WO2007015515A1 - 侵入検知センサ - Google Patents

侵入検知センサ Download PDF

Info

Publication number
WO2007015515A1
WO2007015515A1 PCT/JP2006/315298 JP2006315298W WO2007015515A1 WO 2007015515 A1 WO2007015515 A1 WO 2007015515A1 JP 2006315298 W JP2006315298 W JP 2006315298W WO 2007015515 A1 WO2007015515 A1 WO 2007015515A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection sensor
intrusion detection
detection
target object
intrusion
Prior art date
Application number
PCT/JP2006/315298
Other languages
English (en)
French (fr)
Inventor
Masatoshi Tsuji
Original Assignee
Optex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optex Co., Ltd. filed Critical Optex Co., Ltd.
Publication of WO2007015515A1 publication Critical patent/WO2007015515A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2491Intrusion detection systems, i.e. where the body of an intruder causes the interference with the electromagnetic field

Definitions

  • the present invention relates to an intrusion detection sensor incorporating a microwave sensor, and more particularly to an intrusion detection sensor that improves reliability by avoiding the occurrence of false alarms as much as possible.
  • microwaves are transmitted toward a detection area, and when a human body (intruder) exists in the detection area, a reflected wave of the human strength (due to the Doppler effect)
  • a microwave sensor that detects a human body by receiving a modulated microwave see, for example, Patent Document 1) o
  • a type of microwave sensor there has been proposed one that measures a distance to a detection target object such as a human body existing in a detection area using a plurality of microwaves having different frequencies.
  • This type of sensor transmits two types of microwaves with different frequencies toward the detection area, and detects the phase difference between the two IF signals based on the reflected waves.
  • This phase difference is related to the distance to the detection target object, and the phase difference tends to increase as the distance to the detection target object increases. In other words, the distance to the object to be detected can be measured by obtaining this phase difference. It is also possible to determine whether or not the detection target object in the detection area is moving by recognizing the temporal change in the phase difference. As a result, for example, it is possible to identify only the detection target object moving within the detection area.
  • Patent Document a technique for accurately discriminating between a detection target object such as a human body and a non-detection target object other than a human body to avoid false alarms.
  • This proposal measures the amount of change per unit time of the relative distance to an object existing in the detection area based on each reflected wave, and only when the amount of change is equal to or greater than a predetermined threshold.
  • the object is determined to be a detection target object.
  • the moving distance of a detection target object such as a human body becomes large. It is designed to accurately determine whether or not it is a force.
  • such false alarm prevention measures will be referred to as “vegetation measures”
  • the above threshold will be referred to as “vegetation measures level”.
  • Patent Document 1 JP-A-7-37176
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-207462
  • the microwave sensor as described above uses a relatively wide directivity as a transmission / reception antenna with a fixed transmission / reception direction, an intrusion that is an original detection target object is used. There is a possibility that the person cannot be detected accurately. For example, it may be affected by the proximity of rain, insects, etc., the vibration of the installation location and the microwave sensor itself, and may cause false alarms.
  • an object of the present invention is to provide a highly reliable intrusion detection sensor that can always perform accurate detection regardless of the moving direction and position of the detection target object. It is. Means for solving the problem
  • the intrusion detection sensor of the present invention transmits a plurality of microwaves having different frequencies toward a detection area, and each of the microwaves from an object existing in the detection area is transmitted.
  • a microwave sensor that receives reflected waves and outputs distance information corresponding to the distance to the object, and a direction variable antenna that can change the transmission / reception directions of the plurality of microwaves within a predetermined angle range by the microwave sensor.
  • the direction information indicating the presence of the object and the object Scanning measurement means for obtaining two-dimensional object position information consisting of distance information up to and from the two-dimensional object obtained by the scanning measurement means Recognize the movement pattern of the object based on the temporal change of the object position information, and determine whether the detection target object exists in the detection area based on the movement pattern.
  • a detection target object presence determination means, and a warning signal output control means for controlling to output a warning signal when it is determined that the detection target object exists! It is characterized by providing.
  • the direction variable antenna device is not limited to, for example, a force capable of raising a phased array antenna.
  • the detection target object presence determination means is within the detection area if the movement distance per unit time of the object obtained based on the temporal change of the two-dimensional object position information is equal to or greater than a first predetermined value. It may be determined that the detection target object exists.
  • the intrusion detection sensor having such a configuration, accurate detection is always possible regardless of the moving direction of the intruder, and the reliability as the intrusion detection sensor can be improved.
  • the intrusion detection sensor may be configured such that the detection target object presence determination unit has a unit time moving distance of the object obtained based on a temporal change in the two-dimensional object position information. If it is equal to or greater than the first predetermined value and the temporal change in the two-dimensional object position information is continuous, it may be determined that a detection target object exists in the detection area. . Furthermore, it may be added to this determination condition that the moving speed obtained based on the temporal change of the two-dimensional object position information is within a predetermined speed range. [0014] According to the intrusion detection sensor having such a configuration, it is possible to further suppress the false alarm and further improve the reliability as the intrusion detection sensor.
  • the detection target object presence determining means in the intrusion detection sensor crosses a first predetermined width area centering on the front surface of the intrusion detection sensor in the detection area. If it is recognized that the detection target object exists in the detection area, it may be determined.
  • the first predetermined width may be variable, or may be variable according to the distance from the intrusion detection sensor!
  • the intrusion detection sensor having such a configuration, it is possible to accurately detect the movement in the direction orthogonal to the direction facing the intrusion detection sensor, and to improve the reliability as the intrusion detection sensor. it can.
  • the detection target object presence determining means in the intrusion detection sensor the object crosses a region of a second predetermined width including the front surface of the intrusion detection sensor in the detection area, and When it is recognized that the object remains in the vicinity of this region boundary for a predetermined time or more thereafter, it may be determined that the detection target object exists in the detection area.
  • the second predetermined width may be variable.
  • the intrusion detection sensor having such a configuration, detection can be performed based on the typical behavior of an intruder, and thus, for example, misinformation caused by accidental approach of a small animal or the like can be obtained. It is possible to prevent as much as possible.
  • the intrusion detection sensor further receives infrared rays from the detection area and outputs an infrared ray detection signal indicating the presence of a detection target object in the detection area based on a temperature difference from the surroundings.
  • the warning signal output control means stores position information of an effective infrared detection area of the passive infrared sensor, and the detection based on this information and the two-dimensional object position information. If the target object is recognized to be inside the infrared ray detection area, it may be determined that the detection target object exists in the detection area! / ⁇ !
  • the intrusion detection sensor of the present invention transmits a microwave toward a detection area, receives a reflected wave of the microwave from an object existing in the detection area, and reaches the object.
  • a warning signal output control for controlling to output a warning signal when it is determined that the detection target object is present by the detection means and the detection target object presence determination means. It is characterized by a lack of means.
  • examples of the microwave sensor include one that outputs direction information of an object by a monopulse method using a plurality of antennas for reception.
  • a monopulse method using a plurality of antennas for reception.
  • an amplitude comparison monopulse method using a plurality of antennas whose beams overlap for reception and a phase comparison monopulse method.
  • These monopulse systems process one pulse (monopulse) at one beam position.
  • the intrusion detection sensor having such a configuration, accurate detection is always possible regardless of the moving direction and position of the intruder, and it is difficult to be affected by temporal fluctuations of reflected waves and influences of interference waves. It is possible to further improve the reliability as an intrusion detection sensor by avoiding false and misreports as much as possible.
  • the intrusion detection sensor is configured such that the detection target object presence determining unit has a unit time moving distance of the object obtained based on a temporal change in the two-dimensional object position information. 1 If it is equal to or greater than a predetermined value, it may be determined that a detection target object exists in the detection area.
  • the intrusion detection sensor may be configured such that the detection target object presence determining unit has a unit time moving distance of the object obtained based on a temporal change in the two-dimensional object position information. Change over time of the two-dimensional object position information that is greater than or equal to the first predetermined value May be determined that a detection target object exists in the detection area. Furthermore, it may be added to this determination condition that the moving speed obtained based on the temporal change of the two-dimensional object position information is within a predetermined speed range.
  • the detection target object presence determining means in the intrusion detection sensor crosses a region having a first predetermined width centered on the front surface of the intrusion detection sensor in the detection area. If it is recognized that the detection target object exists in the detection area, it may be determined.
  • the first predetermined width may be variable, or may be variable according to the distance from the intrusion detection sensor!
  • the detection target object presence determining means crosses a region having a second predetermined width including the front surface of the intrusion detection sensor in the detection area, and the object crosses the intrusion detection sensor.
  • the second predetermined width may be variable.
  • the intrusion detection sensor further receives infrared rays from the detection area and outputs an infrared ray detection signal indicating the presence of a detection target object in the detection area based on a temperature difference from the surroundings.
  • the warning signal output control means stores position information of an effective infrared detection area of the passive infrared sensor, and the detection based on this information and the two-dimensional object position information. If the target object is recognized to be inside the infrared ray detection area, it may be determined that the detection target object exists in the detection area! / ⁇ !
  • the intrusion detection sensor of the present invention accurate detection is always possible regardless of the movement direction and position of the intruder, and the reliability as an intrusion detection sensor can be improved.
  • FIG. 1 is a block diagram showing a schematic configuration of an intrusion detection sensor according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of one method for determining that a detection target object exists by the intrusion detection sensor according to the first embodiment of the present invention.
  • FIGS. 3 (a) and 3 (b) are explanatory diagrams of another method for determining the presence of a detection target object by the intrusion detection sensor according to the first embodiment of the present invention.
  • 3 (a) shows the positional relationship seen from above when an intrusion detection sensor is installed inside the fence
  • Fig. 3 (b) is a graph showing an example of temporal changes in the location of the intruder. It is.
  • FIG. 4 (a) and FIG. 4 (b) are explanatory diagrams of still another method for determining the presence of the detection target object by the intrusion detection sensor according to the first embodiment of the present invention.
  • Fig. 4 (a) and FIG. 4 (b) are explanatory diagrams of still another method for determining the presence of the detection target object by the intrusion detection sensor according to the first embodiment of the present invention.
  • Fig. 4 (a) and FIG. 4 (b) are explanatory diagrams of still another method for determining the presence of the detection target object by the intrusion detection sensor according to the first embodiment of the present invention.
  • Fig. 4 (a) and FIG. 4 (b) are explanatory diagrams of still another method for determining the presence of the detection target object by the intrusion detection sensor according to the first embodiment of the present invention.
  • Fig. 4 (a) and FIG. 4 (b) are explanatory diagrams of still another method for determining the presence of the detection target object by the intrusion detection sensor according to the first embodiment of the
  • Fig. 4 (b) is a graph showing an example of the temporal change in the location of the intruder.
  • FIG. 5 is a schematic explanatory view of a detection area of an intrusion detection sensor according to a modification of the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of the intrusion detection sensor according to the second embodiment of the present invention.
  • FIG. 7 is a schematic explanatory diagram of the detection area of the intrusion detection sensor according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a schematic configuration of the intrusion detection sensor according to the third embodiment of the present invention.
  • FIG. 9 is a block diagram showing a schematic configuration of the main part of the microwave sensor provided in the intrusion detection sensor according to the third embodiment of the present invention.
  • Fig. 10 show the angle error detection principle by the amplitude comparison monopulse method
  • Fig. 10 (a) is a graph showing the beam patterns of two antennas.
  • Fig. 10 (c) is a graph showing the angle error.
  • FIG. 11 is a block diagram showing a schematic configuration of a receiving side of a microwave sensor of an intrusion detection sensor according to a modification of the third embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an intrusion detection sensor 100 according to the first embodiment of the present invention.
  • the intrusion detection sensor 100 includes a phased array antenna 110 that can change the transmission / reception direction of microwaves, and a detection target object such as a human body using the phased array antenna 110.
  • a microwave sensor 120 for performing the above and a one-chip microcomputer 130 for controlling them are provided.
  • Phased array antenna 110 has a plurality of antenna elements 111 arranged at equal intervals in the same direction, and a shift for controlling the amount of phase shift in the signal transmission path between these antenna elements 111 within a predetermined range. And a phase control circuit 112. Phased array It is desirable that the antenna 110 has a narrow directivity.
  • the phase shift control circuit 112 is a type in which the transmission / reception direction is continuously variable by continuously changing the phase shift amount.
  • the microwave sensor 120 is a type that transmits and receives microwaves of two different frequencies, and transmits microwaves from the phased array antenna 110 to the detection area.
  • the transmitted microwave is reflected when any object is present in the detection area, and a part of the reflected microwave is received in the direction of the phased array antenna 110.
  • the microwave sensor 120 is configured to detect a phase difference between two IF signals based on the received reflected waves and output a detected object distance signal based on the phase difference.
  • the one-chip microcomputer 130 includes a scanning measurement unit 131, a detection target object presence determination unit 132, and a warning signal output control unit 133. Note that these power realization methods realized by the embedded software of the one-chip microcomputer 130 are not limited to software.
  • the scanning measurement unit 131 instructs the phase shift control circuit 112 to control the amount of phase shift and monitors the detected object distance signal output from the microwave sensor 120 to detect direction information in which the detected object exists. And distance information to the detected object is obtained. As a result, the two-dimensional position information of the detected object can be obtained in a polar coordinate system determined by the distance and direction from the intrusion detection sensor 100.
  • the detection target object presence determination unit 132 constantly or periodically monitors the two-dimensional position information of the detection object, recognizes the movement pattern of the detection object based on the temporal change, and moves the detection object. Pattern force It is determined whether or not a detection target object exists in the detection area. For recognizable patterns, a plurality of patterns may be prepared in advance so that they can be switched automatically. Alternatively, a DIP switch connected to the input port of the one-chip microcomputer 130 may be provided so that it can be switched manually. A specific example will be described later.
  • the output format of the warning signal Doutl of the warning signal output control unit 133 is open drain or open collector.
  • the warning signal Doutl is output from the detection target object presence detection unit. It is determined that the detection target object 132 is present and turned ON when the detection target object exists, and the detection target object is open when it is determined that the detection target object exists.
  • FIG. 2 is an explanatory diagram of one method for determining that the detection target object exists by the intrusion detection sensor 100.
  • the position P1 of the detected object at a certain time is a distance dl from the intrusion detection sensor 100 and the direction angle ⁇ 1, and the position P2 of the detected object after a predetermined time has passed.
  • the distance from the detection sensor 100 is d2 and the direction angle is ⁇ 2.
  • the reference for the direction angle is the front direction of the intrusion detection sensor 100, and the right side is the positive direction.
  • the moving distance Ad of the sensing object within a predetermined time can be calculated by the following equation.
  • the moving distance ⁇ d is determined in advance and compared with a predetermined threshold value. If the moving distance ⁇ d is equal to or larger than the predetermined threshold value, a detection target object such as an intruder exists in the detection area. It is determined that In this way, by identifying only objects that have moved by more than a predetermined threshold within a unit time as objects to be detected such as intruders, for example, vegetation swaying in the outdoor wind is erroneously detected as objects to be detected. Detection can be prevented as much as possible.
  • FIGS. 3 (a) and 3 (b) are explanatory diagrams of another method for determining the presence of the detection target object by the intrusion detection sensor 100, and FIG. FIG. 3 (b) is a graph showing an example of a temporal change in the position of the intruder 10 when the intrusion detection sensor 100 is installed on the inside of FIG.
  • FIG. 3 (a) when the intrusion detection sensor 100 targets the inside of the fence 11 or the like as a warning object, an elongated elliptical detection area A100 formed in the front direction of the intrusion detection sensor 100 is shown. Is placed along the inside of the fence 11.
  • an orthogonal coordinate system is defined in which the front direction of the intrusion detection sensor 100 is the y-axis, the direction orthogonal thereto is the X-axis, and the center of the front surface of the intrusion detection sensor 100 is the origin of both axes.
  • the two-dimensional position information of the detected object obtained in the polar coordinate system is converted into this orthogonal coordinate system by the detection target object presence determination unit 132.
  • a range of a predetermined width W1 centered on the origin of the X axis is set, and the X coordinate of the detection object is set within a predetermined time within this range. It can be determined that there is an object to be detected such as an intruder 10 when it is detected that it has passed. In FIG. 3 (a), this corresponds to the intruder 10 crossing the region R1 having the predetermined width W1 in the front direction of the intrusion detection sensor 100.
  • the predetermined width W1 may be variable by a DIP switch connected to an input port of the one-chip microcomputer 130 or the like.
  • FIGS. 4 (a) and 4 (b) are explanatory diagrams of still another method for determining the presence of a detection target object by the intrusion detection sensor 100
  • FIG. Figure 4 (b) shows the positional relationship of the upper force when the intrusion detection sensor 100 is installed outside the window 12 and the window 13.
  • the intrusion detection sensor 100 targets the outside such as the wall 12 and the window 13
  • the elongated elliptical shape formed in the front direction of the intrusion detection sensor 100 is used.
  • the detection area A100 is installed so as to cover the outside of the wall 12 and the window 13.
  • the front direction of the intrusion detection sensor 100 is the y-axis
  • the direction perpendicular to the X-axis is the center of the front surface of the intrusion detection sensor 100
  • the two-dimensional position information of the detected object obtained in the polar coordinate system as described above is converted into this orthogonal coordinate system by the detection target object presence determination unit 132.
  • the typical behavior of the intruder 10 is to approach the window 13 first and then open the window 13 in some way to force the force into the building, but it is necessary to open the window 13 During this time, the intruder 10 stays in the same position. For this reason, in the discrimination method described with reference to FIGS. 3A and 3B, the intruder 10 may not be detected accurately depending on the set position of the detection area A100.
  • a range of a predetermined width W2 including the origin of the X axis is set (the center of this range is the side farther from the wall 12 than the front of the intrusion detection sensor 100).
  • the X coordinate of the detected object passes through this range within the predetermined time, and it is detected that the X coordinate of the detected object remains near the upper limit of this range for a certain time T1 or more. It can be determined that there is an object to be detected such as an intruder 10.
  • the intruder 10 crosses the region R2 of the predetermined width W2 in the front direction of the intrusion detection sensor 100 (the center is located on the side farther from the wall 12 than the front of the intrusion detection sensor 100). This corresponds to the intruder 10 staying near the front of the intrusion detection sensor 100 or in front of the window 13 for a while.
  • the predetermined width W2 and the amount of deviation from the front center of the intrusion detection sensor 100 may be made variable by a DIP switch connected to the input port of the one-chip microcomputer 130 or the like.
  • detection can be performed based on the typical behavior of the intruder 10, so that, for example, a small animal or the like approaches accidentally. It is possible to prevent as much as possible misinformation due to.
  • the predetermined width W1 is larger than the effective width of the actual detection area A100 in a portion very close to the intrusion detection sensor 100. At this time, even if the intruder 10 crosses the area, the two-dimensional position information of the detected object outside the detection area A100 cannot be obtained, and as a result, the intruder 10 cannot be detected. Become.
  • the predetermined width W1 is reduced in accordance with the width of the detection area A100 in a portion very close to the intrusion detection sensor 100, the effective width of the detection area A100 is separated from the intrusion detection sensor 100.
  • the predetermined width W1 is much smaller than that, and false information is likely to occur.
  • a region R100a having an appropriate width for detecting the intruder 10 in the detection area AlOOa is obtained in advance.
  • the width of the region RlOOa corresponding to the distance from the intrusion detection sensor 100a is stored in the detection target object presence determination unit 132.
  • the width of the region RlOOa at a distance of about three locations may be stored, and the width of the region RlOOa may be calculated by a force such as a complementary operation based on these widths stored at an intermediate distance.
  • the width of the region RlOOa at a large distance may be stored.
  • FIG. 6 is a block diagram showing a schematic configuration of the intrusion detection sensor 200 according to the second embodiment of the present invention.
  • FIG. 7 is a schematic explanatory diagram of the detection area A200 of the intrusion detection sensor 200.
  • the intrusion detection sensor 200 receives infrared rays from within the detection area in addition to the components of the first embodiment, and detects the detection target object based on the temperature difference from the surroundings.
  • a PIR sensor 240 that outputs a signal indicating the presence / absence (for example, a high level when an object to be detected exists and a low level when the object to be detected does not exist) is provided.
  • the one-chip microcomputer 230 is different in that the output of the PIR sensor 240 is connected to the warning signal output control unit 233, and the output of the PIR sensor 240 is also taken into account for controlling the output of the warning signal Dout2.
  • the detection target object presence determination unit 232 stores area information of the effective detection area A 240 of the PIR sensor 240, and the two-dimensional position information of the detection object is stored in the detection area A2 40. Only when it indicates that there is an object, it is determined that the object to be detected exists.
  • the output of the warning signal Dout2 of the warning signal output control unit 233 indicates that the detection target object presence determination unit 232 determines that the detection target object exists, and the output of the PIR sensor 240 is also the detection target object.
  • the warning signal Dout2 is turned on when the signal is at the high level indicating that exists.
  • a phased array antenna is used to recognize the direction of the detection object.
  • the micro-signal from the detection object is used.
  • FIG. 8 is a block diagram showing a schematic configuration of an intrusion detection sensor 300 according to the third embodiment of the present invention.
  • the intrusion detection sensor 300 obtains (measures) the direction information of the detected object by the amplitude comparison monopulse method, and outputs two different frequencies as in the above-described embodiments.
  • a microwave sensor 320 capable of outputting distance information to the detected object by transmitting and receiving microwaves, and a one-chip microcomputer 330 having a detection target object presence determination unit 332 and a warning signal output control unit 333. I have.
  • the detection target object presence determination unit 332 constantly or periodically monitors the distance information and direction information of the detection object output from the microwave sensor 320, so that the two-dimensional position information of the detection object is temporally monitored.
  • the movement pattern of the detected object based on the change is recognized, and it is determined from the movement pattern whether the detection target object such as an intruder exists in the detection area. Specifically, the same determination as in each of the above embodiments may be performed.
  • warning signal Dout3 of warning signal output control unit 333 is open drain or open collector.
  • the output of the warning signal Dout3 is ON when the detection target object presence determination unit 332 determines that the detection target object exists, and the detection target object When it is determined that it exists and is cunning, it shall be open.
  • FIG. 9 is a block diagram showing a schematic configuration of a main part of the microwave sensor 320.
  • two antennas 321A and 321B in which a part of antenna beams overlap each other are used as a set for receiving microwaves.
  • a pre-comparator 323 is placed in order to obtain the sum signal ( ⁇ ) and the difference signal ( ⁇ ) by combining the outputs of these antennas 321A and 321B.
  • the mixer 324A and the IF amplifier 326A are sequentially connected to one output of the pre-comparator 323, and the mixer 324B and the IF amplifier 326B are sequentially connected to the other output of the pre-comparator 323.
  • a local oscillator 325 is connected to the mixers 324A and 324B.
  • IF amplifier 326A sum signal ( ⁇ ) is output, and IF amplifier 326B force is also output a difference signal ( ⁇ ), and these outputs are input to computing means 327. Based on these outputs, the computing means 327 calculates the amount of deviation (angle error) in the front direction force of the antennas 321A and 321B according to the principle described later.
  • one antenna 321 C and a transmitter 329 are connected via a modulator 328. If the modulator 328 transmits microwaves of two different frequencies as in the above-described embodiments, the distance information to the sensing object can be obtained.
  • Other methods for obtaining distance information include FMCW (Frequency Modulated Continuous Wave) method and pulse method.
  • Fig. 10 (a) to Fig. 10 (c) show the angle error detection principle by the amplitude comparison monopulse method.
  • Fig. 10 (a) is a graph showing the beam patterns of two antennas.
  • b) is a graph showing the sum and difference signals
  • Fig. 10 (c) is a graph showing the angle error.
  • the signal power received by two antennas in which part of the antenna beam overlaps each other is also the sum signal ( ⁇ ) and the difference as shown in Fig. 10 (b).
  • a signal ( ⁇ ) is obtained.
  • the difference signal ( ⁇ ) with the sum signal ( ⁇ ), that is, calculating “ ⁇ Z ⁇ ”, the angular error represented by the S-shaped graph as shown in FIG.
  • the voltage ⁇ can be obtained. Note that if the force of only the difference signal ( ⁇ ) is determined to determine the angle error, the signal strength changes depending on the target size and distance, and accurate measurement cannot be performed. Such a problem is eliminated by carrying out regulations.
  • the microwave sensor 320 of the third embodiment employs the amplitude comparison monopulse method, it may adopt a phase comparison monopulse method instead. In that case, the configuration of the receiving side of the microwave sensor 320 is changed as follows.
  • FIG. 11 is a block diagram showing a schematic configuration on the receiving side of the microwave sensor of the intrusion detection sensor according to a modification of the third embodiment of the present invention.
  • a pre-comparator 423 is provided after the antennas 421 A and 421 B arranged at a distance d to obtain a sum signal ( ⁇ ) and a difference signal ( ⁇ ). It is burned.
  • the sum signal ( ⁇ ) output from the pre-comparator 423 is input to the calculation means 427 as it is, and the difference signal ( ⁇ ) is input to the calculation means 427 via the phase displacement means 440.
  • the computing means 427 calculates the angle error ⁇ based on these inputs.
  • is an angle ⁇ (direction cosine cos) of an angle ⁇ (an angle formed by a direction orthogonal to the antenna front direction and the direction of the object), and ⁇ is a transmission wavelength.
  • the difference signal ( ⁇ ) is rotated 90 degrees by the phase displacement means 440 and then enters the calculation means 427 and is divided by the sum signal ( ⁇ ) (by being normalized).
  • the angle error ⁇ is calculated.
  • This angular error ⁇ is tan ( ⁇ / 2), which is almost equal to ⁇ near the center of the antenna beam. Example value. Therefore, the deviation of the target from the front direction of the antenna can be detected by this angular error ⁇ , as in the amplitude comparison monopulse method employed in the third embodiment.
  • the phased array antenna 110, the microwave sensor 120, and the scanning measurement unit 131 of the first embodiment correspond to the microwave sensor 320 in the second embodiment. Both of these can be regarded as microwave sensors that can output two-dimensional position information, which is distance information and direction information power about the detected object.
  • the method for discriminating an intruder described in the first embodiment and its modified examples, the second embodiment, and the like can be similarly applied to the third embodiment and its modified examples.
  • the present invention is suitable for a security sensor that detects an intruder into a detection area and issues an alarm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Burglar Alarm Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 一実施形態では、検知エリアに向けてマイクロ波を送信し、この検知エリア内に存在する物体からの反射波を受信して、その物体までの距離に対応する距離情報を出力するとともに、その物体の方向情報を出力するマイクロウエーブセンサ(320)と、これによって得られる2次元物体位置情報の時間的な変化に基づいて前記物体の移動パターンを認識し、その移動パターンに基づいて前記検知エリア内に検知対象物体が存在しているか否かを判別する検知対象物体存在判別部(332)と、この検知対象物体存在判別手段によって検知対象物体が存在していると判別された場合に警告信号を出力するように制御する警告信号出力制御部(333)とを備える。

Description

明 細 書
侵入検知センサ
技術分野
[0001] 本発明は、マイクロウエーブセンサを内蔵する侵入検知センサに関し、特に、誤報 の発生を極力回避して信頼性を向上させた侵入検知センサに関する。
背景技術
[0002] 従来、防犯装置の一つとして、マイクロ波を検知エリアに向けて送信し、検知エリア 内に人体 (侵入者)が存在する場合には、その人体力 の反射波(ドップラー効果に よって変調したマイクロ波)を受信して人体を検知するマイクロウエーブセンサが知ら れている(例えば、特許文献 1参照。 ) o
[0003] さらに、マイクロウエーブセンサの 1タイプとして、周波数の異なる複数のマイクロ波 を利用して検知エリア内に存在する人体などの検知対象物体までの距離を計測する ようにしたものも提案されている。この種のセンサは、例えば周波数の異なる 2種類の マイクロ波を検知エリアに向けて送信し、それぞれの反射波に基づく 2つの IF信号の 位相差を検出するようになっている。この位相差は、検知対象物体までの距離に相 関があり、検知対象物体までの距離が大きいほど位相差も大きくなる傾向がある。つ まり、この位相差を求めることにより検知対象物体までの距離を計測することが可能 である。また、この位相差の時間的な変化を認識することにより検知エリア内の検知 対象物体が移動している力否かを判定することも可能である。これにより、例えば検 知エリア内で移動している検知対象物体のみを識別することが可能になる。
[0004] ところで、この種のセンサを防犯用センサとして使用し、上記位相差の時間的な変 化を認識して、検知エリア内で移動している検知対象物体のみを認識するようにした 場合、次のような問題点があった。例えば、屋外に設置した場合に、風による草木な どの揺れによってその草木などを検知対象物体であると誤検知して誤報を発してしま う可能性がある。同様に、屋内に設置した場合には、換気用のファンの回転動作や、 風によるブラインドやカーテンの揺れ、あるいはマイクロウエーブセンサ自体の振動な どによっても人体以外の物体 (非検知対象物体)を検知対象物体であると誤検知して 誤報を発してしまう可能性があった。
[0005] そこで、本発明の発明者は、人体などの検知対象物体と人体以外の非検知対象物 体との判別を正確に行って誤報を回避する技術について既に提案している(特許文 献 2参照。)。
[0006] この提案は、各反射波に基づいて検知エリア内に存在する物体までの相対距離の 単位時間当たりの変化量を計測し、その変化量が所定の閾値以上であるときにのみ 、その物体を検知対象物体であると判定するものである。つまり、風によって揺れてい る草木や回転しているファンなどは移動距離が僅かであるのに対し、人体などの検知 対象物体では移動距離が大きくなるので、その差を認識することで検知対象物体で ある力否かを的確に判定するようにしている。なお、以下の説明では、このような誤報 防止対策を「草木対策」、上記の閾値を「草木対策レベル」と記すこととする。
特許文献 1 :特開平 7— 37176号公報
特許文献 2:特開 2003 - 207462号公報
発明の開示
発明が解決しょうとする課題
[0007] しかし、上述のようなマイクロウエーブセンサでは、送受信アンテナとして比較的指 向性の広 、ものをその送受信方向を固定して使用して 、るため、本来の検知対象物 体である侵入者などを必ずしも正確に検知できない可能性があった。例えば、雨、昆 虫などの接近、設置場所やマイクロウエーブセンサ自体の振動などによって影響を 受け、誤報などを生じる場合があった。
[0008] また、上述の「草木対策」を施した場合、検知対象物体がマイクロウエーブセンサに 正対する方向とは直交する方向に移動すると、検知対象物体までの距離が大きく変 化しな 、ことがあり、検知対象物体の検知ができな!/ 、わゆる「失報」を生じることもあ つた。特に、窓際やフェンス際などの警戒を行う場合に、設置方向によってこれが軽 視できない問題になることもあった。
[0009] 従来技術のこのような課題に鑑み、本発明の目的は、検知対象物体の移動方向や 位置に関わらず常に的確な検知を行うことができる信頼性の高い侵入検知センサを 提供することである。 課題を解決するための手段
[0010] 上記目的を達成するため、本発明の侵入検知センサは、検知エリアに向けて周波 数の異なる複数のマイクロ波を送信し、この検知エリア内に存在する物体からの前記 マイクロ波それぞれの反射波を受信して、その物体までの距離に対応する距離情報 を出力するマイクロウエーブセンサと、このマイクロウエーブセンサによる前記複数の マイクロ波の送受信方向を所定角度範囲内で変更可能な方向可変アンテナ装置と、 この方向可変アンテナ装置に対して前記送受信方向の前記所定角度範囲内にわた る走査を指示するとともにその走査中に前記距離情報を監視することにより、物体が 存在する方向情報とその物体までの距離情報とからなる 2次元物体位置情報を求め る走査測定手段と、この走査測定手段によって求められる前記 2次元物体位置情報 の時間的な変化に基づいて前記物体の移動パターンを認識し、その移動パターン に基づ!/、て前記検知エリア内に検知対象物体が存在して 、る力否かを判別する検 知対象物体存在判別手段と、この検知対象物体存在判別手段によって検知対象物 体が存在して!/ヽると判別された場合に警告信号を出力するように制御する警告信号 出力制御手段とを備えることを特徴とする。
[0011] ここで、前記方向可変アンテナ装置としては、例えばフェイズドアレーアンテナが挙 げられる力 これに限るものではない。また、前記検知対象物体存在判別手段は、前 記 2次元物体位置情報の時間的な変化に基づいて求められる前記物体の単位時間 移動距離が第 1所定値以上であれば、前記検知エリア内に検知対象物体が存在し ていると判別してもよい。
[0012] このような構成の侵入検知センサによれば、侵入者の移動方向に関わらず常に的 確な検知が可能となり、侵入検知センサとしての信頼性を高めることができる。
[0013] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記 2 次元物体位置情報の時間的な変化に基づいて求められた前記物体の単位時間移 動距離が第 1所定値以上であって、かつ、前記 2次元物体位置情報の時間的な変化 が連続的であった場合に、前記検知エリア内に検知対象物体が存在していると判別 してもよい。さらに、前記 2次元物体位置情報の時間的な変化に基づいて得られる移 動速度が所定速度範囲内であることをこの判別条件に加えてもよい。 [0014] このような構成の侵入検知センサによれば、誤報をさらに抑制して侵入検知センサ としての信頼性を一層高めることができる。
[0015] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記検 知エリア内におけるこの侵入検知センサ正面を中心とする第 1所定幅の領域を前記 物体が横切ったと認められる場合に、前記検知エリア内に検知対象物体が存在して いると判別してもよい。なお、前記第 1所定幅は可変としてもよいし、この侵入検知セ ンサからの距離に応じて可変としてもよ!、。
[0016] このような構成の侵入検知センサによれば、この侵入検知センサに対向する方向と は直交する方向の動きについても的確な検知が可能となり、侵入検知センサとしての 信頼性を高めることができる。
[0017] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記検 知エリア内におけるこの侵入検知センサ正面を含む第 2所定幅の領域を前記物体が 横切り、かつ、前記物体がその後の所定時間以上もこの領域境界近傍に留まってい ると認められる場合に、前記検知エリア内に検知対象物体が存在していると判別して もよい。なお、前記第 2所定幅は可変としてもよい。
[0018] このような構成の侵入検知センサによれば、侵入者の典型的な挙動に基づいて検 知を行うことができるので、例えば、小動物などが偶発的に接近したことによる誤報な どを極力防止することが可能になる。
[0019] また、前記侵入検知センサにおいて、さらに、前記検知エリア内からの赤外線を受 け、周囲との温度差に基づいて前記検知エリア内の検知対象物体の存在を示す赤 外線検知信号を出力する受動型赤外線センサを備え、前記警告信号出力制御手段 は、この受動型赤外線センサの有効な赤外線検知領域の位置情報を記憶しており、 この情報および前記 2次元物体位置情報に基づいて前記検知対象物体が前記赤外 線検知領域の内部にあると認められる場合に、前記検知エリア内に検知対象物体が 存在して!/ヽると判別してもよ!/ヽ。
[0020] このような構成の侵入検知センサによれば、前記マイクロウエーブセンサの検知エリ ァと前記受動型赤外線センサの有効な赤外線検知領域とが完全には重なっていな いことによる誤報や失報を生じる可能性を極力抑えて、コンビネーションセンサとして の信頼性を高めることが可能となる。
[0021] あるいは、本発明の侵入検知センサは、検知エリアに向けてマイクロ波を送信し、こ の検知エリア内に存在する物体からの前記マイクロ波の反射波を受信して、その物 体までの距離に対応する距離情報を出力するとともに、その物体の方向情報を出力 するマイクロウエーブセンサと、このマイクロウエーブセンサから出力される前記距離 情報および前記方向情報によって得られる 2次元物体位置情報の時間的な変化に 基づ 、て前記物体の移動パターンを認識し、その移動パターンに基づ 、て前記検 知エリア内に検知対象物体が存在しているカゝ否かを判別する検知対象物体存在判 別手段と、この検知対象物体存在判別手段によって検知対象物体が存在していると 判別された場合に警告信号を出力するように制御する警告信号出力制御手段とを備 免ることことを特徴としてちょ 、。
[0022] ここで、前記マイクロウエーブセンサとしては、受信用に複数のアンテナを用いるモ ノパルス方式によってその物体の方向情報を出力するものが挙げられる。具体的に は、例えば、受信用にビームの一部が重なり合う複数のアンテナを用いる振幅比較 モノパルス方式によるものや、位相比較モノパルス方式によるものが挙げられる。な お、これらのモノパルス方式は、 1つのビーム位置における 1つのパルス(モノパルス) を処理するものである。
[0023] このような構成の侵入検知センサによれば、侵入者の移動方向および位置に関わ らず常に的確な検知が可能となり、反射波の時間的変動や妨害波による影響なども 受けにくぐ誤報や失報を極力回避して侵入検知センサとしての信頼性をさらに高め ることがでさる。
[0024] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記 2 次元物体位置情報の時間的な変化に基づいて求められる前記物体の単位時間移 動距離が第 1所定値以上であれば、前記検知エリア内に検知対象物体が存在して いると判別してもよい。
[0025] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記 2 次元物体位置情報の時間的な変化に基づいて求められた前記物体の単位時間移 動距離が第 1所定値以上であって、かつ、前記 2次元物体位置情報の時間的な変化 が連続的であった場合に、前記検知エリア内に検知対象物体が存在していると判別 してもよい。さらに、前記 2次元物体位置情報の時間的な変化に基づいて得られる移 動速度が所定速度範囲内であることをこの判別条件に加えてもよい。
[0026] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記検 知エリア内におけるこの侵入検知センサ正面を中心とする第 1所定幅の領域を前記 物体が横切ったと認められる場合に、前記検知エリア内に検知対象物体が存在して いると判別してもよい。なお、前記第 1所定幅は可変としてもよいし、この侵入検知セ ンサからの距離に応じて可変としてもよ!、。
[0027] また、前記侵入検知センサにお!、て、前記検知対象物体存在判別手段は、前記検 知エリア内におけるこの侵入検知センサ正面を含む第 2所定幅の領域を前記物体が 横切り、かつ、前記物体がその後の所定時間以上もこの領域境界近傍に留まってい ると認められる場合に、前記検知エリア内に検知対象物体が存在していると判別して もよい。なお、前記第 2所定幅は可変としてもよい。
[0028] また、前記侵入検知センサにおいて、さらに、前記検知エリア内からの赤外線を受 け、周囲との温度差に基づいて前記検知エリア内の検知対象物体の存在を示す赤 外線検知信号を出力する受動型赤外線センサを備え、前記警告信号出力制御手段 は、この受動型赤外線センサの有効な赤外線検知領域の位置情報を記憶しており、 この情報および前記 2次元物体位置情報に基づいて前記検知対象物体が前記赤外 線検知領域の内部にあると認められる場合に、前記検知エリア内に検知対象物体が 存在して!/ヽると判別してもよ!/ヽ。
発明の効果
[0029] 本発明の侵入検知センサによれば、侵入者の移動方向や位置に関わらず常に的 確な検知が可能となり、侵入検知センサとしての信頼性を高めることができる。
図面の簡単な説明
[0030] [図 1]図 1は本発明の第 1実施形態に係る侵入検知センサの概略構成を示すブロック 図である。
[図 2]図 2は本発明の第 1実施形態に係る侵入検知センサによって検知対象物体が 存在していることを判別する一の方法の説明図である。 圆 3]図 3 (a)および図 3 (b)は本発明の第 1実施形態に係る侵入検知センサによって 検知対象物体が存在していることを判別する別の方法の説明図であり、図 3 (a)はフ エンスの内側に侵入検知センサが設置された場合の上方カゝら見た位置関係を示し、 図 3 (b)は侵入者の位置の時間的な変化の例を示すグラフである。
圆 4]図 4 (a)および図 4 (b)は本発明の第 1実施形態に係る侵入検知センサによって 検知対象物体が存在していることを判別するさらに別の方法の説明図であり、図 4 (a
)は壁および窓の外側に侵入検知センサが設置された場合の上方から見た位置関 係を示し、図 4 (b)は侵入者の位置の時間的な変化の例を示すグラフである。
圆 5]図 5は本発明の第 1実施形態の変形例に係る侵入検知センサの検知エリアの 概略説明図である。
圆 6]図 6は本発明の第 2実施形態に係る侵入検知センサの概略構成を示すブロック 図である。
圆 7]図 7は本発明の第 2実施形態に係る侵入検知センサの検知エリアの概略説明 図である。
圆 8]図 8は本発明の第 3実施形態に係る侵入検知センサの概略構成を示すブロック 図である。
圆 9]図 9は本発明の第 3実施形態に係る侵入検知センサが備えるマイクロウエーブ センサの主要部の概略構成を示すブロック図である。
[図 10]図 10 (a)〜図 10 (c)は振幅比較モノパルス方式による角度誤差の検出原理 であり、図 10 (a)は 2個のアンテナのビームパターンを示すグラフ、図 10 (b)は和信 号および差信号を示すグラフ、図 10 (c)は角度誤差を示すグラフである。
[図 11]図 11は本発明の第 3実施形態の変形例に係る侵入検知センサのマイクロゥェ ーブセンサの受信側の概略構成を示すブロック図である。
符号の説明
100 侵入検知センサ (第 1実施形態)
110 フェイズドアレーアンテナ
111 アンテナ素子
112 移相制御回路 120 マイクロウエーブセンサ
130 ワンチップマイコン
131 走査測定部
132 検知対象物体存在判別部
133 警告信号出力制御部
100a 侵入検知センサ (第 1実施形態の変形例)
200 侵入検知センサ (第 2実施形態)
230 ワンチップマイコン
232 検知対象物体存在判別部
233 警告信号出力制御部
233 PIRセンサ
300 侵入検知センサ (第 3実施形態)
320 マイクロウエーブセンサ
330 ワンチップマイコン
332 検知対象物体存在判別部
333 警告信号出力制御部
発明を実施するための最良の形態
[0032] 以下、本発明の実施形態を、図面を参照して説明する。
[0033] <第 1実施形態 >
図 1は、本発明の第 1実施形態に係る侵入検知センサ 100の概略構成を示すプロ ック図である。
[0034] この図 1に示すように、侵入検知センサ 100は、マイクロ波の送受信方向を変更可 能なフェイズドアレーアンテナ 110と、このフェイズドアレーアンテナ 110を使用して 人体などの検知対象物体の検知を行うマイクロウエーブセンサ 120と、これらを制御 するワンチップマイコン 130とを備えている。
[0035] フェイズドアレーアンテナ 110は、同一方向を向けて等間隔に配置された複数のァ ンテナ素子 111と、これらのアンテナ素子 111間の信号伝達経路における移相量を 所定範囲内で制御する移相制御回路 112とを有している。なお、フェイズドアレーア ンテナ 110の指向性は狭くしておくことが望ましい。また、移相制御回路 112は、移 相量を連続的に変更することによりその送受信方向も連続的可変であるタイプとする
[0036] マイクロウエーブセンサ 120は、 2つの異なる周波数のマイクロ波を送受信するタイ プのもので、検知エリア内に対してフェイズドアレーアンテナ 110からマイクロ波を送 信する。送信されたマイクロ波は、検知エリア内に何らかの物体が存在すると反射さ れ、反射されたマイクロ波の一部はフェイズドアレーアンテナ 110の方向に戻って受 信される。そして、マイクロウエーブセンサ 120は、受信したそれぞれの反射波に基 づく 2つの IF信号の位相差を検出し、この位相差に基づいて検知物体距離信号を出 力するように構成されている。
[0037] ワンチップマイコン 130は、走査測定部 131と、検知対象物体存在判別部 132と、 警告信号出力制御部 133とを有している。なお、これらはワンチップマイコン 130の 組み込みソフトウェアによって実現されている力 実現方法はソフトウェアに限るもの ではない。
[0038] 走査測定部 131は、移相制御回路 112に対して移相量の制御を指示するとともに マイクロウエーブセンサ 120から出力される検知物体距離信号をモニターして検知物 体が存在する方向情報およびその検知物体までの距離情報を求める。これにより、 その検知物体の 2次元位置情報を、侵入検知センサ 100からの距離および方向で定 まる極座標系で得ることができる。
[0039] 検知対象物体存在判別部 132は、検知物体の 2次元位置情報を常時あるいは周 期的にモニターしており、その時間的な変化に基づいて検知物体の移動パターンを 認識し、その移動パターン力 検知エリア内に検知対象物体が存在して 、るか否か を判別する。認識可能なパターンについては、予め複数のパターンを準備しておき、 それらを自動的に切り換えられるようにしてもよい。あるいは、ワンチップマイコン 130 の入力ポートなどに接続した DIPスィッチなどを設けて、手動で切り換えられるように してもよい。なお、具体例については後述する。
[0040] 警告信号出力制御部 133の警告信号 Doutlの出力形式はオープンドレインある いはオープンコレクタとする。警告信号 Doutlの出力は、検知対象物体存在判別部 132が検知対象物体は存在して 、ると判別して 、るときに ONとなり、検知対象物体 が存在して ヽな 、と判別して 、るときにはオープンになるものとする。
[0041] 図 2は、侵入検知センサ 100によって検知対象物体が存在していることを判別する 一の方法の説明図である。
[0042] この図 2に示すように、例えば、ある時点における検知物体の位置 P1が侵入検知 センサ 100から距離 dl、方向角 Θ 1であり、所定時間経過後のその検知物体の位置 P2が侵入検知センサ 100から距離 d2、方向角 Θ 2である場合を考える。なお、方向 角の基準は侵入検知センサ 100の正面方向とし、向かって右側をプラス方向として おく。
[0043] このような場合の検知物体の所定時間内の移動距離 A dは次式によって算出する ことができる。
[0044] [数 1]
Figure imgf000012_0001
[0045] そして、この移動距離 Δ dを予め定めてぉ 、た所定閾値と比較し、移動距離 Δ dが その所定閾値以上であれば、検知エリア内に侵入者などの検知対象物体が存在し ていると判別する。このように、単位時間内に所定閾値以上移動した物体のみを侵入 者などの検知対象物体として判別することで、例えば、屋外の風で揺れている草木な どを誤って検知対象物体であると検知してしまうことを極力防止できる。
[0046] 以上のような構成および判別方法を採用することで、侵入者の移動方向に関わら ず常に的確な検知が可能となり、侵入検知センサとしての信頼性を高めることができ る。
[0047] なお、移動距離 A dだけでなぐ所定時間経過中における検知物体の位置の変化 が連続的であった力否かや、さらに、検知物体の位置の時間的変化に基づいて得ら れる (位置を時間で微分すればょ ヽ)移動速度が通常の侵入者として想定される所 定の速度範囲内である力否力も考慮に加えることで、誤報をさらに抑制して侵入検知 センサとしての信頼性を一層高めることができる。 [0048] 図 3 (a)および図 3 (b)は、侵入検知センサ 100によって検知対象物体が存在して いることを判別する別の方法の説明図であり、図 3 (a)はフェンス 11の内側に侵入検 知センサ 100が設置された場合の上方カゝら見た位置関係を示し、図 3 (b)は侵入者 1 0の位置の時間的な変化の例を示すグラフである。
[0049] 図 3 (a)に示すように、侵入検知センサ 100がフェンス 11などの内部を警戒対象と する場合には、侵入検知センサ 100の正面方向に形成される細長い楕円状の検知 エリア A100がフェンス 11の内側に沿うように設置される。
[0050] ここで、侵入検知センサ 100の正面方向を y軸、これに直交する方向を X軸、侵入 検知センサ 100前面の中心を両軸の原点とする直交座標系を定義し、上述のように 極座標系で得られた検知物体の 2次元位置情報は検知対象物体存在判別部 132で この直交座標系に変換されるものとしておく。
[0051] この場合に、フェンス 11の外側から内側への侵入者 10があると、どのような侵入経 路を迪るにせよ、検知エリア A100を横切ることになる。このような侵入者 10を検知す るには、検知物体の 2次元位置情報のうちの X座標のみの時間的変化に着目して判 別を行えばよい。
[0052] 具体的には、例えば、図 3 (b)に示すように、 X軸の原点を中心とする所定幅 W1の 範囲を設定し、この範囲を検知物体の X座標が所定時間内に通過したことが検出さ れたときに侵入者 10などの検知対象物体が存在していると判別すればよい。このこと は、図 3 (a)では、侵入検知センサ 100正面方向の所定幅 W1の領域 R1を侵入者 10 などが横切ったことに相当する。
[0053] なお、所定幅 W1については、ワンチップマイコン 130の入力ポートなどに接続した DIPスィッチなどにより可変としてもよい。
[0054] 以上のような構成および判別方法を採用することで、侵入検知センサ 100に対向 する方向とは直交する方向の動きについても的確な検知が可能となり、侵入検知セ ンサとしての信頼性を高めることができる。
[0055] 図 4 (a)および図 4 (b)は、侵入検知センサ 100によって検知対象物体が存在して いることを判別するさらに別の方法の説明図であり、図 4 (a)は壁 12および窓 13の外 側に侵入検知センサ 100が設置された場合の上方力も見た位置関係を示し、図 4 (b )は侵入者 10の位置の時間的な変化の例を示すグラフである。
[0056] 図 4 (a)に示すように、侵入検知センサ 100が壁 12および窓 13などの外部を警戒 対象とする場合には、侵入検知センサ 100の正面方向に形成される細長い楕円状 の検知エリア A100が壁 12および窓 13の外側を覆うように設置される。
[0057] ここでも、図 3 (a)および図 3 (b)の場合と同様に、侵入検知センサ 100の正面方向 を y軸、これに直交する方向を X軸、侵入検知センサ 100前面の中心を両軸の原点と する直交座標系を定義し、上述のように極座標系で得られた検知物体の 2次元位置 情報は検知対象物体存在判別部 132でこの直交座標系に変換されるものとしておく
[0058] この場合、侵入者 10の典型的な挙動としては、まず窓 13に近づき、何らかの方法 で窓 13をこじ開けて力も建物内部に侵入することが考えられるが、窓 13をこじ開ける ために必要な時間は侵入者 10がほぼ同じ位置に留まることになる。このため、図 3 (a )および図 3 (b)を参照して説明した判別方法では、検知エリア A100の設定位置な どによって、侵入者 10を的確に検知できない可能性がある。
[0059] そこで、例えば、図 4 (b)に示すように、 X軸の原点を含む所定幅 W2の範囲を設定 し (この範囲の中心は、侵入検知センサ 100正面よりも壁 12から離れる側に配置する )、この範囲を検知物体の X座標が所定時間内に通過した後、さらに一定時間 T1以 上、検知物体の X座標がこの範囲の上限近傍に留まっていることが検出されたときに 侵入者 10などの検知対象物体が存在していると判別すればよい。このことは、図 4 (a )では、侵入検知センサ 100正面方向の所定幅 W2の領域 R2 (その中心は侵入検知 センサ 100正面よりも壁 12から離れる側に配置)を侵入者 10などが横切った後、侵 入者 10が侵入検知センサ 100正面近傍または窓 13の前にしばらく留まっていること に相当する。
[0060] なお、所定幅 W2や侵入検知センサ 100正面中心からのずれ量などについては、 ワンチップマイコン 130の入力ポートなどに接続した DIPスィッチなどにより可変とし てもよい。
[0061] 以上のような構成および判別方法を採用することで、侵入者 10の典型的な挙動に 基づいて検知を行うことができるので、例えば、小動物などが偶発的に接近したこと による誤報などを極力防止することが可能になる。
[0062] <第 1実施形態の変形例 >
上述の図 3 (a)および図 3 (b)を参照して説明した判別方法では、侵入検知センサ 1 00正面方向の所定幅 W1の領域 R1を侵入者 10などが横切ったことを検出していた 。しかし、侵入検知センサ 100に広域エリアを持たせたり、フェイズドアレーアンテナ のアンテナ素子数が少な!/、場合には、検知エリア A100全体の幅が広がることになる
[0063] 上述の所定幅 W1もそれに応じて拡大すると、侵入検知センサ 100に極めて近い 部分では、実際の検知エリア A100の有効幅よりも所定幅 W1の方が大きくなる。この とき、例え侵入者 10がここを横切ったとしても、検知エリア A100外における検知物体 の 2次元位置情報は得られないため、結果として侵入者 10を検知できない失報が生 じてしまうことになる。
[0064] 力と言って、侵入検知センサ 100に極めて近い部分の検知エリア A100の幅に合 わせて所定幅 W1を小さくすると、侵入検知センサ 100から離れたところでは、検知ェ リア A100の有効幅よりも所定幅 W1の方が遙かに小さくなり、逆に誤報を生じやすく なる。
[0065] そこで、第 1実施形態の変形例に係る侵入検知センサ 100aの構成として、検知エリ ァ AlOOaの内部において侵入者 10を検知するために適切な幅を有する領域 R100 aを予め求めておき、侵入検知センサ 100aからの距離に応じたその領域 RlOOaの 幅を検知対象物体存在判別部 132に記憶させておく。例えば、図 5に示すように、 3 箇所程度の距離における領域 RlOOaの幅を記憶させ、中間距離では記憶されてい るこれらの幅に基づく補完演算など力も領域 RlOOaの幅を算出してもよい。また、も つと多くの距離における領域 RlOOaの幅を記憶させてもよい。
[0066] そして、検知物体の 2次元位置情報の時間的変化が、この領域 RlOOaを横切った ことを示した場合に、侵入者 10などの検知対象物体が存在していると判別すればよ い。
[0067] 以上のような構成および判別方法を採用することで、侵入者の移動方向および位 置に関わらず常に的確な検知が可能となり、誤報や失報を極力回避して侵入検知セ ンサとしての信頼性をさらに高めることができる。
[0068] <第 2実施形態 >
マイクロウエーブセンサと受動型赤外線センサ(以下「PIRセンサ」と記す)を組み合 わせていわゆる AND検知を行うコンビネーションセンサを構成する場合、これらのセ ンサの有効な検知エリアが完全には重なっていないことによる誤報や失報を生じる可 能性もあった。そこで、上述のようにマイクロウエーブセンサによる検知物体の 2次元 位置情報が得られることを利用して、このような誤報や失報が生じる可能性を極力抑 えた構成を第 2実施形態として以下で説明する。なお、上述の各実施形態と同じ構 成要素には同じ参照符号を付すこととし、説明は主として相違点について行う。
[0069] 図 6は、本発明の第 2実施形態に係る侵入検知センサ 200の概略構成を示すプロ ック図である。図 7は、この侵入検知センサ 200の検知エリア A200の概略説明図で ある。
[0070] 図 6に示すように、この侵入検知センサ 200は、第 1実施形態の各構成要素に加え て、検知エリア内からの赤外線を受け、周囲との温度差に基づいて検知対象物体の 有無を示す信号 (例えば、検知対象物体が存在するときはハイレベル、存在しないと きはローレベル)を出力する PIRセンサ 240を備えている。また、ワンチップマイコン 2 30では、警告信号出力制御部 233に PIRセンサ 240の出力が接続されており、警告 信号 Dout2の出力の制御に PIRセンサ 240の出力も考慮する点が異なっている。
[0071] さらに、検知対象物体存在判別部 232には、 PIRセンサ 240の有効な検知エリア A 240の領域情報が記憶されており、検知物体の 2次元位置情報がこの検知エリア A2 40の内部であることを示しているときに限って検知対象物体が存在していると判別す るようにしておく。
[0072] 警告信号出力制御部 233の警告信号 Dout2の出力は、検知対象物体存在判別 部 232が検知対象物体は存在していると判別しており、かつ、 PIRセンサ 240の出力 も検知対象物体が存在することを示すハイレベルであるときに、警告信号 Dout2の 出力を ONとする。
[0073] 以上のような構成によれば、マイクロウエーブセンサ 120の検知エリア A200と PIR センサ 240の検知エリア A240とが完全には重なっていないことによる誤報や失報を 生じる可能性を極力抑えて、コンビネーションセンサとしての信頼性を高めることが可 能となる。
[0074] <第 3実施形態 >
上述の各実施形態では、検知物体の方向を認識するためにフェイズドアレーアン テナを利用して 、るが、受信時刻の異なる複数のビーム位置の受信データを使用す るため、検知物体からのマイクロ波の反射強度が時間的に変動する場合に誤差が生 じたり、妨害波に対しても影響を受けやす 、という問題もあった。
[0075] そこで、検知物体の方向情報 (角度情報)を求める他の方法として、 1つのビーム位 置における 1つのパルス(モノパルス)を処理することで角度情報が得られるモノパル ス方式を採用したものを第 3実施形態として以下で説明する。なお、上述の各実施形 態と同じ構成要素には同じ参照符号を付すこととし、説明は主として相違点について 行う。
[0076] 図 8は、本発明の第 3実施形態に係る侵入検知センサ 300の概略構成を示すプロ ック図である。
[0077] この図 8に示すように、侵入検知センサ 300は、振幅比較モノパルス方式によって 検知物体の方向情報を求めて (測角)出力するとともに、上述の各実施形態と同様に 2つの異なる周波数のマイクロ波を送受信することでその検知物体までの距離情報を 出力することが可能なマイクロウエーブセンサ 320と、検知対象物体存在判別部 332 および警告信号出力制御部 333を有するワンチップマイコン 330とを備えている。
[0078] 検知対象物体存在判別部 332は、マイクロウエーブセンサ 320から出力される検知 物体の距離情報および方向情報を常時あるいは周期的にモニターすることで、その 検知物体の 2次元位置情報の時間的な変化に基づくその検知物体の移動パターン を認識し、その移動パターンから検知エリア内に侵入者などの検知対象物体が存在 している力否かを判別する。具体的には、上述の各実施形態と同様の判別を行えば よい。
[0079] 警告信号出力制御部 333の警告信号 Dout3の出力形式はオープンドレインある いはオープンコレクタとする。警告信号 Dout3の出力は、検知対象物体存在判別部 332が検知対象物体は存在していると判別しているときに ONとなり、検知対象物体 が存在して ヽな 、と判別して 、るときにはオープンになるものとする。
[0080] 図 9は、マイクロウエーブセンサ 320の主要部の概略構成を示すブロック図である。
[0081] この図 9に示すように、マイクロ波の受信用としては、アンテナビームの一部が互い に重なり合った 2個のアンテナ 321A、 321Bが 1組として用いられる。その後段には、 これらのアンテナ 321A、 321Bの出力を合成して和信号(∑ )および差信号( Δ )を 得るために、前置比較器 323が置かれる。この前置比較器 323の一方の出力には、 ミキサー 324Aおよび IFアンプ 326Aが順に接続されるとともに、前置比較器 323の 他方の出力には、ミキサー 324Bおよび IFアンプ 326Bが順に接続される。また、ミキ サー 324A、 324Bにはローカル発振器 325が接続される。
[0082] このような構成により、 IFアンプ 326A力 和信号(∑)が出力されるとともに、 IFアン プ 326B力も差信号(Δ )が出力され、これらの出力が演算手段 327に入力される。 演算手段 327はこれらの出力に基づいてアンテナ 321A、 321Bの正面方向力 の ずれ量 (角度誤差)を後述する原理に従って算出する。
[0083] 一方、マイクロ波の送信用としては、 1本のアンテナ 321Cと発信器 329とが変調器 328を介して接続されている。この変調器 328において、上述の各実施形態と同様 に 2つの異なる周波数のマイクロ波を送信するようにすれば、検知物体までの距離情 報を得ることができる。なお、距離情報を得るための方法としては、他にも FMCW(Fr equency Modulated Continuous Wave:周波数変調連続波)方式や、パルス方式など が挙げられる。
[0084] 図 10 (a)〜図 10 (c)は、振幅比較モノパルス方式による角度誤差の検出原理であ り、図 10 (a)は 2個のアンテナのビームパターンを示すグラフ、図 10 (b)は和信号お よび差信号を示すグラフ、図 10 (c)は角度誤差を示すグラフである。
[0085] 図 10 (a)のように、アンテナビームの一部が互いに重なり合った 2個のアンテナによ つて受信した信号力もは、図 10 (b)に示すような和信号(∑ )および差信号( Δ )が得 られる。そして、差信号( Δ )を和信号(∑ )で正規化、すなわち、「 Δ Z∑」の 演算を行うことにより、図 10 (c)のような S字状のグラフで表される角度誤差電圧 εを 求めることができる。なお、差信号(Δ )のみ力も角度誤差を求めようとすると、信号強 度が目標の大きさや距離によって変化するために正確な測定ができなくなるので、正 規ィ匕を行うことによってこのような問題を排除している。
[0086] 以上のような構成により、侵入者の移動方向および位置に関わらず常に的確な検 知が可能となり、反射波の時間的変動や妨害波による影響なども受けにくぐ誤報や 失報を極力回避して侵入検知センサとしての信頼性をさらに高めることができる。
[0087] <第 3実施形態の変形例 >
第 3実施形態のマイクロウエーブセンサ 320は振幅比較モノパルス方式を採用して いたが、代わりに位相比較モノパルス方式を採用してもよい。その場合には、マイクロ ウェーブセンサ 320の受信側の構成を以下のように変更する。
[0088] 図 11は、本発明の第 3実施形態の変形例に係る侵入検知センサのマイクロウエー ブセンサの受信側の概略構成を示すブロック図である。
[0089] この図 11に示すように、距離 dを隔てて配置されたアンテナ 421 A、 421Bの後段に 、和信号(∑)および差信号(Δ)を得るために前置比較器 423が置かれる。この前置 比較器 423から出力される和信号(∑)はそのまま演算手段 427に入力され、差信号 ( Δ)は位相変位手段 440を介して演算手段 427に入力される。演算手段 427はこれ らの入力に基づいて角度誤差 εを算出する。
[0090] ここで、アンテナ 421A、 421Bの出力をそれぞれ Α、 Βとし,おのおのの位相差を Ψ、とすると
Ψ=(2πάζ )/ λ
となる。なお、 ζは角度 α (アンテナの正面方向とは直交する方向と物体の方向のな す角度)の方向余弦 cos )、 λは送信波長である。
[0091] このとき、振幅比較モノパルス方式とほぼ同様に,前置比較器 423で Αと Βの和信 号(∑ )および差信号( Δ )が取られる。
[0092] ∑ =A+B = 2Acos(¥/2) -e"j¥ 2
Δ =A-B = 2jAsin(¥/2) -e"j¥ 2
そして、差信号( Δ)はその位相が位相変位手段 440によって 90度回転させられた 後に演算手段 427に入り、和信号(∑)で除されることにより(正規化されることにより)
、角度誤差 εが算出される。
[0093] この角度誤差 εは tan(¥/2)となり、アンテナビームの中央近傍ではほぼ Ψに比 例した値となる。したがって、この角度誤差 εによって、第 3実施形態で採用していた 振幅比較モノパルス方式と同様に、アンテナ正面方向からの目標のずれを検出する ことができる。
[0094] <その他の実施形態 >
第 1実施形態のフェイズドアレーアンテナ 110、マイクロウエーブセンサ 120、およ び走査測定部 131は、第 2実施形態ではマイクロウエーブセンサ 320に相当して 、る 。これらはいずれも、検知物体についての距離情報および方向情報力 なる 2次元 位置情報を出力することができるマイクロウエーブセンサと見ることもできる。
[0095] したがって、第 1実施形態およびその変形例、第 2実施形態などで説明した侵入者 などの判別方法は、第 3実施形態およびその変形例にも同様に適用が可能である。
[0096] 本発明は、その主旨または主要な特徴力も逸脱することなぐ他のいろいろな形で 実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず 、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであ つて、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属す る変形や変更は、全て本発明の範囲内のものである。
[0097] なお、この出願は、日本で 2005年 8月 4日に出願された特願 2005— 226855号 に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込 まれるものである。また、本明細書に引用された文献は、これに言及することにより、 その全部が具体的に組み込まれるものである。
産業上の利用可能性
[0098] 本発明は、検知エリア内への侵入者などを検出して警報を発する防犯センサなど に好適である。

Claims

請求の範囲
[1] 検知エリアに向けて周波数の異なる複数のマイクロ波を送信し、この検知エリア内 に存在する物体力 の前記マイクロ波それぞれの反射波を受信して、その物体まで の距離に対応する距離情報を出力するマイクロウエーブセンサと、
このマイクロウエーブセンサによる前記複数のマイクロ波の送受信方向を所定角度 範囲内で変更可能な方向可変アンテナ装置と、
この方向可変アンテナ装置に対して前記送受信方向の前記所定角度範囲内にわ たる走査を指示するとともにその走査中に前記距離情報を監視することにより、物体 が存在する方向情報とその物体までの距離情報とからなる 2次元物体位置情報を求 める走査測定手段と、
この走査測定手段によって求められる前記 2次元物体位置情報の時間的な変化に 基づ 、て前記物体の移動パターンを認識し、その移動パターンに基づ 、て前記検 知エリア内に検知対象物体が存在しているカゝ否かを判別する検知対象物体存在判 別手段と、
この検知対象物体存在判別手段によって検知対象物体が存在していると判別され た場合に警告信号を出力するように制御する警告信号出力制御手段とを備えること を特徴とする侵入検知センサ。
[2] 請求項 1に記載の侵入検知センサにおいて、
前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められる前記物体の単位時間移動距離が第 1所定値以上であれば、前 記検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入検 知センサ。
[3] 請求項 1に記載の侵入検知センサにおいて、
前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められた前記物体の単位時間移動距離が第 1所定値以上であって、か つ、前記 2次元物体位置情報の時間的な変化が連続的であった場合に、前記検知 エリア内に検知対象物体が存在していると判別することを特徴とする侵入検知センサ
[4] 請求項 1に記載の侵入検知センサにおいて、
前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められた前記物体の単位時間移動距離が第 1所定値以上であって、か つ、前記 2次元物体位置情報の時間的な変化が連続的であり、さらに、前記 2次元 物体位置情報の時間的な変化に基づいて得られる移動速度が所定速度範囲内で あった場合に、前記検知エリア内に検知対象物体が存在していると判別することを特 徴とする侵入検知センサ。
[5] 請求項 1に記載の侵入検知センサにおいて、
前記検知対象物体存在判別手段は、前記検知エリア内におけるこの侵入検知セン サ正面を中心とする第 1所定幅の領域を前記物体が横切ったと認められる場合に、 前記検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入 検知センサ。
[6] 請求項 5に記載の侵入検知センサにおいて、
前記第 1所定幅は可変であることを特徴とする侵入検知センサ。
[7] 請求項 5に記載の侵入検知センサにおいて、
前記第 1所定幅をこの侵入検知センサ力 の距離に応じて可変とすることを特徴と する侵入検知センサ。
[8] 請求項 1に記載の侵入検知センサにおいて、
前記検知対象物体存在判別手段は、前記検知エリア内におけるこの侵入検知セン サ正面を含む第 2所定幅の領域を前記物体が横切り、かつ、前記物体がその後の所 定時間以上もこの領域境界近傍に留まっていると認められる場合に、前記検知エリ ァ内に検知対象物体が存在していると判別することを特徴とする侵入検知センサ。
[9] 請求項 8に記載の侵入検知センサにおいて、
前記第 2所定幅は可変であることを特徴とする侵入検知センサ。
[10] 請求項 1に記載の侵入検知センサにぉ 、て、
さらに、前記検知エリア内からの赤外線を受け、周囲との温度差に基づいて前記検 知エリア内の検知対象物体の存在を示す赤外線検知信号を出力する受動型赤外線 センサを備え、 前記警告信号出力制御手段は、この受動型赤外線センサの有効な赤外線検知領 域の位置情報を記憶しており、この情報および前記 2次元物体位置情報に基づいて 前記検知対象物体が前記赤外線検知領域の内部にあると認められる場合に、前記 検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入検知 センサ。
[11] 請求項 1な 、し 10の 、ずれか 1項に記載の侵入検知センサにぉ ヽて、
前記方向可変アンテナ装置はフェイズドアレーアンテナであることを特徴とする侵 入検知センサ。
[12] 検知エリアに向けてマイクロ波を送信し、この検知エリア内に存在する物体からの前 記マイクロ波の反射波を受信して、その物体までの距離に対応する距離情報を出力 するとともに、その物体の方向情報を出力するマイクロウエーブセンサと、
このマイクロウエーブセンサから出力される前記距離情報および前記方向情報によ つて得られる 2次元物体位置情報の時間的な変化に基づいて前記物体の移動バタ ーンを認識し、その移動パターンに基づいて前記検知エリア内に検知対象物体が存 在している力否かを判別する検知対象物体存在判別手段と、
この検知対象物体存在判別手段によって検知対象物体が存在していると判別され た場合に警告信号を出力するように制御する警告信号出力制御手段とを備えること を特徴とする侵入検知センサ。
[13] 請求項 12に記載の侵入検知センサにおいて、
前記マイクロウエーブセンサは、受信用に複数のアンテナを用いるモノパルス方式 によってその物体の方向情報を出力することを特徴とする侵入検知センサ。
[14] 請求項 13に記載の侵入検知センサにおいて、
前記マイクロウエーブセンサは、受信用にビームの一部が重なり合う複数のアンテ ナを用いる振幅比較モノパルス方式によってその物体の方向情報を出力することを 特徴とする侵入検知センサ。
[15] 請求項 13に記載の侵入検知センサにお 、て、
前記マイクロウエーブセンサにおけるモノパルス方式は、位相比較モノパルス方式 であることを特徴とする侵入検知センサ。
[16] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、 前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められる前記物体の単位時間移動距離が第 1所定値以上であれば、前 記検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入検 知センサ。
[17] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、
前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められた前記物体の単位時間移動距離が第 1所定値以上であって、か つ、前記 2次元物体位置情報の時間的な変化が連続的であった場合に、前記検知 エリア内に検知対象物体が存在していると判別することを特徴とする侵入検知センサ
[18] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、
前記検知対象物体存在判別手段は、前記 2次元物体位置情報の時間的な変化に 基づいて求められた前記物体の単位時間移動距離が第 1所定値以上であって、か つ、前記 2次元物体位置情報の時間的な変化が連続的であり、さらに、前記 2次元 物体位置情報の時間的な変化に基づいて得られる移動速度が所定速度範囲内で あった場合に、前記検知エリア内に検知対象物体が存在していると判別することを特 徴とする侵入検知センサ。
[19] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、
前記検知対象物体存在判別手段は、前記検知エリア内におけるこの侵入検知セン サ正面を中心とする第 1所定幅の領域を前記物体が横切ったと認められる場合に、 前記検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入 検知センサ。
[20] 請求項 19に記載の侵入検知センサにお 、て、
前記第 1所定幅は可変であることを特徴とする侵入検知センサ。
[21] 請求項 19に記載の侵入検知センサにお 、て、
前記第 1所定幅をこの侵入検知センサ力 の距離に応じて可変とすることを特徴と する侵入検知センサ。
[22] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、 前記検知対象物体存在判別手段は、前記検知エリア内におけるこの侵入検知セン サ正面を含む第 2所定幅の領域を前記物体が横切り、かつ、前記物体がその後の所 定時間以上もこの領域境界近傍に留まっていると認められる場合に、前記検知エリ ァ内に検知対象物体が存在していると判別することを特徴とする侵入検知センサ。
[23] 請求項 22に記載の侵入検知センサにおいて、
前記第 2所定幅は可変であることを特徴とする侵入検知センサ。
[24] 請求項 12な!、し 15の!、ずれ力 1項に記載の侵入検知センサにぉ 、て、
さらに、前記検知エリア内からの赤外線を受け、周囲との温度差に基づいて前記検 知エリア内の検知対象物体の存在を示す赤外線検知信号を出力する受動型赤外線 センサを備え、
前記警告信号出力制御手段は、この受動型赤外線センサの有効な赤外線検知領 域の位置情報を記憶しており、この情報および前記 2次元物体位置情報に基づいて 前記検知対象物体が前記赤外線検知領域の内部にあると認められる場合に、前記 検知エリア内に検知対象物体が存在していると判別することを特徴とする侵入検知 センサ。
PCT/JP2006/315298 2005-08-04 2006-08-02 侵入検知センサ WO2007015515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005226855A JP3909370B2 (ja) 2005-08-04 2005-08-04 防犯センサ
JP2005-226855 2005-08-04

Publications (1)

Publication Number Publication Date
WO2007015515A1 true WO2007015515A1 (ja) 2007-02-08

Family

ID=37708795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315298 WO2007015515A1 (ja) 2005-08-04 2006-08-02 侵入検知センサ

Country Status (2)

Country Link
JP (1) JP3909370B2 (ja)
WO (1) WO2007015515A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271559A (ja) * 2006-03-31 2007-10-18 Secom Co Ltd 移動物体検知装置
JP2010530974A (ja) * 2007-06-22 2010-09-16 インテル・コーポレーション 感知可能な動き検出器
JP2019158796A (ja) * 2018-03-16 2019-09-19 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
CN115565320A (zh) * 2022-09-22 2023-01-03 山东大学 基于激光测距的空间物体侵入探测系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631018B2 (ja) * 2006-01-06 2011-02-16 オプテックス株式会社 組合せセンサシステム
KR101180296B1 (ko) 2011-06-09 2012-09-06 수원대학교산학협력단 센서네트워크 환경에서의 위험상황 인식 및 무태그 위치추적 시스템
JP6804474B2 (ja) * 2015-02-23 2020-12-23 チュシクフェサ ウィギカンリシステムCrisis Management System Sms通知サービスを利用した事前侵入感知システム、そして救助信号通報システム及び方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721477A (ja) * 1993-06-30 1995-01-24 Atsumi Electron Corp Ltd 監視カメラ
JPH0729076A (ja) * 1993-07-07 1995-01-31 Opt Kk 人体検知装置
JPH0950585A (ja) * 1995-08-07 1997-02-18 Hitachi Ltd 侵入者監視装置
JP2000338231A (ja) * 1999-05-31 2000-12-08 Mitsubishi Electric Corp 侵入者検知装置
JP2002310788A (ja) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd 熱線センサシステム
JP2003044859A (ja) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd 動き追跡装置及び人物追跡方法
JP2003187342A (ja) * 2001-12-19 2003-07-04 Hitachi Ltd セキュリティシステム
JP2003207462A (ja) * 2002-01-17 2003-07-25 Optex Co Ltd マイクロウエーブセンサ
JP2004085363A (ja) * 2002-08-27 2004-03-18 Omron Corp 侵入物体検出装置及びその設定装置、設定方法、並びにその設定確認方法
JP2004227111A (ja) * 2003-01-21 2004-08-12 Hitachi Ltd セキュリティシステム
JP2005295469A (ja) * 2004-04-06 2005-10-20 Hitachi Ltd 監視システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003478A (ja) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp 動態検知装置
JP2000338234A (ja) * 1999-05-27 2000-12-08 Japan Radio Co Ltd 監視システム
JP3521899B2 (ja) * 2000-12-06 2004-04-26 オムロン株式会社 侵入物検知方法および侵入物検知装置
JP2004340729A (ja) * 2003-05-15 2004-12-02 Hitachi Ltd 移動体検知レーダー装置
JP4448974B2 (ja) * 2004-02-04 2010-04-14 オプテックス株式会社 マイクロウエーブセンサ
JP2006171944A (ja) * 2004-12-14 2006-06-29 Optex Co Ltd 複合型防犯センサ
JP3793822B1 (ja) * 2005-01-07 2006-07-05 オプテックス株式会社 マイクロウエーブセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721477A (ja) * 1993-06-30 1995-01-24 Atsumi Electron Corp Ltd 監視カメラ
JPH0729076A (ja) * 1993-07-07 1995-01-31 Opt Kk 人体検知装置
JPH0950585A (ja) * 1995-08-07 1997-02-18 Hitachi Ltd 侵入者監視装置
JP2000338231A (ja) * 1999-05-31 2000-12-08 Mitsubishi Electric Corp 侵入者検知装置
JP2002310788A (ja) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd 熱線センサシステム
JP2003044859A (ja) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd 動き追跡装置及び人物追跡方法
JP2003187342A (ja) * 2001-12-19 2003-07-04 Hitachi Ltd セキュリティシステム
JP2003207462A (ja) * 2002-01-17 2003-07-25 Optex Co Ltd マイクロウエーブセンサ
JP2004085363A (ja) * 2002-08-27 2004-03-18 Omron Corp 侵入物体検出装置及びその設定装置、設定方法、並びにその設定確認方法
JP2004227111A (ja) * 2003-01-21 2004-08-12 Hitachi Ltd セキュリティシステム
JP2005295469A (ja) * 2004-04-06 2005-10-20 Hitachi Ltd 監視システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271559A (ja) * 2006-03-31 2007-10-18 Secom Co Ltd 移動物体検知装置
JP2010530974A (ja) * 2007-06-22 2010-09-16 インテル・コーポレーション 感知可能な動き検出器
JP2019158796A (ja) * 2018-03-16 2019-09-19 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
JP7067974B2 (ja) 2018-03-16 2022-05-16 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
CN115565320A (zh) * 2022-09-22 2023-01-03 山东大学 基于激光测距的空间物体侵入探测系统及方法

Also Published As

Publication number Publication date
JP3909370B2 (ja) 2007-04-25
JP2007040895A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP3903221B2 (ja) 防犯センサ
US20090051529A1 (en) Intrusion Detection Sensor
US6859164B2 (en) Detecting system
US7463182B1 (en) Radar apparatus
WO2007015515A1 (ja) 侵入検知センサ
US7154391B2 (en) Compact security sensor system
ES2396577T3 (es) Dispositivo sensor de doble tecnología con sensibilidad regulada por rangos
EP2023158A2 (en) Automotive forward looking sensor with identification of traversable stationary obstacles in the driving path
JP4920031B2 (ja) 侵入物体識別方法、侵入物体識別装置、及び侵入物体識別センサ装置
US20060267764A1 (en) Object detection sensor
US20030222809A1 (en) Millimeter wave radar monitoring system
JP2007071605A (ja) 防犯センサ
JP2009521681A (ja) マイクロ波検出システム及び方法
KR101579369B1 (ko) 침입 감지 시스템
JP4080435B2 (ja) 障害物検知装置及び検知方法
JP2013196018A (ja) マルチリフレクタを用いて干渉対策をしたfmcw対向センサシステム
US8199012B2 (en) Microwave curtain sensor
WO2006118041A1 (ja) マイクロウエーブセンサ
WO2017154623A1 (ja) 検知装置
JP2006023239A (ja) マイクロウエーブセンサ
JP4479268B2 (ja) 飛行体検出装置
JP2007048320A (ja) 防犯センサ
EP2357625A1 (en) Microwave curtain sensor
WO2022259306A1 (ja) 物体検出装置および物体検出方法
JP2002311154A (ja) マイクロウエーブセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 06782167

Country of ref document: EP

Kind code of ref document: A1