WO2007013622A1 - スピーカ装置 - Google Patents

スピーカ装置 Download PDF

Info

Publication number
WO2007013622A1
WO2007013622A1 PCT/JP2006/315048 JP2006315048W WO2007013622A1 WO 2007013622 A1 WO2007013622 A1 WO 2007013622A1 JP 2006315048 W JP2006315048 W JP 2006315048W WO 2007013622 A1 WO2007013622 A1 WO 2007013622A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
filter
processing unit
electric signal
characteristic
Prior art date
Application number
PCT/JP2006/315048
Other languages
English (en)
French (fr)
Inventor
Mitsukazu Kuze
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800278025A priority Critical patent/CN101233783B/zh
Priority to US11/997,267 priority patent/US8073149B2/en
Priority to EP06781958.1A priority patent/EP1912468B1/en
Publication of WO2007013622A1 publication Critical patent/WO2007013622A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • H04R3/08Circuits for transducers, loudspeakers or microphones for correcting frequency response of electromagnetic transducers

Definitions

  • the present invention relates to a speaker device, and more particularly to a speaker device that removes distortion generated from a speaker.
  • FIG. 28 is a block diagram showing a conventional speaker device 9 that adaptively updates the filter coefficient parameter.
  • a conventional speaker device 9 includes a control unit 91, a parameter detector 92, and a speaker 95.
  • the parameter detector 92 has an error circuit 93 and an update circuit 94.
  • the error circuit 93 includes a filter (not shown), and the signal force input from the control unit 91 in the filter also calculates a pseudo vibration characteristic. Then, the error circuit 93 predicts and calculates the drive voltage applied to the speaker 95 from the pseudo vibration characteristic. This predicted drive voltage is equivalent to the impedance characteristic when the speaker 95 is driven by current. Next, the error circuit 93 generates an error signal e (t) by subtracting the drive voltage applied to the actual speaker 95 from the predicted drive voltage. The error signal e (t) is input to the update circuit 94.
  • the update circuit 94 calculates a parameter in the control unit 91 to be updated based on the error signal e (t).
  • the parameter calculated in the update circuit 94 is reflected in the filter in the error circuit 93, and the error signal 93 generates the gradient signal Sg.
  • the gradient signal Sg generated in the error circuit 93 is output to the update circuit 94 again.
  • the update circuit 94 calculates a parameter that minimizes the error signal e (t), using the error signal e (t) and the gradient signal Sg.
  • the parameter when the error signal e (t) is minimized is output to the control unit 91 as a parameter vector P, and the parameter in the control unit 91 is updated.
  • the parameter is updated in the error circuit 93 and the update circuit 94 so that the parameter in the control unit 91 matches the parameter of the actual force 95. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-46393
  • the error circuit 93 and the update circuit 94 for updating the parameters described above require complicated and enormous operations.
  • the stiffness of the support system changes from moment to moment depending on the magnitude of the electrical signal input to the speaker.
  • the conventional speaker device 9 requires complicated and enormous calculations, so the above-mentioned support is required.
  • the conventional speaker device 9 has a problem that the effect of removing the distortion cannot be obtained sufficiently and lacks feasibility.
  • the conventional speaker device 9 has a problem that it lacks cost performance in order to realize enormous calculation processing.
  • a first aspect is a speaker device, which feeds an electrical signal to be input to a speaker based on a speaker and a preset filter coefficient so as to remove nonlinear distortion generated from the speaker.
  • a feed-forward processing unit that performs forward processing, and a feedback processing unit that detects vibration of the speaker and feedback-processes an electric signal related to the vibration with respect to the electric signal to be input to the speaker.
  • the electrical signal related to the vibration is fed back so that the nonlinear distortion generated from the speaker is removed and the frequency characteristic related to the vibration of the speaker becomes a predetermined frequency characteristic.
  • the feedback processing unit receives an electrical signal to be input to the speaker, and converts the frequency characteristic of the electrical signal into a predetermined frequency characteristic.
  • the difference between the filter, the sensor for detecting the vibration of the speaker, the electric signal indicating the predetermined frequency characteristic converted by the predetermined characteristic conversion filter, and the electric signal relating to the vibration detected by the sensor is obtained.
  • a first adder that outputs the difference electric signal as an error signal; and a second adder that adds the electric signal processed in the feedforward processing unit and the error signal and outputs the resultant signal to a speaker.
  • the filter coefficient in the feedforward processing unit is a coefficient based on a specific parameter of the speaker, and the feedforward processing unit cancels the nonlinear component of the parameter. It is characterized by processing the electrical signal to be input to the speaker.
  • the filter coefficient in the feedforward processing unit is a coefficient based on a parameter unique to the speaker, and the parameter is a parameter that changes according to the vibration displacement of the speaker. It is characterized by being.
  • the feedforward processing unit receives an electrical signal to be input to the speaker, and is generated from a spin force based on a preset filter coefficient.
  • the removal filter is characterized by referring to an electric signal indicating the vibration displacement generated by the linear filter.
  • a sixth aspect further includes an amplifying unit that is provided between the second adder and the speaker in the fifth aspect, and amplifies the gain of an electric signal to be input to the speaker.
  • the filter coefficient in the removal filter, the filter coefficient in the predetermined characteristic conversion filter, and the filter coefficient in the linear filter are filter coefficients obtained by multiplying the amplification unit by the inverse of the gain to be amplified.
  • the electrical signal detected by the sensor is an electrical signal indicating vibration displacement of the speaker
  • the feedforward processing unit is configured to detect vibration detected by the sensor. It is characterized by referring to an electric signal indicating the displacement.
  • An eighth aspect is the characteristic relating to vibrations provided in the preceding stage of the feedforward processing unit in the second aspect, wherein an electrical signal to be input to the speaker is input, and the speaker has a predetermined frequency characteristic.
  • a pre-filter for processing based on the filter coefficient obtained by dividing by.
  • the feedback processing unit receives an electric signal to be input to the speaker, and converts the frequency characteristic of the electric signal into a predetermined frequency characteristic.
  • the characteristic conversion filter, the sensor for detecting the vibration of the speaker, the electric signal indicating the predetermined frequency characteristic converted by the predetermined characteristic conversion filter and the electric signal related to the vibration detected by the sensor A first adder that outputs the difference electric signal as an error signal; and a second adder that adds the input electric signal and the error signal and outputs the resultant signal to the feedforward processing unit.
  • the forward processing unit feeds the electrical signal output from the second adder to the feedforward so as to remove the non-linear distortion generated from the speech force. Processing and outputs to the speaker.
  • the thirteenth aspect is provided between the second adder and the feedforward processing unit, and the gain of the electric signal to be input to the speaker is equal to or lower than the first frequency.
  • the filter further includes a first filter having a filter coefficient exhibiting a characteristic that slopes at 6 dBZoct in the first frequency band, and the first frequency is equal to or higher than the gain crossover frequency indicated by the open-loop transfer characteristic of the feedback loop formed by the feedback processing unit. It is a frequency.
  • the fourteenth aspect is provided before the feedforward processing unit, and the gain of the electric signal to be input to the speaker is 6 dBZoct or more in a frequency band equal to or lower than the second frequency.
  • the filter further includes a second filter having a filter coefficient that exhibits a sloped characteristic, and the second frequency is equal to or higher than the gain crossover frequency indicated by the open loop transfer characteristic of the feedback loop formed by the feedback processing unit.
  • the fifteenth aspect is provided between the second adder and the feedforward processing unit, and the gain of the electric signal to be input to the speaker is equal to or higher than the first frequency.
  • a first filter having a filter coefficient showing a characteristic that tilts with a slope of 6 dBZoct or less in the lower frequency band and a front stage of the feedforward processing unit, the gain of the electric signal to be input to the speaker is the second
  • a second filter having a filter coefficient exhibiting a characteristic that inclines with a slope of 6 dB Zoct or more in a frequency band below the frequency, and the first and second frequencies are the feedback loop formed by the feedback processing unit. It is characterized by a frequency that is equal to or higher than the gain crossover frequency indicated by the open-loop transfer characteristics.
  • the filter coefficient in the feedforward processing unit is a coefficient based on a parameter unique to the speaker, and the parameter changes according to the vibration displacement of the speaker force. It is a parameter.
  • the nineteenth aspect further includes an amplifying unit that is provided between the feedforward processing unit and the speaker and amplifies the gain of the electric signal to be input to the speaker.
  • the filter coefficient in the removal filter, the filter coefficient in the predetermined characteristic conversion filter, and the filter coefficient in the linear filter are filter coefficients multiplied by the inverse of the gain amplified in the amplification unit.
  • an electrical signal to be input to the spin force is input, and the speaker has a predetermined frequency characteristic.
  • a pre-filter that performs processing based on the filter coefficient obtained by dividing by the characteristic related to
  • the twelfth aspect further includes an amplifying unit that is provided between the feedforward processing unit and the speaker, and amplifies the gain of the electric signal to be input to the speaker.
  • the filter coefficient in the feedforward processing unit and the filter coefficient in the predetermined characteristic conversion filter are the filter coefficients multiplied by the reciprocal of the gain amplified by the amplification unit.
  • a twenty-fourth aspect is an integrated circuit that removes nonlinear distortion generated from a speaker from an electric signal to be input based on a preset filter coefficient based on a preset filter coefficient.
  • a feedforward processing unit that performs feedforward processing
  • a feedback processing unit that detects vibration of the speaker and feedback-processes an electric signal related to the vibration with respect to the electric signal to be input to the speaker.
  • the unit feedback-processes the electrical signal related to the vibration so as to remove the non-linear distortion generated from the speaker and so that the frequency characteristic corresponding to the vibration of the speaker becomes a predetermined frequency characteristic.
  • the feedback processing can remove distortion that is robust against changes in stiffness of the support system of the speaker, for example. That is, according to this aspect, the feedforward processing unit performs processing based on preset filter coefficients, and the feedback processing unit performs processing for updating speaker parameters by removing the robust distortion. It is possible to provide a speaker device that can perform distortion removal processing that is more stable and highly feasible. Further, according to this aspect, the feedback processing is performed to The frequency characteristic to be performed can be brought close to a predetermined frequency characteristic.
  • most nonlinear distortion can be removed by feedforward processing based on preset filter coefficients, and feedback processing based on error signals can be used, for example, in a speaker.
  • Robust distortion removal can be performed against aging of support system stiffness.
  • the frequency characteristic related to the vibration of the speaker can be brought close to the predetermined frequency characteristic by the predetermined characteristic conversion filter.
  • the feedforward processing unit is arranged in the feedback loop, the distortion removal effect can be exhibited even in a lower frequency band even when the amplitude of the speaker is increased. .
  • the distortion removal effect can be exhibited up to a lower frequency band. Furthermore, since the electrical signal below the gain crossover frequency is not input by the second filter, distortion caused by the input of the electrical signal below the gain crossover frequency can be removed in advance, and a higher distortion removal effect can be obtained. Obtainable.
  • FIG. 1 is a block diagram showing a configuration example of the speaker device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of a general speaker 16.
  • FIG. 3 is a diagram showing an example of a characteristic of a force coefficient B1 with respect to a vibration displacement X near the magnetic gap 165.
  • FIG. 4 is a diagram showing an example of the characteristic of the stiffness K of the support system with respect to the vibration displacement X.
  • FIG. 5 is a diagram showing a change in stiffness K characteristics with respect to an input signal I (t).
  • FIG. 6 is a diagram showing desired output characteristics set as filter coefficients of the ideal filter 12.
  • FIG. 7 shows the case where the nonlinear component removal filter 10 refers to the output signal of the sensor 17.
  • 2 is a block diagram showing a configuration example of a speaker device 1.
  • FIG. 8 is a block diagram showing a configuration example of the speaker device 2 according to the second embodiment.
  • FIG. 9 is a block diagram showing a configuration example in which the input of the linear filter 11 shown in FIG. 8 is changed.
  • FIG. 10 is a block diagram showing a configuration example of the speaker device 2 when the nonlinear component removal filter 10 refers to the output signal of the sensor 17.
  • FIG. 11 is a block diagram showing a configuration example of a speaker device 3 according to a third embodiment.
  • FIG. 12 is a diagram showing gain characteristics and phase characteristics of the speaker device 3.
  • FIG. 13 is a diagram showing a configuration used for analyzing frequency characteristics of the speaker device 2 shown in FIG.
  • FIG. 14 is a diagram showing gain characteristics, second-order distortion characteristics, and third-order distortion characteristics when the magnitude of input to the speaker 16 in FIG. 13 is changed.
  • FIG. 15 is a block diagram showing a configuration example in which a compensation filter 21 is added to the speaker device 3 shown in FIG. 11.
  • FIG. 16 is a diagram showing frequency characteristics of the transfer function shown in Expression (18).
  • FIG. 17 is a block diagram showing a configuration example in which a high-pass filter 22 is attached to the speaker device 3 shown in FIG. 11.
  • FIG. 18 is a block diagram showing a configuration example in which a compensation filter 21 and a high-pass filter 22 are attached to the speaker device 3 shown in FIG. 11.
  • FIG. 19 is a diagram showing the analysis results when the input is 20 W and 40 W, respectively.
  • FIG. 20 is a diagram showing a feedback loop of the speaker device 2 shown in FIG.
  • FIG. 21 is a diagram showing step inputs and responses in the feedback loop shown in FIG.
  • Figure 22 shows the step input and its response in the feedback loop shown in Figure 20.
  • FIG. 23 is a diagram showing step inputs and responses in the feedback loop shown in FIG.
  • FIG. 24 is a block diagram showing a configuration example of a speaker device 4 according to a fourth embodiment.
  • FIG. 25 is a diagram comparing frequency characteristics with and without scaling processing.
  • FIG. 26 is a diagram showing a configuration example in which the volume of the power amplifier 23 is linked to each component.
  • FIG. 27 is a block diagram showing an example of a configuration in which limiter 24 is provided in speaker device 1 shown in FIG.
  • FIG. 28 is a block diagram showing a conventional speaker device 9.
  • FIG. 1 is a block diagram illustrating a configuration example of the speaker device 1 according to the first embodiment.
  • the speaker device 1 includes a nonlinear component removal filter 10, a linear filter 11, an ideal filter 12, adders 13 and 14, a feedback control filter 15, a speaker 16, and a sensor 17.
  • FIG. 2 is a cross-sectional view of a general speaker 16.
  • the speaker 16 includes a voice coil 161, a diaphragm 162, a magnet 163, a magnetic circuit 164, a damper 166, and an edge 167.
  • the magnetic gap 165 is formed in the magnetic circuit 164 shown in FIG.
  • the voice coil 161 and the diaphragm 162 vibrate in the direction of the vibration displacement X-axis in accordance with the left hand rule of framing by the magnetic flux density B in the magnetic gap 165 and the current flowing through the voice coil 161.
  • the diaphragm 162 is supported by the damper 166 and the edge 167, so that it stably vibrates in the vibration displacement X-axis direction and emits sound.
  • the speaker 16 shown in FIG. 2 is an example, and the present invention is not limited to this.
  • it may be a magnetic-shield type speaker including a cancel magnet, or may be a speaker constituting an inner-magnet type magnetic circuit.
  • the position where the vibration displacement X is 0 indicates the center position where the voice coil 161 and the diaphragm 162 vibrate, and corresponds to the origin where the vibration displacement X shown in FIGS. To do.
  • the first factor relates to the magnetic flux density B generated in the magnetic gap 165.
  • Figure 3 shows an example of the characteristics of the force coefficient B1 with respect to the vibration displacement X near the magnetic gap 165. is there.
  • the magnetic flux density B is substantially constant.
  • the magnetic flux density B is substantially constant.
  • the amplitude of the voice coil 161 is large, that is, when the absolute value of the vibration displacement X is large, the magnetic flux density B rapidly decreases.
  • the characteristic of stiffness K changes according to the level of I (t). It does not become a constant curve.
  • the damper 166 and the edge 167 are made of a material such as cloth, the characteristics of the stiffness K shown in FIG. 4 also change depending on the aging of the material and the creep phenomenon. Due to these factors, the vibration displacement X is not proportional to the level of the input signal I (t), and nonlinear distortion is generated from the speaker 16.
  • the third factor relates to the electrical impedance characteristics of the voice coil 161.
  • a magnetic material such as iron having a high magnetic permeability is used for the magnetic circuit of the speaker.
  • the inductance component of the voice coil 161 changes depending on the amplitude.
  • the voice coil 161 generates heat when an electric signal is input.
  • the resistance component of the voice coil 161 changes with time. Due to these factors, the current flowing through the voice coil 161 is distorted, and nonlinear distortion is generated from the speaker 16. Non-linear distortion occurs in the speaker 16 due to the above three main factors.
  • Equation (2) the stiffness of the support system is K, the mechanical resistance of the speaker 16 is r, the electrical impedance of the voice coil 161 is Ze, and the mass of the vibration system is m.
  • the feedforward processing by the non-linear component removal filter 10 and the linear filter 11, the ideal filter 12, the sensor 17, the adder 14, the feedback control filter 15, and the addition are roughly performed.
  • the feedback processing by the device 13 is performed.
  • the nonlinear component removal filter 10 and the linear filter 11 correspond to the feedforward processing unit of the present invention.
  • the ideal filter 12, the sensor 17, the adder 14, the feedback control filter 15, and the adder 13 correspond to the feedback processing of the present invention.
  • the electric signal is input as an input signal to the nonlinear component removal filter 10, the linear filter 11, and the ideal filter 12, respectively.
  • the processing of the ideal filter 12 will be described later.
  • the nonlinear component removal filter 10 is a model based on a predetermined filter coefficient obtained by referring to the vibration displacement X (t) at the time of the pseudo linear operation generated by the linear filter 11.
  • the input signal is processed so as to cancel the nonlinear component of the normalized parameter.
  • the signal processed in the non-linear formation removal filter 10 is output to the adder 13.
  • predetermined filter coefficients set in the nonlinear component removal filter 10 will be described.
  • the operational formula of the speaker 16 is as shown in the above formula (8). From the above equation (8), the equation that does not include the nonlinear components (Blx and Kx) of the parameter, that is, the equation for linear operation that does not generate nonlinear distortion, is the following equation (9).
  • equation (10) is subtracted from equation (8), an equation with the nonlinear component removed can be obtained as in equation (11).
  • equation (11) Kx * x (t) + [(2 * A0 * Ax + A0 2 ) / Ze] * dx (t) / dt (11) where the right side of equation (11) is If equal to the right side of a certain equation (8), equation (11) can be expressed as equation (12).
  • Equation (13) (K0 + Kx) * x (t) + [r + (A0 + Ax) 2 / Ze] * dx (t) / dt + m * d 2 x (t) / dt 2 (12) If the left side of (12) is arranged, the following equation (13) is obtained.
  • the left side of equation (13) is a filter coefficient for canceling the nonlinear component of the parameter.
  • the parameters AO and Ax related to the force coefficient B1, the parameters KO and Kx related to the stiffness K, and the electrical impedance Ze are inherent parameters of the connected speaker 16, and nonlinear component removal is performed.
  • This is a preset parameter that constitutes the filter coefficient of filter 10.
  • the value of the vibration displacement x (t) is also necessary as a parameter necessary for the filter coefficient of the nonlinear component removal filter 10. This vibration displacement x (t) is generated by a linear filter 11 to be described next!
  • the linear filter 11 generates a vibration displacement x (t) when it is assumed that the speech force 16 performs a linear operation from the input signal based on a preset filter coefficient. That is, the linear filter 11 generates a vibration displacement x (t) during pseudo linear operation.
  • the operational equation for the linear operation of the speaker 16 is as shown in Equation (9). Therefore, formula (9) is Laplace When the transfer function is obtained by conversion, equation (14) is obtained.
  • the right side of equation (14) is the filter coefficient of the linear filter 11.
  • X (s) is the transfer function of the vibration displacement x (t)
  • E (s) is the transfer function of the voltage of the input signal.
  • the feed force processing by the nonlinear component removal filter 10 and the linear filter 11 allows the modeled force coefficient Bl (x) and stiffness K (x) to be Non-linear components are canceled out. Thereby, non-linear distortion caused by the nonlinear component can be removed.
  • This feed-forward process cancels the non-linear component so that the speaker 16 operates linearly. Since the nonlinear component removal filter 10 refers to the vibration displacement x (t) during the linear operation of the speaker 16, a more efficient distortion removal effect can be obtained.
  • the ideal filter 12 uses the transfer function F (s) of the desired output characteristic as a filter when the characteristic corresponding to the vibration of the speaker 16 (hereinafter referred to as the output characteristic) is set to the desired output characteristic. It is a filter used as a coefficient.
  • the ideal filter 12 is a filter that converts the frequency characteristic of the input signal into a desired output characteristic.
  • a signal converted into a desired output characteristic is defined as a desired characteristic signal f (t).
  • the desired characteristic signal f (t) is output to the adder 14.
  • the output characteristics of the speaker 16 include various characteristics such as vibration displacement characteristics, speed characteristics, and acceleration characteristics (sound pressure characteristics). For example, as shown in FIG.
  • FIG. 6 is a diagram showing desired output characteristics set as filter coefficients of the ideal filter 12.
  • the transfer function F (s) of the characteristic shown in B is used as the ideal filter. Set it as 12 filter coefficients.
  • the sensor 17 detects the vibration of the speaker 16 and outputs a detection signal y (t) having the output characteristics of the speaker 16.
  • the detection signal y (t) output from the sensor 17 is appropriately amplified and output to the adder 14.
  • the sensor 17 may be a microphone, laser displacement meter, For example, a speed pickup.
  • the type of the signal characteristic output to the adder 14 is the same type as the output characteristic having the desired characteristic signal f (t) force S described above. That is, in the ideal filter 12, when the output characteristic of the desired characteristic signal f (t) is, for example, the vibration displacement characteristic of the speaker 16, the signal output to the adder 14 is used as the vibration displacement characteristic signal.
  • the senor 17 may be a sensor that detects the vibration of the speaker 16 and outputs the vibration displacement.
  • a sensor that outputs the speed characteristics and acceleration characteristics of the speaker 16 is used as the sensor 17, a differential circuit and an integration circuit are appropriately provided between the sensor 17 and the adder 14, and the signal output to the adder 14 The type of characteristic may be converted into a vibration displacement characteristic.
  • the sound pressure frequency characteristic of the speaker is a characteristic proportional to the acceleration characteristic. Therefore, the characteristic of the desired characteristic signal f (t) output from the ideal filter 12 indicates the acceleration characteristic of the speaker 16, and the characteristic of the signal output from the sensor 17 is that the sensor 17 is an acceleration pickup. When exhibiting acceleration characteristics, the distortion removal effect is the highest.
  • the type of characteristic of the detection signal y (t) output from the sensor 17 is the same as the output characteristic of the desired characteristic signal f (t) force S output from the ideal filter 12 Assume type. In other words, consider the case where there is no need to provide a differentiation circuit or an integration circuit between the sensor 17 and the adder 14.
  • the adder 14 subtracts the detection signal y (t) output from the sensor 17 from the desired characteristic signal f (t) force output from the ideal filter 12, and the subtracted signal (f (t) — y (t)) is output to the feedback control filter 15 as an error signal e (t).
  • the error signal e (t) is appropriately adjusted in gain or the like in the feedback control filter 15 and fed back to the adder 13. Then, in the adder 13, the output signal of the nonlinear component removal filter 10 and the error signal e (t) output from the feedback control filter 15 are added and output to the speaker 16.
  • the feedback control filter 15 is basically a filter that adjusts the gain, that is, an amplifier, and the distortion removal effect increases as the gain increases.
  • the stiffness K of the support system changes over time.
  • the stiffness K characteristic also changes depending on the input size.
  • the output characteristics of the speaker 16 also change.
  • the sensor 17 has this changed speaker 1. 6 is detected, and the error signal e (t) described above is a difference signal between the detection signal y (t) output from the sensor 17 and the desired characteristic signal r (t). Therefore, the secular change of the stiffness K and the characteristic change due to the input size are reflected in the error signal e (t). Then, the error signal e (t) is fed back to the calorie calculator 13 via the feedback control filter 15, so that the characteristic change due to the secular change of the stiffness K and the input size is canceled.
  • the feedback process in the ideal filter 12, the sensor 17, the adder 14, the feedback control filter 15, and the adder 13 changes the characteristic of the support system due to the secular change and the input size.
  • robust distortion removal processing can be performed.
  • the error signal e (t) includes a change in the electrical impedance characteristic of the voice coil 161 (particularly a change due to heat generation), which is the cause of the third nonlinear distortion described above. . Therefore, the non-linear distortion due to the change can also be removed by the feedback process.
  • the ideal filter 12 uses the signal f (t) having a desired output characteristic (transfer function F (s)).
  • the error signal e (t) is subjected to feedback processing, whereby the actual output characteristics of the speaker 16 can be brought close to the desired output characteristics.
  • the nonlinear distortion of most speakers can be removed by the feedforward process, and the secular change of the stiffness of the support system can be reduced by the feedback process.
  • Robust distortion removal processing can be performed against characteristic changes due to input size.
  • the feedback control filter 15 described above may have a characteristic such as a low-pass filter in addition to gain adjustment alone.
  • the mid-high frequency characteristics of the speaker 16 may be greatly disturbed, and if the error signal e (t) is fed back as it is, oscillation may occur.
  • the characteristics of the low-pass filter in the feedback control filter 15 are Oscillation can be prevented by cutting the middle and high frequency components.
  • the feedback control filter 15 may be omitted if there is no possibility of oscillation due to the error signal e (t) and there is no need for gain adjustment.
  • the nonlinear distortion caused by the force coefficient B1 and the stiffness K of the support system is obtained by using the filter coefficient shown in the equation (13) derived from the equation (8).
  • the present invention is not limited to this.
  • the above-mentioned electric impedance characteristic Ze of voice coil 161 is reflected as a function Ze (x) of vibration displacement X, and the filter coefficient that takes into account the electric impedance characteristic Ze is set from equation (14). May be.
  • FIG. 7 is a block diagram illustrating a configuration example of the speaker device 1 when the nonlinear component removal filter 10 refers to the output signal of the sensor 17.
  • the sensor 17 since the signal referred to by the nonlinear component removal filter 10 is the vibration displacement x (t), the sensor 17 only needs to detect the vibration displacement characteristic of the speaker 16. Further, even if the signal detected by the sensor 17 itself is a speed characteristic or an acceleration characteristic, it is possible to obtain a vibration displacement characteristic by appropriately using a differential circuit and an integration circuit.
  • FIG. 8 is a block diagram illustrating a configuration example of the speaker device 2 according to the second embodiment.
  • the speaker device 2 includes a nonlinear component removal filter 10, a linear filter 11, an ideal filter 12, an adder 13, an adder 14, a feedback control filter 15, a speaker 16, a sensor 17, and a pre-stage filter 20.
  • the speaker device 2 is different from the above-described speaker device 1 shown in FIG. 1 in that a pre-stage filter 20 is newly provided.
  • a pre-stage filter 20 is newly provided.
  • nonlinear component removal filter 10 the linear filter 11, the ideal filter 12, the adder 13, the adder 14, the feedback control filter 15, the speaker 16, and the sensor 17 have the same configurations as those described in the first embodiment. Since it is the same, the same code
  • the upstream filter 20 is an upstream of the nonlinear component removal filter 10 and the linear filter 11 and processes the input signal based on a predetermined filter coefficient with the electrical signal as an input signal.
  • the signal processed in the pre-filter 20 is input to the nonlinear component removal filter 10 and the linear filter 11, respectively.
  • the filter coefficient of the pre-stage filter 20 is the transfer function F (s) of the desired output characteristic, which is the filter coefficient of the ideal filter 12, and the transfer function P of the output characteristic during the linear operation of the actual speaker 16 P F (s) ZP (s) divided by (s).
  • the output characteristic of the transfer function P (s) is the same as the type of desired output characteristic in the ideal filter 12. That is, as described in the first embodiment, for example, when the transfer function F (s) is based on the vibration displacement characteristics of the speaker 16, the transfer function P (s) is also used when the force 16 linearly operates.
  • the transfer function of the input signal voltage input to the pre-stage filter 20 is defined as E (s).
  • the output signal of the pre-stage filter 20 is E (s) * F (s) ZP (s).
  • the transfer function P (s) of the speaker 16 is multiplied, so that the output characteristic of the speaker 16 is finally E (s) * F (s). That is, the output characteristic of the speaker 16 converges to the target characteristic F (s).
  • the transfer function of the detection signal y (t) output from the sensor 17 is E (s) * F (s).
  • An input signal that becomes a transfer function E (s) is input to the ideal filter 12.
  • the filter coefficient of the ideal filter 12 is F (s)
  • the transfer function of the output signal f (t) of the ideal filter 12 is E (s) * F (s).
  • the adder 14 subtracts the detection signal y (t) force S from the output signal f (t) from the ideal filter 12.
  • the transfer functions of the output signal f (t) and the detection signal y (t) are both equal to E (s) * F (s), and the error signal e (t) is zero.
  • the output characteristics of the speaker 16 become F (s). Although the characteristics are close to each other, they do not converge to the desired characteristic F (s) regardless of the fluctuation of the transfer function of the speaker 16.
  • the pre-stage filter 20 by providing the pre-stage filter 20, at least when the transfer function of the speaker does not fluctuate, it converges to F (s). That is, the pre-stage filter 20 plays a role of improving the convergence of the speaker 16 to a desired output characteristic.
  • the convergence to the desired output characteristic can be made extremely high by providing the pre-stage filter 20. It is out.
  • the force coefficient B1 and the supporting coefficient are obtained by using the filter coefficient shown in Equation (13) from which Equation (8) force is derived. Force to remove nonlinear distortion caused by system stiffness K is not limited to this.
  • the electrical impedance characteristic Ze of the voice coil 161 described above is reflected as a function Ze (x) of the vibration displacement X, and the filter coefficient considering the electrical impedance characteristic Ze is set from formula (14). You can do it.
  • FIG. 9 is a block diagram showing a configuration example in which the input of the linear filter 11 shown in FIG. 8 is changed.
  • FIG. 10 is a block diagram illustrating a configuration example of the force device 2 when the nonlinear component removal filter 10 refers to the output signal of the sensor 17.
  • the signal referred to by the nonlinear component removal filter 10 is the vibration displacement x (t)
  • the sensor 17 only needs to detect the vibration displacement characteristics of the speaker 16. Further, even if the signal detected by the sensor 17 itself is a speed characteristic and an acceleration characteristic, it is possible to obtain a vibration displacement characteristic by appropriately using a differentiation circuit and an integration circuit.
  • FIG. 11 is a block diagram illustrating a configuration example of the speaker device 3 according to the third embodiment.
  • the speaker device 3 includes a nonlinear component removal filter 10 and an ideal filter. 12, an adder 13, an adder 14, a feedback control filter 15, a speaker 16, a sensor 17, and a pre-stage filter 20.
  • the speaker device 3 according to this embodiment is different from the speaker devices 1 and 2 shown in FIGS. 1 and 7 to 10 in that a nonlinear component removal filter 10 is disposed between the adder 13 and the speaker 16.
  • this is a speaker device that can extend the frequency band where the distortion removal effect can be obtained by this different point to a low frequency range.
  • FIG. 11 shows a configuration example in which the arrangement position of the nonlinear component removal filter 10 is changed as the speaker device 3 with respect to the speaker device 2 shown in FIG.
  • the signs related to the inputs and outputs of the adders 13 and 14 are different from those shown in FIG. 10. However, the operation and effect are the same regardless of the sign as long as the phase relationship is the same.
  • the nonlinear component removal filter 10, the ideal filter 12, the adder 13, the adder 14, the feedback control filter 15, the speech force 16, the sensor 17, and the pre-stage filter 20 are each described in the first and second embodiments. Since it is the same as that of a structure, the same code
  • the nonlinear component removal filter 10 is arranged between the adder 13 and the speaker 16. That is, the non-linear component removal filter 10 is arranged in a feedback loop formed by the sensor 17, the adder 14, the feedback control filter 15, the adder 13, and the speaker 16. In this case, a combination of the nonlinear component removal filter 10 and the speaker 16 can be considered as a control target in linear two-degree-of-freedom control.
  • the nonlinear component removal filter 10 plays a role of removing nonlinear distortion generated from the speaker 16 by canceling the nonlinear component of the modeled stiffness K. Therefore, it can be considered that the above-described control target is obtained by removing the nonlinear distortion of the speaker 16 to some extent by the nonlinear component removal filter 10.
  • the change of the stiffness K shown in FIG. 4 with respect to the vibration displacement X is reduced in the feedback loop. In other words, the stiffness K does not change much as the amplitude of the speaker 16 increases.
  • the change in stiffness K is small, the change in minimum resonance frequency fO of speaker 16 is also small.
  • the control target is the speaker 16 alone, and the nonlinear distortion as described above is not removed to some extent in the feedback loop.
  • the change in the minimum resonance frequency fO of the speaker 16 is smaller in the force device 3 according to the present embodiment than in the speaker device 2 shown in FIG. Become.
  • FIG. 12 is a diagram illustrating gain characteristics and phase characteristics of the speaker device 3.
  • the gain characteristics G1 to G4 shown in FIG. 12 are open loop transmission characteristics.
  • the gain characteristic G1 indicated by the solid line in FIG. 12 indicates the sound pressure frequency characteristic of the speaker 16, that is, a characteristic proportional to the acceleration characteristic.
  • the gain characteristics G2 to G4 indicated by dotted lines will be described later.
  • the gain characteristic G1 the gain attenuates with a slope of 12 dBZoct in the frequency band below the lowest resonance frequency fO.
  • the phase characteristic P shown in Fig. 12 it can be seen that the phase is shifted by 90 ° at the lowest resonance frequency fO. It can also be seen that the phase shift approaches 180 ° as the frequency decreases below the minimum resonance frequency fO. It can also be seen that at the minimum resonance frequency fO and higher, the phase shift approaches 0 ° as the frequency increases.
  • the gain characteristic G1 changes to the gain characteristic G2, G3, or G4 indicated by the dotted line in FIG. 12, depending on the magnitude of the gain adjusted by the feedback control filter 15.
  • the magnitude of the input to the speaker 16 changes according to the magnitude of the gain adjusted by the feedback control filter 15.
  • the magnitude of the amplitude of the speaker 16 changes as the magnitude of the input to the speaker changes.
  • the speaker device 3 has little change in the minimum resonance frequency fO even when the amplitude of the speaker 16 is increased.
  • the gain margin indicates how much the gain of the open loop transfer characteristic takes a negative value when the phase of the open loop characteristic is 180 °.
  • the frequency at which the phase is 180 ° is called the phase crossover frequency fpc.
  • the phase margin indicates how negative the phase of the open loop transfer characteristic is with respect to 180 ° when the gain force of the open loop transfer characteristic is OdB.
  • the frequency at which the gain is OdB is called the gain crossover frequency fgc.
  • FIG. 13 is a diagram showing a configuration used for analyzing the frequency characteristics of the speaker device 2 shown in FIG.
  • FIG. 14 shows the sound pressure frequency characteristics, the second-order distortion characteristics, and the third-order distortion characteristics when the magnitude of the input to the speaker 16 in FIG. 13 is changed.
  • the sound pressure frequency characteristics, second-order distortion characteristics, and third-order distortion characteristics when the input to the force 16 is IV, 5W, 10W, 2 ⁇ , 40W.
  • the level of second- and third-order distortion increases. This is because the stiffness increases and the gain crossover frequency fgc increases as the input is increased.
  • the lower frequency limit of the frequency band where the distortion removal effect is obtained is proportional to the gain crossover frequency fgc.
  • the reason why the speaker device 3 can extend the frequency band where the distortion removal effect can be obtained to a low frequency will be described.
  • the gain characteristic G 1 becomes the characteristic indicated by the gain characteristic G 2.
  • the gain crossover frequency fgc2 in the gain characteristic G2 is smaller than the gain crossover frequency fgc1. This is because, as described above, the speaker device 3 has a small change in the minimum resonance frequency fO even if the amplitude of the speaker 16 changes.
  • the gain crossover frequency fgc2 In proportion to the frequency band, the frequency band where the distortion removal effect can be obtained extends to the low band.
  • the nonlinear component removal filter 10 is not arranged in the feedback loop. Therefore, in the speaker device 2 shown in FIG. 10, when the input to the speaker 16 is increased, that is, when the feedback control filter 15 is adjusted to increase the gain, the gain characteristic G1 becomes a characteristic indicated by the gain characteristic G2 ′. In other words, the value of stiffness K increases and the lowest resonance frequency fO rises to fO '. As the minimum resonance frequency fO increases, the gain crossover frequency increases to the gain crossover frequency fgc2 '. Therefore, in the speaker device 2, the frequency band in which the distortion removal effect is obtained is shifted to a high frequency in proportion to the gain crossover frequency fgc2 ′.
  • the nonlinear component elimination filter 10 is arranged in the feedback loop, so that the minimum of the speaker 16 compared to the speaker device 2 shown in FIG. Resonance frequency fO changes less. Minimum resonance frequency of speaker 16 By reducing the fluctuation of the wave number fO, the fluctuation of the gain crossover frequency fgc is also reduced. As a result, the speaker device 3 shown in FIG. 11 can exert a distortion removing effect up to a lower frequency band than the speaker device 2 shown in FIG. 10 even when the input becomes large.
  • the compensation filter 21 increases the low-frequency level in the open-loop transfer characteristic of the speaker device 3. That is, it corresponds to the low-pass filter in the present invention.
  • the compensation filter 21 has a filter coefficient H represented by a transfer function such as Expression (18), for example.
  • FIG. 16 is a diagram showing gain characteristics and phase characteristics of the compensation filter, and gain characteristics (G5 and G6) and phase characteristics (P5 and P6) of the speaker device 3. According to the gain characteristic of the speaker device 3 shown in FIG. 16, the dotted gain characteristic G5 shown in FIG. 16 changes to the gain characteristic G6 shown by the solid line depending on the filter characteristic of the compensation filter 21.
  • FIG. 17 is a block diagram showing a configuration example in which a high-pass filter 22 is added to the speaker device 3 shown in FIG.
  • FIG. 18 is a block diagram showing a configuration example in which a compensation filter 21 and a noise pass filter 22 are added to the speaker device 3 shown in FIG.
  • the speaker device 3 in FIG. 11 the speaker device 3 with only the high-pass filter 22 in FIG. 17, and the speaker device 3 with the high-pass filter 22 and the compensation filter 21 in FIG.
  • Figure 19 shows the frequency characteristics analysis results.
  • Figure 19 shows the analysis results when the input is 20 W and 40 W, respectively.
  • the second-order and third-order distortions of the speaker device 3 shown in FIG. 18 with the high-pass filter 22 and the compensation filter 21 attached are the smallest. I understand. In other words, as shown in this analysis result, it can be seen that the speaker device 3 shown in FIG. 18 with the high-pass filter 22 and the compensation filter 21 is the device with the highest distortion removal effect.
  • FIG. 12 described above it has been described that the phase crossing frequency f pc does not exist and the phase margin is always negative.
  • both the gain margin and the phase margin described above are negative, the feedback processing becomes unstable and oscillates.
  • FIG. 20 is a diagram showing a feedback loop of speaker device 2 shown in FIG.
  • the process of the ideal filter 12 is a process of outputting the input electric signal to the adder 14 when focusing only on the process of the force ideal filter 12 which is a part of the feedback process, and corresponds to a feedforward process.
  • the ideal filter 12 is modeled on an actual speaker 16 which is a secondary vibration system. Therefore, the processing of the ideal filter 12 is always stable! /, And does not affect the stability of the food back processing! / ⁇ . Therefore, the processing of the ideal filter 12 does not have to be considered in evaluating the stability of the feedback processing.
  • Step response results in the feedback loop shown in Fig. 20 are shown in Figs.
  • Figure 21 shows the feedback loop shown in Figure 20, when the stiffness kx, which is the nonlinear component of the stiffness K (x), is 20000, the phase margin is -0.849 °, and the gain crossover frequency fgc is 5.4 Hz. It is the figure which showed step input and its response.
  • FIG. 22 is a diagram showing step inputs and responses when the stiffness kx force 000, the phase margin is 11.7 °, and the gain crossover frequency fgc is 2.7 Hz in the feedback loop shown in FIG.
  • FIG. 23 is a diagram showing step inputs and their responses when the stiffness kx is 1200, the phase margin is ⁇ 3.46 °, and the gain crossover frequency fgc is 1.3 Hz in the configuration shown in FIG.
  • FIG. 24 is a block diagram illustrating a configuration example of the speaker device 4 according to the fourth embodiment.
  • the speaker device 4 according to this embodiment is different from the above-described speaker devices 1 to 3 according to the first to third embodiments in that a power amplifier 23 is further provided.
  • the speaker device 4 includes a nonlinear component removal filter 10, a linear filter 11, an ideal filter 12, an adder 13, an adder 14, a feedback control filter 15, a speaker 16, a sensor 17, a front-stage filter 20, And a power amplifier 23.
  • a power amplifier for driving the speaker force 16 is required.
  • the components configuring the speaker device according to the first to third embodiments described above there are components that cannot handle high voltages when performing internal processing, such as the nonlinear component removal filter 10, for example. In this case, it is necessary to provide the power amplifier 23 immediately before the speaker 16 as shown in FIG.
  • the output signal of the adder 13 that removes nonlinear distortion is amplified by the power amplifier 23.
  • the gain of the power amplifier 23 is 10 times and the input voltage of the speaker device 4 shown in FIG. 24 is IV.
  • the output voltage from the power amplifier 23 is 10V.
  • the non-linear component removal filter 10 when the input to the non-linear component removal filter 10 is IV, the non-linear component removal filter 10 generates a signal for removing non-linear distortion when the input to the speaker 16 is IV. Therefore, when the output signal of the adder 13 is amplified to 10V, the problem arises that the magnitude of the nonlinear distortion of the speaker 16 cannot be matched.
  • Equation (8) is scaled down to a 1Z10 model, and becomes Equation (19).
  • the nonlinear component removal filter 10 generates a voltage Eff (t) that cancels the non-linear formation as shown in the equation (21) based on the result of the above equation (13).
  • Equation (21) Equation (22)
  • pre-filter 20 (2 * 1 / GA0 * 1 / GAx + (1 / GAx) 3 ⁇ 4 / (1 / GZe) * dx (t) / dt- 1 / GKx * x (t)) ] (25) [0128] It should be noted that the pre-filter 20, the ideal filter 12, and the linear filter 11 may be scaled in the same manner as the nonlinear elimination filter 10 described above.
  • the magnitude of the output voltage of the nonlinear distortion removing filter 10 is output from the power amplifier 23. It can correspond to the magnitude of the input voltage to 16.
  • the feedforward processing power of the nonlinear distortion elimination filter 10 or the like can be dealt with when there is a limit to the voltage that can be internally processed in practice.
  • FIG. 25 is a diagram comparing frequency characteristics with and without scaling processing.
  • the level of the second-order and third-order distortion becomes smaller and the distortion removal effect becomes higher when scaling is performed. This is because when the power amplifier 23 is added to the feedback processing unit, the feedback gain increases, and the same effect as described with respect to the gain characteristic G2 in FIG. 12 can be obtained.
  • the volume information of the power amplifier 23 is linked with the nonlinear component removal filter 10, the linear filter 11, the ideal filter 12, the feedback control filter 15, and the pre-stage filter 20. Vol may be reflected in each component. As a result, the coefficient 1ZG in the above equation (25) can be adaptively changed.
  • the volume information Vol indicates gain value information.
  • FIG. 27 is a block diagram showing an example of a configuration in which the limiter 24 is provided in the speaker device 1 shown in FIG.
  • the limiter 24 limits the level of the input signal to a level below which the speaker 16 is damaged. Therefore, even if a large input signal is input, the level exceeding the level set by the limiter 24 is not input to the speaker 16, and damage to the speaker 16 can be prevented.
  • the position of the limiter 24 is not limited to the position shown in FIG.
  • the limiter 24 can be placed at any position as long as the limiter 24 is placed at a position where the input of the speaker 16 can be restricted.
  • the nonlinear component removal filter 10 may be configured by an integrated circuit.
  • the integrated circuit includes an output terminal that outputs to the speaker 16, a first input terminal that inputs an electric signal, and a second input terminal that receives the detection signal of the sensor 17.
  • an audio signal processing circuit DSP Digital Signal Processor
  • each function can be configured with a DSP. This is effective when the DSP processing time adversely affects the feedback processing and the effect is diminished.
  • the speaker device according to the present invention can be applied to applications such as a speaker device and a thin speaker that perform signal processing following changes in parameters in an actual speaker and can perform more stable distortion removal processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 本発明に係るスピーカ装置は、スピーカと、予め設定されたフィルタ係数に基づいて、スピーカに入力されるべき電気信号を、スピーカから発生する非線形歪を除去するようにフィードフォワード処理するフィードフォワード処理部と、スピーカの振動を検出し、当該振動に関する電気信号を、スピーカに入力されるべき電気信号に対してフィードバック処理するフィードバック処理部とを備え、フィードバック処理部は、スピーカから発生する非線形歪を除去するように、かつ、スピーカの振動に関する周波数特性が所定の周波数特性となるように、振動に関する電気信号をフィードバック処理する。

Description

明 細 書
スピーカ装置
技術分野
[0001] 本発明は、スピーカ装置に関し、より特定的には、スピーカから発生する歪を除去 するスピーカ装置に関するものである。
背景技術
[0002] 従来から、電気信号処理を施さな!/、通常のスピーカにお 、て、電気信号を忠実に 音波へ変換することが望まれている。しかしながら、実際のスピーカでは、その構造 上の制限力 忠実な変換を行うことは難しい。例えば、スピーカを構成する磁気回路 においては、その構造上、振幅が大きくなるにしたカ^、、磁気ギャップ内の磁束密度 が減少する。そして、磁束密度の減少に伴って力係数も減少する。また、ダンパーや エッジなどの支持系のスティフネスは、その支持系の構造上、振幅の大きさに応じて 変化してしまう。これらの理由などにより、スピーカの振幅は、入力される電気信号の 大きさに比例するとは限らず、非線形歪が発生するという問題がある。
[0003] そこで、上記非線形歪を除去する方法として、従来力 フィードフォワード処理など の電気信号処理を用いた方法が提案されている。この処理方法は、スピーカの非線 形成分を含むパラメータ (磁束密度に係る力係数や支持系のスティフネスなど)を多 項式近似して、当該パラメータに起因する非線形歪を打ち消すようにフィルタ係数を 設定する方法である。電気信号を当該フィルタ係数が設定されたフィルタを介してス ピー力に入力することで、非線形歪を除去している。し力しながら、上記パラメータの うち、特に支持系のスティフネスはスピーカに入力される電気信号の大きさによって 時々刻々変化するものであり、かつ経年変ィ匕もする。つまり、パラメータの値が時間と ともに変化してしまう。したがって、上記フィードフォワード処理では、時間とともに、予 め設定されたパラメータの値と実際のパラメータの値との誤差が大きくなり、上記歪除 去効果が著しく損なわれるという欠点があった。
[0004] そこで、上記問題を解決するために、フィードフォワード処理にぉ 、て、フィルタ係 数のパラメータを適応的に更新するという方法が提案されている (例えば特許文献 1 参照)。以下、図 28を参照して、この方法について説明する。図 28は、フィルタ係数 のパラメータを適応的に更新する従来のスピーカ装置 9を示すブロック図である。
[0005] 図 28において、従来のスピーカ装置 9は、制御部 91、パラメータ検出器 92、および スピーカ 95を備える。また、パラメータ検出器 92は、誤り回路 93および更新回路 94 を有する。誤り回路 93は、フィルタ(図示しない)を有し、当該フィルタにおいて制御 部 91から入力される信号力も擬似的な振動特性を算出する。そして、誤り回路 93は 、その擬似的な振動特性からスピーカ 95にかかる駆動電圧を予測計算する。なお、 この予測された駆動電圧は、スピーカ 95を電流駆動したときのインピーダンス特性と 等価である。次に、誤り回路 93は、予測した駆動電圧から実際のスピーカ 95に印加 される駆動電圧を引き算することにより、誤差信号 e (t)を生成する。この誤差信号 e (t )は、更新回路 94に入力される。
[0006] 更新回路 94は、誤差信号 e (t)に基づいて、更新すべき制御部 91内のパラメータ を算出する。更新回路 94において算出されたパラメータは、誤り回路 93における上 記フィルタに反映され、誤り回路 93において勾配信号 Sgが生成される。誤り回路 93 において生成された勾配信号 Sgは、再び更新回路 94に出力される。このように更新 回路 94は、上記誤差信号 e (t)および勾配信号 Sgを用いて、誤差信号 e (t)が最小と なるようなパラメータを算出する。誤差信号 e (t)が最小となるときのパラメータはパヮ 一ベクトル Pとして制御部 91に出力され、制御部 91内のパラメータが更新される。以 上のように、図 28に示すスピーカ装置 9では、制御部 91内のパラメータが実際のスピ 一力 95のパラメータと適応するように、誤り回路 93および更新回路 94においてパラメ ータを更新している。
特許文献 1:特開平 11—46393号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上述したパラメータを更新する誤り回路 93および更新回路 94におい ては、複雑で膨大な演算が必要である。また、上述したように支持系のスティフネスは スピーカに入力される電気信号の大きさによって時々刻々変化するものである。つま り、従来のスピーカ装置 9においては、複雑で膨大な演算が必要であるため、上記支 持系のスティフネスの激しい変化に追従したパラメータの更新処理を行うことが実用 上極めて困難であった。その結果、従来のスピーカ装置 9においては、歪除去効果 が十分に得られず、実現性に欠けるという問題があった。また、従来のスピーカ装置 9においては、膨大な計算処理を実現するため、コストパフォーマンスに欠けるという 問題もあった。
[0008] それ故、本発明の目的は、実際のスピーカにおけるパラメータの変化に追従した信 号処理を行 、、より安定的な歪除去処理を行うことが可能なスピーカ装置を提供する ことである。
課題を解決するための手段
[0009] 第 1の局面は、スピーカ装置であって、スピーカと、予め設定されたフィルタ係数に 基づいて、スピーカに入力されるべき電気信号を、スピーカから発生する非線形歪を 除去するようにフィードフォワード処理するフィードフォワード処理部と、スピーカの振 動を検出し、当該振動に関する電気信号を、スピーカに入力されるべき電気信号に 対してフィードバック処理するフィードバック処理部とを備え、フィードバック処理部は 、スピーカから発生する非線形歪を除去するように、かつ、スピーカの振動に関する 周波数特性が所定の周波数特性となるように、振動に関する電気信号をフィードバッ ク処理する。
[0010] 第 2の局面は、上記第 1の局面において、フィードバック処理部は、スピーカに入力 されるべき電気信号を入力とし、当該電気信号の周波数特性を所定の周波数特性 に変換する所定特性変換フィルタと、スピーカの振動を検出するセンサと、所定特性 変換フィルタにお ヽて変換された所定の周波数特性を示す電気信号とセンサにぉ ヽ て検出された振動に関する電気信号との差分をとり、当該差分した電気信号を誤差 信号として出力する第 1の加算器と、フィードフォワード処理部において処理された電 気信号と誤差信号とを加算して、スピーカに出力する第 2の加算器とを有する。
[0011] 第 3の局面は、上記第 2の局面において、フィードフォワード処理部におけるフィル タ係数は、スピーカの固有のパラメータに基づく係数であり、フィードフォワード処理 部は、パラメータの非線形成分を打ち消すようにスピーカに入力されるべき電気信号 を処理することを特徴とする。 [0012] 第 4の局面は、上記第 2の局面において、フィードフォワード処理部におけるフィル タ係数は、スピーカに固有のパラメータに基づく係数であり、パラメータは、スピーカ の振動変位に応じて変化するパラメータであることを特徴とする。
[0013] 第 5の局面は、上記第 4の局面において、フィードフォワード処理部は、スピーカに 入力されるべき電気信号を入力とし、予め設定されたフィルタ係数に基づいて、スピ 一力から発生する非線形歪を除去するように当該電気信号を処理する除去フィルタ と、スピーカに入力されるべき電気信号を入力とし、スピーカが線形で振動すると仮 定したときの振動変位を示す電気信号を生成する線形フィルタとを有し、除去フィル タは、線形フィルタにお!ヽて生成された振動変位を示す電気信号を参照することを特 徴とする。
[0014] 第 6の局面は、上記第 5の局面において、第 2の加算器とスピーカとの間に設けら れ、スピーカに入力されるべき電気信号のゲインを増幅する増幅部をさらに備え、除 去フィルタにおけるフィルタ係数、所定特性変換フィルタにおけるフィルタ係数、およ び線形フィルタにおけるフィルタ係数は、増幅部にぉ 、て増幅されるゲインの逆数が 乗算されたフィルタ係数である。
[0015] 第 7の局面は、上記第 4の局面において、センサにおいて検出された電気信号は、 スピーカの振動変位を示す電気信号であり、フィードフォワード処理部は、センサに おいて検出された振動変位を示す電気信号を参照することを特徴とする。
[0016] 第 8の局面は、上記第 2の局面において、フィードフォワード処理部の前段に設けら れ、スピーカに入力されるべき電気信号を入力とし、所定の周波数特性をスピーカが 有する振動に関する特性で除算して求められるフィルタ係数に基づいて処理する前 段フィルタをさらに備える。
[0017] 第 9の局面は、上記第 2の局面において、スピーカに所定のレベル以上の電気信 号が入力されないように電気信号のレベルを制限する制限手段をさらに備える。
[0018] 第 10の局面は、上記第 2の局面において、第 2の加算器とスピーカとの間に設けら れ、スピーカに入力されるべき電気信号のゲインを増幅する増幅部をさらに備え、フ イードフォワード処理部におけるフィルタ係数と所定特性変換フィルタにおけるフィル タ係数は、増幅部にぉ 、て増幅されるゲインの逆数が乗算されたフィルタ係数である [0019] 第 11の局面は、上記第 1の局面において、フィードフォワード処理部は、スピーカ の前段に設けられ、かつ、フィードバック処理部で形成されるフィードバックループ内 に設けられることを特徴とする。
[0020] 第 12の局面は、上記第 1の局面において、フィードバック処理部は、スピーカに入 力されるべき電気信号を入力とし、当該電気信号の周波数特性を所定の周波数特 性に変換する所定特性変換フィルタと、スピーカの振動を検出するセンサと、所定特 性変換フィルタにおいて変換された所定の周波数特性を示す電気信号とセンサにお いて検出された振動に関する電気信号との差分をとり、当該差分した電気信号を誤 差信号として出力する第 1の加算器と、入力される電気信号と誤差信号とを加算して 、フィードフォワード処理部に出力する第 2の加算器とを有し、フィードフォワード処理 部は、フィードフォワード処理部は、第 2の加算器から出力された電気信号を、スピー 力から発生する非線形歪を除去するようにフィードフォワード処理してスピーカに出力 する。
[0021] 第 13の局面は、上記第 12の局面において、第 2の加算器とフィードフォワード処理 部との間に設けられ、スピーカに入力されるべき電気信号のゲインが第 1の周波数以 下の周波数帯域において 6dBZoctで傾斜する特性を示すフィルタ係数を有する 第 1のフィルタをさらに備え、第 1の周波数は、フィードバック処理部で形成されるフィ ードバックループの開ループ伝達特性が示すゲイン交差周波数以上の周波数であ ることを特徴とする。
[0022] 第 14の局面は、上記第 12の局面において、フィードフォワード処理部の前段に設 けられ、スピーカに入力されるべき電気信号のゲインが第 2の周波数以下の周波数 帯域において 6dBZoct以上の傾きで傾斜する特性を示すフィルタ係数を有する第 2のフィルタをさらに備え、第 2の周波数は、フィードバック処理部で形成されるフィー ドバックループの開ループ伝達特性が示すゲイン交差周波数以上の周波数であるこ とを特徴とする。
[0023] 第 15の局面は、上記第 12の局面において、第 2の加算器とフィードフォワード処理 部との間に設けられ、スピーカに入力されるべき電気信号のゲインが第 1の周波数以 下の周波数帯域において 6dBZoct以下の傾きで傾斜する特性を示すフィルタ係 数を有する第 1のフィルタと、フィードフォワード処理部の前段に設けられ、スピーカに 入力されるべき電気信号のゲインが第 2の周波数以下の周波数帯域において 6dB Zoct以上の傾きで傾斜する特性を示すフィルタ係数を有する第 2のフィルタとをさら に備え、第 1および第 2の周波数は、フィードバック処理部で形成されるフィードバック ループの開ループ伝達特性が示すゲイン交差周波数以上の周波数であることを特 徴とする。
[0024] 第 16の局面は、上記第 12の局面において、フィードフォワード処理部におけるフィ ルタ係数は、スピーカの固有のパラメータに基づく係数であり、フィードフォワード処 理部は、パラメータの非線形成分を打ち消すように第 2の加算器力 出力された電気 信号を処理することを特徴とする。
[0025] 第 17の局面は、上記第 12の局面において、フィードフォワード処理部におけるフィ ルタ係数は、スピーカに固有のパラメータに基づく係数であり、パラメータは、スピー 力の振動変位に応じて変化するパラメータであることを特徴とする。
[0026] 第 18の局面は、上記第 17の局面において、フィードフォワード処理部は、第 2の加 算器から出力された電気信号を入力とし、予め設定されたフィルタ係数に基づいて、 スピーカから発生する非線形歪を除去するように当該電気信号を処理する除去フィ ルタと、第 2の加算器力 出力された電気信号を入力とし、スピーカが線形で振動す ると仮定したときの振動変位を示す電気信号を生成する線形フィルタとを有し、除去 フィルタは、線形フィルタにお!ヽて生成された振動変位を示す電気信号を参照するこ とを特徴とする。
[0027] 第 19の局面は、上記第 18の局面において、フィードフォワード処理部とスピーカと の間に設けられ、スピーカに入力されるべき電気信号のゲインを増幅する増幅部をさ らに備え、除去フィルタにおけるフィルタ係数、所定特性変換フィルタにおけるフィル タ係数、および線形フィルタにおけるフィルタ係数は、増幅部において増幅されるゲ インの逆数が乗算されたフィルタ係数である。
[0028] 第 20の局面は、上記第 17の局面において、センサにおいて検出された電気信号 は、スピーカの振動変位を示す電気信号であり、フィードフォワード処理部は、センサ において検出された振動変位を示す電気信号を参照することを特徴とする。
[0029] 第 21の局面は、上記第 12の局面において、第 2の加算器の前段に設けられ、スピ 一力に入力されるべき電気信号を入力とし、所定の周波数特性をスピーカが有する 振動に関する特性で除算して求められるフィルタ係数に基づいて処理する前段フィ ルタをさらに備える。
[0030] 第 22の局面は、上記第 12の局面において、スピーカに所定のレベル以上の電気 信号が入力されないように電気信号のレベルを制限する制限手段をさらに備える。
[0031] 第 23の局面は、上記第 12の局面において、フィードフォワード処理部とスピーカと の間に設けられ、スピーカに入力されるべき電気信号のゲインを増幅する増幅部をさ らに備え、フィードフォワード処理部におけるフィルタ係数と所定特性変換フィルタに おけるフィルタ係数は、増幅部にぉ 、て増幅されるゲインの逆数が乗算されたフィル タ係数である。
[0032] 第 24の局面は、集積回路であって、予め設定されたフィルタ係数に基づ 、て、スピ 一力に入力されるべき電気信号を、スピーカから発生する非線形歪を除去するように フィードフォワード処理するフィードフォワード処理部と、スピーカの振動を検出し、当 該振動に関する電気信号を、スピーカに入力されるべき電気信号に対してフィードバ ック処理するフィードバック処理部とを備え、フィードバック処理部は、スピーカから発 生する非線形歪を除去するように、かつ、スピーカの振動に応じた周波数特性が所 定の周波数特性となるように、振動に関する電気信号をフィードバック処理する。 発明の効果
[0033] 上記第 1の局面によれば、予め設定されたフィルタ係数に基づくフィードフォワード 処理によって、大部分の非線形歪を除去することができる。さらに、フィードバック処 理によって、例えばスピーカにおける支持系のスティフネスの経年変化などに対して ロバストな歪の除去を行うことができる。つまり、本局面によれば、フィードフォワード 処理部が予め設定されたフィルタ係数に基づく処理を行 、、フィードバック処理部が 上記ロバストな歪の除去を行うことで、スピーカのパラメータを更新する処理を行うこと なぐより安定的で実現性の高い歪除去処理が可能なスピーカ装置を提供することが できる。さらに、本局面によれば、フィードバック処理によって、スピーカの振動に関 する周波数特性を所定の周波数特性に近づけることができる。
[0034] 上記第 2の局面によれば、予め設定されたフィルタ係数に基づくフィードフォワード 処理によって、大部分の非線形歪を除去することができ、また誤差信号に基づくフィ ードバック処理によって、例えばスピーカにおける支持系のスティフネスの経年変化 などに対してロバストな歪の除去を行うことができる。これにより、より安定的で実現性 の高い歪除去処理が可能なスピーカ装置を提供することができる。さらに、本局面に よれば、所定特性変換フィルタによって、スピーカの振動に関する周波数特性を所定 の周波数特性に近づけることができる。
[0035] 上記第 3の局面によれば、パラメータの非線形成分を打ち消すようにスピーカに入 力されるべき電気信号を処理することで、スピーカから発生する非線形歪をより効果 的に除去することができる。
[0036] 上記第 4の局面によれば、スピーカの振動変位に応じた精度の高い歪除去処理を 行うことができる。
[0037] 上記第 5の局面によれば、スピーカが線形で振動するときの振動変位に基づく処理 が可能となり、より高効率な歪除去処理を行うことができる。
[0038] 上記第 6の局面によれば、除去フィルタ、所定特性変換フィルタ、および線形フィル タにおける内部演算において処理可能な電圧が小さい場合であっても、歪除去効果 を維持した処理が可能となる。また、増幅部がフィードバックループ内に設けられるこ とで、フィードバックゲインが大きくなり、歪低減効果を向上させることができる。
[0039] 上記第 7の局面によれば、実際のスピーカの振動に即した歪除去処理を行うことが できる。
[0040] 上記第 8の局面によれば、スピーカから出力される振動に関する特性において、所 定の周波数特性への収束性を高めることができる。
[0041] 上記第 9の局面によれば、過入力によるスピーカの破損を防止することができる。
[0042] 上記第 10の局面によれば、フィードフォワード処理部および所定特性変換フィルタ における内部演算において処理可能な電圧が小さい場合であっても、歪除去効果を 維持した処理が可能となる。また、増幅部がフィードバックループ内に設けられること で、フィードバックゲインが大きくなり、歪低減効果を向上させることができる。 [0043] 上記第 11の局面によれば、フィードフォワード処理部がフィードバックループ内に 配置されることにより、スピーカの振幅が大きくなつても、より低い周波数帯域まで歪 除去効果を発揮することができる。
[0044] 上記第 12の局面によれば、フィードフォワード処理部がフィードバックループ内に 配置されることにより、スピーカの振幅が大きくなつても、より低い周波数帯域まで歪 除去効果を発揮することができる。
[0045] 上記第 13の局面によれば、第 1のフィルタによってゲイン交差周波数が低下するの で、より低 、周波数帯域まで歪除去効果を発揮することができる。
[0046] 上記第 14の局面によれば、第 2のフィルタによってゲイン交差周波数以下の電気 信号が入力されないので、ゲイン交差周波数以下の電気信号が入力されることによ つて生じる歪を予め除去することができ、より高 、歪除去効果を得ることができる。
[0047] 上記第 15の局面によれば、第 1のフィルタによってゲイン交差周波数が低下するの で、より低い周波数帯域まで歪除去効果を発揮することができる。さらに、第 2のフィ ルタによってゲイン交差周波数以下の電気信号が入力されないので、ゲイン交差周 波数以下の電気信号が入力されることによって生じる歪を予め除去することができ、 より高い歪除去効果を得ることができる。
図面の簡単な説明
[0048] [図 1]図 1は、第 1の実施形態に係るスピーカ装置 1の構成例を示すブロック図である [図 2]図 2は、一般的なスピーカ 16の断面図である。
[図 3]図 3は、磁気ギャップ 165付近の振動変位 Xに対する力係数 B1の特性の一例を 示す図である。
[図 4]図 4は、振動変位 Xに対する支持系のスティフネス Kの特性の一例を示す図で ある。
[図 5]図 5は、入力信号 I (t)に対するスティフネス Kの特性の変化を示す図である。
[図 6]図 6は、理想フィルタ 12のフィルタ係数として設定される所望の出力特性を示す 図である。
[図 7]図 7は、非線形成分除去フィルタ 10がセンサ 17の出力信号を参照した場合の スピーカ装置 1の構成例を示すブロック図である。
[図 8]図 8は、第 2の実施形態に係るスピーカ装置 2の構成例を示すブロック図である
[図 9]図 9は、図 8に示した線形フィルタ 11の入力を変えた構成例を示すブロック図で ある。
[図 10]図 10は、非線形成分除去フィルタ 10がセンサ 17の出力信号を参照した場合 のスピーカ装置 2の構成例を示すブロック図である。
[図 11]図 11は、第 3の実施形態に係るスピーカ装置 3の構成例を示すブロック図であ る。
[図 12]図 12は、スピーカ装置 3のゲイン特性および位相特性を示した図である。
[図 13]図 13は、図 10に示すスピーカ装置 2の周波数特性の解析に用いる構成を示 す図である。
[図 14]図 14は、図 13のスピーカ 16への入力の大きさを変えたときのゲイン特性、 2次 歪特性、および 3次歪特性をそれぞれ示す図である。
[図 15]図 15は、図 11に示すスピーカ装置 3に対して補償フィルタ 21を付加した構成 例を示すブロック図である。
[図 16]図 16は、式(18)に示す伝達関数の周波数特性を示す図である。
[図 17]図 17は、図 11に示すスピーカ装置 3に対してハイパスフィルタ 22を付カ卩した 構成例を示すブロック図である。
[図 18]図 18は、図 11に示すスピーカ装置 3に対して補償フィルタ 21およびハイパス フィルタ 22を付カ卩した構成例を示すブロック図である。
[図 19]図 19は、入力を 20Wおよび 40Wとしたときの解析結果をそれぞれ示す図で ある。
[図 20]図 20は、図 10に示すスピーカ装置 2のフィードバックループを示した図である
[図 21]図 21は、図 20に示すフィードバックループにおいてステップ入力とその応答を 示した図である。
[図 22]図 22は、図 20に示すフィードバックループにおいてステップ入力とその応答を 示した図である。
[図 23]図 23は、図 20に示すフィードバックループにおいてステップ入力とその応答を 示した図である。
[図 24]図 24は、第 4の実施形態に係るスピーカ装置 4の構成例を示すブロック図であ る。
[図 25]図 25は、スケーリング処理の有無による周波数特性を比較した図である。
[図 26]図 26は、パワーアンプ 23のボリュームが各構成部と連動する構成例を示す図 である。
[図 27]図 27は、図 1に示すスピーカ装置 1にリミッタ 24を設けた構成の一例を示すブ ロック図である。
[図 28]図 28は、従来のスピーカ装置 9を示すブロック図である。
符号の説明
1、 2 スピーカ装置
10 非線形成分除去フィルタ
11 線形フィルタ
12 理想フィルタ
13、 14 加算器
15 フィードバック制御フィルタ
16 スピーカ
17 センサ
20 前段フィルタ
21 補償フィルタ
22 ハイパスフィルタ
23 パワーアンプ
24 リミッタ
161 ボイスコイル
162 振動板
163 マグネット 164 磁気回路
165 磁気ギャップ
166 ダンパー
167 エッジ
発明を実施するための最良の形態
[0050] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0051] (第 1の実施形態)
図 1を参照して、本発明における第 1の実施形態に係るスピーカ装置 1につ 、て説 明する。図 1は、第 1の実施形態に係るスピーカ装置 1の構成例を示すブロック図で ある。図 1において、スピーカ装置 1は、非線形成分除去フィルタ 10、線形フィルタ 11 、理想フィルタ 12、加算器 13および 14、フィードバック制御フィルタ 15、スピーカ 16 、およびセンサ 17を有する。
[0052] ここで、まず図 2を参照して、スピーカ 16において非線形歪の発生要因について説 明する。図 2は、一般的なスピーカ 16の断面図である。図 2において、スピーカ 16は 、ボイスコイル 161、振動板 162、マグネット 163、磁気回路 164、ダンパー 166およ びエッジ 167を備える。磁気ギャップ 165は、図 2に示す磁気回路 164中に形成され る。そして、磁気ギャップ 165中の磁束密度 Bとボイスコイル 161に流れる電流とでフ レミングの左手の法則にしたがって、ボイスコイル 161が振動板 162と一体となって振 動変位 X軸方向に振動する。振動板 162は、ダンパー 166およびエッジ 167に支持 されることにより、安定して振動変位 X軸方向に振動し、音を放射する。なお、図 2に 示すスピーカ 16は一例であってこれに限定されない。例えばキャンセルマグネットを 含む防磁タイプのスピーカであってもよ ヽし、内磁型の磁気回路を構成するスピーカ であってもよい。また、図 2において、振動変位 Xが 0となる位置は、ボイスコイル 161 や振動板 162が振動する中心位置を示し、後述する図 3〜図 5に示す振動変位 Xが 0となる原点に相当する。
[0053] スピーカ 16において、非線形歪の発生要因として主に 3つの要因が挙げられる。第 1の要因としては、磁気ギャップ 165に発生する磁束密度 Bに関するものである。図 3 は、磁気ギャップ 165付近の振動変位 Xに対する力係数 B1の特性の一例を示す図で ある。ボイスコイル 161の振幅が小さいとき、つまり、振動変位 Xの絶対値が小さいとき (x=0付近)は、磁束密度 Bは概ね一定である。しかし、ボイスコイル 161の振幅が大 きいとき、つまり、振動変位 Xの絶対値が大きいときは、急激に磁束密度 Bが減少する 。これは、磁気回路 164において、磁気ギャップ 165の中心付近 (x=0付近)から振 動変位 X軸方向に遠ざかるにつれて、磁路が形成されに《なるためである。このため 、磁束密度 Bによって得られる力係数 B1と、ボイスコイル 161の振動変位 Xとの関係は 図 3に示すような関係となる。なお、図 3に示す力係数 B1の特性は、振動変位 Xに応じ て変化するものであり、振動変位 Xの関数 Bl (x)として表現される。
[0054] ここで、ボイスコイル 161を振動させる駆動力 F (t)は、ボイスコイル 161に流れる入 力信号の電流を I (t)とすると、下式(1)で表現される。
F(t)=Bl(x)*I(t) …ひ)
図 3に示すように、ボイスコイル 161の振幅が大きくなると力係数 Bl (x)の値が減少す る。したがって、上式(1)より、振幅が大きくなると駆動力 F (t)が入力信号 I (t)のレべ ルに比例しなくなる。また、駆動力 F (t)が入力信号 I (t)のレベルに比例しなければ、 振動変位 Xも入力信号 I (t)のレベルに比例しなくなることは 、うまでもな 、。これによ り、スピーカ 16から非線形歪が発生する。
[0055] 第 2の要因としては、ダンパー 166およびエッジ 167などの支持系に関するもので ある。ダンパー 166やエッジ 167は、その形状上、無限に伸びることはなぐある程度 伸びたところで突っ張り始める。図 4は、振動変位 Xに対する支持系のスティフネス K の特性の一例を示す図である。図 4おいて、ボイスコイル 161の振幅が小さいとき、つ まり、振動変位 Xの絶対値が小さいとき、スティフネス Kは概ね一定である。しかし、ボ イスコイル 161の振幅が大きいとき、つまり、振動変位 Xの絶対値が大きいとき、スティ フネス Kの値が大きくなる。このように、振幅が大きくなると、スティフネス Kの値が変化 して、振動変位 Xは駆動力 F (t)に比例しなくなる。また、振動変位 Xが駆動力 F (t)に 比例しなければ、上式(1)力 振動変位 Xは入力信号 I (t)のレベルにも比例しな 、。 その結果、スピーカ 16から非線形歪が発生する。
[0056] また、図 5は、入力信号 I (t)に対するスティフネス Kの特性の変化を示す図である。
図 5に示すように、スティフネス Kの特性は I (t)のレベルの大きさに応じて変化し、常 に一定の曲線とはならない。また、ダンパー 166やエッジ 167は布ゃ榭脂などの材料 で作られるため、その材料の経年変化やクリープ現象によっても図 4に示されるスティ フネス Kの特性は変化する。これらの要因によっても振動変位 Xが入力信号 I (t)のレ ベルに比例せず、スピーカ 16から非線形歪が発生する。
[0057] 第 3の要因としては、ボイスコイル 161の電気インピーダンス特性に関するものであ る。スピーカの磁気回路には一般的に、透磁率の高い鉄などの材料が使用される。 このため、振幅の大きさによってボイスコイル 161が有するインダクタンス成分が変化 することになる。また、ボイスコイル 161は電気信号が入力されると発熱する。これによ り、ボイスコイル 161の抵抗成分が時間とともに変化する。これらの要因により、ボイス コイル 161に流れる電流が歪まされ、スピーカ 16から非線形歪が発生する。以上のよ うな 3つの主な要因によって、スピーカ 16において非線形歪が発生する。
[0058] なお、スピーカ 16を定電圧駆動させた場合において、スピーカ 16に入力される入 力信号の電圧 E (t)と振動変位 X (t)との関係は一般的に下式 (2)で表現される。
Bl*E(t)/Ze=K*x(t) + (r+Bl2/Ze)*dx(t)/dt+m*d2x(t)/dt2 · · · ( 2)
ただし、式(2)において、支持系のスティフネスを Kと、スピーカ 16の機械抵抗を rと、 ボイスコイル 161の電気インピーダンスを Zeと、振動系質量を mとする。
[0059] ここで、上記 3つの要因のうち、低域の周波数帯域において発生する非線形歪に おいては、特に力係数 B1およびスティフネス Kのパラメータによる影響が大きい。そこ で、上式(2)において、図 3および図 4に示した力係数 B1およびスティフネス Kを振動 変位 Xの関数として表現すると下式 (3)となる。
Bl(x)*E(t)/Ze=K(x)*x(t) + (r+Bl(x)2/Ze)*dx(t)/dt+m*d2x(t)/dt2 - - - (3) また、 Bl (x)と K (x)を振動変位 Xについて多項式近似してモデルィ匕すると、それぞれ 式 (4)、式(5)となる。
Figure imgf000016_0001
Κ(χ)=Κ0+Κ1*χ+Κ2*χ2+Κ3*χ3+ (5)
上式 (4)および式(5)において、 AOおよび ΚΟは、振動変位 Xに依存しない線形成分 のパラメータである。したがって、式 (4)および式 (5)を線形成分と非線形成分とに分 けて表現すると、それぞれ式 (6)および式(7)と表現される。 Bl(x)=A0+Ax - -- (6)
K(x)=K0+Kx - -- (7)
ただし、 Axは Β1 (χ)の非線形成分であり、 Κχは、 Κ(χ)の非線形成分である。したが つて、式(3)における Β1 (χ)および Κ(χ)に、式(6)および式(7)を代入すると、式(8) となる。
(A0+Ax)*E(t)/Ze=(K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · (8) [0060] 次に、図 1に示すスピーカ装置 1の動作処理について説明する。本実施形態に係る スピーカ装置 1においては、大略的に、非線形成分除去フィルタ 10および線形フィ ルタ 11によるフィードフォワード処理と、理想フィルタ 12、センサ 17、加算器 14、フィ ードバック制御フィルタ 15、および加算器 13によるフィードバック処理とが行われる。 このように、非線形成分除去フィルタ 10および線形フィルタ 11は、本発明のフィード フォワード処理部に相当するものである。また、理想フィルタ 12、センサ 17、加算器 1 4、フィードバック制御フィルタ 15、および加算器 13は、本発明のフィードバック処理 に相当するものである。
[0061] まず、非線形成分除去フィルタ 10および線形フィルタ 11によるフィードフォワード処 理について説明する。電気信号が入力信号として、非線形成分除去フィルタ 10およ び線形フィルタ 11、および理想フィルタ 12にそれぞれ入力される。理想フィルタ 12の 処理については後述する。
[0062] 非線形成分除去フィルタ 10は、線形フィルタ 11にお 、て生成された擬似的な線形 動作時の振動変位 X (t)を参照して得られる所定のフィルタ係数に基づ 、て、モデル 化したパラメータの非線形成分を打ち消すように入力信号を処理する。そして、非線 形成分除去フィルタ 10において処理された信号は、加算器 13に出力される。以下、 非線形成分除去フィルタ 10において設定される所定のフィルタ係数について説明す る。
[0063] スピーカ 16の動作式は、上式(8)で示した通りである。上式(8)より、パラメータの 非線形成分 (Blxおよび Kx)を含まない動作式、つまり、非線形歪が発生しない線形 動作時の動作式は、下式(9)となる。
A0*E(t)/Ze=K0*x(t) + [r+A02/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · (9) したがって、式 (8)から式(9)を減じれば、式(10)のようにスピーカの非線形成分の みの動作式を取り出すことができる。
Ax*E(t)/Ze=Kx*x(t)+[(2*A0*Ax+A02)/Ze]*dx(t)/dt · · · ( 10)
また、式 (8)から式(10)を減じれば、式(11)のように非線形成分を取り除いた動作 式を得ることができる。
(A0+Ax)*E(t)/Ze Ax*E(t)/Ze
= (K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2
Kx*x(t)+[(2*A0*Ax+A02)/Ze]*dx(t)/dt …( 11 ) ここで、式(11)の右辺をもともとのスピーカ 16の動作式である式(8)の右辺と等しく すれば、式(11)は式(12)と表現される。
(A0+Ax)*E(t)/Ze Ax*E(t)/Ze+Kx*x(t)+[(2*A0*Ax+A02)/Ze]*dx(t)/dt
= (K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · ( 12) 上式(12)の左辺を整理すれば、下式(13)が得られる。そして、式(13)の左辺がパ ラメータの非線形成分を打ち消すためのフィルタ係数である。
(A0+Ax)/Ze*[E(t) Ze/(AO+Ax)*(Ax/Ze*E(t) (2*A0*Ax+Ax )/Ze*dx(t)/dt Kx* x(t))l
= (K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · ( 13)
[0064] なお、上記フィルタ係数において、上述した力係数 B1に関するパラメータ AOおよび Ax、スティフネス Kに関するパラメータ KOおよび Kx、電気インピーダンス Zeは、接続 されるスピーカ 16がもつ固有のパラメータであり、非線形成分除去フィルタ 10のフィ ルタ係数を構成する予め設定されたパラメータである。また、式(13)の左辺から、非 線形成分除去フィルタ 10のフィルタ係数に必要なパラメータとして、振動変位 x (t)の 値も必要であることが分かる。そして、この振動変位 x (t)は、次に説明する線形フィ ルタ 11にお!/、て生成される。
[0065] 線形フィルタ 11は、予め設定されたフィルタ係数に基づいて、入力信号からスピー 力 16が線形動作すると仮定したときの振動変位 x (t)を生成する。つまり、線形フィル タ 11は、擬似的な線形動作時の振動変位 x (t)を生成する。上述したようにスピーカ 16の線形動作時の動作式は式(9)に示す通りである。したがって、式(9)をラプラス 変換して伝達関数を求めると式(14)が得られる。そして、式(14)の右辺が線形フィ ルタ 11のフィルタ係数である。なお、 x (s)は振動変位 x (t)の伝達関数であり、 E (s) は、入力信号の電圧の伝達関数である。
x(s)/E(s)=(A0/Ze)/[K0+s*(r+A02/Ze)+s2*m] · · · ( 14)
[0066] このように、非線形成分除去フィルタ 10および線形フィルタ 11によるフィードフォヮ ード処理によって、上式 (8)に示すように、モデルィ匕した力係数 Bl (x)およびスティフ ネス K (x)の非線形成分が打ち消される。これにより、当該非線形成分に起因する非 線形歪を除去することができる。また、このフィードフォワード処理は、スピーカ 16が 線形動作するように非線形成分を打ち消している。そして、非線形成分除去フィルタ 10がスピーカ 16の線形動作時の振動変位 x (t)を参照しているので、より高効率な 歪除去効果が得られる。
[0067] 次に、理想フィルタ 12、センサ 17、加算器 14、フィードバック制御フィルタ 15、およ び加算器 13におけるフィードバック処理について説明する。
[0068] 理想フィルタ 12は、スピーカ 16の振動に応じた特性 (以下、出力特性とする)を所 望の出力特性にする場合において、当該所望の出力特性の伝達関数 F (s)をフィル タ係数とするフィルタである。つまり、理想フィルタ 12は、入力信号の周波数特性を所 望の出力特性に変換するフィルタである。ここで、所望の出力特性に変換された信号 を所望特性信号 f (t)とする。当該所望特性信号 f (t)は加算器 14に出力される。なお 、スピーカ 16の出力特性には、例えば振動変位特性、速度特性、加速度特性 (音圧 特性)などの種々の特性がある。例えば図 6に示すように、実際のスピーカ 16の音圧 周波数特性 (加速度特性)が図 6の Aに示される特性であったとする。図 6は、理想フ ィルタ 12のフィルタ係数として設定される所望の出力特性を示す図である。図 6にお いて、スピーカ 16の音圧周波数特性を Bに示される特性のように周波数レンジを広 げてフラットな特性にする場合、 Bに示される特性の伝達関数 F (s)を理想フィルタ 12 のフィルタ係数として設定すればょ 、。
[0069] センサ 17は、スピーカ 16の振動を検出し、当該スピーカ 16の出力特性をもつ検出 信号 y (t)を出力する。センサ 17から出力された検出信号 y (t)は、適宜増幅されて加 算器 14に出力される。なお、センサ 17は、例えばマイクロホン、レーザー変位計、加 速度ピックアップなどである。ここで、加算器 14に出力される信号特性の種類は、上 述した所望特性信号 f (t)力 Sもつ出力特性と同じ種類とする。つまり、理想フィルタ 12 において、所望特性信号 f (t)がもつ出力特性が例えばスピーカ 16の振動変位特性 である場合には、加算器 14に出力される信号を振動変位特性の信号とする。なお、 この場合、センサ 17はスピーカ 16の振動を検出して振動変位を出力するセンサを使 用すればよい。または、センサ 17としてスピーカ 16の速度特性や加速度特性を出力 するセンサを用いたとしても、センサ 17と加算器 14との間に微分回路や積分回路を 適宜設け、加算器 14に出力される信号の特性の種類を振動変位特性に変換するよ うにしてもよい。
[0070] なお、スピーカの音圧周波数特性は、加速度特性に比例する特性である。したがつ て、理想フィルタ 12から出力される所望特性信号 f (t)の特性がスピーカ 16の加速度 特性を示し、かつ、センサ 17が加速度ピックアップであってセンサ 17から出力される 信号の特性が加速度特性を示すとき、歪除去効果が最も高くなる。
[0071] 以下、説明のために、センサ 17から出力される検出信号 y (t)の特性の種類が、理 想フィルタ 12から出力される所望特性信号 f (t)力 Sもつ出力特性と同じ種類と仮定す る。つまり、センサ 17と加算器 14との間に微分回路や積分回路を設ける必要がない 場合について考える。
[0072] 加算器 14は、理想フィルタ 12から出力される所望特性信号 f (t)力もセンサ 17で出 力された検出信号 y (t)を減算し、その減算した信号 (f (t)— y (t) )を誤差信号 e (t)と して、フィードバック制御フィルタ 15に出力する。誤差信号 e (t)は、フィードバック制 御フィルタ 15において、適宜ゲインなどが調整され、加算器 13に帰還入力される。そ して、加算器 13において、非線形成分除去フィルタ 10の出力信号とフィードバック制 御フィルタ 15から出力される誤差信号 e (t)とが加算されて、スピーカ 16に出力される 。なお、フィードバック制御フィルタ 15は基本的にゲインを調整するフィルタ、すなわ ち、増幅器であり、ゲインが大きいほど歪除去効果が大きくなる。
[0073] ここで、上述したように支持系のスティフネス Kは経年変化する。また、図 5に示した ように入力の大きさによっても、スティフネス Kの特性が変化する。そして、この場合、 スピーカ 16の出力特性も変化する。これに対し、センサ 17はこの変化したスピーカ 1 6の出力特性を検出しており、上述した誤差信号 e (t)はセンサ 17から出力される検 出信号 y (t)と所望特性信号 r (t)との差分の信号である。したがって、上記スティフネ ス Kの経年変化および入力の大きさによる特性変化は、誤差信号 e (t)に反映される こととなる。そして、当該誤差信号 e (t)がフィードバック制御フィルタ 15を介して、カロ 算器 13に帰還入力されることにより、上記スティフネス Kの経年変化および入力の大 きさによる特性変化分は打ち消される。
[0074] このように、理想フィルタ 12、センサ 17、加算器 14、フィードバック制御フィルタ 15 、および加算器 13におけるフィードバック処理によって、支持系のスティフネス Kの経 年変化および入力の大きさによる特性変化に対してロバストな歪除去処理を行うこと ができる。
[0075] また、上述した 3つ目の非線形歪の発生要因である、ボイスコイル 161の電気インピ 一ダンス特性の変化分 (特に発熱による変化分)も、上記誤差信号 e (t)に含まれる。 したがって、当該変化分による非線形歪も上記フィードバック処理で除去することが できる。
[0076] また、誤差信号 e (t)を生成するにあたって、理想フィルタ 12において所望の出力 特性 (伝達関数 F (s) )をもつ信号 f (t)が用いられる。そして、誤差信号 e (t)がフィー ドバック処理されることで、実際のスピーカ 16の出力特性を上記所望の出力特性に 近づけることができる。
[0077] 以上のように、本実施形態に係るスピーカ装置 1によれば、フィードフォワード処理 によって大部分のスピーカの非線形歪を除去することができ、またフィードバック処理 によって支持系のスティフネスの経年変化や入力の大きさによる特性変化に対して、 ロバストな歪除去処理を行うことができる。これにより、複雑で膨大な計算を要する適 応的なパラメータ更新回路が必要なくコストアップを防止できるとともに、より安定的で 実現性の高い歪除去処理が可能なスピーカ装置を提供することができる。
[0078] なお、上述したフィードバック制御フィルタ 15は、ゲイン調整だけではなぐ例えば ローパスフィルタなどの特性を持たせてもよい。例えばスピーカ 16の中高域特性が大 きく乱れて、そのまま誤差信号 e (t)をフィードバックさせると発振するおそれがある場 合がある。このとき、フィードバック制御フィルタ 15においてローパスフィルタの特性を 持たせて中高域成分をカットすることにより、発振を防止することができる。また、図 1 に示すスピーカ装置 1において、誤差信号 e (t)による発振のおそれやゲイン調整の 必要が無ければ、フィードバック制御フィルタ 15が省略されてもよい。
[0079] また、上述した非線形成分除去フィルタ 10では、式 (8)から導出される式(13)に示 すフィルタ係数を用いることによって、力係数 B1および支持系のスティフネス Kに起因 する非線形歪を除去するとしたが、これに限定されない。式 (8)において、さらに上述 したボイスコイル 161の電気インピーダンス特性 Zeを振動変位 Xの関数 Ze (x)として 反映させ、式(14)より、当該電気インピーダンス特性 Zeも考慮したフィルタ係数を設 定してもよい。これにより、非線形成分除去フィルタ 10および線形フィルタ 11におけ るフィードフォワード処理において、電気インピーダンス特性 Zeの振動変位 x (t)に基 づく変動による非線形歪を除去することができる。
[0080] また、上述した非線形成分除去フィルタ 10では、線形フィルタ 11によって擬似的に 生成された線形動作時の振動変位 x (t)を参照したが、図 7に示すように、センサ 17 の出力信号を直接参照するものであってもよい。つまり、センサ 17の出力を直接参照 することによって、線形フィルタ 11が省略できる。またこの場合、振動変位 x (t)は実 際のスピーカの振動変位 x (t)であり、非線形成分除去フィルタ 10において実際のス ピー力の振動変位に即した処理が可能となる。なお、図 7は、非線形成分除去フィル タ 10がセンサ 17の出力信号を参照した場合のスピーカ装置 1の構成例を示すブロッ ク図である。このとき、非線形成分除去フィルタ 10が参照する信号は振動変位 x (t) であるから、センサ 17は、スピーカ 16の振動変位特性を検出するものであればよい。 また、センサ 17自体が検出する信号が、速度特性、加速度特性であっても、微分回 路および積分回路を適宜用いることで、振動変位特性を得ることが可能である。
[0081] (第 2の実施形態)
図 8を参照して、本発明における第 2の実施形態に係るスピーカ装置 2について説 明する。図 8は、第 2の実施形態に係るスピーカ装置 2の構成例を示すブロック図で ある。図 8において、スピーカ装置 2は、非線形成分除去フィルタ 10、線形フィルタ 11 、理想フィルタ 12、加算器 13、加算器 14、フィードバック制御フィルタ 15、スピーカ 1 6、センサ 17、および前段フィルタ 20を有する。図 8に示すように、本実施形態に係る スピーカ装置 2は、上述した図 1に示すスピーカ装置 1に対して、前段フィルタ 20を新 たに備える点で異なる。以下、異なる点を中心に説明する。また、非線形成分除去フ ィルタ 10、線形フィルタ 11、理想フィルタ 12、加算器 13、加算器 14、フィードバック 制御フィルタ 15、スピーカ 16、およびセンサ 17は、第 1の実施形態で説明した各構 成と同様であるため、同一の符号を付して、説明を省略する。
[0082] 前段フィルタ 20は、非線形成分除去フィルタ 10および線形フィルタ 11の前段にあ つて、電気信号を入力信号として、当該入力信号を所定のフィルタ係数に基づいて 処理する。前段フィルタ 20において処理された信号は、非線形成分除去フィルタ 10 および線形フィルタ 11にそれぞれ入力される。ここで、前段フィルタ 20のフィルタ係 数は、理想フィルタ 12のフィルタ係数である所望の出力特性の伝達関数 F(s)を、実 際のスピーカ 16が有する線形動作時の出力特性の伝達関数 P (s)で除算した F (s) ZP(s)である。なお、伝達関数 P(s)の出力特性は、理想フィルタ 12における所望の 出力特性の種類と同じにする。つまり、第 1の実施形態で説明したように、例えば伝 達関数 F(s)がスピーカ 16の振動変位特性に基づく場合には、伝達関数 P(s)もスピ 一力 16が線形動作する際の振動変位特性に基づく関数とする。
[0083] ここで、前段フィルタ 20に入力される入力信号電圧の伝達関数を E (s)とする。この とき、前段フィルタ 20の出力信号は E(s) *F(s)ZP(s)となる。そして、非線形成分 除去フィルタ 10を介してスピーカ 16において出力される際に、スピーカ 16の伝達関 数 P(s)が乗算されるので、最終的にスピーカ 16の出力特性は E(s) *F(s)となる。 つまり、スピーカ 16の出力特性が目標特性 F(s)に収束する。このとき、センサ 17で 出力される検出信号 y(t)の伝達関数は E(s) *F(s)となる。また、伝達関数 E(s)と なる入力信号が理想フィルタ 12に入力される。このとき、理想フィルタ 12のフィルタ係 数は F(s)であるから、理想フィルタ 12の出力信号 f(t)の伝達関数は E(s) *F(s)と なる。そして、加算器 14において、理想フィルタ 12からの出力信号 f(t)から上記検 出信号 y(t)力 S減じられる。このとき、出力信号 f(t)および検出信号 y(t)の伝達関数 はともに E(s) *F(s)で同じとなり、誤差信号 e(t)は 0となる。
[0084] また、例えば支持系のスティフネス Kの経年変化などによってスピーカの伝達関数 力 SP(S)から P' (s)に変動したとする。このとき、図 8に示したスピーカ装置 2全体の伝 達関数 Y (s) /E (s)は式( 15)となる。なお、 Y (s)はスピーカ 16からの出力信号 y (t) をラプラス変換したものである。また E (s)は、入力信号電圧をラプラス変換したもので ある。
Y(s)/E(s)=(P' (s)*[l+P(s)])/(P(s)*[l+P' (s)])*F(s) 〜(15)
上式( 15)より、スピーカ 16の伝達関数 P (s)が変動しな 、とき(P ' (s) = P (s)となると き)、式(15)の右辺は F (s)となる。つまり、スピーカ 16の出力特性が所望特性 F (s) に収束する。
[0085] 次に、前段フィルタ 20を有していない図 1に示したスピーカ装置 1において、スピー 力 16が線形動作する際の伝達関数が P (s)であるとすると、図 1に示したスピーカ装 置 1全体の伝達関数 Y(s) /E (s)は式(16)となる。
Y(s)/E(s)=(P(s)*[l+F(s)])/[l+P(s)] …(16)
上式( 16)より、スピーカ 16の伝達関数 P (s)が変動しな 、とき(P ' (s) = P (s)となると き)、式(16)の右辺は F (s)とはならない。つまり、スピーカ 16の出力特性が所望特性 F (s)に収束しない。
[0086] また、スピーカ 16の伝達関数が P (s)から P' (s)に変動したとすると、図 1に示したス ピー力装置 1の伝達関数 Y(s) ZE (s)は式(17)となる。
Y(s)/E(s)=(P' (s)*[l+F(s)])/[l+P' (s)] …(17)
[0087] このように、図 1に示したスピーカ装置 1においては、式(16)および式(17)に示す ように、理想フィルタ 12を設けることでスピーカ 16の出力特性が F (s)に近づいた特 性となるが、スピーカ 16の伝達関数の変動に関わらず所望特性 F (s)に収束すること はない。これに対し、図 8に示したスピーカ装置 2においては、前段フィルタ 20を設け ることで、少なくともスピーカの伝達関数が変動しないときに F (s)に収束する。つまり 、前段フィルタ 20は、スピーカ 16の所望の出力特性への収束性を高める役割を果た す。
[0088] 以上のように、本実施形態に係るスピーカ装置 2においては、前段フィルタ 20を設 けることによって、所望の出力特性 (伝達関数 F (s) )への収束性を極めて高くするこ とがでさる。
[0089] なお、上述したフィードバック制御フィルタ 15は、第 1の実施形態と同様に、ゲイン 調整だけではなぐ例えばローパスフィルタなどの特性を持たせてもよい。また、図 8 に示すスピーカ装置 2において、誤差信号 e (t)による発振のおそれやゲイン調整の 必要が無ければ、フィードバック制御フィルタ 15が省略されてもよい。
[0090] また、上述した非線形成分除去フィルタ 10では、第 1の実施形態と同様に、式 (8) 力 導出される式(13)に示すフィルタ係数を用いることによって、力係数 B1および支 持系のスティフネス Kに起因する非線形歪を除去するとした力 これに限定されない 。式(8)において、さらに上述したボイスコイル 161の電気インピーダンス特性 Zeを振 動変位 Xの関数 Ze (x)として反映させ、式(14)より、当該電気インピーダンス特性 Ze も考慮したフィルタ係数を設定してもよ ヽ。
[0091] また、上述した図 8では、線形フィルタ 11の入力と前段フィルタ 20の出力とを接続し た構成を示した力 これに限定されない。図 9に示すように、線形フィルタ 11の入力 1S 前段フィルタ 20および理想フィルタ 12の入力と同じになる構成であっても、図 8 に示した構成で得られる効果と同じ効果を得ることができる。なお、図 9は、図 8に示 した線形フィルタ 11の入力を変えた構成例を示すブロック図である。
[0092] また、上述した非線形成分除去フィルタ 10では、第 1の実施形態と同様に、線形フ ィルタ 11によって擬似的に生成された線形動作時の振動変位 X (t)を参照したが、図 10に示すように、センサ 17の出力信号を直接参照するものであってもよい。つまり、 センサ 17の出力を直接参照することによって、線形フィルタ 11が省略できる。なお、 図 10は、非線形成分除去フィルタ 10がセンサ 17の出力信号を参照した場合のスピ 一力装置 2の構成例を示すブロック図である。このとき、非線形成分除去フィルタ 10 が参照する信号は振動変位 x (t)であるから、センサ 17は、スピーカ 16の振動変位 特性を検出するものであればよい。また、センサ 17自体が検出する信号が、速度特 性、加速度特性であっても、微分回路および積分回路を適宜用いることで、振動変 位特性を得ることが可能である。
[0093] (第 3の実施形態)
図 11を参照して、本発明における第 3の実施形態に係るスピーカ装置 3につ 、て 説明する。図 11は、第 3の実施形態に係るスピーカ装置 3の構成例を示すブロック図 である。図 11において、スピーカ装置 3は、非線形成分除去フィルタ 10、理想フィル タ 12、加算器 13、加算器 14、フィードバック制御フィルタ 15、スピーカ 16、センサ 17 、および前段フィルタ 20を有する。本実施形態に係るスピーカ装置 3は、図 1、図 7〜 図 10に示したスピーカ装置 1および 2に対して、非線形成分除去フィルタ 10が加算 器 13とスピーカ 16との間に配置される点で異なり、この異なる点によって歪除去効果 が得られる周波数帯域を低域まで伸ばすことが可能なスピーカ装置である。
[0094] 以下、図 11を参照して、上記異なる点を中心に説明する。図 11では、スピーカ装 置 3として、図 10に示したスピーカ装置 2に対して非線形成分除去フィルタ 10の配置 位置を変えた構成例を示している。なお、図 11において、加算器 13および 14の入 出力に関する符号が図 10に示す符号と異なるが、位相関係が等しくなるようにすれ ば、どちらの符号であっても動作と効果は同じである。また、非線形成分除去フィルタ 10、理想フィルタ 12、加算器 13、加算器 14、フィードバック制御フィルタ 15、スピー 力 16、センサ 17、および前段フィルタ 20は、第 1および第 2の実施形態で説明した 各構成と同様であるため、同一の符号を付して、説明を省略する。
[0095] 非線形成分除去フィルタ 10は、加算器 13とスピーカ 16との間に配置される。つまり 、非線形成分除去フィルタ 10は、センサ 17、加算器 14、フィードバック制御フィルタ 1 5、加算器 13、およびスピーカ 16で形成されるフィードバックループ内に配置される こととなる。この場合、非線形成分除去フィルタ 10およびスピーカ 16を 1つにまとめた ものを、線形二自由度制御における制御対象と考えることができる。
[0096] ここで、第 1の実施形態で説明したように、非線形成分除去フィルタ 10は、モデル 化したスティフネス Kの非線形成分を打ち消して、スピーカ 16から発生する非線形歪 を取り除く役割を果たしている。したがって、上記制御対象は、非線形成分除去フィ ルタ 10によってスピーカ 16の非線形歪がある程度取り除かれたものと考えることがで きる。このような制御対象がフィードバックループ内に配置されることで、フィードバッ クループ内において、図 4に示したスティフネス Kの振動変位 Xに対する変化が小さく なる。つまり、スピーカ 16の振幅が大きくなつても、スティフネス Kはあまり変化しない ことを意味する。また、スティフネス Kの変化が小さくなるので、スピーカ 16の最低共 振周波数 fOの変化も小さくなる。
[0097] 一方、図 10に示すスピーカ装置 2では、非線形成分除去フィルタ 10がフィードバッ クループ内に配置されていない。したがって、図 10に示すスピーカ装置 2では、上記 制御対象は、スピーカ 16単体となり、フィードバックループ内において、上述したよう な非線形歪をある程度取り除かれたものにはならな 、。
[0098] このように、フィードバックループ内の処理に着目した場合、本実施形態に係るスピ 一力装置 3では、図 10に示すスピーカ装置 2と比べてスピーカ 16の最低共振周波数 fOの変化が小さくなる。
[0099] 次に、図 12に示すスピーカ装置 3のゲイン特性 G1〜G4および位相特性 Pを参照 して、上述の内容をさらに具体的に説明する。図 12は、スピーカ装置 3のゲイン特性 および位相特性を示した図である。なお、図 12に示すゲイン特性 G1〜G4は、開ル ープ伝達特性である。また、図 12の実線で示されるゲイン特性 G1は、スピーカ 16の 音圧周波数特性、つまり加速度特性に比例した特性を示している。点線で示される ゲイン特性 G2〜G4については後述する。
[0100] ゲイン特性 G1によれば、最低共振周波数 fO以下の周波数帯域においてゲインが — 12dBZoctの傾斜で減衰していることが分かる。図 12に示す位相特性 Pによれば 、最低共振周波数 fOで位相が 90° だけずれていることが分かる。また最低共振周波 数 fO以下では、周波数が小さいほど、位相のずれが 180° に近づいていることが分 かる。また最低共振周波数 fO以上では、周波数が大きいほど、位相のずれが 0° に 近づいていることが分かる。
[0101] ここで、図 11に示したフィードバック制御フィルタ 15において、加算器 13に入力さ れる誤差信号 e (t)のゲインが調整される場合を考える。この場合、ゲイン特性 G1は、 フィードバック制御フィルタ 15にお!/、て調整されるゲインの大きさに応じて、図 12の 点線に示すゲイン特性 G2、 G3または G4へと変化する。なお、フィードバック制御フ ィルタ 15において調整されるゲインの大きさに応じて、スピーカ 16への入力の大きさ が変わる。そして、スピーカへの入力の大きさが変わることにより、スピーカ 16の振幅 の大きさが変わる。ここで、上述したように、スピーカ装置 3は、スピーカ 16の振幅が 大きくなつても、最低共振周波数 fOの変化は少ない。したがって、図 12の点線で示さ れるゲイン特性 G2、 G3または G4の最低共振周波数は、全て fOに近い値となってい る。 [0102] 次に、ゲイン余裕および位相余裕という評価値について考える。ゲイン余裕とは、 開ループ特性の位相が 180° のときに、開ループ伝達特性のゲインがどれだけマイ ナスの値をとるかを示すものである。なお、位相が 180° となるときの周波数を位相交 差周波数 fpcと呼ぶ。位相余裕とは、開ループ伝達特性のゲイン力OdBのときに、開 ループ伝達特性の位相が 180° に対してどれだけマイナスの値となるかを示すもの である。なお、ゲインが OdBとなるときの周波数をゲイン交差周波数 fgcと呼ぶ。
[0103] ここで、図 10に示すスピーカ装置 2のフィードバックループの周波数特性について 解析する。図 10に示すスピーカ装置 2のフィードバックループでは、通常の加速度特 性を示す信号をフィードバックしているため、周波数特性が大きく変化してしまい、解 祈が困難となる。そこで、周波数特性の解析においては、図 13のように理想フィルタ 12を加えて考える。つまり、理想フィルタ 12を加え、周波数特性が変化しない状態で の解析を行う。図 13は、図 10に示すスピーカ装置 2の周波数特性の解析に用いる構 成を示す図である。
[0104] 図 14に、図 13のスピーカ 16への入力の大きさを変えたときの音圧周波数特性、 2 次歪特性、および 3次歪特性をそれぞれ示す。具体的には、図 14に示すように、スピ 一力 16への入力を IV、 5W、 10W, 2籠、 40Wとしたときの音圧周波数特性、 2次 歪特性、および 3次歪特性をそれぞれ示している。図 14から分力るように、入力を大 きくしていくと、 2次および 3次歪のレベルが大きくなる。これは、入力を大きくしていく と、スティフネスが高くなり、ゲイン交差周波数 fgcが高くなるからである。このように、 歪除去効果が得られる周波数帯域の下限の周波数は、ゲイン交差周波数 fgcと比例 関係にあることがいえる。
[0105] 以下、再び図 12を参照して、スピーカ装置 3が、歪除去効果が得られる周波数帯 域を低域まで伸ばすことが可能である理由について説明する。図 12において、フィ ードバック制御フィルタ 15にお 、てゲインを上げる調整を行うと、ゲイン特性 G 1は、 ゲイン特'性 G2に示す特'性となる。このとき、ゲイン特性 G2におけるゲイン交差周波 数 fgc2は、ゲイン交差周波数 fgc 1よりも小さい周波数となる。これは、上述したように 、スピーカ装置 3は、スピーカ 16の振幅の大きさが変わっても最低共振周波数 fOの 変化が少ないためである。このように、スピーカ装置 3では、ゲイン交差周波数 fgc2 に比例して、歪除去効果が得られる周波数帯域が低域に伸びる結果となる。
[0106] 一方、図 10に示したスピーカ装置 2においては、上述したように、非線形成分除去 フィルタ 10がフィードバックループ内に配置されていない。したがって、図 10に示す スピーカ装置 2では、スピーカ 16への入力が大きくなると、つまり、フィードバック制御 フィルタ 15においてゲインを上げる調整を行うと、ゲイン特性 G1は、ゲイン特性 G2' に示す特性となる。つまり、スティフネス Kの値が大きくなり、最低共振周波数 fOが fO ' まで上昇する。また、最低共振周波数 fOの上昇とともに、ゲイン交差周波数もゲイン 交差周波数 fgc2'まで上昇する。したがって、スピーカ装置 2では、ゲイン交差周波 数 fgc2'に比例して、歪除去効果が得られる周波数帯域が高域へシフトする結果と なる。
[0107] なお、図 12において、フィードバック制御フィルタ 15においてゲインを下げる調整 を行うと、ゲイン特性 G1は、ゲイン特性 G3に示す特性となる。このとき、ゲイン特性 G 3におけるゲイン交差周波数 fgc3は、ゲイン交差周波数 fgclよりも大きい周波数とな る。つまり、フィードバック制御フィルタ 15においてゲインを下げる調整を行うと、ゲイ ン特性がゲイン特性 G1からゲイン特性 G3へと変化し、ゲイン交差周波数 fgclがゲ イン交差周波数 fgc3へと上昇する。また、フィードバック制御フィルタ 15においてゲ インをさらに下げる調整を行うと、ゲイン特性 G1は、ゲイン特性 G4に示す特性となる 。ゲイン特性 G4によれば、全周波数帯域に渡って常にゲインがマイナスの値となつ ている。これにより、ゲイン特性力 G4となる場合、フィードバック処理は完全に安定す る。しかし、フィードバックゲインが下がることにより、歪を低減させる効果が小さくなつ てしまう。これらゲイン特性 G3および G4による歪低減効果が小さくなることについて は、図 10に示したスピーカ装置 2についても同様である。また、スピーカ 16を用いる 制御系では、位相が 180° となることはなく、位相交差周波数 fpcは存在しない。これ はスピーカ装置 1〜3においても同様のことがいえる。また、位相が 180° となること がないので、上述した位相余裕は、常にマイナスの値となる。
[0108] 以上のように、図 11に示したスピーカ装置 3によれば、非線形成分除去フィルタ 10 がフィードバックループ内に配置されることにより、図 10に示すスピーカ装置 2と比べ てスピーカ 16の最低共振周波数 fOの変化が小さくなる。スピーカ 16の最低共振周 波数 fOの変動が小さくなることで、ゲイン交差周波数 fgcの変動も小さくなる。これに より、図 11に示したスピーカ装置 3では、入力が大きくなつても、図 10に示したスピー 力装置 2よりも低い周波数帯域まで歪除去効果を発揮することができる。
[0109] なお、図 11に示したスピーカ装置 3に対して、図 15に示すように、補償フィルタ 21 を非線形除去フィルタ 10の前段にさらに付カ卩してもよい。図 15は、図 11に示すスピ 一力装置 3に対して補償フィルタ 21を付加した構成例を示すブロック図である。
[0110] 補償フィルタ 21は、スピーカ装置 3の開ループ伝達特性において、低域のレベルを 増加させるものである。つまり、本発明におけるローパスフィルタに相当するものであ る。具体的には、補償フィルタ 21は、例えば式(18)のような伝達関数で示されるフィ ルタ係数 Hを有する。
H=k*(l+l/(T*s)) · · · (18)
ただし、 Τ=1/(2* π *ftnax)とする。
ここで、 kはゲイン、 fmaxは周波数特性の変曲周波数である。変曲周波数とは、周波 数特性の傾きが変わるときの周波数を意味する。例えば変曲周波数を、ゲインが Od Bから 3dBだけ変化した点の周波数とする。式(18)に示す伝達関数の周波数特性 は、図 16に示す特性となる。図 16は、補償フィルタのゲイン特性および位相特性と、 スピーカ装置 3のゲイン特性 (G5および G6)および位相特性 (P5および P6)を示し た図である。図 16に示すスピーカ装置 3のゲイン特性によれば、図 16に示す点線の ゲイン特性 G5は、補償フィルタ 21のフィルタ特性によって、実線で示されるゲイン特 性 G6へと変化する。また、位相交差周波数 fpcが存在しない状態で、低域が上昇す ることとなるので、ゲイン交差周波数 fgcを DCに近づけることができる。これ〖こより、上 述した歪除去効果が得られる周波数が低下するので、大入力時に歪除去効果が損 なわれることをさらに防止でき、より低い周波数帯域まで歪除去効果を発揮すること ができる。
[0111] 上記変曲周波数 fmaxは、少なくともゲイン交差周波数 fgcより高い周波数に設定さ れる。また、式(18)の次数は一次であるが、これに限定されない。ゲイン交差周波数 fgcを下げることができれば、一次以上の次数をもつ伝達関数であってもかまわな!、 。式(18)の次数が高くなると、補償フィルタ 21のフィルタ特性において、変曲周波数 以下のゲインの上昇する傾きが急になる。これにより、スピーカ装置 3のゲイン特性は 、式(18)の次数が高いほど、ゲイン交差周波数 fgcを低くできるが、次数をいくつに するかについては、位相特性も考慮しながら適宜設計すればよい。なお、補償フィル タ 21のフィルタ係数が一次の場合、補償フィルタ 21のフィルタ特性は、上記変曲周 波数以下の周波数帯域にぉ 、て、 - 6dBZoctで傾斜する特性を示す。
[0112] なお、図 11に示したスピーカ装置 3に対して、図 17に示すように、ハイパスフィルタ 22をさらに付カ卩してもよい。図 17は、図 11に示すスピーカ装置 3に対してハイパスフ ィルタ 22を付加した構成例を示すブロック図である。
[0113] ノ、ィパスフィルタ 22は、ゲイン交差周波数 fgc以下の信号があら力じめ入力されな いようにするためのものである。そのため、少なくともカットオフ周波数はゲイン交差周 波数 fgc以上である必要がある。また、次数は高いほど遮断特性がよいので、設計の 都合によって次数を選択すればよい。また、ハイノ スフィルタ 22のフィルタ係数が一 次の場合、ハイパスフィルタ 22のフィルタ特性は、上記カットオフ周波数以下の周波 数帯域において、 + 6dBZoctで傾斜する特性を示す。なお、ハイパスフィルタ 22は + 6dB/oct以上の遮断特性を有してもよい。この場合、ゲイン交差周波数 fgc以下 の信号がより遮断されることとなり、歪低減効果が損なわれない。
[0114] なお、図 11に示したスピーカ装置 3に対して、図 18に示すように、補償フィルタ 21 およびハイパスフィルタ 22をさらに付カ卩してもよい。図 18は、図 11に示すスピーカ装 置 3に対して補償フィルタ 21およびノヽィパスフィルタ 22を付加した構成例を示すプロ ック図である。
[0115] ここで、図 11のスピーカ装置 3、図 17のハイパスフィルタ 22のみを付カ卩したスピー 力装置 3、図 18のハイパスフィルタ 22および補償フィルタ 21を付カ卩したスピーカ装置 3それぞれについての周波数特性の解析結果を図 19に示す。また図 19は、入力を 20Wおよび 40Wとしたときの解析結果をそれぞれ示している。
[0116] 図 19に示す 2次および 3次歪のうち、ハイパスフィルタ 22と補償フィルタ 21を付カロし た図 18に示すスピーカ装置 3の 2次および 3次歪が最も小さくなつていることが分かる 。つまり、この解析結果からも示されように、ハイパスフィルタ 22と補償フィルタ 21を付 カロした図 18に示すスピーカ装置 3が、歪除去効果が最も高い装置となることが分かる [0117] なお、上述の図 12の説明において、位相交差周波数 f pcが存在せず、位相余裕が 常にマイナスとなると説明した。ここで、上述したゲイン余裕および位相余裕が共にマ ィナスになるとき、フィードバック処理は不安定となり、発振する。したがって、位相交 差周波数 fpcが存在せず、位相余裕が常にマイナスの値となる場合、フィードバック 処理の安定性はどのようになるかが問題となる。これに対して、ステップ応答を参照し て検証する。なお、簡略化のため、図 10に示すスピーカ装置 2のフィードバックルー プで解析する。図 20は、図 10に示すスピーカ装置 2のフィードバックループを示した 図である。理想フィルタ 12の処理は、フィードバック処理の一部である力 理想フィル タ 12の処理だけに着目すると、入力される電気信号を加算器 14に出力する処理とな り、フィードフォワード処理に相当する。また、理想フィルタ 12は、 2次振動系である実 際のスピーカ 16をモデルにしている。したがって、理想フィルタ 12の処理は、常に安 定であると!/、え、上記フードバック処理の安定性に対して影響を及ぼすものではな!/ヽ 。したがって、フィードバック処理の安定性を評価する上で、理想フィルタ 12の処理 は考慮しなくてよい。
[0118] 図 20に示すフィードバックループにおけるステップ応答結果を図 21〜図 23に示す 。図 21は、図 20に示すフィードバックループにおいて、上述したスティフネス K (x)の 非線形成分であるスティフネス kxが 20000、位相余裕が— 0. 849° 、ゲイン交差周 波数 fgcが 5. 4Hzであるときのステップ入力とその応答を示した図である。図 22は、 図 20に示すフィードバックループにおいて、スティフネス kx力 000、位相余裕が一 1. 7° 、ゲイン交差周波数 fgcが 2. 7Hzであるときのステップ入力とその応答を示し た図である。図 23は、図 20に示す構成において、スティフネス kxが 1200、位相余裕 がー 3. 46° 、ゲイン交差周波数 fgcが 1. 3Hzであるときのステップ入力とその応答 を示した図である。
[0119] 図 21〜図 23に示される各ステップ応答を参照すると、全てのステップ応答が時間 の経過と共に収束していることが分かる。これにより、位相交差周波数 fpcが存在せ ず、ゲイン交差周波数 fgcにおいて位相がマイナスとなる場合であっても、発振は起 こらず、安定性が高いといえる。 [0120] なお、図 21〜図 23では、図 10に示すスピーカ装置 2のフィードバックループで解 祈しているため、スティフネス kxが高くなると、ゲイン交差周波数 fgcも高くなつている 。また、ゲイン交差周波数 fgcが高くなると、ステップ応答の収束波形の周波数が高く なっている。
[0121] (第 4の実施形態)
図 24を参照して、本発明における第 4の実施形態に係るスピーカ装置 4について 説明する。図 24は、第 4の実施形態に係るスピーカ装置 4の構成例を示すブロック図 である。本実施形態に係るスピーカ装置 4は、上述した第 1〜第 3の実施形態に係る スピーカ装置 1〜3に対して、パワーアンプ 23をさらに備える点で異なる。図 24では、 一例として、スピーカ装置 4は、非線形成分除去フィルタ 10、線形フィルタ 11、理想 フィルタ 12、加算器 13、加算器 14、フィードバック制御フィルタ 15、スピーカ 16、セ ンサ 17、前段フィルタ 20、およびパワーアンプ 23を有する。
[0122] 上述した第 1〜第 3の実施形態に係るスピーカ装置の実用化にあたっては、スピー 力 16を駆動するためのパワーアンプが必要となる。ここで、上述した第 1〜第 3の実 施形態に係るスピーカ装置を構成する各構成部のうち、例えば非線形成分除去フィ ルタ 10など、内部処理する際に高い電圧を取り扱えない構成部がある場合、図 24に 示すように、パワーアンプ 23をスピーカ 16の直前に設ける必要がある。
[0123] 図 24において、非線形歪を除去する加算器 13の出力信号は、パワーアンプ 23に よって増幅される。例えば、パワーアンプ 23のゲインが 10倍で、図 24に示すスピー 力装置 4の入力電圧が IVであったとする。この場合、パワーアンプ 23からの出力電 圧は、 10Vとなる。ここで、非線形成分除去フィルタ 10への入力が IVの場合、非線 形成分除去フィルタ 10は、スピーカ 16への入力が IVのときの非線形歪を除去する 信号を作り出す。したがって、加算器 13の出力信号を 10Vに増幅すると、スピーカ 1 6の非線形歪の大きさとの整合がとれな 、と 、う問題が発生する。
[0124] そのため、各構成部が有するフィルタ係数を構成する各パラメータのスケールを調 整し、パワーアンプ 23で増幅された出力信号力 スピーカ 16の非線形歪のレベルと 対応するようにする必要がある。以下、この各パラメータのスケールを調整する処理を スケーリング処理と称す。 [0125] 次に、図 24に示したスピーカ装置 4の動作原理について説明する。なお、以下の 説明では、パワーアンプ 23のゲインが 10倍であるとする。スピーカ 16の動作式は、 前述のように式(8)で示される。
(A0+Ax)*E(t)/Ze=(K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · (8) ここで、パワーアンプ 23のゲインが 10倍であるとしたので、各パラメータに 1/10を 乗算する。これにより、式(8)は、 1Z10のモデルにスケールダウンし、式(19)のよう になる。
1/10· (A0+Ax)*E(t)/(l/ 10 · Ze)
=l/10-(K0+Kx)*x(t)+[l/10-r+{l/10(A0+Ax)}2/(l/10-Ze)]*dx(t)/dt
+l/10-m*d2x(t)/dt2 · '· (19)
上式(19)を整理すると、式(20)のようになる。
(A0+Ax)*E(t)/0.1/Ze
=(K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · ( 20)
これは、入力電圧 Eが IVのとき、あた力も 10Vの電圧が加えられたときの動作を表し ている。
[0126] 次に、非線形成分除去フィルタ 10は、上式(13)の結果より、式(21)のように、非線 形成分を打ち消すような電圧 Eff (t)を生成する。
Eff(t)=
[E(t) - Ze/(AO+Ax)*(Ax/Ze*E(t) - (2*A0*Ax+Ax2)/Ze*dx(t)/dt - Kx*x(t))] · · · ( 21 ) ここで、式(19)と同様に考えると、入力電圧 Eが IVのとき、あた力も 10Vの電圧が加 えられたスピーカの動作に対応した非線形歪を除去する出力を得るには、式(21)の 各パラメータに 1Z10を乗算すればよい。したがって、式(21)は、式(22)のようにな る。
Eff(t)=
[E(t)— (1/10 · Ze)/{1/10 · (Α0+Αχ)}*{(1/10·Αχ)/(1/10· Ze)*E(t)
-(2*l/10-A0*l/10-Ax+(l/10-Ax)2)}/(l/10-Ze)*dx(t)/dt- l/10-Kx*x(t))] - -- (22) さらに、上式(22)を整理すると、式(23)のようになる。
Eff(t)= [E(t)/0.1— Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1 (2*A0*Ax+Ax2)/Ze*dx(t)/dt Kx*x(t))]
- (23)
式(23)によって示される電圧 Eff (t)が入力されたスピーカ 16の動作は、上式(13) から、式(24)のようになる。
(A0+Ax)/Ze*[E(t)/0.1 Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1 (2*A0*Ax+Ax2)/Ze*dx(t)/ dt-Kx*x(t))]
= (K0+Kx)*x(t) + [r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 · · · ( 24) つまり、入力電圧 E (t)が IVであるとすると、 E (t) ZO. 1は 10Vであるから、アンプの ゲインによって 10Vに増幅された電圧をカ卩えたときの動作及び処理と同じ動作及び 処理となり、いわゆるスケーリング処理が可能となる。
[0127] したがって、パワーアンプ 23のゲインを Gとすると、スケーリング処理を行う場合、式
(25)のように各パラメータに 1ZGを乗算すればょ 、と 、える。
Eff(t)=
[E(t)-(1/G · Ze)/{1/G · (A0+Ax)}*{(l/G · Ax)/(1/G · Ze)*E(t)
-(2*1/G · A0*1/G · Ax+(1/G · Ax)¾/(1/G · Ze)*dx(t)/dt— 1/G · Kx*x(t))] · · · (25) [0128] なお、前段フィルタ 20、理想フィルタ 12、線形フィルタ 11についても上述した非線 形除去フィルタ 10と同様のスケーリング処理を行えばよ 、。
[0129] 以上のように、スケーリング処理を行うことにより、パワーアンプ 23をスピーカ 16の直 前に配置した場合に、非線形歪除去フィルタ 10の出力電圧の大きさをパワーアンプ 23から出力されるスピーカ 16への入力電圧の大きさに対応させることができる。また 、非線形歪除去フィルタ 10などのフィードフォワード処理部力 実用上において内部 処理できる電圧に制限があるときにも対応が可能となる。
[0130] さらに、図 25は、スケーリング処理の有無による周波数特性を比較した図である。
図 25に示すように、スケーリング処理をした方が 2次および 3次歪のレベルが小さくな り、歪除去効果が高くなることが分かる。これはパワーアンプ 23が、フィードバック処 理部に加えられることにより、フィードバックゲインが増大し、図 12のゲイン特性 G2で 説明した効果と同じ効果が得られるからである。 [0131] なお、図 26に示すように、パワーアンプ 23のボリュームと、非線形成分除去フィルタ 10、線形フィルタ 11、理想フィルタ 12、フィードバック制御フィルタ 15、および前段フ ィルタ 20とを連動させ、ボリューム情報 Volを各構成部に反映させるようにしてもよい 。これにより、上式(25)における係数 1ZGを適応的に変化させることができる。なお 、ボリューム情報 Volは、ゲインの値の情報を示している。
[0132] なお、第 1〜第 4の実施形態で説明したスピーカ装置 1〜4において、リミッタ 24をさ らに設けてもよい。これにより、大入力によるスピーカ 16の破損を防止することができ る。図 27は、図 1に示すスピーカ装置 1にリミッタ 24を設けた構成の一例を示すブロッ ク図である。図 27において、リミッタ 24は入力信号のレベルをスピーカ 16が破損する レベル以下に制限する。したがって、大きな入力信号が入力されても、スピーカ 16に はリミッタ 24で設定したレベル以上は入力されず、スピーカ 16の破損を防止すること ができる。なお、リミッタ 24の位置は、図 27に示される位置に限定されず、例えば非 線形成分除去フィルタ 10の出力と加算器 13の入力との間にあってもよいし、加算器 13の出力とスピーカ 16の入力との間にあってもよい。つまり、リミッタ 24は、スピーカ 1 6の入力を制限できる位置に配置されれば、どの位置に配置されてもよ!、。
[0133] また、第 1〜第 4の実施形態で説明したスピーカ装置 1〜4において、非線形成分 除去フィルタ 10、線形フィルタ 11、理想フィルタ 12、加算器 13、加算器 14、フィード バック制御フィルタ 15、前段フィルタ 20、補償フィルタ 21、ハイパスフィルタ 22、パヮ 一アンプ 23、およびリミッタ 24は、集積回路で構成されてもよい。このとき、集積回路 はスピーカ 16に出力する出力端子と、電気信号を入力する第 1の入力端子と、セン サ 17の検出信号を入力とする第 2の入力端子とを備える。このように上述した第 1〜 第 4の実施形態では、上述した各機能を果たす電気回路を 1つの小型パッケージに 集積して、例えば音声信号処理回路 DSP (Digital Signal Processor)等を構成 することによって、本発明の実現が可能となる。また、非線形成分除去フィルタ 10、線 形フィルタ 11、理想フィルタ 12魏積回路で構成し、各機能を DSPで構成することも できる。 DSPの処理時間がフィードバック処理に悪影響を及ぼし、効果が薄れる場合 に有効である。
産業上の利用可能性 本発明に係るスピーカ装置は、実際のスピーカにおけるパラメータの変化に追従し た信号処理を行い、より安定的な歪除去処理が可能なスピーカ装置、薄型スピーカ 等の用途にも適用できる。

Claims

請求の範囲
[1] スピーカと、
予め設定されたフィルタ係数に基づいて、前記スピーカに入力されるべき電気信号 を、前記スピーカから発生する非線形歪を除去するようにフィードフォワード処理する フィードフォワード処理部と、
前記スピーカの振動を検出し、当該振動に関する電気信号を、前記スピーカに入 力されるべき電気信号に対してフィードバック処理するフィードバック処理部とを備え 前記フィードバック処理部は、前記スピーカから発生する非線形歪を除去するよう に、かつ、前記スピーカの振動に関する周波数特性が所定の周波数特性となるよう に、前記振動に関する電気信号をフィードバック処理する、スピーカ装置。
[2] 前記フィードバック処理部は、
前記スピーカに入力されるべき電気信号を入力とし、当該電気信号の周波数特性 を前記所定の周波数特性に変換する所定特性変換フィルタと、
前記スピーカの振動を検出するセンサと、
前記所定特性変換フィルタにおいて変換された所定の周波数特性を示す電気信 号と前記センサにおいて検出された前記振動に関する電気信号との差分をとり、当 該差分した電気信号を誤差信号として出力する第 1の加算器と、
前記フィードフォワード処理部にお ヽて処理された電気信号と前記誤差信号とを加 算して、前記スピーカに出力する第 2の加算器とを有する、請求項 1に記載のスピー 力装置。
[3] 前記フィードフォワード処理部におけるフィルタ係数は、前記スピーカの固有のパラ メータに基づく係数であり、
前記フィードフォワード処理部は、前記パラメータの非線形成分を打ち消すように前 記スピーカに入力されるべき電気信号を処理することを特徴とする、請求項 2に記載 のスピーカ装置。
[4] 前記フィードフォワード処理部におけるフィルタ係数は、前記スピーカに固有のパラ メータに基づく係数であり、 前記パラメータは、前記スピーカの振動変位に応じて変化するパラメータであること を特徴とする、請求項 2に記載のスピーカ装置。
[5] 前記フィードフォワード処理部は、
前記スピーカに入力されるべき電気信号を入力とし、予め設定された前記フィル タ係数に基づいて、前記スピーカから発生する非線形歪を除去するように当該電気 信号を処理する除去フィルタと、
前記スピーカに入力されるべき電気信号を入力とし、前記スピーカが線形で振動 すると仮定したときの振動変位を示す電気信号を生成する線形フィルタとを有し、 前記除去フィルタは、前記線形フィルタにお ヽて生成された振動変位を示す電気 信号を参照することを特徴とする、請求項 4に記載のスピーカ装置。
[6] 前記第 2の加算器と前記スピーカとの間に設けられ、前記スピーカに入力されるべ き電気信号のゲインを増幅する増幅部をさらに備え、
前記除去フィルタにおけるフィルタ係数、前記所定特性変換フィルタにおけるフィル タ係数、および前記線形フィルタにおけるフィルタ係数は、前記増幅部において増幅 されるゲインの逆数が乗算されたフィルタ係数である、請求項 5に記載のスピーカ装 置。
[7] 前記センサにおいて検出された電気信号は、前記スピーカの振動変位を示す電気 信号であり、
前記フィードフォワード処理部は、前記センサにぉ 、て検出された振動変位を示す 電気信号を参照することを特徴とする、請求項 4に記載のスピーカ装置。
[8] 前記フィードフォワード処理部の前段に設けられ、前記スピーカに入力されるべき 電気信号を入力とし、前記所定の周波数特性を前記スピーカが有する振動に関する 特性で除算して求められるフィルタ係数に基づいて処理する前段フィルタをさらに備 える、請求項 2に記載のスピーカ装置。
[9] 前記スピーカに所定のレベル以上の電気信号が入力されないように電気信号のレ ベルを制限する制限手段をさらに備える、請求項 2に記載のスピーカ装置。
[10] 前記第 2の加算器と前記スピーカとの間に設けられ、前記スピーカに入力されるべ き電気信号のゲインを増幅する増幅部をさらに備え、 前記フィードフォワード処理部におけるフィルタ係数と前記所定特性変換フィルタに おけるフィルタ係数は、前記増幅部にぉ 、て増幅されるゲインの逆数が乗算されたフ ィルタ係数である、請求項 2に記載のスピーカ装置。
[11] 前記フィードフォワード処理部は、前記スピーカの前段に設けられ、かつ、前記フィ ードバック処理部で形成されるフィードバックループ内に設けられることを特徴とする
、請求項 1に記載のスピーカ装置。
[12] 前記フィードバック処理部は、
前記スピーカに入力されるべき電気信号を入力とし、当該電気信号の周波数特性 を前記所定の周波数特性に変換する所定特性変換フィルタと、
前記スピーカの振動を検出するセンサと、
前記所定特性変換フィルタにおいて変換された所定の周波数特性を示す電気信 号と前記センサにおいて検出された前記振動に関する電気信号との差分をとり、当 該差分した電気信号を誤差信号として出力する第 1の加算器と、
前記入力される電気信号と前記誤差信号とを加算して、前記フィードフォワード処 理部に出力する第 2の加算器とを有し、
前記フィードフォワード処理部は、前記第 2の加算器から出力された電気信号を、 前記スピーカから発生する非線形歪を除去するようにフィードフォワード処理して前 記スピーカに出力する、請求項 1に記載のスピーカ装置。
[13] 前記第 2の加算器と前記フィードフォワード処理部との間に設けられ、前記スピーカ に入力されるべき電気信号のゲインが第 1の周波数以下の周波数帯域において 6 dBZoct以下の傾きで傾斜する特性を示すフィルタ係数を有する第 1のフィルタをさ らに備え、
前記第 1の周波数は、前記フィードバック処理部で形成されるフィードバックループ の開ループ伝達特性が示すゲイン交差周波数以上の周波数であることを特徴とする 、請求項 12に記載のスピーカ装置。
[14] 前記フィードフォワード処理部の前段に設けられ、前記スピーカに入力されるべき 電気信号のゲインが第 2の周波数以下の周波数帯域において 6dBZoct以上の傾 きで傾斜する特性を示すフィルタ係数を有する第 2のフィルタをさらに備え、 前記第 2の周波数は、前記フィードバック処理部で形成されるフィードバックループ の開ループ伝達特性が示すゲイン交差周波数以上の周波数であることを特徴とする 、請求項 12に記載のスピーカ装置。
[15] 前記第 2の加算器と前記フィードフォワード処理部との間に設けられ、前記スピーカ に入力されるべき電気信号のゲインが第 1の周波数以下の周波数帯域において 6 dBZoct以下の傾きで傾斜する特性を示すフィルタ係数を有する第 1のフィルタと、 前記フィードフォワード処理部の前段に設けられ、前記スピーカに入力されるべき 電気信号のゲインが第 2の周波数以下の周波数帯域において 6dBZoct以上の傾 きで傾斜する特性を示すフィルタ係数を有する第 2のフィルタとをさらに備え、 前記第 1および第 2の周波数は、前記フィードバック処理部で形成されるフィードバ ックループの開ループ伝達特性が示すゲイン交差周波数以上の周波数であることを 特徴とする、請求項 12に記載のスピーカ装置。
[16] 前記フィードフォワード処理部におけるフィルタ係数は、前記スピーカの固有のパラ メータに基づく係数であり、
前記フィードフォワード処理部は、前記パラメータの非線形成分を打ち消すように前 記第 2の加算器から出力された電気信号を処理することを特徴とする、請求項 12〖こ 記載のスピーカ装置。
[17] 前記フィードフォワード処理部におけるフィルタ係数は、前記スピーカに固有のパラ メータに基づく係数であり、
前記パラメータは、前記スピーカの振動変位に応じて変化するパラメータであること を特徴とする、請求項 12に記載のスピーカ装置。
[18] 前記フィードフォワード処理部は、
前記第 2の加算器から出力された電気信号を入力とし、予め設定された前記フィ ルタ係数に基づいて、前記スピーカから発生する非線形歪を除去するように当該電 気信号を処理する除去フィルタと、
前記第 2の加算器力 出力された電気信号を入力とし、前記スピーカが線形で振 動すると仮定したときの振動変位を示す電気信号を生成する線形フィルタとを有し、 前記除去フィルタは、前記線形フィルタにお ヽて生成された振動変位を示す電気 信号を参照することを特徴とする、請求項 17に記載のスピーカ装置。
[19] 前記フィードフォワード処理部と前記スピーカとの間に設けられ、前記スピーカに入 力されるべき電気信号のゲインを増幅する増幅部をさらに備え、
前記除去フィルタにおけるフィルタ係数、前記所定特性変換フィルタにおけるフィル タ係数、および前記線形フィルタにおけるフィルタ係数は、前記増幅部において増幅 されるゲインの逆数が乗算されたフィルタ係数である、請求項 18に記載のスピーカ装 置。
[20] 前記センサにおいて検出された電気信号は、前記スピーカの振動変位を示す電気 信号であり、
前記フィードフォワード処理部は、前記センサにぉ 、て検出された振動変位を示す 電気信号を参照することを特徴とする、請求項 17に記載のスピーカ装置。
[21] 前記第 2の加算器の前段に設けられ、前記スピーカに入力されるべき電気信号を 入力とし、前記所定の周波数特性を前記スピーカが有する振動に関する特性で除算 して求められるフィルタ係数に基づいて処理する前段フィルタをさらに備える、請求 項 12に記載のスピーカ装置。
[22] 前記スピーカに所定のレベル以上の電気信号が入力されないように電気信号のレ ベルを制限する制限手段をさらに備える、請求項 12に記載のスピーカ装置。
[23] 前記フィードフォワード処理部と前記スピーカとの間に設けられ、前記スピーカに入 力されるべき電気信号のゲインを増幅する増幅部をさらに備え、
前記フィードフォワード処理部におけるフィルタ係数と前記所定特性変換フィルタに おけるフィルタ係数は、前記増幅部にぉ 、て増幅されるゲインの逆数が乗算されたフ ィルタ係数である、請求項 12に記載のスピーカ装置。
[24] 予め設定されたフィルタ係数に基づいて、スピーカに入力されるべき電気信号を、 前記スピーカから発生する非線形歪を除去するようにフィードフォワード処理するフィ ードフォワード処理部と、
前記スピーカの振動を検出し、当該振動に関する電気信号を、前記スピーカに入 力されるべき電気信号に対してフィードバック処理するフィードバック処理部とを備え 前記フィードバック処理部は、前記スピーカから発生する非線形歪を除去するよう に、かつ、前記スピーカの振動に応じた周波数特性が所定の周波数特性となるよう に、前記振動に関する電気信号をフィードバック処理する、集積回路。
PCT/JP2006/315048 2005-07-29 2006-07-28 スピーカ装置 WO2007013622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800278025A CN101233783B (zh) 2005-07-29 2006-07-28 扬声器装置
US11/997,267 US8073149B2 (en) 2005-07-29 2006-07-28 Loudspeaker device
EP06781958.1A EP1912468B1 (en) 2005-07-29 2006-07-28 Loudspeaker device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-221212 2005-07-29
JP2005221212 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007013622A1 true WO2007013622A1 (ja) 2007-02-01

Family

ID=37683510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315048 WO2007013622A1 (ja) 2005-07-29 2006-07-28 スピーカ装置

Country Status (4)

Country Link
US (1) US8073149B2 (ja)
EP (1) EP1912468B1 (ja)
CN (1) CN101233783B (ja)
WO (1) WO2007013622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866877A (zh) * 2021-04-01 2021-05-28 维沃移动通信有限公司 扬声器控制方法、扬声器控制装置、电子设备和存储介质

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016845B3 (de) * 2009-04-08 2010-08-05 Siemens Medical Instruments Pte. Ltd. Anordnung und Verfahren zur Erkennung von Rückkopplungen bei Hörvorrichtungen
CN102316395B (zh) * 2010-07-09 2014-12-31 深圳市宇恒互动科技开发有限公司 一种啸叫判断及消除的方法和装置
CN102316396B (zh) * 2010-07-09 2014-12-31 深圳市宇恒互动科技开发有限公司 使用传感器实现大动态范围声音自动控制的方法及装置
EP2575375B1 (en) * 2011-09-28 2015-03-18 Nxp B.V. Control of a loudspeaker output
WO2013182901A1 (en) * 2012-06-07 2013-12-12 Actiwave Ab Non-linear control of loudspeakers
WO2014045123A2 (en) 2012-09-24 2014-03-27 Actiwave Ab Control and protection of loudspeakers
JP6102268B2 (ja) * 2013-01-15 2017-03-29 オンキヨー株式会社 音声再生装置
JP6182869B2 (ja) * 2013-01-16 2017-08-23 オンキヨー株式会社 音声再生装置
US9106989B2 (en) * 2013-03-13 2015-08-11 Cirrus Logic, Inc. Adaptive-noise canceling (ANC) effectiveness estimation and correction in a personal audio device
US9247342B2 (en) 2013-05-14 2016-01-26 James J. Croft, III Loudspeaker enclosure system with signal processor for enhanced perception of low frequency output
GB201318802D0 (en) * 2013-10-24 2013-12-11 Linn Prod Ltd Linn Exakt
KR101656213B1 (ko) * 2014-03-13 2016-09-09 네오피델리티 주식회사 컷-오프 주파수를 실시간으로 조절가능한 증폭기 및 증폭 방법
EP3010251B1 (en) * 2014-10-15 2019-11-13 Nxp B.V. Audio system
EP3099047A1 (en) * 2015-05-28 2016-11-30 Nxp B.V. Echo controller
US10547942B2 (en) * 2015-12-28 2020-01-28 Samsung Electronics Co., Ltd. Control of electrodynamic speaker driver using a low-order non-linear model
US9947316B2 (en) 2016-02-22 2018-04-17 Sonos, Inc. Voice control of a media playback system
US9965247B2 (en) 2016-02-22 2018-05-08 Sonos, Inc. Voice controlled media playback system based on user profile
US9820039B2 (en) 2016-02-22 2017-11-14 Sonos, Inc. Default playback devices
US10097939B2 (en) * 2016-02-22 2018-10-09 Sonos, Inc. Compensation for speaker nonlinearities
US10509626B2 (en) 2016-02-22 2019-12-17 Sonos, Inc Handling of loss of pairing between networked devices
US10264030B2 (en) 2016-02-22 2019-04-16 Sonos, Inc. Networked microphone device control
US10095470B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Audio response playback
WO2017179219A1 (ja) * 2016-04-12 2017-10-19 株式会社 Trigence Semiconductor スピーカ駆動装置、スピーカ装置およびプログラム
CN105916079B (zh) * 2016-06-07 2019-09-13 瑞声科技(新加坡)有限公司 一种扬声器非线性补偿方法及装置
US9978390B2 (en) 2016-06-09 2018-05-22 Sonos, Inc. Dynamic player selection for audio signal processing
US10134399B2 (en) 2016-07-15 2018-11-20 Sonos, Inc. Contextualization of voice inputs
US10152969B2 (en) 2016-07-15 2018-12-11 Sonos, Inc. Voice detection by multiple devices
US10115400B2 (en) 2016-08-05 2018-10-30 Sonos, Inc. Multiple voice services
US9942678B1 (en) 2016-09-27 2018-04-10 Sonos, Inc. Audio playback settings for voice interaction
US9743204B1 (en) 2016-09-30 2017-08-22 Sonos, Inc. Multi-orientation playback device microphones
US10181323B2 (en) 2016-10-19 2019-01-15 Sonos, Inc. Arbitration-based voice recognition
US10462565B2 (en) 2017-01-04 2019-10-29 Samsung Electronics Co., Ltd. Displacement limiter for loudspeaker mechanical protection
US11109155B2 (en) * 2017-02-17 2021-08-31 Cirrus Logic, Inc. Bass enhancement
US11183181B2 (en) 2017-03-27 2021-11-23 Sonos, Inc. Systems and methods of multiple voice services
GB201712391D0 (en) * 2017-08-01 2017-09-13 Turner Michael James Controller for an electromechanical transducer
US10475449B2 (en) 2017-08-07 2019-11-12 Sonos, Inc. Wake-word detection suppression
US10048930B1 (en) 2017-09-08 2018-08-14 Sonos, Inc. Dynamic computation of system response volume
US10446165B2 (en) 2017-09-27 2019-10-15 Sonos, Inc. Robust short-time fourier transform acoustic echo cancellation during audio playback
US10482868B2 (en) 2017-09-28 2019-11-19 Sonos, Inc. Multi-channel acoustic echo cancellation
US10621981B2 (en) 2017-09-28 2020-04-14 Sonos, Inc. Tone interference cancellation
US10051366B1 (en) 2017-09-28 2018-08-14 Sonos, Inc. Three-dimensional beam forming with a microphone array
US10466962B2 (en) 2017-09-29 2019-11-05 Sonos, Inc. Media playback system with voice assistance
US10880650B2 (en) 2017-12-10 2020-12-29 Sonos, Inc. Network microphone devices with automatic do not disturb actuation capabilities
US10818290B2 (en) 2017-12-11 2020-10-27 Sonos, Inc. Home graph
JPWO2019135269A1 (ja) * 2018-01-04 2020-12-17 株式会社 Trigence Semiconductor スピーカ駆動装置、スピーカ装置およびプログラム
US10506347B2 (en) 2018-01-17 2019-12-10 Samsung Electronics Co., Ltd. Nonlinear control of vented box or passive radiator loudspeaker systems
US11343614B2 (en) 2018-01-31 2022-05-24 Sonos, Inc. Device designation of playback and network microphone device arrangements
US10701485B2 (en) 2018-03-08 2020-06-30 Samsung Electronics Co., Ltd. Energy limiter for loudspeaker protection
US11175880B2 (en) 2018-05-10 2021-11-16 Sonos, Inc. Systems and methods for voice-assisted media content selection
US10847178B2 (en) 2018-05-18 2020-11-24 Sonos, Inc. Linear filtering for noise-suppressed speech detection
US10959029B2 (en) 2018-05-25 2021-03-23 Sonos, Inc. Determining and adapting to changes in microphone performance of playback devices
US10681460B2 (en) 2018-06-28 2020-06-09 Sonos, Inc. Systems and methods for associating playback devices with voice assistant services
US10542361B1 (en) * 2018-08-07 2020-01-21 Samsung Electronics Co., Ltd. Nonlinear control of loudspeaker systems with current source amplifier
US11076035B2 (en) 2018-08-28 2021-07-27 Sonos, Inc. Do not disturb feature for audio notifications
US10461710B1 (en) 2018-08-28 2019-10-29 Sonos, Inc. Media playback system with maximum volume setting
US11012773B2 (en) 2018-09-04 2021-05-18 Samsung Electronics Co., Ltd. Waveguide for smooth off-axis frequency response
US10797666B2 (en) 2018-09-06 2020-10-06 Samsung Electronics Co., Ltd. Port velocity limiter for vented box loudspeakers
US10878811B2 (en) 2018-09-14 2020-12-29 Sonos, Inc. Networked devices, systems, and methods for intelligently deactivating wake-word engines
US10587430B1 (en) 2018-09-14 2020-03-10 Sonos, Inc. Networked devices, systems, and methods for associating playback devices based on sound codes
US11024331B2 (en) 2018-09-21 2021-06-01 Sonos, Inc. Voice detection optimization using sound metadata
US10811015B2 (en) 2018-09-25 2020-10-20 Sonos, Inc. Voice detection optimization based on selected voice assistant service
US11100923B2 (en) 2018-09-28 2021-08-24 Sonos, Inc. Systems and methods for selective wake word detection using neural network models
US10692518B2 (en) 2018-09-29 2020-06-23 Sonos, Inc. Linear filtering for noise-suppressed speech detection via multiple network microphone devices
US11899519B2 (en) 2018-10-23 2024-02-13 Sonos, Inc. Multiple stage network microphone device with reduced power consumption and processing load
CN113170260B (zh) * 2018-11-14 2022-05-31 深圳市欢太科技有限公司 音频处理方法、装置、存储介质及电子设备
EP3654249A1 (en) 2018-11-15 2020-05-20 Snips Dilated convolutions and gating for efficient keyword spotting
US11183183B2 (en) 2018-12-07 2021-11-23 Sonos, Inc. Systems and methods of operating media playback systems having multiple voice assistant services
US11132989B2 (en) 2018-12-13 2021-09-28 Sonos, Inc. Networked microphone devices, systems, and methods of localized arbitration
US10602268B1 (en) 2018-12-20 2020-03-24 Sonos, Inc. Optimization of network microphone devices using noise classification
US10867604B2 (en) 2019-02-08 2020-12-15 Sonos, Inc. Devices, systems, and methods for distributed voice processing
US11315556B2 (en) 2019-02-08 2022-04-26 Sonos, Inc. Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification
US11120794B2 (en) 2019-05-03 2021-09-14 Sonos, Inc. Voice assistant persistence across multiple network microphone devices
US10586540B1 (en) 2019-06-12 2020-03-10 Sonos, Inc. Network microphone device with command keyword conditioning
US11200894B2 (en) 2019-06-12 2021-12-14 Sonos, Inc. Network microphone device with command keyword eventing
US11361756B2 (en) 2019-06-12 2022-06-14 Sonos, Inc. Conditional wake word eventing based on environment
US11138975B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11138969B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US10871943B1 (en) 2019-07-31 2020-12-22 Sonos, Inc. Noise classification for event detection
US11189286B2 (en) 2019-10-22 2021-11-30 Sonos, Inc. VAS toggle based on device orientation
US11200900B2 (en) 2019-12-20 2021-12-14 Sonos, Inc. Offline voice control
US11562740B2 (en) 2020-01-07 2023-01-24 Sonos, Inc. Voice verification for media playback
US11556307B2 (en) 2020-01-31 2023-01-17 Sonos, Inc. Local voice data processing
US11308958B2 (en) 2020-02-07 2022-04-19 Sonos, Inc. Localized wakeword verification
US11727919B2 (en) 2020-05-20 2023-08-15 Sonos, Inc. Memory allocation for keyword spotting engines
US11308962B2 (en) 2020-05-20 2022-04-19 Sonos, Inc. Input detection windowing
US11482224B2 (en) 2020-05-20 2022-10-25 Sonos, Inc. Command keywords with input detection windowing
US11698771B2 (en) 2020-08-25 2023-07-11 Sonos, Inc. Vocal guidance engines for playback devices
US11356773B2 (en) 2020-10-30 2022-06-07 Samsung Electronics, Co., Ltd. Nonlinear control of a loudspeaker with a neural network
US11984123B2 (en) 2020-11-12 2024-05-14 Sonos, Inc. Network device interaction by range
US11551700B2 (en) 2021-01-25 2023-01-10 Sonos, Inc. Systems and methods for power-efficient keyword detection
CN113162555B (zh) * 2021-03-17 2024-06-21 维沃移动通信有限公司 非线性失真补偿电路、装置、电子设备和方法
DE102022118015A1 (de) 2022-07-19 2024-01-25 recalm GmbH Geräuschreduzierungssystem mit einer nichtlinearen Filtereinheit, Verfahren zum Betreiben des Systems und Verwendung desselben

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204198A (ja) * 1984-03-28 1985-10-15 Matsushita Electric Ind Co Ltd 低歪スピ−カ装置
JPH10276492A (ja) * 1997-03-27 1998-10-13 Onkyo Corp Mfbスピーカシステム
JPH11501170A (ja) * 1995-02-24 1999-01-26 エリクソン インコーポレイテッド スピーカひずみを適応事前補償する装置及び方法
JP2002333886A (ja) * 2001-05-08 2002-11-22 Onkyo Corp 能動騒音制御装置
JP2003324789A (ja) * 2002-04-30 2003-11-14 Sony Corp 音声信号記録装置
JP2005184154A (ja) * 2003-12-16 2005-07-07 Sony Corp 自動利得制御装置及び自動利得制御方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111884A1 (de) * 1991-04-09 1992-10-15 Klippel Wolfgang Schaltungsanordnung zur korrektur des linearen und nichtlinearen uebertragungsverhaltens elektroakustischer wandler
US5420932A (en) * 1993-08-23 1995-05-30 Digisonix, Inc. Active acoustic attenuation system that decouples wave modes propagating in a waveguide
DE4332804C2 (de) * 1993-09-27 1997-06-05 Klippel Wolfgang Adaptive Korrekturschaltung für elektroakustische Schallsender
DE4334040C2 (de) * 1993-10-06 1996-07-11 Klippel Wolfgang Schaltungsanordnung zur selbständigen Korrektur des Übertragungsverhaltens von elektrodynamischen Schallsendern ohne zusätzlichen mechanischen oder akustischen Sensor
US5475761A (en) * 1994-01-31 1995-12-12 Noise Cancellation Technologies, Inc. Adaptive feedforward and feedback control system
US5590205A (en) * 1994-08-25 1996-12-31 Digisonix, Inc. Adaptive control system with a corrected-phase filtered error update
US5848169A (en) * 1994-10-06 1998-12-08 Duke University Feedback acoustic energy dissipating device with compensator
US6005952A (en) * 1995-04-05 1999-12-21 Klippel; Wolfgang Active attenuation of nonlinear sound
US5715320A (en) * 1995-08-21 1998-02-03 Digisonix, Inc. Active adaptive selective control system
FR2739214B1 (fr) * 1995-09-27 1997-12-19 Technofirst Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
US5963651A (en) * 1997-01-16 1999-10-05 Digisonix, Inc. Adaptive acoustic attenuation system having distributed processing and shared state nodal architecture
DE19714199C1 (de) 1997-04-07 1998-08-27 Klippel Wolfgang J H Selbstanpassendes Steuerungssystem für Aktuatoren
US6259935B1 (en) * 1997-06-24 2001-07-10 Matsushita Electrical Industrial Co., Ltd. Electro-mechanical-acoustic transducing device
AU2001244887A1 (en) * 2000-03-07 2001-09-17 Slab Dsp Limited Noise suppression loudspeaker
US7053705B2 (en) * 2003-12-22 2006-05-30 Tymphany Corporation Mixed-mode (current-voltage) audio amplifier
US7372966B2 (en) * 2004-03-19 2008-05-13 Nokia Corporation System for limiting loudspeaker displacement
JP5194434B2 (ja) * 2006-11-07 2013-05-08 ソニー株式会社 ノイズキャンセリングシステムおよびノイズキャンセル方法
JP5564743B2 (ja) * 2006-11-13 2014-08-06 ソニー株式会社 ノイズキャンセル用のフィルタ回路、ノイズ低減信号生成方法、およびノイズキャンセリングシステム
JP5007561B2 (ja) * 2006-12-27 2012-08-22 ソニー株式会社 ノイズ低減装置、ノイズ低減方法、ノイズ低減処理用プログラム、ノイズ低減音声出力装置およびノイズ低減音声出力方法
US8855329B2 (en) * 2007-01-22 2014-10-07 Silentium Ltd. Quiet fan incorporating active noise control (ANC)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204198A (ja) * 1984-03-28 1985-10-15 Matsushita Electric Ind Co Ltd 低歪スピ−カ装置
JPH11501170A (ja) * 1995-02-24 1999-01-26 エリクソン インコーポレイテッド スピーカひずみを適応事前補償する装置及び方法
JPH10276492A (ja) * 1997-03-27 1998-10-13 Onkyo Corp Mfbスピーカシステム
JP2002333886A (ja) * 2001-05-08 2002-11-22 Onkyo Corp 能動騒音制御装置
JP2003324789A (ja) * 2002-04-30 2003-11-14 Sony Corp 音声信号記録装置
JP2005184154A (ja) * 2003-12-16 2005-07-07 Sony Corp 自動利得制御装置及び自動利得制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1912468A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866877A (zh) * 2021-04-01 2021-05-28 维沃移动通信有限公司 扬声器控制方法、扬声器控制装置、电子设备和存储介质
CN112866877B (zh) * 2021-04-01 2022-06-17 维沃移动通信有限公司 扬声器控制方法、扬声器控制装置、电子设备和存储介质

Also Published As

Publication number Publication date
US20100092004A1 (en) 2010-04-15
CN101233783A (zh) 2008-07-30
EP1912468A4 (en) 2011-04-06
EP1912468B1 (en) 2013-08-14
EP1912468A1 (en) 2008-04-16
US8073149B2 (en) 2011-12-06
CN101233783B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2007013622A1 (ja) スピーカ装置
JP4805749B2 (ja) スピーカ装置
US9615174B2 (en) Arrangement and method for identifying and compensating nonlinear vibration in an electro-mechanical transducer
US10547942B2 (en) Control of electrodynamic speaker driver using a low-order non-linear model
US8761409B2 (en) System for predicting the behavior of a transducer
Klippel The mirror filter-a new basis for reducing nonlinear distortion and equalizing response in woofer systems
JP2007060648A5 (ja)
JP2007081815A (ja) スピーカ装置
US20130077795A1 (en) Over-Excursion Protection for Loudspeakers
EP1971901B1 (en) Enhanced feedback for plant control
JP6182869B2 (ja) 音声再生装置
US9893685B2 (en) Driving apparatus
JP2006197206A (ja) スピーカ装置
EP3734993B1 (en) System and method for compensating for non-linear behavior for an acoustic transducer
CN111213392B (zh) 用于机电换能器的控制器
US10708690B2 (en) Method of an audio signal correction
JPH1070787A (ja) 信号補正装置、信号補正方法、信号補正装置の係数調整装置および係数調整方法
JP6102268B2 (ja) 音声再生装置
JP2005223385A (ja) 電気音響再生装置
JP4053801B2 (ja) 能動制御装置
JP3503155B2 (ja) 能動型騒音制御装置及び能動型振動制御装置
JPH08190389A (ja) 消音用音波発生装置
JP3890673B2 (ja) 自励振動型振動装置
JP2024027994A (ja) 音響システム
Nonlinearities Loudspeaker of the Future

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027802.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006781958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11997267

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE