.0 0.522
0.700 65.0 0.531 65.0 0.531 66.0 0.539
0.800 68.0 0.555 67.0 0.547 69.0 0.563
0.900 70.0 0.571 71.0 0.579 70.0 0.571
1.000 71.0 0.579 71.0 0.579 72.0 0.588
1.100 72.0 0.588 71.0 0.579 74.0 0.604
73.0 0.596 71.0 0.579 73.0 0.596
73.0 0.596 71.0 0.579 73.0 0.596
[0050] 図 9は、表 2の結果を図示したものであり、実施例 1のメタルダイヤフラムの場合と同 様にバルブストローク AS = 0.65〜0.7位で、必要な Cv値 0.5〜0.6を得ることが 出来ることが半 IJる。
[0051] [具体例 5]
表 3及び表 4は、弁座形態の径年変化による Cv値の変化を示すものであり、予め 2 00°Cの高温条件下で弁の開閉作動を行って弁座をたたいた場合の開閉作動回数と Cv値との関係を示すデータである。尚、表 3は 200°Cの高温使用条件下で、また、表 4は常温下で Cv値の測定を行ったものである。
[0052] [表 3]
Figure imgf000016_0001
[0053] [表 4]
Figure imgf000016_0002
[0054] 上記表 3及び表 4の結果から、弁を約 10, 000回以上予め連続開閉作動させること により、弁座 13の形状の変化が収まって、 Cv値が上昇すると共に、 Cv値の上昇がほ ぼ飽和することになる。
[0055] [具体例 6]
表 5は、前記 0041に記載の実施例 1のメタルダイヤフラム 2を用いたバルブを用い て連続的に開閉作動を行った場合のストローク Δ Sと、メタルダイヤフラムに破損が生 ずるまでの開閉作動回数 (耐久開閉作動回数)との関係を示すものである。但し、弁 の開閉作動速度は 3回 Z秒〜 4回 Z秒である。
[0056] [表 5]
Figure imgf000017_0001
[0057] 上記表 5からも明らかなように、最大膨出高さ A hが 1. 2前後の外径 20〜26mm φ のメタルダイヤフラムを用いたダイレクトタツチ型メタルダイヤフラム弁にぉ 、ては、バ ルブストローク A Sを最大膨出高さ A hの 55〜70%の値とすることにより、必要な Cv 値を保持しつつ且つ耐久連続開閉動作回数を大幅に増加し得ることが判る。
産業上の利用可能性
[0058] 本発明は、半導体製造設備関係のみならず、化学産業分野や薬品産業分野、食 品産業分野等にも適用可能なものである。

Claims

請求の範囲
[1] 流体入口及び流体出口に連通する凹状の弁室の底面に弁座を設けたボディと、弁 座の上方に配設され、弁室の気密を保持すると共に、その中央部が上下動して直接 弁座へ当接するメタルダイヤフラムと、メタルダイヤフラムの上方に昇降自在に配設さ れ、メタルダイヤフラムの中央部を下方へ下降させるステムと、ステムを下降若しくは 上昇させるァクチユエータと、メタルダイヤフラムの外周縁部の上方に配設され、弁室 の底面との間でメタルダイヤフラムを気密状に挟圧すると共に、ノ レブ全閉時のステ ムの下降を規制する押えアダプタとから構成したダイレクトタツチ型メタルダイヤフラム 弁において、前記メタルダイヤフラムを複数枚のステンレス鋼薄板とニッケル'コバル ト合金薄板との積層体より成り且つ中央部を上方へ膨出させた円形の逆皿形に形成 すると共に、前記メタルダイヤフラムの最大膨出高さ A hの 55〜70%の距離をバル ブの最大バルブストローク Δ Sに規制したことを特徴とするダイレクトタツチ型メタルダ ィャフラム弁。
[2] 最大バルブストローク A Sの時のバルブの Cv値が 0. 55〜0. 8となるようにした請 求項 1に記載のダイレクトタツチ型メタルダイヤフラム弁。
[3] メタルダイヤフラムを、外径が 15mm φで膨出曲率が 66〜65mm、又は外径が 18
〜20mm φで膨出曲率が 62〜63mm若しくは外径が 24〜26mm φで膨出曲率が
59〜61mmとするようにした請求項 1又は請求項 2に記載のダイレクトタツチ型メタル ダイヤフラム弁。
[4] メタルダイヤフラムを 3枚のステンレス鋼薄板と 1枚のニッケル 'コバルト合金薄板の 円形積層体とすると共に、その外径を 24〜26mm φに、最大膨出高さ A hを 1. 2〜 1. 3mmに及び最大バルブストローク A Sを 0. 65〜0. 8mmにするようにした請求項 1に記載のダイレクトタツチ型メタルダイヤフラム弁。
[5] 弁座を PFA製の弁座とすると共に、ステムにバルブストロークの調整機構を設け、 弁を 3000〜 10000回連続開閉作動させたあと、前記ストローク調整機構によりバル ブストローク Δ Sを所定の設定値に調整固定する構成とした請求項 1乃至請求項 4に 記載のダイレクトタツチ型メタルダイヤフラム弁。
PCT/JP2006/309369 2005-08-30 2006-05-10 ダイレクトタッチ型メタルダイヤフラム弁 WO2007026448A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/914,517 US8256744B2 (en) 2005-08-30 2006-05-10 Direct touch type metal diaphragm valve
CN2006800280294A CN101233350B (zh) 2005-08-30 2006-05-10 直接接触型金属隔膜阀
EP06746186A EP1921358A1 (en) 2005-08-30 2006-05-10 Direct-touch type metal diaphragm valve
KR1020077029374A KR100982705B1 (ko) 2005-08-30 2006-05-10 다이렉트 터치형 메탈 다이어프램 밸브
IL187800A IL187800A (en) 2005-08-30 2007-12-02 Direct-contact metallic diaphragm valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-250300 2005-08-30
JP2005250300A JP5054904B2 (ja) 2005-08-30 2005-08-30 ダイレクトタッチ型メタルダイヤフラム弁

Publications (1)

Publication Number Publication Date
WO2007026448A1 true WO2007026448A1 (ja) 2007-03-08

Family

ID=37808551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309369 WO2007026448A1 (ja) 2005-08-30 2006-05-10 ダイレクトタッチ型メタルダイヤフラム弁

Country Status (8)

Country Link
US (1) US8256744B2 (ja)
EP (1) EP1921358A1 (ja)
JP (1) JP5054904B2 (ja)
KR (1) KR100982705B1 (ja)
CN (1) CN101233350B (ja)
IL (1) IL187800A (ja)
TW (1) TW200717209A (ja)
WO (1) WO2007026448A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454808A (zh) * 2010-10-25 2012-05-16 喜开理株式会社 流体控制阀的阀座结构
US20130181148A1 (en) * 2010-07-27 2013-07-18 Fujikin Incorporated Air-operated valve
CN105473914A (zh) * 2013-07-26 2016-04-06 株式会社富士金 隔膜阀
WO2020158573A1 (ja) * 2019-01-31 2020-08-06 株式会社フジキン バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
WO2020171018A1 (ja) * 2019-02-19 2020-08-27 株式会社フジキン バルブ

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172197B2 (en) * 2006-07-06 2012-05-08 Mks Instruments, Inc. Fast-acting pneumatic diaphragm valve
JP4971030B2 (ja) * 2007-05-21 2012-07-11 シーケーディ株式会社 流体制御弁
US20100185049A1 (en) * 2008-10-22 2010-07-22 Allergan, Inc. Dome and screw valves for remotely adjustable gastric banding systems
JP5613420B2 (ja) * 2010-02-05 2014-10-22 株式会社フジキン 流体制御器
JP5565856B2 (ja) 2010-03-24 2014-08-06 セイコーインスツル株式会社 ダイアフラム、ダイアフラムバルブ、及びダイアフラムの製造方法
JP5153898B2 (ja) * 2010-04-28 2013-02-27 セントラル硝子株式会社 ハロゲンガス又はハロゲン化合物ガスの充填容器用バルブ
KR101702170B1 (ko) * 2010-06-22 2017-02-03 스와겔로크 컴패니 용접된 다이어프램들을 위한 클램프 링
JP5546018B2 (ja) * 2011-03-11 2014-07-09 Ckd株式会社 流量制御弁
US9476516B2 (en) 2011-07-15 2016-10-25 Mecanique Analytique Inc. Actuator
EP2732169A4 (en) 2011-07-15 2015-07-29 Mécanique Analytique Inc ACTUATOR
JP5331180B2 (ja) * 2011-09-22 2013-10-30 株式会社フジキン ダイレクトタッチ型メタルダイヤフラム弁のバルブストローク調整方法
JP5985314B2 (ja) * 2012-09-07 2016-09-06 株式会社堀場エステック 弁要素及び流体制御弁
US20140103240A1 (en) * 2012-10-17 2014-04-17 Swagelok Company Actuator with dual drive
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
KR101475846B1 (ko) * 2013-10-31 2014-12-24 아성플라스틱밸브(주) 시트 밀착형 다이아프렘 및 이를 구비하는 다이아프레임 밸브
JP2017503123A (ja) * 2013-11-28 2017-01-26 ハム−レット (イスラエル−カナダ) リミテッド 流体の流れを制御および調整するための弁装置
KR20160105801A (ko) * 2014-01-07 2016-09-07 썬듀 테크놀로지스 엘엘씨 유체-작동식 유량 제어 밸브
JP6335685B2 (ja) * 2014-06-30 2018-05-30 株式会社フジキン ダイヤフラム弁、流体制御装置、半導体製造装置および半導体製造方法
JP6491878B2 (ja) * 2014-12-25 2019-03-27 株式会社フジキン 流体制御器
JP6491877B2 (ja) * 2014-12-25 2019-03-27 株式会社フジキン 流体制御器
JP6530929B2 (ja) * 2015-02-27 2019-06-12 株式会社フジキン 流体制御器
TW201638510A (zh) * 2015-04-16 2016-11-01 Bueno Technology Co Ltd 自閉氣體填充閥
JP6666672B2 (ja) * 2015-08-28 2020-03-18 株式会社フジキン バルブ
JP6630517B2 (ja) * 2015-08-28 2020-01-15 株式会社フジキン バルブ
US10352470B2 (en) * 2015-11-17 2019-07-16 Ge Aviation Systems Llc Control valve and air starting system
WO2017169052A1 (ja) * 2016-03-30 2017-10-05 Ckd株式会社 操作用電磁弁取付構造及び流体制御弁
JP6166855B1 (ja) * 2016-03-30 2017-07-19 Ckd株式会社 操作用電磁弁取付構造及び流体制御弁
US10634538B2 (en) 2016-07-13 2020-04-28 Rain Bird Corporation Flow sensor
WO2018088326A1 (ja) 2016-11-08 2018-05-17 株式会社フジキン バルブ装置、このバルブ装置を用いた流量制御方法および半導体製造方法
CN110023659B (zh) 2016-11-30 2021-01-29 株式会社富士金 阀装置、使用该阀装置的流量控制方法和半导体制造方法
WO2018123852A1 (ja) 2016-12-26 2018-07-05 株式会社フジキン 圧電素子駆動式バルブおよび流量制御装置
JP6914044B2 (ja) * 2017-01-31 2021-08-04 株式会社キッツエスシーティー ダイヤフラムバルブ
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
JP6929098B2 (ja) * 2017-03-30 2021-09-01 株式会社キッツエスシーティー メタルダイヤフラムバルブ
US11118700B2 (en) * 2017-05-31 2021-09-14 Fujikin Incorporated Valve device and fluid control system
CN110730870B (zh) * 2017-07-04 2021-07-30 株式会社富士金 致动器、阀、以及半导体制造装置
JP7148989B2 (ja) * 2017-07-04 2022-10-06 株式会社フジキン アクチュエータ、バルブ、流体供給システム、および半導体製造装置
JP7068712B2 (ja) 2017-07-31 2022-05-17 株式会社フジキン ガス供給システム
JP6941507B2 (ja) 2017-08-31 2021-09-29 株式会社キッツエスシーティー アクチュエータ用電磁弁の取付構造とアクチュエータ付きバルブ
JP7113529B2 (ja) 2017-09-25 2022-08-05 株式会社フジキン バルブ装置、流量調整方法、流体制御装置、流量制御方法、半導体製造装置および半導体製造方法
CN111164341A (zh) 2017-09-25 2020-05-15 株式会社富士金 阀装置、调整信息生成方法、流量调整方法、流体控制装置、流量控制方法、半导体制造装置和半导体制造方法
JP6914159B2 (ja) 2017-09-26 2021-08-04 株式会社キッツエスシーティー ダイヤフラムバルブの組立方法とその組立構造並びにダイヤフラムバルブ
US10473494B2 (en) * 2017-10-24 2019-11-12 Rain Bird Corporation Flow sensor
CN111373182A (zh) 2017-11-24 2020-07-03 株式会社富士金 阀装置以及使用该阀装置的控制装置的控制方法、流体控制装置以及半导体制造装置
JP7045839B2 (ja) * 2017-12-08 2022-04-01 株式会社キッツエスシーティー 流体制御バルブ
US10877495B2 (en) * 2018-03-08 2020-12-29 Emerson Process Management Regulator Technologies, Inc. Pressure loaded regulator with dual diaphragm and redundant seal
JPWO2019171604A1 (ja) 2018-03-09 2021-02-18 株式会社フジキン バルブ装置
KR102398907B1 (ko) 2018-03-09 2022-05-17 가부시키가이샤 후지킨 밸브 장치
JP2019190633A (ja) * 2018-04-27 2019-10-31 株式会社フジキン 流体制御器
JP2018132194A (ja) * 2018-05-01 2018-08-23 株式会社フジキン ダイヤフラム弁、流体制御装置、半導体制御装置および半導体制御方法
US11306830B2 (en) * 2018-07-31 2022-04-19 Fujikin Incorporated Valve device
JP7207693B2 (ja) * 2018-08-31 2023-01-18 株式会社フジキン アクチュエータ及びそれを備えたエアオペレートバルブ
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
KR102542263B1 (ko) 2019-01-31 2023-06-13 가부시키가이샤 후지킨 밸브장치, 이 밸브장치를 사용한 유량 제어방법, 유체 제어장치, 반도체 제조방법, 및 반도체 제조장치
JP2020122533A (ja) * 2019-01-31 2020-08-13 株式会社フジキン ダイヤフラムバルブの製造方法
JPWO2020203553A1 (ja) * 2019-03-29 2020-10-08
JP7253786B2 (ja) * 2019-05-27 2023-04-07 株式会社不二工機 弁装置
IL268254B1 (en) * 2019-07-24 2024-06-01 Ham Let Israel Canada Ltd Flow control accessory
KR102614981B1 (ko) * 2019-12-06 2023-12-19 주식회사 유니락 퀵 오픈 밸브
WO2021199836A1 (ja) * 2020-03-30 2021-10-07 株式会社フジキン バルブシステム、ダイヤフラムバルブの出力モニター方法および出力調整方法並びに半導体製造装置
CN111623141B (zh) * 2020-06-11 2022-04-26 江苏阀邦半导体材料科技有限公司 一种应用在半导体阀门的金属对金属直接密合结构和处理工艺
DE102020123249A1 (de) * 2020-09-07 2022-03-10 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Plattenanker-Dämpfungseinrichtung für ein Kippankerventil, Plattenanker sowie Kippankerventil mit einer Plattenanker-Dämpfungseinrichtung
EP4244511A1 (en) * 2020-11-13 2023-09-20 Asco Sas Valve system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526357A (ja) * 1991-05-09 1993-02-02 Kiyohara Masako 流体制御器
JPH0580858A (ja) * 1991-08-26 1993-04-02 Kiyohara Masako 制御器
JPH07317925A (ja) * 1994-05-27 1995-12-08 Hitachi Metals Ltd ダイアフラムシール弁及びその金属ダイアフラム
JPH08105554A (ja) * 1994-10-03 1996-04-23 Hitachi Metals Ltd メタルダイヤフラム弁
JPH10148275A (ja) * 1997-11-12 1998-06-02 Ckd Corp エアーオペレートバルブ
JP2001289336A (ja) * 2000-04-03 2001-10-19 Denso Corp 流量調整機能付き開閉装置
JP2001525909A (ja) * 1996-10-16 2001-12-11 パーカー.ハニフィン.コーポレイション 高圧作動型金属座着ダイヤフラム弁
US20030042459A1 (en) * 2001-08-29 2003-03-06 Gregoire Roger J. Unitary diaphragm and seat assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349795A (en) * 1964-04-22 1967-10-31 Ngk Insulators Ltd Diaphragm valve including a snap ring connection
US4684106A (en) * 1983-04-05 1987-08-04 Nupro Company Valve
DE3512393A1 (de) * 1985-04-17 1986-10-09 KIM Production Ltd., Haifa Bay Membranventil
JPS63115970A (ja) * 1986-10-31 1988-05-20 Motoyama Seisakusho:Kk ダイヤフラム弁
US5009778A (en) * 1989-02-27 1991-04-23 Hewlett-Packard Company Axially-driven valve controlled fluid trapping assembly
US5295662A (en) * 1991-08-26 1994-03-22 Masako Kiyohara Fluid flow-controller with improved diaphragm
US5335691A (en) * 1992-05-26 1994-08-09 Nupro Company High pressure diaphragm valve
US5413311A (en) * 1994-03-01 1995-05-09 Tescom Corporation Gas valve
US5730423A (en) * 1996-10-16 1998-03-24 Parker-Hannifin Corporation All metal diaphragm valve
TW441734U (en) * 2000-07-27 2001-06-16 Ind Tech Res Inst Switch mechanism of gas control module
US6685164B1 (en) * 2000-09-11 2004-02-03 Hamai Industries Limited Control valve and diaphragm for use in the control valve
CN2537864Y (zh) * 2002-04-04 2003-02-26 扬中新亚自控工程有限公司 截止隔膜阀
US7243903B2 (en) * 2005-06-22 2007-07-17 Wincek Christopher P Valve diaphragm with a compression restraining ring, and valve including same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526357A (ja) * 1991-05-09 1993-02-02 Kiyohara Masako 流体制御器
JPH0580858A (ja) * 1991-08-26 1993-04-02 Kiyohara Masako 制御器
JPH07317925A (ja) * 1994-05-27 1995-12-08 Hitachi Metals Ltd ダイアフラムシール弁及びその金属ダイアフラム
JPH08105554A (ja) * 1994-10-03 1996-04-23 Hitachi Metals Ltd メタルダイヤフラム弁
JP2001525909A (ja) * 1996-10-16 2001-12-11 パーカー.ハニフィン.コーポレイション 高圧作動型金属座着ダイヤフラム弁
JPH10148275A (ja) * 1997-11-12 1998-06-02 Ckd Corp エアーオペレートバルブ
JP2001289336A (ja) * 2000-04-03 2001-10-19 Denso Corp 流量調整機能付き開閉装置
US20030042459A1 (en) * 2001-08-29 2003-03-06 Gregoire Roger J. Unitary diaphragm and seat assembly

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181148A1 (en) * 2010-07-27 2013-07-18 Fujikin Incorporated Air-operated valve
CN102454808A (zh) * 2010-10-25 2012-05-16 喜开理株式会社 流体控制阀的阀座结构
CN102454808B (zh) * 2010-10-25 2015-07-22 喜开理株式会社 流体控制阀的阀座结构
CN105473914A (zh) * 2013-07-26 2016-04-06 株式会社富士金 隔膜阀
CN105473914B (zh) * 2013-07-26 2019-06-28 株式会社富士金 隔膜阀
WO2020158573A1 (ja) * 2019-01-31 2020-08-06 株式会社フジキン バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
TWI727634B (zh) * 2019-01-31 2021-05-11 日商富士金股份有限公司 閥裝置、流量控制方法、流體控制裝置、半導體製造方法及半導體製造裝置
JPWO2020158573A1 (ja) * 2019-01-31 2021-12-09 株式会社フジキン バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
JP7352971B2 (ja) 2019-01-31 2023-09-29 株式会社フジキン バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
WO2020171018A1 (ja) * 2019-02-19 2020-08-27 株式会社フジキン バルブ
JPWO2020171018A1 (ja) * 2019-02-19 2021-12-16 株式会社フジキン バルブ
JP7374513B2 (ja) 2019-02-19 2023-11-07 株式会社フジキン バルブ

Also Published As

Publication number Publication date
JP2007064333A (ja) 2007-03-15
TWI320519B (ja) 2010-02-11
KR100982705B1 (ko) 2010-09-17
CN101233350A (zh) 2008-07-30
IL187800A (en) 2014-05-28
KR20080017038A (ko) 2008-02-25
IL187800A0 (en) 2008-08-07
EP1921358A1 (en) 2008-05-14
JP5054904B2 (ja) 2012-10-24
US20100090151A1 (en) 2010-04-15
US8256744B2 (en) 2012-09-04
CN101233350B (zh) 2010-12-29
TW200717209A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2007026448A1 (ja) ダイレクトタッチ型メタルダイヤフラム弁
JP5331180B2 (ja) ダイレクトタッチ型メタルダイヤフラム弁のバルブストローク調整方法
US8960644B2 (en) Valve seat structure of fluid control valve
KR101032034B1 (ko) 압전소자 구동식 금속 다이어프램형 제어 밸브
US5820105A (en) Diaphragm valve
JP6141663B2 (ja) 流体制御弁
JP2008249002A (ja) 圧電素子駆動式制御弁
US10125876B2 (en) Diaphragm valve, fluid control device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
WO2016002515A1 (ja) ダイヤフラム弁、流体制御装置、半導体製造装置および半導体製造方法
JP5546018B2 (ja) 流量制御弁
US11073215B2 (en) Gas supply system
JP4951091B2 (ja) 圧電素子駆動式金属ダイヤフラム型制御弁
US10006564B2 (en) Corrosion resistant coating for process gas control valve
JPH0771628A (ja) オールメタルダイアフラム弁
US20220268365A1 (en) Diaphragm valve
JP2020122533A (ja) ダイヤフラムバルブの製造方法
KR20220002430A (ko) 다이어프램, 밸브, 및 다이어프램의 제조 방법
JPH06294471A (ja) ダイヤフラム型流体制御器
JP2020122534A (ja) ダイヤフラムバルブの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028029.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 187800

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020077029374

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11914517

Country of ref document: US