WO2007011029A1 - シール用材料、その製造方法及びシール用材料を用いたガスケット - Google Patents

シール用材料、その製造方法及びシール用材料を用いたガスケット Download PDF

Info

Publication number
WO2007011029A1
WO2007011029A1 PCT/JP2006/314500 JP2006314500W WO2007011029A1 WO 2007011029 A1 WO2007011029 A1 WO 2007011029A1 JP 2006314500 W JP2006314500 W JP 2006314500W WO 2007011029 A1 WO2007011029 A1 WO 2007011029A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
compound
group
material according
component
Prior art date
Application number
PCT/JP2006/314500
Other languages
English (en)
French (fr)
Inventor
Toshihiko Hiraiwa
Naoyuki Ohmori
Toshihiko Kurata
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005238460A external-priority patent/JP4878454B2/ja
Priority claimed from JP2006198172A external-priority patent/JP4976768B2/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US11/995,859 priority Critical patent/US20100105797A1/en
Priority to CN2006800267800A priority patent/CN101228248B/zh
Publication of WO2007011029A1 publication Critical patent/WO2007011029A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/065Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1021Polyurethanes or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • SEAL MATERIAL SEAL MATERIAL, ITS MANUFACTURING METHOD, AND GASKET USING SEAL MATERIAL
  • the present invention relates to a sealing material, and in particular, a sealing material that has excellent wet heat durability and maintains low moisture permeability, and that can obtain a highly accurate extruded shape, and a sealing material that has excellent long-term storage stability.
  • the present invention relates to a production method, a sealing material obtained by the production method, and a gasket using these materials.
  • polyether-based materials have excellent wet heat durability but high permeation moisture, while polyester-based materials have poor wet heat durability but low moisture permeability.
  • polyester materials have ester bonds in the molecule, so there is a difficulty that they are susceptible to hydrolysis. On the contrary, ester bonds form hydrogen bonds with each other, and solubility parameters are higher than those of polyether materials.
  • mechanical properties especially heat resistance and tear strength
  • thermal properties oil resistance and adhesion. Accordingly, there is a strong demand for the development of a sealing material that improves the above-mentioned problems and has excellent wet heat durability and low moisture permeability.
  • a dispensing method in which a molten or solution-like resin is extruded using a dispenser, extruded into a gasket shape with a single stroke on a plate surface, and integrated is the pasting process. It is widely used industrially because it has the advantage of not requiring such processes.
  • Organic thickeners especially hydrogenated castor oil and amide wax, develop thixotropy by forming a network structure by swelling when heated in a dispersed state in the material.
  • the material and the thixotropic agent are mixed in a mixer for a time required for swelling at a constant temperature.
  • it takes time to swell and if time is taken for sufficient swelling during kneading, the productivity decreases, and if kneading is terminated with insufficient swelling, the material passes.
  • the viscosity increases with time and this is used as a sealing material, the storage stability of the material deteriorates, and there is a problem that an extruded shape with high accuracy cannot be obtained.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-7047
  • the present invention relates to a sealing material that is excellent in wet heat durability and maintains low moisture permeability and that can obtain a highly accurate extruded shape, and a manufacturing method of a sealing material that is excellent in long-term storage stability, and the manufacturing method It is an object of the present invention to provide a sealing material obtained by the above and a gasket using a material having these characteristics.
  • the present inventors have solved the above problem by incorporating an unsaturated group-containing ester urethane oligomer, which is an energy ray-curable liquid resin, into a carposimide compound. Found to get.
  • the sealing material containing a specific monomer component exhibits further low moisture permeability, excellent adhesion to the adherend, and the material after curing has little stickiness. .
  • the present invention has been completed based on powerful knowledge.
  • R 1 is a dehydroxylated residue of a monool compound containing at least one unsaturated group of a (meth) ataryloyl group and a vinyl group
  • R 2 is an organic diisocyanate compound
  • R 3 is a deisocyanate residue of a polyesterdiol compound having a number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 4 and containing a cyclic group or a branched group
  • a Is dehydrogenated residue of diamine compound or dehydrogenated residue of diol compound, each of p and r is 0 ⁇ 7, q is 0 ⁇ 3, but when q 0, l ⁇ p + r ⁇ 10 It is.
  • a sealing material according to the above (1) which is an unsaturated group-containing urethane oligomer having a number average molecular weight of 5 ⁇ 10 3 to 5 ⁇ 10 4 ,
  • R 3 in formula (I) is dehydroxylated residue of the polyester diol compound in which the cyclic group-containing dicarboxylic acid and the diol are condensed, or the cyclic group-containing dicarboxylic acid anhydride is modified by reacting with the diol.
  • the sealing material according to the above (2) which is a hydroxyl group-removed residue of a polyesterdiol compound
  • the sealing material according to the above (7) which is a liquid polycarbodiimide compound having a component force (B) viscosity of 0.5 to 10 Pa's,
  • the sealing material according to any one of (1) to (12) above which contains at least one of a photopolymerization initiator, a crosslinking agent, and a monomer as the component (D),
  • a sealing material comprising the energy ray-curable liquid resin (A) of (1) to (16) above, a compound (B) containing at least one carpositimide group in the molecule, and a thickener (C).
  • the step of stirring and mixing the components (A), (B) and (C) with a mixer (step 1) and the step of aging (curing) the mixture in a thermostatic bath (step 2) A method for producing a sealing material characterized by having
  • step 2 the aging temperature range is 40 to 100 ° C, and the aging is performed until the rate of change after 8 hours of the viscosity (Pa's) of the mixed solution at the aging temperature becomes 5% or less.
  • FIG. 1 is a schematic diagram showing a change in viscosity of a sealing material according to a conventional example with time.
  • FIG. 2 is a schematic view showing a change in viscosity of a sealing material showing an embodiment of the present invention with time.
  • the sealing material of the present invention is less in the molecule than the unsaturated group-containing ester urethane oligomer (A), which is an energy ray-curable liquid resin, and 100 parts by mass of the component (A). It is necessary that the compound (B) containing at least one carposimide group be contained in 0.01 to: LO parts by mass.
  • the unsaturated group-containing ester urethane oligomer that is the energy ray-curable liquid resin of component (A) is represented by the general formula (I).
  • R 1 is a hydroxyl group-removed residue of a monool compound containing an unsaturated group of at least one of a (meth) atalyloyl group and a bur group.
  • the monool compound examples include hydroxyalkyl (meth) acrylate and hydroxyalkyl benzene, such as diethylene glycol (meth) acrylate, dipropylene glycol (meth) acrylate, tripropylene glycol (meth) acrylate. And triethylene glycol (meth) acrylate and polyethylene glycol (meth) acrylate.
  • the (meth) atalyloyl group means an atalyloyl group or a methacryloyl group.
  • R 2 is a deisocyanate residue of the organic diisocyanate toy compound.
  • alkylene groups such as methylene group, ethylene group, propylene group, butylene group and hexamethylene group
  • cycloalkylene groups such as cyclohexylene group, phenylene group, tolylene group and naphthylene.
  • An arylene group such as a group, a xylylene group and the like are included.
  • the alkyl group may be linear, branched or cyclic.
  • organic diisocyanate compounds include isophorone diisocyanate, hexamethylene diisocyanate, norbornane diisocyanate, tolylene diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, naphthalene diisocyanate, water Preferred are xylene diisocyanate, hydrogenated diphenylmethane diisocyanate and diphenylmethane diisocyanate.
  • R 3 is a dehydroxylated residue of a polyesterdiol compound having a number average molecular weight of 1 X 10 3 to 1 X 10 4 and containing a cyclic group or a branched chain group.
  • R 3 is a polyester diol modified by reacting a hydroxyl group-containing dicarboxylic acid anhydride with a dehydroxylated residue of the polyester diol compound obtained by condensation of a cyclic group-containing dicarboxylic acid and a diol.
  • a dehydroxylated residue of the compound is preferred.
  • Examples of the cyclic group-containing dicarboxylic acid constituting R 3 or its acid anhydride include phthalic acid, phthalic anhydride, pyromellitic acid, pyromellitic anhydride, isophthalic acid, trimellitic acid, and trimellitic anhydride. Tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride and the like. These may be used as a mixture of two or more.
  • diol constituting R 3 examples include ethylene glycol, propylene glycol, 2,2,4 trimethyl-1,3 pentanediol, neopentyl glycol, 1,2 puffer diol, 1,3 propanediol, and 1,4 propane.
  • is a dehydrogenated residue of a diamine compound or a dehydrogenated residue of a diol compound.
  • Such materials are not particularly limited, and examples thereof include diaminopropane, diaminobutane, nonanediamine, isophorone diamine, hexamethylene diamine, hydrogenated diphenol-noremethandiamine, bisaminopropyl ether, bisaminopropyl ether.
  • diamine bisaminopropylethylene glycolene ether, bisaminopropinole polyethylene glycolenoateolene, bisaminopropoxyneopentyl glycol, diphenylmethane diamine, xylylene diamine, toluene diamine, and diamine compounds in which both terminal amino group-modified silicone forces are also selected.
  • R 1 is preferably a dehydroxylated residue of a monooleic compound of either hydroxyalkyl (meth) acrylate or hydroxyalkyl butyl ether, such as hydroxychetyl acrylate, hydroxymethyl vinyl Examples include dehydroxylated residues such as ether.
  • the urethane oligomer (A) can be preferably produced by the following method.
  • the unsaturated group-containing urethane oligomer in the case of q ⁇ 0 in the general formula (I) is a polyaddition reaction between the polyester diol compound and the organic diisocyanate compound. After forming an adduct having both ends of the diamine compound. Alternatively, each end of the dioli compound is added to an isocyanate group at one end of the adduct, and the monool compound is added to the isocyanate group at the other end of the adduct. Can be obtained.
  • the number average molecular weight of the unsaturated group-containing urethane oligomer obtained as described above is preferably 5 ⁇ 10 3 to 5 ⁇ 10 4 , but may exceed 5 ⁇ 10 4 as long as the effects of the present invention are not impaired.
  • the function of the carposimide compound is considered to promote hydrolysis at the initial stage after the addition of the hydroxyl group / carboxyl group remaining in the unsaturated group-containing ester urethane oligomer (A) component. It reacts to control hydrolysis, and then acts as a rebond and repair by adding to the ester bond cleaved by the hydrolysis reaction.
  • low molecular weight materials such as monocarpoimide may cause environmental pollution due to generation of irritating odor components that are easily thermally decomposed during processing, and decrease in the effect of addition due to vaporization. It is preferable to use polycarpoimide. ! /
  • the carbodiimide compound (including polycarbopositimide compound) having one or more carbopositimide groups in the molecule used in the present invention is synthesized by a generally well-known method. For example, using an organophosphorus compound or organometallic compound as a catalyst, decarboxylation condensation of various polyisocyanates at a temperature of about 70 ° C or higher in a solvent-free or inert solvent. Those that can be synthesized by subjecting to a reaction can be mentioned.
  • the organic diisocyanate that is a synthetic raw material in the production of the polycarposimide compound includes, for example, an aromatic diisocyanate, an aliphatic diisocyanate, an alicyclic diisocyanate, and a mixture thereof.
  • the polymerization reaction can be stopped halfway by cooling or the like, and the polymerization degree can be controlled to an appropriate degree.
  • the end is isocyanate.
  • Examples of monoisocyanates for sealing the ends of such polycarpoimide compounds and controlling the degree of polymerization thereof include, for example, phenolinoisocyanate, trinolyisocyanate, diisocyanate. Examples thereof include methylphenol isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like.
  • the end-capping agent that seals the end of the polycarposimide compound and controls the degree of polymerization thereof is not limited to the above-mentioned monoisocyanate, but is an active hydrogen compound that can react with isocyanate, for example,
  • Jetylamine having a NH group, dicyclohexylamine;
  • Succinic acid benzoic acid, cyclohexanoic acid;
  • V ethyl mercaptan, aryl mercaptan, thiophenol having SH group;
  • compound having epoxy group (vii) acetic anhydride, Examples thereof include tiltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride.
  • the decarboxylation condensation reaction of the organic diisocyanate is carried out in the presence of a suitable calpositimidization catalyst.
  • a suitable calpositimidization catalyst examples include organophosphorus compounds, organometallic compounds (general formula M— ( OR) [M is titanium (Ti), sodium (Na), potassium (
  • R is preferably an alkyl group or aryl group having 1 to 20 carbon atoms], and particularly from the viewpoint of activity, phospholenoxides are also used in organic phosphorus compounds.
  • organometallic compounds alkoxides of titanium, hafnium and zirconium are preferred.
  • the carpositimide compound (B) obtained as described above includes 4,4'-dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, N, N-dimethylphenol carbodiimide. N, N′-di-2,6-diisopropylphenolcarbodiimide and the like.
  • an aliphatic polycarbodiimide compound is preferred from the viewpoint of hue, safety and stability.
  • the viscosity of component (B) is 0.1 to: LOOPa's force because it is preferably a liquid.
  • LOOPa's force is preferable.
  • component (B) The viscosity of component (B) was measured according to JIS Z8803 at a measurement temperature of 25 ° C.
  • component (B) By setting the viscosity of component (B) within the above range, vaporization of component (B), which is a problem in the working environment, can be suppressed, and mixing and dispersion can be facilitated.
  • Such a liquid calpositimide compound can also be obtained as a commercial product, and examples thereof include a product name “Elastostab H01” viscosity 1 to 6 Pa ′s manufactured by Nisshinbo Co., Ltd.
  • the amount of the carbodiimide compound (B) component is in the range of 0.01 to 10 parts by mass, preferably in the range of 0.01 to 5 parts by mass, with respect to 100 parts by mass of the component (A).
  • the range of 1 to 3.0 parts by mass is particularly preferable.
  • the thickener imparting thixotropy as the component (C) added in the photocurable composition of the present invention is added to 100 parts by mass of the unsaturated group-containing urethane oligomer of the component (A).
  • the amount of (C) component added is particularly preferably 1 to 5 parts by mass.
  • the thickener for imparting thixotropy deviation between an inorganic filler and an organic thickener can be used.
  • Examples of inorganic fillers include wet-treated silica, surface-treated fine silica of dry silica, and natural minerals such as organic bentonite.
  • silica fine powder finely powdered by a dry method eg, Nippon Aerosil Co., Ltd., trade name: Aerosil 300, etc.
  • fine powder obtained by modifying this silica fine powder with trimethyldisilazane eg, Nippon Aerosil Co., Ltd., trade name: Aerosil RX300, etc.
  • fine powder obtained by modifying the above silica fine powder with polydimethylsiloxane [For example, Nippon Aerosil Co., Ltd., trade name: Aerosil RY30 0], etc.
  • the average particle size of the inorganic filler, from the viewpoint of thickening property preferably 5 ⁇ 50 / ⁇ ⁇ , 5 ⁇ 12 111 mosquitoes ⁇ Yori preferably 1 ⁇ 0
  • Examples of the organic thickener include amide wax, hydrogenated castor oil, and mixtures thereof.
  • hydrogenated castor oil which is a hydrogenated product of castor oil (non-drying oil whose main component is ricinoleic acid) [for example, manufactured by Zude Chemie Catalysts Co., Ltd., trade name: ADVITROL 100, manufactured by Enomoto Kasei Co., Ltd., product Name: Disparon 305, etc.] and higher amide waxes that are compounds in which hydrogen of ammonia is substituted with an acyl group [for example, trade name: Disparon 6500, manufactured by Enomoto Kasei Co., Ltd.].
  • organic thickeners are preferred. Natural mineral-based inorganic fillers cannot avoid impurities such as heavy metals.Surface-treated fine silica may change the wettability of the surface and change the viscosity of the composition. Therefore, it may generate harmful gases in the equipment during use.
  • amide wax is particularly preferably hydrogenated castor oil because the presence of the amine derived from the raw material may increase the crosslinking density and increase the hardness.
  • a photopolymerization initiator at least one of a photopolymerization initiator, a crosslinking agent, and a monomer can be added as the component (D). These supplemented calories are particularly preferable when irradiated with ultraviolet rays.
  • the photopolymerization initiator may be either an intramolecular cleavage type or a hydrogen abstraction type.
  • intramolecular cleavage types include benzoin derivatives, benzyl ketals [eg Ciba 'Specialty' Chemicals, trade name: Irgacure 651], a-hydroxyacetophenones [eg Ciba 'specialty 'Chemicals Co., Ltd., trade name: Darocur 1173, Il Gacure 184], a-aminoacetophenones [for example, Chinoku' Specialty 'Chemicals Co., Ltd., trade name: Irgacure 907, Irgacure 369], a-Aminoacetophenones and thixanthones (for example, isopropyl thixanthone, jetylthioxanthone), asylphosphine oxides [for example, Ciba 'Specialty' Chemicals
  • Examples of the hydrogen abstraction type include a combined use of benzophenones and amin, a combined use of thixanthone and amine. Further, an intramolecular cleavage type and a hydrogen abstraction type may be used in combination. Of these, ⁇ -hydroxyacetophenone oligomerized and benzophenone-modified attaretolein are preferred.
  • oligo [2-hydroxy-2methyl 1- [4- (1-methylvinyl) phenol] propanone] [for example, Lamberiti S'P'A, trade name: ESACURE KIP150], acrylic Benzophenone [For example, Daicel "Shiichi Shibi” B Co., Ltd., trade name: Ebecryl P136], imido acrylate and the like.
  • Preferred examples of the crosslinking agent include organic peroxides. Specifically, for example, 2,5 dimethyl-2,5 di (t-butylperoxy) monohexane; 2,5 dimethyl-2,5 di ( Benzylperoxy) Hexane; t-Butylperoxybenzoate; Dicumyl peroxide; t-Butyl Tamil peroxide; Diisopropylbenzonodioxide Monooxide; 1, 3 Bis (t-butylperoxyisopropyl) Benzene; 1, 1-di (t-butylperoxy) -3, 3, 5 trimethylcyclohexane and the like.
  • organic peroxides for example, 2,5 dimethyl-2,5 di (t-butylperoxy) monohexane; 2,5 dimethyl-2,5 di ( Benzylperoxy) Hexane; t-Butylperoxybenzoate; Dicumyl peroxide; t-Butyl Tamil peroxide; Diiso
  • a (meth) acrylic acid ester monomer is preferable.
  • the molecular weight of the monomer is preferably less than 1,000.
  • ester monomers include cyclohexyl (meth) acrylate, dicyclopental (meth) acrylate, dicyclopentyl (meth) acrylate, dicyclopentyl-loxychetyl (meth) acrylate, diethylene glycol monoethyl ether (meta ) Atalylate, dimethylaminoethyl (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxylated phenol (meth) Atalylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobornyl (meth)
  • the glass transition temperature is 50 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited.
  • the temperature is preferably 150 ° C or lower. From the balance of low moisture permeability, stickiness and adhesion, the glass transition temperature is more preferably in the range of 80 to 130 ° C.
  • the alcohol residue of the (meth) acrylic acid ester monomer is preferably a hydrocarbon group having a cyclic structure having 5 to 16 carbon atoms. If the hydrocarbon group has a cyclic structure having 5 or more carbon atoms, it is considered that low moisture permeability can be obtained due to its bulkiness. On the other hand, if it has 16 or less carbon atoms, the above-mentioned preferable glass transition temperature is obtained. It is possible to obtain a moderate hardness and to obtain a balance between stickiness and adhesion. From the above viewpoint, the alcohol residue of the (meth) acrylic acid ester monomer is preferably a hydrocarbon group having a cyclic structure having 8 to 12 carbon atoms.
  • those in which the alcohol residue is a bridged cyclic hydrocarbon group are preferred.
  • Specific examples include those having a bicyclic alicyclic hydrocarbon group such as isobornyl (meth) ate, dicyclopenta
  • Those having a tricyclic alicyclic hydrocarbon group such as-(l) (meth) acrylate and dicyclopenta (meth) acrylate are preferred.
  • a saturated bridged cyclic hydrocarbon group is preferable.
  • isobornyl (meth) acrylate and dicyclopenta (meth) acrylate are particularly preferred.
  • the (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester monomer is preferably in the range of 1 to 70 parts by mass with respect to 100 parts by mass of the component (A) U.
  • the content of the (meth) acrylic acid ester monomer content is 1 part by mass or more, the effect of adding the monomer, that is, low moisture permeability, suppression of stickiness and adhesion to the adherend are sufficient.
  • the content of the (meth) acrylic acid ester monomer is further preferably in the range of 10 to 50 parts by mass with respect to 100 parts by mass of component (A).
  • Active energy rays used for curing the unsaturated group-containing ester urethane oligomer, which is a curable liquid resin used as the sealing material include ultraviolet rays, electron beams, ⁇ rays, j8 rays, ⁇ Ionizing radiation such as wire is used.
  • the ultraviolet light source include a xenon lamp, a low pressure mercury lamp, a high pressure mercury lamp, and an ultrahigh pressure mercury lamp.
  • the atmosphere for irradiation with ultraviolet rays is preferably an inert gas atmosphere such as nitrogen gas or carbon dioxide gas or an atmosphere with a reduced oxygen concentration. However, it can be hardened by ultraviolet rays even in a normal air atmosphere.
  • the irradiation atmosphere temperature can usually be 10 to 200 ° C.
  • baking can be performed after hardening and a volatile component can be removed.
  • the baking temperature is preferably 100 to 150 ° C.
  • the temperature can be adjusted as necessary, and the coating liquid can be adjusted to a certain viscosity by any method.
  • gravure coating, roll n- , Spin n, reno: ⁇ , n: ⁇ , screen: ⁇ , plaid, n Methods such as knife coating, datebing, and dispensing can be used.
  • the coating layer is cured by irradiating energy rays to obtain a member with a seal layer.
  • the viscosity value of the sealing material is set to 6 at room temperature in order to suppress the thickening phenomenon with time during storage at room temperature and reduce the variation in the dispenser operation. It needs to be stable for months.
  • an energy ray-curable liquid resin (A) component, a compound containing at least one carpositimide group in the molecule (B) component, and a thickener (C) component are stirred and mixed by a mixer (step It is preferable to have two steps of 1) and a step of aging (curing) the mixed solution in a thermostatic chamber (step 2).
  • the manufacturing method of the sealing material of the present invention will be described with reference to FIGS.
  • the vertical axis represents the viscosity (Pa's) of the sealing material
  • the horizontal axis represents the time (day)
  • a represents the preferred viscosity range.
  • Figure 1 shows the change in the viscosity of the sealing material according to the conventional example over time.
  • the energy ray-curable liquid resin (A) component, the compound containing at least one carpositimide group in the molecule (B) component, and the thickener (C) component are stirred by a mixer under a constant temperature condition. ⁇ Mixing is preferred, curve (1) is preferred! / Stop when viscosity (X) is reached and use as a sealant.
  • FIG. 2 is a schematic diagram showing the change of the viscosity of the sealing material showing the embodiment of the present invention with time.
  • step 2 there is no particular restriction on the time to reach (Y), except that the temperature for stirring and mixing is specified, and (A), (B) and (C) are mixed uniformly and the viscosity is reduced. If it is increased (if the thickener is swollen), it can be transferred to the next aging step (step 2). In order to make the viscosity preferred and within the range, it is appropriately determined depending on the type of matrix as component (A), the type and amount of component (B) and component (C), and the temperature conditions in step 1 and step 2. .
  • the amount of the thickener used can be reduced, and the outgas derived from the thickener (volatile organic compound). ) Amount can be reduced. Avoid the destruction of precision electronic equipment due to outgas, From the viewpoint, it is desirable to reduce the amount of volatile organic compounds (VOC) to a negligible range.
  • VOC volatile organic compounds
  • the amount of gas generated when the cured sealing material is heated at a temperature of 150 ° C. for 20 minutes is 500 ppm (mass basis) or less in terms of n-decane.
  • the temperature range of stirring and mixing by the mixer in Step 1 is usually 30 to 120 ° C, as long as it is appropriately determined depending on the solubility of the components (A), (B) and (C)! This is more preferably 50 to 100 ° C.
  • the aging temperature range in step 2 is preferably 40 to 100 ° C, more preferably 50 to 90 ° C.
  • component (C) is added.
  • Step 2 Dissolve completely at 50-120 ° C and slowly cool to the aging temperature range of step 2 to create a structure that develops viscosity.
  • Step 2 the structure that continues to develop viscosity is grown.
  • the setting of the temperature conditions in step 1 and step 2 is particularly important. By setting the temperature condition in the above temperature range, the thickener can swell efficiently and a sealing material with a stable viscosity can be obtained.
  • the aging time in step 2 is the change after 8 hours in the viscosity (Pa's) of the mixture at the aging temperature. It is better to mature to a power of 5% or less.
  • the viscosity of the mixed solution after Step 2 at a shear rate of 10 s- 1 is 1 to 100 Pa ′ s at 50 ° C.
  • Step 1 in addition to the above components (A), (B) and (C), as the above component (D), at least one of a photopolymerization initiator, a crosslinking agent, and a monomer may be used as necessary. Can be added.
  • the viscoelasticity measuring device was measured using a parallel plate at 50 ° C and a shear rate of 10S- 1 for 20 seconds.
  • a sealing material was formed to a thickness of 0.6 mm, and irradiated with energy rays to obtain a cured product.
  • a metal halide lamp is used for the energy line, and the illuminance is about 13 in an air atmosphere. Irradiation was performed under the condition of an integrated light amount of about 8000 mJ / cm 2 .
  • the cured product was further baked for 4 hours at 120 ° C. in an air atmosphere.
  • the samples were left for 4 months under conditions of 70 ° C and humidity of 95% RH, and the values of the breaking strength (Tb) after 1 month, 2 months, 3 months, and 4 months were measured.
  • the breaking strength at the start of the test was expressed as an index, with 100 being the index. A larger index indicates less degradation.
  • the hardness of the cured product was measured with a type A durometer.
  • the test specimen used was a 6 mm thick sheet consisting of 10 sheets of 0.6 mm thick.
  • a nickel-plated aluminum plate adherend was coated with a sealing material, irradiated with energy rays to obtain a cured product, and the adhesion (unit: gf) was measured.
  • the energy line was irradiated with a metal-no-ride lamp under an air atmosphere with an illuminance of about 130 mW / c and an integrated light intensity of about 8000 mJ / cm 2 .
  • 2,4 Jetyl 1,5 Polyesterdiol compound (number average molecular weight 2000) obtained from pentanediol and phthalic anhydride (400 g), norbonane diisocyanate 82.4 g, and the antioxidant di-tert-butyl-hydroxyphenol 0. 10g, stirrer, cool
  • the tube was placed in a 1-liter four-necked flask equipped with a thermometer and reacted at 80 ° C for 2 hours.
  • C was allowed to react for 6 hours.
  • Table 1 shows that the ester-based urethane resin containing carbodiimide in the accelerated deterioration test under severe conditions of 70 ° C and 95% RH is resistant to breaking even under long-term standing conditions. It can be seen that the decrease in force Tb is significantly improved compared to the comparative example 1.
  • Example 2 containing 2 parts by mass of the carpositimide compound, the wet heat condition was changed, and as a result, the change depending on the conditions was quick and had excellent breaking strength (Tb) retention. ⁇
  • Table 3 shows that Examples 4 to 9 in which (D) the monomer component is further added have improved moisture permeability and markedly improved (decreased) surface tackiness. It can also be seen that the adhesion with the adherend is greatly improved. This makes it easy to remove the HDD cover, for example, and improves durability against external forces during reuse.
  • the component (A) urethane oligomer obtained by the above (11) To 100 parts by mass of the component (A) urethane oligomer obtained by the above (11), the component (B) calpositimide compound compound Nisshinbo Co., Ltd. trade name [Elastostab H01]
  • component (D) monomer phenoxychetyl acrylate
  • polymerization initiator 4- (2-hydroxyethoxy) phenol- (2-hydroxy-2-propyl) ketone
  • ADVITROL 100 (trademark, manufactured by Sud Chemie Catalyst Co., Ltd., hydrogenated castor oil) as a thickener for component (C) to 100 parts by mass of urethane oligomer contained in the mixture. Then, using a planetary mixer, the temperature was set to 80 ° C and the mixture was stirred for 1 hour. Thereafter, stirring was performed while gradually cooling, and after confirming that the thickener was dispersed and the material temperature was 40 ° C., Step 1 was completed, and Step 2 was aged. Step 2 was completed after confirming that the viscosity change rate after 8 hours of the viscosity (Pa's) of the mixture was 5% or less. The viscosity after completion was 76 Pa's at 50 ° C.
  • ADVITROL 100 trademark, manufactured by Sud Chemie Catalyst Co., Ltd., hydrogenated castor oil
  • the obtained sealing material was heated to a gasket shape by drawing on the surface of the extrusion plate while heating it with a dispenser.
  • a gasket with a stable viscosity, narrow line width and high height was placed on the cover body. A highly accurate extruded shape that can be easily formed was obtained.
  • the amount of gas generated when the cured sealing material was heated at 120 ° C. for 10 minutes was 500 ppm (mass basis) or less in terms of n-decane.
  • the present invention is excellent in wet heat durability, maintains low moisture permeability, has excellent adhesion to an adherend, and has a highly accurate extruded shape and excellent long-term storage stability.
  • it is possible to provide a method for producing a sealing material and a gasket having the above characteristics using these materials.
  • the cured material of the sealing material has reduced surface adhesiveness, durability against external force during reuse is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 本発明のシール用材料は、エネルギー線硬化性液状樹脂である不飽和基含有エステル系ウレタンオリゴマー(A)及び該(A)成分100質量部に対して、分子内に少なくとも1つのカルボジイミド基を含む化合物(B)を0.01~10質量部含有し、湿熱耐久性に優れ低透湿性を維持し、また、被着体との密着性に優れ、かつ高精度の押出し形状が得られルシール用材料、さらに長期保存安定性に優れたシール用材料の製造方法および該製造方法によって得られたシール用材料、これらの特性を有するシール用材料を用いたガスケットを提供することができる  また、シール用材料の硬化物は、表面粘着性が低下し、HDDカバーの取り外しが容易になり、その結果として再利用時の外力に対する耐久性が向上する。

Description

明 細 書
シール用材料、その製造方法及びシール用材料を用いたガスケット 技術分野
[0001] 本発明は、シール用材料に関し、詳しくは湿熱耐久性に優れ低透湿性を維持し、 かつ、高精度の押出し形状が得られるシール用材料及び長期保存安定性に優れる シール用材料の製造方法、該製造方法によって得られたシール用材料、これらの材 料を用いたガスケットに関する。
背景技術
[0002] 近年、コンピュータのハードディスク装置にぉ 、ては、高性能化、小型化が進み、 複雑な回路構成を有するようになっており、わずかな塵によっても障害が起こるため、 ガスケットを使って塵の侵入を防ぐことが一般に行われている。
また、上記小型化に伴い携帯用電子機器に使用するケースが増えてきており、従 来の PCの用途等と比較して厳しい環境で使われることが多くなり、高湿熱環境で使 用されるケースを想定しなければならな 、。
ウレタン系材料にぉ 、て、ポリエーテル系材料は湿熱耐久性に優れるが透過湿性 が高ぐ一方ポリエステル系の材料は湿熱耐久性に劣るが透湿性が低いと言う問題 がある。また、ポリエステル系の材料は分子内にエステル結合を有するため加水分解 を受け易いという難点はある力 逆にエステル結合同士が水素結合をすること、また 溶解度パラメーターがポリエーテル系などに比べて高いことによってウレタンの場合、 機械的特性 (特に耐熱性、引裂強度)熱的特性、耐油性、接着性に優れている。従 つて、上記問題点を改善し湿熱耐久性及び低透湿性に優れたシール材の開発が強 く望まれている。
さらに、ハードディスク装置用ガスケットの製造法としては、ディスペンサーを用いて 溶融榭脂又は溶液状榭脂を押し出し、プレート面に一筆書きによりガスケット形状に 押出し、一体化するデイスペンシング法が、貼り付け工程などの工程が不要などのメ リットがあることから、工業的に広く使用されている。
また、最近では、押出しによるガスケット形状を正確にするために、チクソトロピー現 象を利用して、粘度の剪断速度依存性を大きく制御して、低剪断速度では粘度が高 く、高剪断速度では粘度の低 ヽ材料を用いることが提案されて ヽる (特許文献 1参照
) o
有機増粘剤、特に水添ひまし油やアマイドワックスは材料中に分散した状態で温度 をかけることによって膨潤し網目構造を形成することによってチクソ性を発現する。 通常、一定温度で材料とチクソ剤を膨潤に必要な時間だけミキサーで混煉する。し かし、この膨潤には時間が力かることが多ぐ混練中に十分に膨潤するための時間を 取ろうとすると生産性が低下し、膨潤が不十分な状態で混練を終了すると材料が経 時的に増粘しこれをシール用材料として用いた場合材料の貯蔵安定性が悪くなり、 高 、精度での押出し形状が得られな 、と 、う問題がある。
[0003] 特許文献 1 :特開 2003— 7047号公報
発明の開示
[0004] 本発明は、湿熱耐久性に優れ低透湿性を維持し、かつ高精度の押出し形状が得ら れるシール用材料及び及び長期保存安定性に優れるシール用材料の製造方法、該 製造方法によって得られたシール用材料、これらの特性を有する材料を用いたガス ケットを提供することを目的とするものである。
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、エネルギー線 硬化性液状榭脂である不飽和基含有エステル系ウレタンオリゴマーにカルポジイミド 化合物を含有させることによって上記問題を解決し得ることを見出した。また、これに 特定のモノマー成分を含有させたシール用材料は、さらなる低透湿性を示し、しかも 被着体との密着性に優れ、かつ、硬化後の該材料はべたつきの少ないものであった 。本発明は、力かる知見に基づいて完成したものである。
すなわち、本発明は、
(1)エネルギー線硬化性液状榭脂である不飽和基含有エステル系ウレタンオリゴマ 一 (A)及び該 (A)成分 100質量部に対して、分子内に少なくとも 1つのカルポジイミ ド基を含む化合物(B)を 0. 01〜10質量部含有することを特徴とするシール用材料
(2)エネルギー線硬化性液状榭脂 (A)が、下記一般式 (I) [0005] [化 1]
R '-0- C O N H-R -N H C O- (-O R3— O— C O N H— R2— N H C O) - (-A- C O N H-R2-NH C O-) - (- O— R3— O— C O NH—R2— N H C O— ) r— O— R 1
• · · · ( I )
[0006] [式 (I)中、 R1は (メタ)アタリロイル基及びビニル基の少なくとも 、ずれかの不飽和基 を含有するモノオール化合物の脱水酸基残基、 R2は有機ジイソシアナート化合物の 脱イソシアナ一ト残基、 R3は、数平均分子量 1 X 103〜1 X 104で環状基または分岐鎖 状基を含有するポリエステルジオールィ匕合物の脱水酸基残基であり、 Aはジアミンィ匕 合物の脱水素残基またはジオール化合物の脱水素残基、 p及び rの各々は 0〜7、 q は 0〜3、ただし、 q = 0のとき、 l≤p+r≤10である。 ]で表され、かつ数平均分子量 が 5 X 103〜5 X 104である不飽和基含有ウレタンオリゴマーである上記(1)のシール 用材料、
(3)式 (I)における R3が、環状基含有ジカルボン酸とジオールとが縮合した前記ポリ エステルジオール化合物の脱水酸基残基、又は環状基含有ジカルボン酸無水物が ジオールに反応して変性したポリエステルジオールィ匕合物の脱水酸基残基である上 記(2)のシール用材料、
(4)式(I)における R1が、ヒドロキシアルキル (メタ)アタリレート及びヒドロキシアルキル ビュルエーテルの 、ずれかの前記モノオール化合物の脱水酸基残基である上記(2 )のシール用材料、
(5) (A)成分の不飽和基含有ウレタンオリゴマー (ただし、一般式 (I)において q = 0 の場合)が、前記ポリエステルジオールィ匕合物と、前記有機ジイソシアナ一トイ匕合物と を重付加反応させてイソシアナート基を両末端に有する付加物を形成した後、該イソ シアナート基に、前記モノオールィ匕合物を付加して得られるものである上記(1)〜 (4 )のシール用材料、
(6) (A)成分の不飽和基含有ウレタンオリゴマー(ただし、一般式 (I)において q≠0 の場合)が、前記ポリエステルジオールィ匕合物と前記有機ジイソシアナ一トイ匕合物と を重付加反応させてイソシアナート基を両末端に有する付加物を形成した後、前記 ジァミンィ匕合物または前記ジオールィ匕合物の末端の各々を、該付加物の片端のイソ シアナート基に付加させ、該付加物の他の片端のイソシアナ一ト基に、前記モノォー ルイ匕合物を付加して得られるものである上記(1)〜 (4)のシール用材料、
(7)カルボジイミド基を含む化合物(B)が、粘度 0. 1〜: LOOPa' sの液状ポリカルボジ イミドィ匕合物である上記(1)のシール用材料、
(8)前記 (B)成分力 粘度 0. 5〜10Pa' sの液状ポリカルポジイミドィ匕合物である上 記(7)のシール用材料、
(9) さらに、チクソ性を付与する増粘剤 (C)を含む上記(1)〜 (8)のシール用材料、
(10) (A)成分 100質量部に対して、増粘剤 (C)を 0. 5〜10質量部含有する上記 ( 9)のシール用材料、
(11) (C)成分が有機増粘剤である上記 (9)又は(10)のシール用材料、
(12) 有機増粘剤が水添ひまし油である上記(11)のシール用材料、
(13) さらに、(D)成分として、光重合開始剤、架橋剤、及びモノマーのうちの少なく とも一つを含有してなる上記(1)〜(12)のシール用材料、
(14) (D)成分として、(メタ)アクリル酸エステルモノマーを (A)成分 100質量部に 対して、 1〜70質量部含有する上記(13)のシール用材料、
(15) 前記 (メタ)アクリル酸エステルモノマーのガラス転移温度が 50°C以上である 上記(14)のシール用材料、
(16) 前記(メタ)アクリル酸エステルモノマーがジシクロペンタ-ル (メタ)アタリレート 及び Z又はイソボル-ル (メタ)アタリレートである上記(15)のシール用材料、
(17) 上記(1)〜(16)のエネルギー線硬化性液状榭脂 (A)、分子内に少なくとも 1 つのカルポジイミド基を含む化合物 (B)及び増粘剤 (C)を含むシール用材料を製造 するに当り、(A)成分、(B)成分及び (C)成分とをミキサーにより攪拌'混合する工程 (工程 1)及び該混合液を恒温槽にて熟成 (養生)する工程 (工程 2)を有することを特 徴とするシール用材料の製造方法、
(18) 前記工程 1のミキサーによる攪拌'混合の温度範囲が 30〜120°Cである上記 (17)に記載のシール用材料の製造方法、
(19) 工程 2において、熟成温度範囲が 40〜100°Cであり、熟成温度での混合液 の粘度 (Pa' s)の 8時間後の変化率が、 5%以下になるまで熟成をする上記(17)の シール用材料の製造方法、 (20) 工程 2終了後の混合液のシェアレート 10s の粘度が 50°Cで l〜100Pa' sで ある上記(17)〜(19)のシール用材料の製造方法、
(21) 上記(17)〜(20)の製造方法を用いて得られたシール用材料、
(22) 上記(1)〜(15)のシール用材料を硬化してなるガスケット、及び
(23) 上記(21)のシール用材料を硬化してなるガスケット、
を提供するものである。
図面の簡単な説明
[0007] [図 1]従来例を示すシーリング用材料の粘度の時間による変化を示す模式図である。
[図 2]本発明の実施態様を示すシーリング用材料の粘度の時間による変化を示す模 式図である。
発明を実施するための最良の形態
[0008] 本発明のシール用材料は、エネルギー線硬化性液状榭脂である不飽和基含有ェ ステル系ウレタンオリゴマー (A)及び該 (A)成分 100質量部に対して、分子内に少な くとも 1つのカルポジイミド基を含む化合物(B)を 0. 01〜: LO質量部含有することが必 要である。
(A)成分のエネルギー線硬化性液状榭脂である不飽和基含有エステル系ウレタン オリゴマーは、前記一般式 (I)で表される。
一般式 (I)中、 R1は、(メタ)アタリロイル基及びビュル基の少なくともいずれかの不 飽和基を含有するモノオール化合物の脱水酸基残基である。
モノオール化合物としては、ヒドロキシアルキル (メタ)アタリレートゃヒドロキシアルキ ルビ-ルが好ましく挙げられ、例えば、ジエチレングリコール (メタ)アタリレート、ジプ ロピレングリコール (メタ)アタリレート、トリプロピレングリコール (メタ)アタリレート、トリ エチレングリコール (メタ)アタリレートやポリエチレングリコール (メタ)アタリレートなど が挙げられる。なお、(メタ)アタリロイル基とは、アタリロイル基又はメタクリロイル基を いう。
[0009] R2は、有機ジイソシアナ一トイ匕合物の脱イソシアナ一ト残基である。例えばメチレン 基、エチレン基、プロピレン基、ブチレン基、へキサメチレン基などのアルキレン基、 シクロへキシレン基などのシクロアルキレン基、フエ二レン基、トリレン基、ナフチレン 基などのァリーレン基、キシリレン基などが含まれる。ここで、アルキル基は直鎖状、 枝分かれ状、環状のいずれであってもよい。有機ジイソシアナ一トイ匕合物としては、ィ ソホロンジイソシアナート、へキサメチレンジイソシアナート、ノルボルナンジイソシァ ナート、トリレンジイソシアナート、キシレンジイソシアナート、トリメチルへキサメチレン ジソシアナート、ナフタレンジイソシアナート、水添キシリレンジイソシアナート、水添ジ フエ-ルメタンジイソシアナート及びジフエ-ルメタンジイソシアナートなどが好ましく 挙げられる。
[0010] R3は、数平均分子量 1 X 103〜1 X 104で環状基または分岐鎖状基を含有するポリ エステルジオールィ匕合物の脱水酸基残基である。
これらの中で R3は、環状基含有ジカルボン酸とジオールとが縮合した前記ポリエス テルジオール化合物の脱水酸基残基、又は環状基含有ジカルボン酸無水物がジォ ールに反応して変性したポリエステルジオールィ匕合物の脱水酸基残基が好ましい。
[0011] R3を構成する環状基含有ジカルボン酸またはその酸無水物としては、例えばフタ ル酸、無水フタル酸、ピロメリット酸、無水ピロメリット酸、イソフタル酸、トリメリット酸、 無水トリメリット酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、へキサヒドロフタル 酸、へキサヒドロ無水フタル酸などが挙げられる。また、これらは複数種混合して用い てもよい。
R3を構成するジオールとしては、例えばエチレングリコール、プロピレングリコール、 2, 2, 4 トリメチルー 1, 3 ペンタンジオール、ネオペンチルグリコール、 1, 2 プ 口パンジオール、 1, 3 プロパンジオール、 1, 4 プロパンジオール、 1, 3 ブタン ジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 2, 2-ジメチル- 1, 3 プロパンジオール、ビスフエノール A、テトラエトキシキシレート、 2, 2—チオジェタ ノール、アセチレン型ジオール、ヒドロキシ末端ポリブタジエン、 1, 4ーシクロへキサン ジメタノール、 1, 2 シクロへキサンジメタノール、 1, 3 シクロへキサンジメタノール 、 1, 4 ビス(2 ヒドロキシエトキシ)シクロへキサン、トリメチレングリコール、テトラメ チレングリコール、ペンタメチレングリコール、へキサメチレングリコール、デカメチレン グリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレンダリコール、 ノルボ-レングリコール、 1, 4 ベンゼンジメタノール、 1, 4 ベンゼンエタノール、 2 , 4 ジメチルー 2 エチレンへキサン— 1, 3 ジオール、 2 ブテン 1, 4ージォ ール、 2, 4 ジェチルー 1, 5 ペンタンジオール、 2 ェチルー 2 ブチルー 1, 3 プロパンジオール、及び 3—メチルー 1, 5 ペンタンジオールなどが挙げられる。
[0012] また、一般式 (I)中、 Αは、ジァミン化合物の脱水素残基、またはジオールィ匕合物の 脱水素残基である。
このようなものは特に限定されるものではないが、例えばジァミノプロパン、ジァミノ ブタン、ノナンジァミン、イソホロンジァミン、へキサメチレンジァミン、水添ジフエ-ノレメ タンジァミン、ビスアミノプロピルエーテル、ビスアミノプロピルェタン、ビスアミノプロピ ルジェチレングリコーノレエーテル、ビスアミノプロピノレポリエチレングリコーノレエーテノレ 、ビスアミノプロポキシネオペンチルグリコール、ジフエ-ルメタンジァミン、キシリレン ジァミン、トルエンジァミン、及び両末端アミノ基変性シリコーン力も選ばれるジァミン 化合物の脱水素残基、及びエチレングリコール、プロピレングリコール、ポリエチレン グリコール、ポリプロピレングリコール、ブチレングリコール、ポリテトラメチレングリコー ル、ペンタンジオール、へキサンジオール、両末端水酸基変性シリコーン、及びカル ボキシル基含有ジオールカゝら選ばれるジオールィ匕合物の脱水素残基であるものが 好ましい。
また、 R1は、ヒドロキシアルキル (メタ)アタリレート及びヒドロキシアルキルビュルエー テルのいずれかのモノオールィ匕合物の脱水酸基残基であることが好ましぐ例えばヒ ドロキシェチルアタリレート、ヒドロキシメチルビニールエーテルなどの脱水酸基残基 が挙げられる。
[0013] 上記のウレタンオリゴマー (A)は、好ましくは下記方法により製造することができる。
一般式 (I)において q = 0の場合の不飽和基含有ウレタンオリゴマーは、前記ポリェ ステルジオール化合物と、前記有機ジイソシアナート化合物とを重付加反応させてィ ソシアナート基を両末端に有する付加物を形成した後、該イソシアナート基に、前記 モノオールィ匕合物を付加して得ることができる。
また、一般式 (I)において q≠0の場合の不飽和基含有ウレタンオリゴマーは、前記 ポリエステルジオールィ匕合物と、前記有機ジイソシアナ一トイ匕合物とを重付加反応さ せてイソシアナート基を両末端に有する付加物を形成した後、前記ジァミン化合物ま たは前記ジオールィ匕合物の末端の各々を、該付加物の片端のイソシアナ一ト基に付 加させ、該付加物の他の片端のイソシアナ一ト基に、前記モノオールィ匕合物を付加し て得ることができる。
上記により得られる不飽和基含有ウレタンオリゴマーの数平均分子量は 5 X 103〜5 X 104であることが好ましいが、本発明の効果を損なわない範囲で 5 X 104を超えても よい。
[0014] 次に、 (B)成分であるカルポジイミド基を含む化合物(以下、単に「カルポジイミド得 合物」ということがある。)は、分子中に、 [― N = C=N— ]で表されるカルポジイミド基 を少なくとも 1つ有することが必要であり、カルポジイミド活性水素 (カルボン酸、ァミン 、アルコール、チオール等)と反応する。
以上のように、カルポジイミド化合物の機能は、添加後初期の段階では、加水分解 を促進させると考えられる (A)成分である不飽和基含有エステル系ウレタンオリゴマ 一内に残存する水酸基 ·カルボキシル基と反応して加水分解を制御し、その後は、 加水分解反応によって切断されたエステル結合に付加して、再結合し修復するもの として働くものである。但し、モノカルポジイミド等の低分子量物は、加工時に熱分解 し易ぐ刺激臭成分の発生による環境汚染や気化することによる添加効果の減少な どがあり、ポリカルポジイミドを用いることが好まし!/、。
[0015] 本発明において用いられる、分子中に 1個以上のカルポジイミド基を有するカルボ ジイミドィ匕合物 (ポリカルポジイミド化合物を含む)としては、一般的に良く知られた方 法で合成されたものを使用することができ、例えば、触媒として有機リン系化合物又 は有機金属化合物を用い、各種ポリイソシァネートを約 70°C以上の温度で、無溶媒 又は不活性溶媒中で、脱炭酸縮合反応に付することより合成することができるものを 挙げることができる。
[0016] ポリカルポジイミドィ匕合物の製造における合成原料である有機ジイソシァネートとし ては、例えば、芳香族ジイソシァネート、脂肪族ジイソシァネート、脂環族ジイソシァ ネートやこれらの混合物を挙げることができ、具体的には、 1, 5 ナフタレンジイソシ ァネート、 4, 4'ージフエニルメタンジイソシァネート、 4, 4'ージフエニルジメチルメタン ジイソシァネート、 1, 3 フエ二レンジイソシァネート、 1, 4 フエ二レンジイソシァネ ート、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 2, 4 トリレン ジイソシァネートと 2, 6 トリレンジイソシァネートの混合物、へキサメチレンジイソシ ァネート、シクロへキサン一 1, 4ージイソシァネート、キシリレンジイソシァネート、イソ ホロンジイソシァネート、ジシクロへキシルメタン 4, 4'ージイソシァネート、メチルシ クロへキサンジイソシァネート、テトラメチルキシリレンジイソシァネート、 2, 6 ジイソ プロピルフエ-ルイソシァネート、 1, 3, 5 トリイソプロピルベンゼン一 2, 4 ジイソ シァネート等を例示することができる。
[0017] また、上記ポリカルポジイミド化合物の場合は、重合反応を冷却等により、途中で停 止させ、適当な重合度に制御することができる。この場合、末端はイソシァネートとな る。
さらに、適当な重合度に制御するには、モノイソシァネート等の、ポリカルポジイミド 化合物の末端イソシァネートと反応する化合物を用いて、残存する末端イソシァネー トの全て、または、一部を封止する方法もある。重合度を制御することにより、ポリマー への相溶性向上や保存安定性を高めたりすることなどができ、品質向上の点で好ま しい。
[0018] このようなポリカルポジイミドィ匕合物の末端を封止してその重合度を制御するための モノイソシァネートとしては、例えば、フエニノレイソシァネート、トリノレイソシァネート、ジ メチルフエ-ルイソシァネート、シクロへキシルイソシァネート、ブチルイソシァネート、 ナフチルイソシァネート等を例示することができる。
また、ポリカルポジイミド化合物の末端を封止してその重合度を制御する末端封止 剤としては、上記モノイソシァネートに限定されることはなぐイソシァネートと反応し得 る活性水素化合物、例えば、(i)脂肪族、芳香族又は脂環族化合物であって、 OH 基を有するメタノール、エタノール、フエノール、シクロへキサノール、 N メチルエタ ノーノレアミン、ポリエチレングリコーノレモノメチノレエーテル、ポリプロピレングリコーノレモ ノメチルエーテル;(ϋ) =NH基を有するジェチルァミン、ジシクロへキシルァミン; (iii ) -NH基を有するブチルァミン、シクロへキシルァミン;(iv)—COOH基を有するコ
2
ハク酸、安息香酸、シクロへキサン酸;(V) SH基を有するェチルメルカプタン、ァリ ルメルカプタン、チオフヱノール;(vi)エポキシ基を有する化合物;(vii)無水酢酸、メ チルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸等を例示することがで きる。
[0019] 上記有機ジイソシァネートの脱炭酸縮合反応は、適当なカルポジイミド化触媒の存 在下で行うものであり、使用し得るカルポジイミド化触媒としては、有機リン系化合物、 有機金属化合物(一般式 M— (OR) [Mは、チタン (Ti)、ナトリウム (Na)、カリウム(
4
K)、バナジウム(V)、タングステン (W)、ハフニウム(Hf)、ジルコニウム(Zr)、鉛(Pb )、マンガン(Mn)、ニッケル (Ni)、カルシウム(Ca)やバリウム(Ba)等を、 Rは、炭素 数 1〜20までのアルキル基又はァリール基を示す]で表されるもの)が好適であり、特 に活性の面から、有機リン系化合物ではフォスフォレンォキシド類が、また、有機金属 化合物ではチタン、ハフニウム、ジルコニウムのアルコキシド類が好ましい。
[0020] 以上のようにして得られる好まし 、カルポジイミドィ匕合物(B)としては、 4, 4'—ジシ クロへキシルメタンカルボジイミド、テトラメチルキシリレンカルボジイミド、 N, N—ジメ チルフエ-ルカルボジイミド、 N, N'—ジ—2, 6—ジイソプロピルフエ-ルカルボジイミ ド等が挙げられる。分子中に 2個以上のカルポジイミド基を有するカルポジイミド化合 物であれば、特に限定されないが、色相、安全性'安定性の点から、脂肪族ポリカル ポジイミドィ匕合物が好まし 、。
また、(A)成分との混合 ·分散を容易にするためには液状であることが好ましぐ液 状であるという点から(B)成分の粘度は 0. 1〜: LOOPa' s力 子ましく、 0. 5〜: LOPa' s 力 り好ましい。
尚、(B)成分の粘度の測定は、測定温度 25°Cで JIS Z8803に準拠しておこなつ た。
(B)成分の粘度を上記範囲にすることによって、作業環境上の問題である(B)成分 の気化を抑制し、混合 ·分散を容易にすることができる。
このような液状のカルポジイミドィ匕合物は市販品としても入手することができ、例え ば、 日清紡社製、商品名「Elastostab H01」粘度 l〜6Pa' sが挙げられる。
[0021] カルボジイミド化合物(B)成分の量は、(A)成分 100質量部に対して、 0. 01〜10 質量部の範囲であり、 0. 01〜5質量部の範囲が好ましぐ 0. 1〜3. 0質量部の範囲 が特に好ましい。配合量を上記範囲にすることによって、エステル基を有する易加水 分解性榭脂の耐加水分解性を向上させることができる。
[0022] 次に、本発明の光硬化性組成物において添加される(C)成分としてのチクソ性付 与する増粘剤は、前記 (A)成分の不飽和基含有ウレタンオリゴマー 100質量部に対 して、 0. 5〜 10質量部を含有することが好ましい。このチクソ性付与する増粘剤は、 ( A)成分の特定ウレタンオリゴマーと併用することにより、チクソトロピー性が効果的に 向上し、押出し形状を精度よく制御して加工することが可能となる。この点から (C)成 分の添加量は特に 1〜5質量部がより好ましい。このチクソ性付与する増粘剤として は、無機充填剤及び有機増粘剤の 、ずれも用いることができる。
[0023] 無機充填剤としては、湿式シリカや乾式シリカの表面処理微粉シリカや、有機化べ ントナイトなどの天然鉱物系のものが挙げられる。具体的には、乾式法により微粉ィ匕 したシリカ微粉末 [例えば、 日本ァエロジル (株)製、商品名:ァエロジル 300など]、こ のシリカ微粉末をトリメチルジシラザンで変性した微粉末 [例えば、 日本ァエロジル ( 株)製、商品名:ァエロジル RX300など]及び上記シリカ微粉末をポリジメチルシロキ サンで変性した微粉末 [例えば、 日本ァエロジル (株)製、商品名:ァエロジル RY30 0]などが挙げられる。無機充填剤の平均粒径は、増粘性の観点から、 5〜50 /ζ πιが 好ましく、 5〜12 111カ^ょり好まし1ヽ0
[0024] また、有機増粘剤としては、アマイドワックス、水添ひまし油系又はこれらの混合物 などが挙げられる。具体的には、ひまし油(主成分がリシノール酸の不乾性油)の水 添品である水添ひまし油 [例えば、ズードケミー触媒 (株)製,商品名: ADVITROL 100、楠本化成 (株)製,商品名:ディスパロン 305など]及びアンモニアの水素をァシ ル基で置換した化合物である高級アマイドワックス [例えば、楠本化成 (株)製,商品 名:ディスパロン 6500]などが挙げられる。
これらチクソ性付与する増粘剤の中で、有機増粘剤が好ましい。天然鉱物系の無 機充填剤は重金属等の不純物が避けられず、また、表面処理微粉シリカは、表面の 濡れ性が変わり組成物の粘度が変化することがあり、また表面処理剤の種類によつ ては、使用中に器具に有害なガスを発生することがある。
さらに、有機増粘剤の中でも、アマイドワックスは、原料に由来するァミンの存在によ り架橋密度を高めて硬度が大きくなることがあるので、特に水添ひまし油が好ましい。 [0025] また、本発明の光硬化性組成物においては、(D)成分として、光重合開始剤、架 橋剤、及びモノマーのうちの少なくとも一つを添加することができる。これらの添カロは 、紫外線照射する場合には特に好ましい。
光重合開始剤としては、分子内開裂型、水素引き抜き型のいずれでもよい。分子内 開裂型としては、ベンゾイン誘導体類、ベンジルケタール類 [例えば、チバ 'スぺシャ ルティ'ケミカルズ (株)製、商品名:ィルガキュア 651]、 a—ヒドロキシァセトフエノン 類 [例えば、チバ'スペシャルティ 'ケミカルズ (株)製、商品名:ダロキュア 1173、ィル ガキュア 184]、 a—アミノアセトフエノン類 [例えば、チノく'スペシャルティ'ケミカルズ (株)製、商品名:ィルガキュア 907、ィルガキュア 369]、 a—アミノアセトフエノン類と チォキサントン類(例えば、イソプロピルチォキサントン、ジェチルチオキサントン)との 併用、ァシルホスフィンオキサイド類 [例えば、チバ'スペシャルティ'ケミカルズ (株) 製、商品名:ィルガキュア 819]などが挙げられる。水素引き抜き型としては、ベンゾフ ェノン類とァミンの併用、チォキサントンとァミンの併用などが挙げられる。また、分子 内開裂型と水素引き抜き型を併用してもよい。中でもオリゴマー化した α ヒドロキシ ァセトフエノン及びアタリレートイ匕したベンゾフエノン類が好ましい。より具体的には、 オリゴ [2 ヒドロキシ - 2 メチル 1— [4— ( 1—メチルビ-ル)フエ-ル]プロパノン ] [例えば、 Lamberiti S ' P'A製、商品名: ESACURE KIP150]、アクリル化べンゾフ ェノン [例えは、ダイセル'ュ一'シ一'ビー(株)製、商品名: Ebecryl P136]、イミド アタリレートなどが挙げられる。
[0026] 架橋剤としては、有機パーオキサイドが好適に挙げられ、具体的には、例えば、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキシ)一へキサン; 2, 5 ジメチルー 2, 5 ジ(ベンゾィルパーォキシ) へキサン; t ブチルパーォキシベンゾエート;ジクミ ルパーオキサイド; t ブチルタミルパーオキサイド;ジイソプロピルベンゾノヽイドロパ 一オキサイド; 1 , 3 ビス一(t ブチルパーォキシイソプロピル) ベンゼン;ベンゾ ィルパーオキサイド; 1, 1—ジ(t—ブチルパーォキシ)—3, 3, 5 トリメチルシクロへ キサンなどが挙げられる。
[0027] モノマーとしては、(メタ)アクリル酸エステルモノマーが好ましい。モノマーの分子量 は 1, 000未満のものが好ましぐ 150〜600のもの力 Sより好ましい。(メタ)アクリル酸 エステルモノマーとしては、シクロへキシル (メタ)アタリレート、ジシクロペンタ-ル(メ タ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、ジシクロペンテ-ルォキシェ チル (メタ)アタリレート、ジエチレングリコールモノェチルエーテル (メタ)アタリレート、 ジメチルアミノエチル (メタ)アタリレート、ジメチロールジシクロペンタンジ (メタ)アタリ レート、ジプロピレングリコール(メタ)アタリレート、エトキシジエチレングリコール(メタ) アタリレート、エトキシ化フエ-ル (メタ)アタリレート、ェチル (メタ)アタリレート、イソアミ ル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、イソブチル (メタ)アタリレート、ィ ソデシル (メタ)アタリレート、イソオタチル (メタ)アタリレート、イソステアリル (メタ)アタリ レート、イソミリスチル (メタ)アタリレート、ラウロキシポリエチレングリコール (メタ)アタリ レート、ラウリル (メタ)アタリレート、メトキシジプロピレングリコール (メタ)アタリレート、 メトキシトリプロピレングリコール (メタ)アタリレート、メトキシポリエチレングリコール (メ タ)アタリレート及びメトキシトリエチレングリコールアタリレートなどが挙げられる。なお 、(メタ)アタリレートとは、アタリレート又はメタタリレートを意味する。
[0028] 上記 (メタ)アクリル酸エステルモノマーのうち、ガラス転移温度 (Tg)が 50°C以上の ものが好ま 、。ガラス転移温度が 50°C以上であると十分な低透湿性を得ることがで き、また硬化物の表面粘着性を低下させることができ、ベたつきを抑制することができ る。一方、ガラス転移温度の上限値については特に制限はないが、ガラス転移温度 が高すぎると、(メタ)アクリル酸エステルモノマーの添カ卩量にもよる力 硬化物の硬度 が高くなりすぎてシール材として好ましくないことから、 150°C以下であることが好まし い。低透湿性、ベたつき及び密着性のバランスから、ガラス転移温度は 80〜130°C の範囲がより好ましい。
[0029] また、(メタ)アクリル酸エステルモノマーのアルコール残基は炭素数 5〜16の環状 構造を有する炭化水素基であることが好まし 、。炭素数 5以上の環状構造を有する 炭化水素基であると、その嵩高さから低透湿性を得ることができると考えられ、一方、 炭素数が 16以下であると上述の好ましいガラス転移温度とすることができ、適度な硬 度とすることができ、かつべたつき及び密着性のバランスが得られる。以上の観点か ら、(メタ)アクリル酸エステルモノマーのアルコール残基は、さらに炭素数 8〜12の環 状構造を有する炭化水素基であることが好まし 、。 特に、アルコール残基が橋かけ環式炭化水素基であるものが好ましぐ具体的には 、イソボル-ル (メタ)アタリレートなどの二環系脂環族炭化水素基を有するもの、ジシ クロペンタ-ル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレートなどの三環系 脂環族炭化水素基を有するものが好適である。
さらには、飽和橋かけ環式炭化水素基が好ましい。
より具体的には、イソボル-ル (メタ)アタリレート及びジシクロペンタ-ル (メタ)アタリ レートが特に好ましい。
[0030] 上記 (メタ)アクリル酸エステルモノマーは 1種単独で用いてもょ 、し、 2種以上を組 み合わせて用いてもよい。
(メタ)アクリル酸エステルモノマーの含有量は、(A)成分 100質量部に対して 1〜7 0質量部の範囲が好ま U、。(メタ)アクリル酸エステルモノマーの含有量の含有量が 1質量部以上であると、該モノマーを添加する効果、すなわち、低透湿性、ベたつき の抑制及び被着体との密着性が十分に得られ、 70質量部以下であると硬度が高す ぎるといった不都合がない。以上の点から、(メタ)アクリル酸エステルモノマーの含有 量の含有量はさらに、(A)成分 100質量部に対して 10〜50質量部の範囲が好まし い。
[0031] 前記シール用材料として用いられる、硬化性液状榭脂である不飽和基含有エステ ル系ウレタンオリゴマーの硬化に用いられる活性エネルギー線としては、紫外線及び 電子線、 α線、 j8線、 γ線等の電離性放射線が用いられる。紫外線源としては、キセ ノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯等を挙げることができる。紫外 線を照射する雰囲気としては、窒素ガス、炭酸ガス等の不活性ガス雰囲気あるいは 酸素濃度を低下させた雰囲気が好ましいが、通常の空気雰囲気でも紫外線により硬 ィ匕させることができる。照射雰囲気温度は、通常 10〜200°Cとすることができる。また 、硬化後にベーキングを行い、揮発成分を除去することができる。その時のベーキン グ温度は 100〜150°Cが好ましい。
[0032] 上記組成物を被着体へ適用するに際しては、必要に応じて温度調節し、一定粘度 に調整した塗液を用いて任意の方法で行うことができ、例えばグラビアコート、ロール nート、スピン nート、リノくース: πート、ノ一: πート、スクリーン: πート、プレード、 nート、ェ ァーナイフコート、デイツビング、デイスペンシングなどの方法を用いることができる。 上記組成物を塗布し、成形した後、エネルギー線を照射することにより塗布層を硬化 させて、シール層付き部材を得ることができる。
[0033] 本発明のシール用材料の製造方法は、常温保管中での経時的な増粘現象を抑制 しディスペンサー作業のバラツキを減少させるために、該シール用材料の粘度の値 を常温で 6ヶ月間安定した状態にする必要がある。そのためには、エネルギー線硬化 性液状榭脂 (A)成分、分子内に少なくとも 1つのカルポジイミド基を含む化合物 (B) 成分及び増粘剤 (C)成分とをミキサーによる攪拌'混合する工程 (工程 1)と該混合液 を恒温槽にて熟成 (養生)する工程(工程 2)の 2工程を有することが好ま 、。
図 1、図 2を参照にして本発明のシール用材料の製造方法について説明する。尚、 縦軸はシール用材料の粘度 (Pa' s)、横軸は時間(日), aは好ましい粘度の幅を示す 図 1は、従来例を示すシール用材料の粘度の時間による変化を示す模式図である エネルギー線硬化性液状榭脂 (A)成分、分子内に少なくとも 1つのカルポジイミド 基を含む化合物 (B)成分及び増粘剤 (C)成分とを一定の温度条件でミキサーによる 攪拌 ·混合を行 ヽ、カーブ( 1)が好まし!/ヽ粘度 (X)に到達した時点で中止し、シーリ ング剤として使用する。
し力しながら、ディスペンサーを使用する時は、保温しながら使用するため使用中 に粘度が点線のように上昇し、粘度の好ま 、範囲力も外れバラツキの原因になる。 (X)に到達するための時間をさらに短縮する必要がある場合、増粘剤を増せばよい 力 ディスペンサーの作業によるバラツキが更に増大する。
[0034] 図 2は、本発明の実施態様を示すシール用材料の粘度の時間による変化を示す模 式図である。
本発明にお 、て、カーブ (2)の (Y)点で (A)成分、(B)成分及び (B)成分とを一定 の温度条件でのミキサーによる攪拌'混合を中止し、引き続き混合液をミキサーから 一定温度に制御された恒温槽中に移し熟成することによって粘度が更に上昇し更に 材料の組み合わせによって適宜決定すればよいが、通常 1〜7日間熟成することによ つて図 2示すように粘度が安定する。この安定したシール用材料を用いて保温しなが らディスペンサーを使用しても粘度の変化はほとんどなく安定した作業を行なうことが できる。
図 2の場合 (Y)に到達するまでの時間には特に制限はなぐ攪拌'混合する温度を 規定する以外は (A)成分、 (B)成分及び (C)成分が均一に混合され粘度が上昇し ていれば (増粘剤が膨潤していれば)、次の工程 2の熟成工程に移すことができる。 粘度を好まし 、範囲にするためには、(A)成分であるマトリックスの種類と(B)成分 及び (C)成分の種類、及び量、工程 1及び工程 2の温度条件によって適宜決定され る。
[0035] また、条件が適合していれば、攪拌 '混合のみでもほぼ同じようなカーブで粘度を 安定させることはできるが、ミキサーをこのために 1〜7日間専用使用することは非常 なコストアップにつながる。
さらに、本発明の製造方法においては、増粘剤を最も有効に効率よく使用するため に、使用増粘剤の量を少なくすることができ、増粘剤に由来するアウトガス (揮発性有 機化合物)の量を低減することができる。アウトガスによる精密電子機器の破壊を避け 、
Figure imgf000018_0001
ヽぅ観点から揮発性有機化合物 (VOC)の 量を無視しうる範囲内にまで少なくすることが望ましい。
この観点から、硬化後のシール材を 150°Cの温度で 20分間加熱した際に発生する ガス量が、 n—デカン換算量で 500ppm (質量基準)以下であることが好ましい。
[0036] (A)成分、(B)成分及び (C)成分の溶解性によって適宜決定すればよ!、が、工程 1のミキサーによる攪拌'混合の温度範囲は、通常 30〜120°Cがこのましい、より好ま しくは、 50〜100°Cである。また工程 2の熟成の温度範囲は、 40〜100°Cがこのまし い、より好ましくは、 50〜90°Cであり、工程 1で(C)成分を
50〜 120°Cで完全に溶解させ、工程 2の熟成温度範囲まで徐冷することで粘性を発 現する構造を作りだす。工程 2で引き続き粘性を発現させる構造を成長させる。工程 1、及び工程 2の温度条件の設定は特に重要であり、上記温度範囲に設定すること で効率よく増粘剤が膨潤し、粘度が安定したシール用材料を得ることができる。 また、工程 2の熟成時間は熟成温度での混合液の粘度 (Pa' s)の 8時間後の変化 率力 5%以下になるように熟成をすることがこのましい。
さらに工程 2終了後の混合液のシェアレート 10s— 1での粘度が 50°Cで l〜100Pa' s であることが好ましい。
尚、工程 1において上記の (A)、(B)及び (C)成分の他に必要に応じて上述の(D) 成分として、光重合開始剤、架橋剤、及びモノマーのうちの少なくとも一つを添加す ることがでさる。
実施例
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではない。尚、各実施例、比較例における各種測定は下 記により行なった。
(1) <シール用材料の粘度 Pa · s >
粘弾性測定装置にお 、てパラレルプレートを使用し、 50°Cでせん断速度 10S— 1で 2 0秒測定した。
(2) <硬化法>
シール用材料を厚さ 0. 6mmに製膜し、これにエネルギー線を照射して硬化物を 得た。エネルギー線には、メタルハライドランプを使用し、空気雰囲気下で照度約 13
Figure imgf000019_0001
積算光量約 8000mJ/cm2の条件で照射を行った。この硬化物をさらに 、空気雰囲気下 120°Cで 4時間べ一キング処理した。
(3) <湿熱劣化試験 1 >
70°C、湿度 95%RHの条件で、 4ヶ月間放置し、 1ヶ月後、 2ヶ月後、 3ヶ月後及び 4 ヶ月後の破断強力 (Tb)の値を測定した。試験開始時点の破断強力を 100として指 数で表した。指数の大きいほうが劣化の程度が少ないことを示す。
(4) <湿熱劣化試験 2 >
70°Cの温度で湿度を 0%RH、 70%RH、 95%RHと変えてそれぞれ 4ヶ月間放置 し、 1ヶ月後、 2ヶ月後、 3ヶ月後及び 4ヶ月後の破断強力 (Tb)の値を測定した。試験 開始時点の破断強力を 100として指数で表した。指数の大きいほうが劣化の程度が 少ないことを示す。
(5) <破断強力 Tb > JIS K6251に準拠し 6号ダンベルを用いて測定した。
(6) <表面粘着性 >
0. 6mm厚さのシート表面に SUS304製の円柱型プローブを一定条件で押し付け 、引き上げる時の力を測定する。尚、シートの測定面は紫外線硬化時に空気側を向 いていた面である。
測定条件
*測定環境: 25°C
*プローブ径: φ 5. Omm
*押し込みスピード: 120mm/min
*押し込み荷重: 30gfで 3秒間
* ΰ Iき上げスピード: 600mmZmin
(7) < JIS— A硬度 >
JIS K6253に準拠し、タイプ Aデュロメータにより、硬化物の硬度を測定した。試験 体として、厚さ 0. 6mmのシートを 10枚積層した厚さ 6mmのものを用いた。
(8) <永久歪(C. S)の測定 >
JIS K6262に準拠して測定した。
(9) <透湿度 >
JIS L1099に記載の A法の透湿カップを使用し、 JIS Z0208に準拠して 40°C、相 対湿度 90%の条件で測定した。試験体として、厚さ 0. 8mmのシートを用いた。
[0038] (10) <密着性 >
JIS K6256に基づき、ニッケルメツキアルミプレートの被着体にシール用材料を塗 布し、これにエネルギー線を照射して硬化物を得、密着性 (単位; gf)を測定した。ェ ネルギ一線には、メタルノヽライドランプを使用し、空気雰囲気下で照度約 130mW/c 積算光量約 8000mJ/cm2の条件で照射を行った。
[0039] (11)くウレタンオリゴマー(A)の製造 >
2, 4 ジェチルー 1, 5 ペンタンジオールと無水フタル酸とから得られるポリエス テルジオール化合物(数平均分子量 2000) 400gとノルボナンジイソシアナート 82. 4gと、酸化防止剤のジ—tーブチルーヒドロキシフエノール 0. 10gとを、攪拌機、冷却 管、温度計を備えた 1リットル四つ口フラスコに入れ、 80°Cで 2時間反応させた。次い で 2 ヒドロキシェチルアタリレート 46. 2g、重合禁止剤の p-メトキシフエノール 0. 10 g、付加反応触媒としてのチタンテトラ(2 ェチルー 1一へキサノラート) 0. 06gとを 加え、 85°Cで 6時間反応させた。反応液の一部を取り出し赤外線吸収スペクトルで 2 280cm 1のイソシアナ一ト基の吸収ピークが消失したことにより、反応の終点を確認し 、(A)成分として使用するウレタンオリゴマーを得た。得られたウレタンオリゴマーにつ いて数平均分子量を、ゲルパーミエーシヨンクロマトグラフィーを用い、ポリスチレン換 算値で求めたところ 18000であった。
[0040] ( 12) <シール用材料の調製 >
上記により得られたウレタンオリゴマー 100質量部に、モノマー(フエノキシェチルァ タリレート) 25質量部と、重合開始剤 (4- (2-ヒドロキシエトキシ)フ -ル—(2-ヒドロキ シ— 2—プロピル)ケトン) 2質量部を配合してなる混合物を予め製造した。
[0041] 実施例 1〜9及び比較例 1
上記(12)で製造した混合物に、 (B)成分である第 1表に記載のカルポジイミドィ匕合 物、さらには(D)成分であるイソボル-ルアタリレート又はジシクロペンタ-ルアタリレ ートの所定量を、プラネタリーミキサーを用いて、 70°Cにて混練し、実施例 1〜9のシ ール用材料を得た。
上記カルポジイミド化合物を混練して 、な 、ものを比較例 1とした。
このシール用材料を上記(1)の方法にて硬化し、実施例 1〜3及び比較例 1につい て上記湿熱劣化試験 1の評価を行なった。また、実施例 4〜9においては、 4ヶ月 後の破断強力 (Tb)の値を測定した。評価結果を第 1表に示す。
また、実施例 2のシール用材料を上記(1)の方法で硬化したものを用いて上記湿 熱劣化試験 2の評価を行なった。評価結果を第 2表に示す。
さら〖こ、実施例 1〜9及び比較例 1のシール用材料を上記(1)の方法で硬化したも のを用いて表面粘着性、硬度、永久圧縮歪、透湿度及び密着性の評価を行なった。 評価結果を第 3表に示す。
[0042] [表 1] 卜 o 実施例較例比
各部成量分質) (
o
ゴ成オウタ ()分リレンマAー '
'成分 ()ポド合物ジ化B
o 1カイミル
o o
2 *成 ()分ボクリトDイルァレルソニー
3 *ジタククペ卜シリレンアレノロニー
4 *クキシチリトノルァレフェエー
o 後放数月置評価日 1ヶ o
o
後指数月破強()断力 2Tbヶ
後月放件置条 ( 3ヶ;
8
後月°) 405%R 7C 9Hヶ
o 卜
* 1 液状カルポジイミド化合物:日清紡績 (株)製 商品名 [Elastostab H01] * 2 イソボルエルアタリレート;大阪有機化学工業 (株)製「IBXA」
* 3 ジシクロペンタ-ルアタリレート;日立化成工業 (株)製「F513A」 * 4 フエノキシェチルアタリレート;共栄化学 (株)製「ライトアタリレート PO— A」
[0044] [表 2]
第 2表
Figure imgf000023_0001
[0045] [表 3]
Figure imgf000024_0001
第 1表からは、 70°C、 95%RHの過酷な条件での促進劣化試験においてもカルボ ジイミドを含有したエステル系ウレタン榭脂は、長期間の放置条件にぉ 、ても破断強 力 Tbの低下は少なぐ比較例 1対比で大幅に改良されていることがわかる。
第 2表からは、カルポジイミド化合物を 2質量部含有した実施例 2にお 、て湿熱条 件を変化させた結果、条件による変化はすくなぐ優れた破断強力 (Tb)保持性を有 することがゎカゝる。
さらに、第 3表からは、(D)モノマー成分をさらに追加した実施例 4〜9は透湿性が 向上し、表面粘着性が顕著に向上する (低下する)ことがわかる。また、被着体との密 着性も大幅に向上していることがわかる。このことによって例えば、 HDDカバーの取 り外しが容易になり、再利用時の外力に対する耐久性が向上する。
実施例 10
上記(11)により得られた (A)成分のウレタンオリゴマー 100質量部に、(B)成分の カルポジイミドィ匕合物日清紡績 (株)製 商品名 [Elastostab H01]
1質量部、(D)成分のモノマー(フエノキシェチルアタリレート) 25質量部及び重合開 始剤(4- (2-ヒドロキシエトキシ)フエ-ル—(2-ヒドロキシ— 2—プロピル)ケトン) 2質量 部を配合してなる混合物を予め製造した。
上記混合物に対して、(C)成分の増粘剤として ADVITROL 100 (商標、ズードケ ミー触媒 (株)製、水添ひまし油)を混合物に含まれるウレタンオリゴマー 100質量部 に対して 2質量部添加してプラネタリーミキサーを用いて、温度を 80°Cに設定し、 1時 間攪拌した。その後徐冷しながら攪拌を行い、増粘剤の分散ならびに材料温度が 40 °Cになったことを確認して工程 1を終了し、工程 2の熟成を行なった。混合物の粘度( Pa' s)の 8時間後の粘度変化率が 5%以下であることを確認して工程 2を終了した。 終了後の粘度は 50°Cで 76Pa' sであった。
得られたシール用材料をディスペンサーを用いて加温しながら押し出しプレート面 に一筆書きによりガスケット形状に押し出したが粘度が安定しており線幅が狭ぐかつ 高さが高いガスケットをカバー体上に容易に形成することができる、高精度の押出し 形状が得られた。
尚、硬化後のシール材を 120°Cの温度で 10分間加熱した際に発生するガス量力 n—デカン換算量で 500ppm (質量基準)以下であった。
産業上の利用可能性 本発明によれば、湿熱耐久性に優れ低透湿性を維持し、また、被着体との密着性 に優れ、かつ高精度の押出し形状が得られるシール用材料及び、長期保存安定性 に優れたシール用材料の製造方法、これら材料を用いた上記特性を有するガスケッ トを提供することができる。また、シール用材料の硬化物は、表面粘着性が低下する ため再利用時の外力に対する耐久性が向上する。

Claims

請求の範囲
[1] エネルギー線硬化性液状榭脂である不飽和基含有エステル系ウレタンオリゴマー( A)及び該 (A)成分 100質量部に対して、分子内に少なくとも 1つのカルポジイミド基 を含む化合物(B)を 0.01〜10質量部含有することを特徴とするシール用材料。
[2] エネルギー線硬化性液状榭脂 (A)が、下記一般式 (I)
[化 1]
R'-0-CONH-R2-NHCO- (一 O- R3— O—CONH— R2—NHCO) - (-A- CONH— R2— NHCO-) (― O— R3— O— CONH-R2—NHCO_) r-0-R'
• · · · ( I )
[式 (I)中、 R1は (メタ)アタリロイル基及びビニル基の少なくともいずれかの不飽和基 を含有するモノオール化合物の脱水酸基残基、 R2は有機ジイソシアナート化合物の 脱イソシアナ一ト残基、 R3は、数平均分子量 1 X 103〜1 X 104で環状基または分岐鎖 状基を含有するポリエステルジオールィ匕合物の脱水酸基残基であり、 Aはジアミンィ匕 合物の脱水素残基またはジオール化合物の脱水素残基、 p及び rの各々は 0〜7、 q は 0〜3、ただし、 q = 0のとき、 l≤p+r≤10である。 ]で表され、かつ数平均分子量 力 X 103〜5 X 104である不飽和基含有ウレタンオリゴマーである請求項 1に記載の シール用材料。
[3] 式 (I)における R3が、環状基含有ジカルボン酸とジオールとが縮合した前記ポリェ ステルジオール化合物の脱水酸基残基、又は環状基含有ジカルボン酸無水物がジ オールに反応して変性したポリエステルジオールィヒ合物の脱水酸基残基である請求 項 2に記載のシール用材料。
[4] 式(I)における R1が、ヒドロキシアルキル (メタ)アタリレート及びヒドロキシアルキルビ
-ルエーテルのいずれかの前記モノオールィ匕合物の脱水酸基残基である請求項 2 に記載のシール用材料。
[5] (A)成分の不飽和基含有ウレタンオリゴマー(ただし、一般式 (I)において q = 0の 場合)力 前記ポリエステルジオールィ匕合物と、前記有機ジイソシアナ一トイ匕合物とを 重付加反応させてイソシアナート基を両末端に有する付加物を形成した後、該ィソシ アナート基に、前記モノオールィ匕合物を付加して得られるものである請求項 1〜4の V、ずれかに記載のシール用材料。
[6] (A)成分の不飽和基含有ウレタンオリゴマー(ただし、一般式 (I)において q≠0の 場合)力 前記ポリエステルジオールィ匕合物と前記有機ジイソシアナ一トイ匕合物とを 重付加反応させてイソシアナート基を両末端に有する付加物を形成した後、前記ジ ァミン化合物または前記ジオールィ匕合物の末端の各々を、該付加物の片端のイソシ アナート基に付加させ、該付加物の他の片端のイソシアナ一ト基に、前記モノオール 化合物を付加して得られるものである請求項 1〜4のいずれかに記載のシール用材 料。
[7] カルポジイミド基を含む化合物(B)力 粘度 0. 1〜: LOOPa' sの液状ポリカルボジィ ミドィ匕合物である請求項 1に記載のシール用材料。
[8] 前記 (B)成分が、粘度 0. 5〜: LOPa' sの液状ポリカルポジイミドィ匕合物である請求 項 7に記載のシール用材料。
[9] さらに、チクソ性を付与する増粘剤 (C)を含む請求項 1〜8のいずれかに記載のシ ール用材料。
[10] (A)成分 100質量部に対して、増粘剤 (C)を 0. 5〜10質量部含有する請求項 9記 載のシール用材料。
[11] (C)成分が有機増粘剤である請求項 9又は 10に記載のシール用材料。
[12] 有機増粘剤が水添ひまし油である請求項 11記載のシール用材料。
[13] さらに、(D)成分として、光重合開始剤、架橋剤、及びモノマーのうちの少なくとも 一つを含有してなる請求項 1〜12のいずれかに記載のシール用材料。
[14] (D)成分として、(メタ)アクリル酸エステルモノマーを (A)成分 100質量部に対して
、 1〜70質量部含有する請求項 13に記載のシール用材料。
[15] 前記 (メタ)アクリル酸エステルモノマーのガラス転移温度が 50°C以上である請求項
14に記載のシール用材料。
[16] 前記(メタ)アクリル酸エステルモノマーがジシクロペンタ-ル (メタ)アタリレート及び
Z又はイソボル-ル (メタ)アタリレートである請求項 15に記載のシール用材料。
[17] 請求項 1〜16に記載のエネルギー線硬化性液状榭脂 (A)、分子内に少なくとも 1 つのカルポジイミド基を含む化合物 (B)及び増粘剤 (C)を含むシール用材料を製造 するに当り、(A)成分、(B)成分及び (C)成分とをミキサーにより攪拌'混合する工程
(工程 1)及び該混合液を恒温槽にて熟成 (養生)する工程 (工程 2)を有することを特 徴とするシール用材料の製造方法。
[18] 前記工程 1のミキサーによる攪拌 '混合の温度範囲が 30〜120°Cである請求項 17 に記載のシール用材料の製造方法。
[19] 工程 2にお 、て、熟成温度範囲が 40〜100°Cであり、熟成温度での混合液の粘度
(Pa' s)の 8時間後の変化率が、 5%以下になるまで熟成をする請求項 17に記載の シール用材料の製造方法。
[20] 工程 2終了後の混合液のシェアレート 10s— 1の粘度が 50°Cで 1〜: LOOPa' sである請 求項 17〜 19のいずれかに記載のシール用材料の製造方法。
[21] 請求項 17〜20の 、ずれかに記載の製造方法を用いて得られたシール用材料。
[22] 請求項 1〜15の 、ずれかに記載のシール用材料を硬化してなるガスケット。
[23] 請求項 22に記載のシール用材料を硬化してなるガスケット。
PCT/JP2006/314500 2005-07-22 2006-07-21 シール用材料、その製造方法及びシール用材料を用いたガスケット WO2007011029A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/995,859 US20100105797A1 (en) 2005-07-22 2006-07-21 Sealing material, process for production of the material, and gasket using the material
CN2006800267800A CN101228248B (zh) 2005-07-22 2006-07-21 密封用材料、其制造方法以及使用密封用材料的密封垫

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005212689 2005-07-22
JP2005-212689 2005-07-22
JP2005-238460 2005-08-19
JP2005238460A JP4878454B2 (ja) 2005-08-19 2005-08-19 シーリング用材料の製造方法、シーリング材及び該シーリング材を用いたガスケット
JP2006174993 2006-06-26
JP2006-174993 2006-06-26
JP2006-198172 2006-07-20
JP2006198172A JP4976768B2 (ja) 2005-07-22 2006-07-20 シール用材料及びガスケット

Publications (1)

Publication Number Publication Date
WO2007011029A1 true WO2007011029A1 (ja) 2007-01-25

Family

ID=37668900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314500 WO2007011029A1 (ja) 2005-07-22 2006-07-21 シール用材料、その製造方法及びシール用材料を用いたガスケット

Country Status (3)

Country Link
US (1) US20100105797A1 (ja)
CN (1) CN101228248B (ja)
WO (1) WO2007011029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043295A (ja) * 2007-08-06 2009-02-26 Bridgestone Corp ハードディスク装置用ガスケット形成材料及びそれを用いたハードディスク装置用ガスケット
US20110021695A1 (en) * 2008-03-31 2011-01-27 Hitachi Kasei Polymer Co., Ltd. Urethane (meth) acrylate composition and seal member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145334B2 (en) 2011-09-22 2015-09-29 Fina Technology, Inc. Isocyanate-free insulated glass sealant and insulated glass units using the same
CN104428331B (zh) * 2012-07-11 2019-02-15 东洋油墨Sc控股株式会社 活性能量射线聚合性树脂组合物、以及使用该树脂组合物的层叠体
KR102352334B1 (ko) * 2013-10-18 2022-01-17 세키스이가가쿠 고교가부시키가이샤 광 습기 경화형 수지 조성물, 전자 부품용 접착제, 및 표시 소자용 접착제
JP7028401B2 (ja) * 2018-02-23 2022-03-02 日清紡ケミカル株式会社 水性カルボジイミド含有液の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216050A (ja) * 1994-01-27 1995-08-15 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2000212237A (ja) * 1999-01-20 2000-08-02 Takeda Chem Ind Ltd プラスチゾル組成物
JP2003105320A (ja) * 2001-09-28 2003-04-09 Nippon Mektron Ltd 精密機器用液状ガスケット材料およびそれを用いた精密機器用ガスケットの製造方法
JP2004534132A (ja) * 2001-07-10 2004-11-11 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン モノマー性ジイソシアネートの含有量の少ない反応性ポリウレタン

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798879A (en) * 1987-03-25 1989-01-17 The B.F. Goodrich Company Catalyzed fast cure polyurethane sealant composition
US6013340A (en) * 1995-06-07 2000-01-11 Nike, Inc. Membranes of polyurethane based materials including polyester polyols
JPH10237420A (ja) * 1997-02-20 1998-09-08 Three Bond Co Ltd 嫌気硬化性シール剤組成物
US6465104B1 (en) * 1997-12-01 2002-10-15 Henkel Kommanditgesellschaft Auf Aktien Modified polyurethane hotmelt adhesive
JP4585749B2 (ja) * 2003-08-07 2010-11-24 日清紡ホールディングス株式会社 黄変を抑えたカルボジイミド組成物、耐加水分解安定剤及び熱可塑性樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216050A (ja) * 1994-01-27 1995-08-15 Dainippon Ink & Chem Inc 硬化性樹脂組成物
JP2000212237A (ja) * 1999-01-20 2000-08-02 Takeda Chem Ind Ltd プラスチゾル組成物
JP2004534132A (ja) * 2001-07-10 2004-11-11 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン モノマー性ジイソシアネートの含有量の少ない反応性ポリウレタン
JP2003105320A (ja) * 2001-09-28 2003-04-09 Nippon Mektron Ltd 精密機器用液状ガスケット材料およびそれを用いた精密機器用ガスケットの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043295A (ja) * 2007-08-06 2009-02-26 Bridgestone Corp ハードディスク装置用ガスケット形成材料及びそれを用いたハードディスク装置用ガスケット
US20110313076A1 (en) * 2007-08-06 2011-12-22 Bridgestone Corporation Gasket-forming material for hard disk and gasket for hard disk using the same
CN101772808B (zh) * 2007-08-06 2012-09-19 株式会社普利司通 硬盘装置用垫片形成材料及使用该材料的硬盘装置用垫片
US20110021695A1 (en) * 2008-03-31 2011-01-27 Hitachi Kasei Polymer Co., Ltd. Urethane (meth) acrylate composition and seal member

Also Published As

Publication number Publication date
CN101228248B (zh) 2012-05-09
CN101228248A (zh) 2008-07-23
US20100105797A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
JP4976768B2 (ja) シール用材料及びガスケット
JP5237565B2 (ja) 光硬化性液状ゴム組成物
WO2007011029A1 (ja) シール用材料、その製造方法及びシール用材料を用いたガスケット
KR101623770B1 (ko) 활성 에너지선 경화성 실링제 조성물 및 실링층 부착 부재
JP5285391B2 (ja) 光硬化性組成物の硬化物の製造方法
JP2010144000A (ja) 光硬化性樹脂組成物、電子ペーパー用の光硬化性防湿シール材、電子ペーパー及びその製造方法
JP2014201593A (ja) 湿気硬化併用光硬化型組成物及びその組成物の硬化膜を含む電子回路装置
JP2008291114A (ja) 光硬化性樹脂組成物、実装回路板用の光硬化性防湿絶縁塗料、電子部品及びその製造方法
KR20170099840A (ko) 광경화성 조성물
JP2009141808A (ja) スピーカーエッジ用硬化性制振材料
JP2008291126A (ja) 光硬化性組成物及びそれを用いた電子部品用ガスケット
JP5156239B2 (ja) 接着剤
WO2019073978A1 (ja) 接着方法、及び光硬化性粘着剤組成物
JP2003105320A (ja) 精密機器用液状ガスケット材料およびそれを用いた精密機器用ガスケットの製造方法
JP2008195790A (ja) 光硬化性液状ゴム組成物
JP5603130B2 (ja) 硬化物の製造方法、並びに硬化物、電子部品用シール材及び電子部品用ガスケット材
JPWO2019073979A1 (ja) 光硬化性粘着剤組成物、及び接着方法
JP5625623B2 (ja) 活性エネルギー線硬化性組成物及びガスケット
JP2621457B2 (ja) 放射線硬化型感圧性接着剤組成物
JP4662545B2 (ja) 不飽和基含有ウレタンオリゴマーおよびそれが重合した硬化物
TW201905016A (zh) 聚合性樹脂組合物和其固化物
JPWO2019073980A1 (ja) 光硬化性粘着剤組成物、及び接着方法
JP2010265402A (ja) 光及び熱硬化併用型樹脂組成物、電子ペーパー用の光及び熱硬化併用型防湿シール材、電子ペーパー及びその製造方法
JP4878454B2 (ja) シーリング用材料の製造方法、シーリング材及び該シーリング材を用いたガスケット
WO2014038592A1 (ja) 湿気硬化性及び光硬化性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026780.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781422

Country of ref document: EP

Kind code of ref document: A1