WO2007007631A1 - 脂環式ポリエステル及びその製造方法ならびに樹脂組成物 - Google Patents

脂環式ポリエステル及びその製造方法ならびに樹脂組成物 Download PDF

Info

Publication number
WO2007007631A1
WO2007007631A1 PCT/JP2006/313476 JP2006313476W WO2007007631A1 WO 2007007631 A1 WO2007007631 A1 WO 2007007631A1 JP 2006313476 W JP2006313476 W JP 2006313476W WO 2007007631 A1 WO2007007631 A1 WO 2007007631A1
Authority
WO
WIPO (PCT)
Prior art keywords
alicyclic
polyester
alicyclic polyester
titanium
weight
Prior art date
Application number
PCT/JP2006/313476
Other languages
English (en)
French (fr)
Inventor
Atsushi Kasai
Masahiro Nukui
Tomohiko Tanaka
Atsushi Fujimura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/988,165 priority Critical patent/US20090215933A1/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP06767935A priority patent/EP1903067A1/en
Publication of WO2007007631A1 publication Critical patent/WO2007007631A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds

Definitions

  • the present invention relates to an alicyclic polyester mainly composed of an alicyclic dicarboxylic acid component and an alicyclic diol component.
  • the alicyclic dicarboxylic acid component and the alicyclic diol component are An alicyclic polyester excellent in transparency, hue and heat resistance, produced by polymerization using a titanium-based catalyst and an alkaline earth metal catalyst, a method for producing the alicyclic polyester, and a resin containing the alicyclic polyester It relates to a composition.
  • Various polyester resins are used in a wide range of fields because they can be formed into films, fibers, molded bodies, and the like by various forming methods.
  • alicyclic dicarboxylic acids particularly 1,4-cyclohexanedicarboxylic acid (hereinafter sometimes abbreviated as 1, 4 CHDA) as the main dicarboxylic acid component
  • 1, 4 CHDA 1,4-cyclohexanedicarboxylic acid
  • raw materials with alicyclic diol as the main diol component
  • the resulting alicyclic polyester has excellent transparency, heat resistance, and weather resistance, so its application is expanding and is expected as an optical material.
  • polyesters When a polyester is produced from a dicarboxylic acid component and a diol component, it is generally known to use a titanium compound as a polycondensation reaction catalyst.
  • a titanium catalyst when a titanium catalyst is used, the produced polyester tends to be colored yellow, and improvement has been demanded.
  • polyesters using a titanium catalyst may cause coloration or decrease in molecular weight when melt blended with other resins, and improvements in this respect have also been demanded.
  • 1,4 DMCD 1,4-cyclohexanedicarboxylic acid dimethyl ester
  • 1,4 DMimethanol 1,4-cyclohexanedimethanol
  • PCCD polycondensation via an ester exchange reaction to produce an alicyclic polyester
  • a titanium catalyst is used in a large amount.
  • a titanium catalyst equivalent to 200 ppm in terms of titanium atom is used (Patent Document 1).
  • Patent Document 2 it has been proposed to polycondense polyester with a catalyst system having a titanium usage of 1 to LOppm by using a titanium compound in combination with another metal compound as a promoter.
  • Patent Document 2 a cocatalyst such as Mn is used in combination instead of reducing the amount of titanium, the thermal stability of the produced polyester and the thermal stability when alloyed with other resins are not satisfactory. I helped.
  • Patent Document 1 US Patent No. 5,986,040
  • Patent Document 2 JP-A-53-25696
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-169009
  • Patent Document 4 Japanese Translation of Special Publication 2005-521772
  • the present invention is to provide a alicyclic polyester that is suitable as an optical material and has good thermal stability and hydrolysis stability with less coloring and less foreign matter.
  • the gist of the present invention is that a titanium compound and an alkaline earth metal are used as a polycondensation catalyst from a dicarboxylic acid component mainly composed of an alicyclic dicarboxylic acid and a diol component mainly composed of an alicyclic diol.
  • the ratio (MZTi) to earth metal (M) is 0.25 to L in terms of metal atomic weight: L 0 and the intrinsic viscosity is 0.4 dlZg or more.
  • Another gist of the present invention is that a titanium compound and an alkaline earth metal are used as a polycondensation catalyst from a dicarboxylic acid component mainly composed of an alicyclic dicarboxylic acid and a diol component mainly composed of an alicyclic diol.
  • titanium is 1 ppm by weight or more and less than 25 ppm by weight in terms of metal atoms, and the ratio of titanium (Ti) to alkaline earth metal (M) (MZTi) is 0.
  • the feature resides in a method for producing an alicyclic polyester.
  • Another gist of the present invention resides in a greave composition characterized by comprising 1 to 99 parts by weight of the alicyclic polyester and 99 to 1 parts by weight of polycarbonate.
  • the alicyclic dicarboxylic acid is 1,4 cyclohexanedicarboxylic acid; the alicyclic diol is 1,4 cyclohexanedimethanol;
  • the color b value of the alicyclic polyester is 3 or less; the polymer terminal bullcyclohexene structure of the alicyclic polyester is less than 5 ⁇ molZg; the intrinsic viscosity (IV) of the alicyclic polyester and the 280 cyclic polyester under nitrogen atmosphere
  • Viscosity retention calculated from the following formula (1) from the intrinsic viscosity (IV) after 1 hour treatment at ° C: R force 0% or more; Black mouth form 18. Og with alicyclic polyester 2. Og-dissolved solution has a haze value of 1.5% or less at an optical path length of 10 mm; the intrinsic viscosity (IV) of the alicyclic polyester and the alicyclic polyester in a water vapor atmosphere. From the intrinsic viscosity (IV) after 24 hours of treatment at kPa (gauge pressure) and 120 ° C, the following formula (2
  • the trans ratio of the chlorohexanedicarboxylic acid unit is 85 mol% or more. Furthermore, it can also be mentioned that the resin composition contains a phosphorus compound. Further, as a preferred embodiment of the method for producing an alicyclic polyester, the water content of the organic solvent solution of the alkaline earth metal compound is 2% by weight or more.
  • Viscosity retention (%) (I V i / l V o) X 1 0 0 (1)
  • Viscosity retention R 2 (%) (IV 2 / IV o) X 1 0 0 (2)
  • the alicyclic polyester of the present invention can be formed into a film, a fiber, a molded body, and the like by various forming methods, and particularly when used as a film, it has high transparency and little coloration. Can be used as very useful.
  • the thermal stability is high, a molded product with a small decrease in molecular weight during molding is excellent in mechanical properties.
  • it contains an alkaline earth metal with a low titanium content in the polyester, it is possible to reduce coloring when alloyed with other resins, which is a very useful material in the industry.
  • the alicyclic polyester of the present invention is obtained by subjecting a dicarboxylic acid component and a diol component as raw materials to a melt polycondensation reaction through an esterification reaction.
  • the main component of the dicarboxylic acid component used in the raw material is an alicyclic dicarboxylic acid
  • the main component of the diol component is an alicyclic diol.
  • the titanium contained therein is 1 wt ppm or more and less than 25 wt ppm in terms of titanium metal atoms, and the ratio of titanium (Ti) to alkaline earth metal (M) (MZTi) is 0.25 in terms of metal atomic weight: L 0 and has an intrinsic viscosity of 0.4 dlZg or more.
  • the polymerization rate is slow, and when it is 25 ppm by weight or more, the thermal stability is deteriorated and the haze of the polyester is high. This is not preferable.
  • the color tone is further improved by using an alkaline earth metal in combination rather than using titanium alone as a catalyst. Where alkaline earth metal If the ratio to titanium (MZTi) is less than 0.25, the effect of improving the color tone will be low. If it exceeds 1.0, the polymerization rate will be very slow, which is not preferable. Further, when the above ratio is 0.25 or more and 1.0 or less, the haze of the obtained polyester is preferably low.
  • the dicarboxylic acid component containing alicyclic dicarboxylic acid as a main component means that the ratio of the alicyclic dicarboxylic acid to the total dicarboxylic acid component exceeds 50 mol%.
  • the ratio of the alicyclic dicarboxylic acid to the total dicarboxylic acid component is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more. If the ratio of alicyclic dicarboxylic acid is 50 mol% or less, the resulting polyester tends to have poor optical properties.
  • Examples of the alicyclic dicarboxylic acid as the main component include 1,2-, 1,3-, 1,4-cyclohexanedicarboxylic acid (1,4-CHDA), 1,4-, 1,5 —, 2, 6—, 2, 7 Decahydro naphthalene dicarboxylic acid and the like.
  • 1,4-CHDA is preferably used because the molding temperature of alicyclic polyester, which is readily available industrially, is close to the molding temperature of conventional general-purpose polyesters (for example, polybutylene terephthalate).
  • the ratio of the trans isomer to the total of the trans isomer and the cis isomer was 85 mol. % Or more, preferably 88 mol% or more, more preferably 90 mol% or more, since the heat resistance of the resulting polyester is preferably increased.
  • raw material 1 the 4-CHDA, at least 85 mole 0/0 of the trans isomer, and preferably there may be used those containing 88 mole 0/0, considering the isomerization I spoon during polyester production It is more preferable to use those containing 90 mol% or more and 95 mol% or more of the trans isomer.
  • 1, 4 CHDA metal impurities other than titanium and alkaline earth metal are 1 ppm by weight or less.
  • 1, 4 CHDA contains a large amount of metal impurities. If these metal impurities are present, problems such as inhibiting the polymerization reaction or causing side reactions to deteriorate the color tone are caused. Therefore, as countermeasures, measures such as using a large amount of the catalyst titanium compound or deactivating metal impurities using a stabilizer such as a phosphorus compound. Because it suppresses Again, a large amount of titanium compound as a catalyst was required.
  • 1,4 CHDA having a metal impurity content of 1 ppm by weight or less 1,4-CHDA having a metal impurity of 1 ppm by weight or less and a trans form of 85 mol% or more can be obtained, for example, by thermal isomerization of a commercially available 1,4-CHDA cis-trans mixture. .
  • the method of thermal isomerization can be performed, for example, by the method described in JP-A-2004-43426.
  • dicarboxylic acids that can be used in addition to the alicyclic dicarboxylic acid that is the main component include terephthalic acid, phthalic acid, isophthalic acid, 1,4-phenol-dioxydicarboxylic acid, and 1,3-phenol.
  • Rangeoxydiacetic acid 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl ketone dicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4'-diphenyl -Rusulfone dicarboxylic acid, aromatic dicarboxylic acid such as 2,6 naphthalene dicarboxylic acid, and succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, dodecadicarboxylic acid Examples thereof include aliphatic dicarboxylic acids such as acids, and these dicarboxylic acids may be used alone or in combination of two or more.
  • the main component of the diol component used in the alicyclic polyester of the present invention is an alicyclic diol.
  • the main component of the alicyclic diol means that the ratio of the alicyclic diol to the total diol component exceeds 50 mol%.
  • the ratio of the alicyclic diol to the total diol component is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more. If the ratio of the alicyclic diol to the diol component is 50 mol% or less, the optical properties of the resulting alicyclic polyester tend to deteriorate.
  • Examples of the alicyclic diol as the main component include 1,2-, 1,3-cyclopentanediol, 1,2-, 1,3 cyclopentanedimethanol, bis (hydroxymethyl) tricyclohexane.
  • 1,4-CHDM is usually a mixture of a trans isomer and a cis isomer, and the ratio of the trans isomer to the cis isomer is usually 80:20 to 60:40.
  • diol component other than the alicyclic diol as the main component examples include, for example, ethylene glycol, propylene glycol, butylene glycolate, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, and otatamethylene glycol.
  • a small amount of a copolymer component may be used in addition to the dicarboxylic acid component and the diol component! / ⁇ .
  • the copolymer component include glycolic acid, ⁇ -hydroxybenzoic acid, hydroxycarboxylic acid such as ⁇ - ⁇ -hydroxyethoxybenzoic acid, alkoxycarboxylic acid, tristralvaleric acid, trimellitic acid, trimesic acid, pyromellitic acid, Trifunctional or higher polyfunctional components such as naphthalene tetracarboxylic acid, gallic acid, trimethylol ethane, trimethylol propane, glycerol, pentaerythritol, sugar estenole, etc. can be mentioned, and these adjust the melt viscosity of the polyester and formability Useful for enhancing.
  • the alicyclic polyester of the present invention is produced from a dicarboxylic acid component whose main component is an alicyclic dicarboxylic acid and a diol component whose main component is an alicyclic diol through an esterification reaction and a polycondensation reaction.
  • the molar ratio of the diol component to the dicarboxylic acid component to be subjected to the esterification reaction is 102Z100 or more and 150Z100 or less, preferably 102Z100 or more and 145Z100 or less.
  • the terminal acid value of the polymer after the polycondensation reaction may increase.
  • the alicyclic polyester having a high intrinsic viscosity may not be obtained.
  • the amount of the titanium catalyst used in the production of the alicyclic polyester of the present invention is such that the titanium concentration in the obtained alicyclic polyester is 1 ppm by weight or more, preferably 3 ppm by weight or more, in terms of metal atoms. It is used so that it is less than ppm by weight, preferably less than 22 ppm by weight.
  • the titanium catalyst is used as a polycondensation reaction catalyst, but also has a function as an esterification reaction catalyst of a carboxylic acid component and a diol component. In the case of esterification, the titanium catalyst is used as a titanium in the produced polyester. It is used so that the content becomes the above desired value.
  • titanium compounds used as catalysts include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetra
  • titanium compounds used as catalysts include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetra
  • titanium compounds used as catalysts include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, te
  • titanium catalyst a reaction product comprising titanium orthoester or condensed orthoester and hydroxycarboxylic acid, a reaction product comprising titanium orthoester or condensed orthoester, hydroxycarboxylic acid and phosphorus compound,
  • examples thereof include a reaction product composed of an orthoester or condensed orthoester of titanium and a polyhydric alcohol having at least two hydroxyl groups, 2-hydroxycarboxylic acid or a base.
  • tetraalkyl titanates such as tetra-n-butyl titanate are preferably used as the titanium catalyst.
  • a compound of an alkaline earth metal such as magnesium, calcium, strontium, norlium is used together with a titanium compound.
  • an alkaline earth metal such as magnesium, calcium, strontium, norlium
  • magnesium compounds are particularly preferable because they have an effect of improving color tone.
  • the amount of the alkaline earth metal (M) compound used is such that the ratio (MZTi) to titanium in the resulting alicyclic polyester is 0.25 to L 0, preferably 0.3 to 0.9, in terms of metal atomic weight. Used in amounts that fall within the range of
  • Examples of the alkaline earth metal compound include magnesium, calcium, strontium, and norw And carbonates such as sodium chloride, hydroxides, oxides, organic acid salts such as acetates, and alkoxides.
  • Examples of preferred magnesium compounds that are preferred among these are magnesium acetate, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium alkoxide, and the like. In particular, magnesium acetate is preferred. Better ,.
  • the alicyclic polyester of the present invention has an intrinsic viscosity (IV) of 0.4 dlZg or more. If the intrinsic viscosity is less than 0.4 dlZg, the melt viscosity is too low at the time of molding, so that the moldability is inferior, and the mechanical strength of the resulting molded article is not preferable.
  • the upper limit of the solid viscosity depends on the upper limit of the melt viscosity that can be molded at the time of melt molding, but is usually 2.OOdlZg or less.
  • the alicyclic polyester of the present invention has its intrinsic viscosity (IV) and the alicyclic polyester.
  • Viscosity retention R force 0 calculated from the following formula (1) from the intrinsic viscosity (IV) after processing at 280 ° C for 1 hour in a nitrogen atmosphere (hereinafter sometimes referred to as heat resistance test) % Or more is more preferable, and 92% or more is more preferable.
  • the titanium content in the polyester is 25 ppm by weight or more and 100 ppm by weight or less, this viscosity retention value is known to fall within the range of approximately 80% or more and less than 90%. Since the cycloaliphatic polyester of the present invention has a low titanium content of less than 25 ppm by weight, the viscosity retention is high, the thermal stability is excellent, and there is little deterioration during molding. Quality.
  • the alicyclic polyester of the present invention has its intrinsic viscosity (IV) and the alicyclic polyester.
  • the calculated viscosity retention ratio R is preferably 65% or more, more preferably 70% or more.
  • Viscosity retention ratio power s It is preferable that the value be higher than this value because hydrolysis resistance is good.
  • Viscosity retention ratio R 2 (%) (! V 2 / IV o) X 1 0 0 (2)
  • the alicyclic polyester of the present invention preferably has a color tone b value of 3 or less, more preferably 2 or less. If the b value is higher than 3, yellowishness increases, which is not preferable as an optical material.
  • color tone b value is the color coordinate b value of Hunter's color difference formula in the Lab color system described in Reference 1 of IS Z8730.
  • the alicyclic polyester of the present invention preferably has a butylcyclohexene structure at the polymer terminal of less than 5 ⁇ molZg, more preferably less than 3 ⁇ molZg. If this structure is 5 / z molZg or more, the thermal stability during melting, especially the color change (yellowing) is large. Also, hydrolysis resistance tends to be poor.
  • the terminal bullcyclohexene structure is thought to be generated by thermal decomposition, so in order to avoid the formation, the power to complete the polycondensation reaction in a short time, the polymerization of the polycondensation reaction at 270 ° C or less, especially 265 ° C or less Preference is given to temperature. Further, since the generated terminal vinylcyclohexene structure does not contribute to the polymerization reaction, it is difficult to obtain a high molecular weight polymer.
  • the haze value of a solution of the alicyclic polyester of the present invention is 1.5% or less, more preferably 1.2. % Or less. This low value means that there are few foreign substances in the polymer, which is important when considering use as an optical material.
  • the haze value of the solution is a value measured by the method described later.
  • the alicyclic polyester of the present invention preferably uses 1,4 CHDA as a dicarboxylic acid component and 1,4 CHDM as a diol component. Further, the trans ratio of the cyclohexanedicarboxylic acid unit derived from 1,4-CHDA in the alicyclic polyester of the present invention is preferably 85 mol% or more, more preferably 88 mol% or more. is there. If the translucency is less than 85 mol%, the heat resistance of the alicyclic polyester is inferior.
  • the alicyclic polyester of the present invention is excellent in transparency and heat resistance, and can be used as a composition with other resins. Particularly in a composition with polycarbonate resin, the color tone is deteriorated and the molecular weight is lowered. It is possible to provide an excellent greaves composition without producing odor.
  • the second invention of the present application resides in a resin composition comprising 1 to 99 parts by weight of the alicyclic polyester of the present invention and 99 to 1 parts by weight of polycarbonate.
  • Alicyclic polyester and polycarbonate The amount of the alicyclic polyester is preferably 10 to 50 parts by weight, more preferably 20 to 40 parts by weight.
  • the resin composition of the present invention can contain a phosphorus compound, and the phosphorus compound is effective in improving the color tone of the resin composition.
  • the amount of phosphorus compound used in the resin composition is effective when used as a phosphorus atom at least 10 times the molar ratio of titanium (metal atom equivalent) derived from the Ti catalyst in the alicyclic polyester. Can be made.
  • the molar ratio of phosphorus compound to titanium (PZTi) is usually 10 to: LOOO, preferably 10 to 500, in terms of metal atoms.
  • the phosphorus compound can be added when the alicyclic polyester and the polycarbonate resin are blended.
  • the polycondensation reaction of the alicyclic polyester is performed in the presence of the phosphorus compound as a stabilizer. If it does, you may use it as it is.
  • the phosphoric acid compound is not particularly limited, but phosphoric acid and phosphoric acid esters such as trimethyl phosphate, triethyl phosphate, phosphoric acid phosphate, and triphenyl phosphate, phosphorous acid, and trimethyl phosphate.
  • Phosphites such as methyl phosphite, triphenyl phosphate, tris (2,4-t-butylphenol) phosphite, tetrakis (2,4-tert-butylphenol) phosphite, monoethyl acid phosphate Acid phosphates such as dimethyl ether phosphate, monostearyl acid phosphate, distearyl acid phosphate , Benzyl phosphonate, benzyl phosphonate Phosphonic acid compounds such as acid jetyl, diphenylphosphinic acid, diphenylphosphinic acid methyl, diphenylphosphinic acid phenol, phenylphosphinic acid, phenylphosphinic acid methyl, phenolphosphinic acid Phosphinic acid compounds such as phenol, phosphine oxide compounds such as diphenylphosphine oxide, methyldiphenylphosphine oxide, triphenylphosphine
  • the alicyclic polyester of the present invention is excellent in other thermoplastic resin, especially polycarbonate. Compatible with each other. At that time, catalyst deactivator, UV absorber, impact absorber with rubber component as core and acrylic polymer as one component shell, polyether ester elastomer, polyether imide ester elastomer, polyolefin, ABS resin, poly Atallate, olefin Atalylate copolymer, polyarylate, silicone oil, etc. can be added to improve mechanical properties.
  • the rosin composition of the present invention can be produced by an ordinary thermoplastic rosin composition processing method.
  • an alicyclic polyester and polycarbonate are mixed in advance with additive components that are blended as necessary, and then a reactor equipped with a stirring blade, a banner mixer, a roll, a brabender, a single-screw kneading extruder, It can be produced by melt-kneading with a twin-screw kneading extruder, kneader or the like.
  • the alicyclic polyester of the present invention is produced by subjecting the above-mentioned dicarboxylic acid component and diol component as raw materials to a melt polycondensation reaction through an esterification reaction, and the production method is usually performed. It can be applied to the production method of polyester.
  • the raw dicarboxylic acid component and the diol component are charged into an esterification reaction tank equipped with a stirrer and a distillation tube, and an inert gas atmosphere is used.
  • the reaction can be carried out while distilling off the water produced by the reaction while stirring at the bottom.
  • the catalyst titanium compound may be added at the time of charging the raw material, or added during the esterification reaction. Or you can go through the whole process of esteri without titanium compounds. In this case, it is added in the stage from the end of the esterification reaction until the start of melt polycondensation.
  • Titanium alcoholate can be added after being dissolved in an organic solvent such as ethylene glycol or 1,4 butanediol.
  • the magnesium compound particularly magnesium acetate, is preferably added as an aqueous solution. It can also be dissolved in an organic solvent such as ethylene glycol or 1,4 butanediol.
  • the water content in the solution is preferably 2.0% by weight or more.
  • the alkaline earth metal compound is preferably added prior to the addition of the titanium compound. It may be before the start.
  • the upper limit of the amount of water in the above solution is not particularly limited, but is usually 50% by weight.
  • the reaction temperature of the esterification reaction is usually 150 to 230 ° C, preferably 150 to 220 ° C, the reaction pressure is usually 100 to 110 kPa (gauge pressure), and the reaction time is usually 10 minutes to 10 hours. It is preferably 30 minutes to 5 hours.
  • the esterification reaction product is transferred to a polycondensation tank equipped with a stirrer and a distillation pipe, and a melt polycondensation reaction is performed while gradually reducing the pressure in the reaction tank.
  • the esterification reaction tank can be equipped with a pressure reducing device, and the esterification reaction and the melt polycondensation reaction can be performed in the tank.
  • the melt polycondensation reaction is performed at a temperature not lower than the temperature at the end of the esterification reaction, not higher than 270 ° C, preferably not higher than 265 ° C, and the internal pressure of the reaction vessel is not higher than 133 Pa (absolute pressure). It is carried out at a pressure of preferably 67 Pa (absolute pressure) or lower for 10 minutes to 10 hours, preferably 30 minutes to 7 hours, to produce a polyester having an intrinsic viscosity (IV) of 0.4 dlZg or more.
  • a temperature of 270 ° C. or lower preferably 265 ° C. or lower, particularly preferably 260 ° C.
  • the polycondensation reaction product (polyester) is usually extracted in the form of a strand from the bottom of the reaction vessel, and is cut into water to obtain pellets.
  • additive components can be blended in the alicyclic polyester and Z or rosin composition of the present invention as required.
  • Additive components include, for example, glass beads, glass powders, glass balloons, my strength, talc, calcium carbonate and other inorganic fillers, antioxidants, heat stabilizers, UV absorbers, neutralizers, lubricants, compatibilizers.
  • plasticizers such as sizing agents, anti-fogging agents, anti-blocking agents, paraffin oil, etc., fluorine resin powder, slip agents, dispersants, coloring agents, antibacterial agents, and fluorescent whitening agents.
  • the alicyclic polyester pellet was obtained by dissolving a phenol Z tetrachloroethane (weight ratio: 1Z1) mixed solution as a solvent and measuring it at 30 ° C. using an Ubbelohde viscometer.
  • a polyester pellet sample is filled into a cylindrical powder color measurement cell with an inner diameter of 30 mm and a depth of 13 mm, and a colorimetric color difference meter (“Color Meter ZE2000” manufactured by Nippon Denshoku Industries Co., Ltd.) is used.
  • the color coordinate b value of Hunter's color difference formula in the Lab color system described in Reference 1 was measured by the reflection method.
  • the b value of the sample was calculated as a simple average of the values measured at four locations by rotating the measurement cell 90 degrees.
  • SM Color Computer 1'SM-5 IS-2B manufactured by Suga Test Instruments Co., Ltd.
  • a reactor equipped with a stirring blade, a distillation tube, and a decompressor is charged with 1,4-CHDM (160 g), magnesium acetate tetrahydrate (2.6 g), and 1,4-CHDA (184 g). Furthermore, 0.36 g of a 6% 1,4-butanediol solution of tetra-n-butyl titanate (TBT) was charged, heated to 180 ° C under a nitrogen flow, reacted at 180 ° C for 2 hours, and then 220 ° C. The temperature was raised to C over 1 hour to carry out the esterification reaction.
  • TBT tetra-n-butyl titanate
  • the temperature was raised from 220 ° C to 250 ° C over 1 hour and 30 minutes, and at the same time the polycondensation reaction was carried out while gradually reducing the pressure in the reactor.
  • Polymerization was carried out for 3 hours and 46 minutes as the time required for starting the pressure reduction at a reactor internal pressure of 67 Pa and a reaction temperature of 250 ° C., and then the produced polyester was drawn out into water in the form of strands from the bottom of the reactor and cut into pellets.
  • the obtained polyester pellets were dried with a vacuum dryer at 100 ° C for 5 hours.
  • the polyester after drying had an intrinsic viscosity (IV) of 0.679 dl / g, a color tone b value of 0.8, and a solution haze of 0.4%.
  • Polyester pellets are treated at 280 ° C for 1 hour in a nitrogen atmosphere (heat resistance test)
  • a treatment hydrolysis resistance test
  • 11 lkPa gauge pressure
  • 120 ° C for 24 hours in a steam atmosphere
  • the intrinsic viscosities (IV) and (IV) were measured.
  • Table 1 summarizes the measurement results of physical properties of polyester and other physical properties.
  • Table 2 and Table 2 summarize the haze values of the two liquids.
  • Example 4 the amount of 1,4 CHDM was changed to 158 g instead of 160 g, and 1% aqueous solution of magnesium acetate tetrahydrate 1. 1% 1, 4— of magnesium acetate tetrahydrate instead of 3 g.
  • Table 1 shows the intrinsic viscosity (IV), color tone b value, terminal bullcyclohexene content, trans ratio of CHD A units, Ab, viscosity retention ratios R and R, haze value of the solution, etc.
  • Example 4 30 g of alicyclic polyester produced in Example 1 in the same reactor as Example 1 and 70 g of polycarbonate (“Iupilon S-3000FJ” manufactured by Mitsubishi Chemical Engineering Plastics), “Adekastab AX-71” ) Made by ADEKA: Mixture of monostearyl acid phosphate and distearyl acid phosphate) 0.03 g was weighed and stirred at 100 Pa, 280 ° C for 20 minutes. The obtained rosin composition had an intrinsic viscosity of 0.685 dlZg and a color tone b value of 2.5. (Comparative Example 4)
  • Example 2 The same procedure as in Example 1 was conducted except that 1,4-DMCD214g was used instead of 1,4-CHDA184g. The polymerization reaction did not proceed so much, and the polyester could not be drawn out into a strand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 光学材料として好適な、着色が少なく、熱安定性や加水分解安定性も良好で、異物の少ない脂環式ポリエステル、及び当該脂環式ポリエステルとポリカーボネートとの樹脂組成物を提供する。  脂環式ジカルボン酸を主成分とするジカルボン酸成分と脂環式ジオールを主成分とするジオール成分とから、重縮合触媒としてチタン化合物とアルカリ土類金属化合物を使用して製造される脂環式ポリエステルであって、当該脂環式ポリエステル中に含まれるチタンが金属原子換算で1重量ppm以上、25重量ppm未満であり、チタンとアルカリ土類金属(M)との比(M/Ti)が金属原子重量換算で0.25~1.0であり、かつ固有粘度が0.4dl/g以上である脂環式ポリエステル及び当該脂環式ポリエステルとポリカーボネートから成る樹脂組成物。

Description

明 細 書
脂環式ポリエステル及びその製造方法ならびに樹脂組成物
技術分野
[0001] 本発明は、脂環式ジカルボン酸成分及び脂環式ジオール成分を主成分とする脂 環式ポリエステルに関するものであり、詳しくは、脂環式ジカルボン酸成分及び脂環 式ジオール成分を、チタン系触媒とアルカリ土類金属触媒を使用して重合させること により製造される、透明性、色相及び耐熱性に優れた脂環式ポリエステル及びその 製造方法ならびに当該脂環式ポリエステルを含有する榭脂組成物に関するものであ る。
背景技術
[0002] 各種のポリエステル榭脂は、種々の成形方法により、フィルム、繊維、成形体などに 成形できることから、広い分野で利用されている。中でも、脂環式ジカルボン酸、特に 1, 4ーシクロへキサンジカルボン酸(以下、 1, 4 CHDAと略記することがある)を主 たるジカルボン酸成分とし、脂環式ジオールを主たるジオール成分とする原料力 得 られる脂環式ポリエステルは、透明性、耐熱性、耐候性が優れているので、その用途 が広がりつつあり、光学材料として期待されている。
[0003] ジカルボン酸成分とジオール成分とからポリエステルを製造する際、重縮合反応触 媒としてチタンィ匕合物を使用することが一般に知られている。ところが、チタン触媒を 使用すると、生成したポリエステルが黄色に着色する傾向があり、改良が求められて いた。また、チタン触媒を使用したポリエステルは他の樹脂との溶融ブレンドを行う際 に、着色や分子量の低下が生ずることがあり、この点での改善も求められていた。
[0004] ポリエステルの着色を改良するには触媒としてのチタンィ匕合物の使用量を低下させ ることが望ましい。しかしながら、ジカルボン酸成分として 1, 4 シクロへキサンジカル ボン酸ジメチルエステル (以下、 1, 4 DMCDと略記することがある)、脂環式ジォ ールとして 1, 4ーシクロへキサンジメタノール(以下、 1, 4— CHDMと略記することが ある)を使用し、エステル交換反応を経て重縮合させることにより、脂環式ポリエステ ル (以下、 PCCDと略記することがある)を製造する際には、触媒として必要とされる チタン化合物の量が多ぐ例えば、チタン触媒をチタン原子換算 200ppm使用する 例が知られている(特許文献 1)。
[0005] また、チタン化合物に他の金属化合物を助触媒として併用することにより、チタン使 用量が 1〜: LOppmである触媒系でポリエステルを重縮合することが提案されている( 特許文献 2)。しかし、チタンの量を減らす代わりに Mnなどの助触媒を併用している ため、製造されたポリエステルの熱安定性及び他の樹脂とァロイ化した時の熱安定 性が不十分で満足できるものではな力つた。
[0006] 一方、 1, 4— CHDAと 1, 4ーCHDMとから製造されたPCCDが知られてぉり、こ の PCCDは、 1, 4— DMCDを原料とするものよりは少ない触媒量で製造できるが、 それでも工業的に十分な重合速度で脂環式ポリエステルを製造するためには比較 的多量のチタン触媒を必要とし、例えば、チタンを 25ppm使用する例が知られてい る(特許文献 3)。しかし、脂環式ポリエステルの熱安定性ゃァロイイ匕に際しての着色 問題が不十分で満足できるものではな力つた。
[0007] 更に、ポリエステルとポリカーボネートとの榭脂組成物を製造する際に、チタン触媒 をチタン原子換算で約 1〜約 30ppmを使用して製造したポリエステルを使用し、着 色を低減化するという提案がある(特許文献 4)。しかし、ここには、ポリエステルの製 造にアルカリ土類金属化合物を併用することは開示されていない。
[0008] 特許文献 1:アメリカ特許第 5,986,040号明細書
特許文献 2:特開昭 53 - 25696号公報
特許文献 3 :特開 2004— 169009号公報
特許文献 4:特表 2005 - 521772号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上記問題点に鑑み、光学材料として好適な、着色が少なぐ熱安定性 や加水分解安定性も良好であり、異物の少な ヽ脂環式ポリエステルを提供することを 課題とする。
課題を解決するための手段
[0010] 本発明者等は、上記課題を解決するために鋭意検討した結果、 1, 4— CHDAと 1 , 4 CHDMを主原料として得られ、所定のチタン濃度及びアルカリ土類金属濃度、 及び適当な固有粘度を有する特定物性の脂環式ポリエステルが光学材料としての有 用性に優れることを見出し本発明に達した。
[0011] 即ち、本発明の要旨は、脂環式ジカルボン酸を主成分とするジカルボン酸成分と脂 環式ジオールを主成分とするジオール成分とから、重縮合触媒としてチタン化合物と アルカリ土類金属化合物を使用して製造される脂環式ポリエステルであって、当該脂 環式ポリエステル中に含まれるチタンが金属原子換算で 1重量 ppm以上、 25重量 pp m未満であり、チタン (Ti)とアルカリ土類金属(M)との比(MZTi)が金属原子重量 換算で 0. 25〜: L 0であり、かつ固有粘度が 0. 4dlZg以上であることを特徴とする 脂環式ポリエステルに存する。
[0012] 本発明の他の要旨は、脂環式ジカルボン酸を主成分とするジカルボン酸成分と脂 環式ジオールを主成分とするジオール成分とから、重縮合触媒としてチタン化合物と アルカリ土類金属化合物を使用し、チタンが金属原子換算で 1重量 ppm以上、 25重 量 ppm未満であり、チタン (Ti)とアルカリ土類金属(M)との比(MZTi)が金属原子 重量換算で 0. 25〜: L 0であり、かつ固有粘度が 0. 4dlZg以上である脂環式ポリエ ステルを製造する方法であって、上記のアルカリ土類金属化合物を水又は有機溶媒 の溶液として使用することを特徴とする脂環式ポリエステルの製造方法に存する。
[0013] また、本発明の他の要旨は、上記の脂環式ポリエステル 1〜99重量部とポリカーボ ネート 99〜1重量部力も成ることを特徴とする榭脂組成物に存する。
[0014] 本発明の脂環式ポリエステルの好適な態様として、脂環式ジカルボン酸が 1, 4 シクロへキサンジカルボン酸であること;脂環式ジオールが 1, 4 シクロへキサンジメ タノールであること;脂環式ポリエステルの色調 b値が 3以下であること;脂環式ポリエ ステルのポリマー末端ビュルシクロへキセン構造が 5 μ molZg未満であること;脂環 式ポリエステルの固有粘度 (IV )と、当該脂環式ポリエステルを窒素雰囲気下、 280
0
°Cで 1時間処理した後の固有粘度 (IV )とから、下記の式(1)により算出される粘度 保持率 R力 0%以上であること;クロ口ホルム 18. Ogに脂環式ポリエステル 2. Ogを 溶解させた溶液の光路長 10mmにおけるヘーズ値が 1. 5%以下であること;脂環式 ポリエステルの固有粘度 (IV )と、当該脂環式ポリエステルを水蒸気雰囲気下、 111 kPa (ゲージ圧)、 120°Cで 24時間処理した後の固有粘度 (IV )とから、下記の式(2
2
)により算出される粘度保持率 Rが 65%以上であること、脂環式ポリエステル中のシ
2
クロへキサンジカルボン酸単位のトランス率が 85モル%以上であることが挙げられる 。更に、榭脂組成物がリンィ匕合物を含有することも挙げることが出来る。また、脂環式 ポリエステルの製造方法の好適な態様として、アルカリ土類金属化合物の有機溶媒 溶液の水分が 2重量%以上であることが挙げられる。
[0015] [数 1] 粘度保持率 (%) = ( I V i / l V o ) X 1 0 0 ( 1 )
粘度保持率 R 2 ( % ) = ( I V 2 / I V o ) X 1 0 0 ( 2 )
発明の効果
[0016] 本発明の脂環式ポリエステルは、各種成形方法により、フィルム、繊維、成形体など に成形することが出来、特にフィルムとした場合は、透明性が高ぐ着色も少ないので 、光学材料として使用することができ非常に有用である。また、熱安定性が高いので 、成形時の分子量低下が少なぐ成形品は機械的性質にも優れたものとなる。更に、 ポリエステル中のチタン含有量が少なぐアルカリ土類金属を含有するので、他の榭 脂とのァロイにした際の着色も低減でき、産業上非常に有用な素材である。
発明を実施するための最良の形態
[0017] 本発明の脂環式ポリエステルは、ジカルボン酸成分及びジオール成分を原料とし、 エステルイ匕反応を経て溶融重縮合反応させることにより得られる。原料に使用される ジカルボン酸成分の主成分は脂環式ジカルボン酸であり、ジオール成分の主成分は 脂環式ジオールである。そして、本発明の脂環式ポリエステルは、その中に含まれる チタンがチタン金属原子換算で 1重量 ppm以上、 25重量 ppm未満であり、チタン (Ti )とアルカリ土類金属(M)との比(MZTi)が金属原子重量換算で 0. 25〜: L 0であ り、かつ固有粘度が 0. 4dlZg以上であることを特徴とする。
[0018] 脂環式ポリエステル中のチタン含有量が 1重量 ppm未満の場合は、重合速度が遅 くなり、 25重量 ppm以上だと熱安定性等が悪くなり、また、ポリエステルのヘーズが高 くなる傾向があり好ましくない。また、触媒としてチタン単独で使用するよりもアルカリ 土類金属を併用することにより、色調がより改善される。ここで、アルカリ土類金属の チタンに対する比(MZTi)が 0. 25未満だと色調改良効果は低ぐ 1. 0を超えると重 合速度が非常に遅くなるので好ましくない。また、上記の比が 0. 25以上 1. 0以下で あると得られるポリエステルのヘーズが低く好ましい。
[0019] ここで、脂環式ジカルボン酸を主成分とするジカルボン酸成分とは、全ジカルボン 酸成分に対する脂環式ジカルボン酸の割合が 50モル%を超えることを ヽぅ。全ジカ ルボン酸成分に対する脂環式ジカルボン酸の割合は、好ましくは 70モル%以上、更 に好ましくは 80モル%以上、特に好ましくは 90モル%以上である。脂環式ジカルボ ン酸の割合が 50モル%以下だと得られるポリエステルの光学特性が悪ィ匕する傾向が ある。
[0020] 主成分である脂環式ジカルボン酸としては、例えば 1, 2—、 1, 3—、 1, 4ーシクロ へキサンジカルボン酸(1, 4— CHDA)、 1, 4—、 1, 5—、 2, 6—、 2, 7 デカヒドロ ナフタレンジカルボン酸等が挙げられる。なかでも、 1, 4— CHDAは工業的に入手 し易ぐ得られる脂環式ポリエステルの成形温度が従来の汎用ポリエステル (例えば、 ポリブチレンテレフタレート)の成形温度に近いので好ましく使用される。この場合、 得られる脂環式ポリエステルを構成する 1, 4— CHDAに由来するシクロへキサンジ カルボン酸単位のうち、トランス体とシス体との合計に対するトランス体の割合(トラン ス率)が 85モル%以上、好ましくは 88モル%以上、更に好ましくは 90モル%以上で あると得られるポリエステルの耐熱性が高くなり好ましい。
[0021] 原料 1, 4— CHDAとしては、トランス体を少なくとも 85モル0 /0、好ましくは 88モル0 /0 含有するものを使用することが出来るが、ポリエステル製造時の異性ィ匕を考慮すると 、トランス体を 90モル%以上、 95モル%以上含有するものを使用するのが更に好ま しい。
[0022] また、 1, 4 CHDAとしては、チタン及びアルカリ土類金属以外の金属不純物が 1 重量 ppm以下であることが好ましい。従来知られている 1, 4 CHDAは金属不純物 を多く含んでおり、これらの金属不純物があると重合反応を阻害したり、副反応を引き 起こして色調を悪化させる等の問題を生起する。そこで、その対策として触媒のチタ ン化合物を多量に使用したり、リン化合物等の安定剤を使用して金属不純物を失活 させる等の手段が取られている力 リン化合物はチタン触媒の活性を抑制するので、 やはり触媒としてのチタンィ匕合物は多量に必要とされた。本発明では、金属不純物 の含有量が 1重量 ppm以下の 1, 4 CHDAを使用することにより、より着色の少な い脂環式ポリエステルを得ることを可能にする。金属不純物が 1重量 ppm以下でトラ ンス体が 85モル%以上の 1, 4— CHDAは、例えば市販の 1, 4— CHDAのシス'ト ランス混合物を熱異性ィ匕することにより得ることが出来る。熱異性化の方法は、例え ば特開 2004— 43426に記載の方法で行うことが出来る。
[0023] 上記主成分たる脂環式ジカルボン酸以外に使用し得るジカルボン酸としては、例え ば、テレフタル酸、フタル酸、イソフタル酸, 1, 4 フエ-レンジォキシジカルボン酸、 1, 3 フエ-レンジォキシジ酢酸、 4, 4'ージフエ-ルジカルボン酸、 4, 4'ージフエ -ルエーテルジカルボン酸、 4, 4'ージフエ-ルケトンジカルボン酸、 4, 4'ージフエ ノキシエタンジカルボン酸、 4, 4'ージフエ-ルスルホンジカルボン酸、 2, 6 ナフタ レンジカルボン酸等の芳香族ジカルボン酸、及びコハク酸、グルタル酸、アジピン酸 、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカジカルボン酸、ドデカジ カルボン酸等の脂肪族ジカルボン酸等が挙げられ、これらジカルボン酸は、一種又 は二種以上が使用されてもよい。
[0024] 本発明の脂環式ポリエステルに使用されるジオール成分は、主成分が脂環式ジォ ールである。ここで、主成分が脂環式ジオールとは、全ジオール成分に対する脂環 式ジオールの割合が 50モル%を超えることを 、う。全ジオール成分に対する脂環式 ジオールの割合は、好ましくは 70モル%以上、更に好ましくは 80モル%以上、特に 好ましくは 90モル%以上である。ジオール成分に対する脂環式ジオールの割合が 5 0モル%以下であると、生成する脂環式ポリエステルの光学特性が悪ィ匕する傾向が ある。
[0025] 主成分である脂環式ジオールとしては、例えば、 1, 2—、 1, 3 シクロペンタンジォ ール、 1, 2—、 1, 3 シクロペンタンジメタノール、ビス(ヒドロキシメチル)トリシクロ [5 . 2. 1. 0]デカン等の 5員環ジオール、 1, 2—、 1, 3—、 1, 4 シクロへキサンジォ ール、 1, 2—、 1, 3—、 1, 4 シクロへキサンジメタノール、 2, 2 ビス一(4 ヒドロ キシシクロへキシル)プロパン等の 6員環ジオール等が挙げられる。これらの中でも、 好ましくは、 1, 2—、 1, 3—、 1, 4ーシクロへキサンジメタノールが挙げられ、特に 1, 4 CHDMは、高重合度の脂環式ポリエステルが得やすいこと、高いガラス転移点 の脂環式ポリエステルが得られること等力 好ましく使用される。 1, 4— CHDMは、 通常トランス体とシス体との混合物であり、そのトランス体とシス体との比は、通常 80 : 20〜60 :40である。
[0026] 上記主成分としての脂環式ジオール以外のジオール成分としては、例えば、ェチレ ングリコール、プロピレングリコール、ブチレングリコーノレ、トリメチレングリコール、ペン タメチレングリコール、へキサメチレングリコール、オタタメチレングリコール、デカメチ レングリコール、ネオペンチルグリコール、ジエチレングリコール、ポリエチレングリコ ール、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコール等の 脂肪族ジオール、トリシクロデカンジメタノール及びキシリレンダリコール、 4, 4,—ヒド 口キシビフエ-ル、 2, 2 ビス(4,一ヒドロキシフエ-ル)プロパン、 2, 2 ビス(4,一 β—ヒドロキシエトキシフエ-ル)プロパン、ビス(4—ヒドロキシフエ-ル)スルホン、ビ ス(4 βーヒドロキシエトキシフエ-ル)スルホン酸等の芳香族ジオールが挙げられ る。これらジオールは、一種または二種以上を使用してもよい。
[0027] 更に、本発明の脂環式ポリエステルにおいては、必要に応じ、上記ジカルボン酸成 分及びジオール成分以外に少量の共重合成分を使用してもよ!/ヽ。共重合成分として は、例えば、グリコール酸、 ρ ヒドロキシ安息香酸、 ρ— βーヒドロキシエトキシ安息 酸等のヒドロキシカルボン酸やアルコキシカルボン酸、トリ力ルバリル酸、トリメリット酸 、トリメシン酸、ピロメリット酸、ナフタレンテトラカルボン酸、没食子酸、トリメチロールェ タン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、シュガーエステノレ 等の三官能以上の多官能成分が挙げられ、これらはポリエステルの溶融粘度を調整 し、成形性を高めるために有用である。
[0028] 本発明の脂環式ポリエステルは、主成分が脂環式ジカルボン酸であるジカルボン 酸成分と、主成分が脂環式ジオールであるジオール成分から、エステル化反応及び 重縮合反応を経て製造されるが、エステル化反応に供するジカルボン酸成分に対す るジオール成分の割合は、モル比で 102Z100以上、 150Z100以下、好ましくは 1 02Z100以上、 145Z100以下である。モル比が 102/100より小さい時は重縮合 反応後のポリマーの末端酸価が高くなる場合があり、 150Z100より大きい時は重合 性が低下する傾向となり、固有粘度の高い脂環式ポリエステルが得られない場合が ある。
[0029] 本発明の脂環式ポリエステルの製造に使用されるチタン触媒の量は、得られる脂環 式ポリエステル中のチタン濃度が金属原子換算で 1重量 ppm以上、好ましくは 3重量 ppm以上、 25重量 ppm未満、好ましくは 22重量 ppm未満となるように使用される。 チタン触媒は重縮合反応触媒として使用されるが、カルボン酸成分とジオール成分 とのエステルイ匕反応触媒としての機能も有しており、エステル化の場合も、チタン触 媒は、生成ポリエステル中のチタン含有量が上記所望値となるように使用される。
[0030] 触媒として使用されるチタンィ匕合物の例としては、例えばテトラー n—プロピルチタ ネート、テトライソプロピルチタネート、テトラー n—ブチルチタネート、テトライソブチル チタネート、テトラー tert—ブチルチタネート、テトラシクロへキシルチタネート、テトラ フエニルチタネート、テトラべンジルチタネート等のテトラアルキル (又はァリール)チタ ネート、蓚酸チタン酸リチウム、篠酸チタン酸カリウム、蓚酸チタン酸アンモ-ゥム、酸 化チタン等が挙げられる。
[0031] また、チタン触媒としては、チタンのオルトエステルまたは縮合オルトエステルとヒド ロキシカルボン酸力 成る反応生成物、チタンのオルトエステルまたは縮合オルトェ ステルとヒドロキシカルボン酸とリン化合物力 成る反応生成物、チタンのオルトエス テルまたは縮合オルトエステルと少なくとも 2個のヒドロキシル基を有する多価アルコ ール、 2—ヒドロキシカルボン酸又は塩基とから成る反応生成物なども挙げられる。 チタン触媒としては、これらの中、テトラー n—ブチルチタネート等のテトラアルキル チタネートが好適に使用される。
[0032] 本発明の脂環式ポリエステルの製造触媒としては、チタンィ匕合物と共にマグネシゥ ム、カルシウム、ストロンチウム、ノ リウム等のアルカリ土類金属の化合物を使用する。 アルカリ土類金属化合物の中、特にマグネシウム化合物は色調を改善する効果があ り好ましい。アルカリ土類金属(M)化合物の使用量は、得られる脂環式ポリエステル 中のチタンに対する比(MZTi)が金属原子重量換算で 0. 25〜: L 0、好ましくは 0. 3〜0. 9の範囲となる量で使用される。
[0033] アルカリ土類金属化合物としては、マグネシウム、カルシウム、ストロンチウム、ノ リウ ム等の炭酸塩、水酸化物、酸化物、酢酸塩等の有機酸塩、アルコキシド等が挙げら れる。これらの中マグネシウム化合物が好ましぐ好適なマグネシウム化合物としては 、酢酸マグネシウム、水酸ィ匕マグネシウム、炭酸マグネシウム、酸ィ匕マグネシウム、マ グネシゥムアルコキサイド等が挙げられ、特に酢酸マグネシウムが好まし 、。
[0034] 更に、本発明の脂環式ポリエステルは、その固有粘度 (IV)が 0. 4dlZg以上である ことを必須とする。固有粘度が 0. 4dlZg未満であると、成形時に溶融粘度が低すぎ て成形性に劣り、また得られる成形体の機械的強度が不足するので好ましくない。固 有粘度の上限は溶融成形時の成形可能な溶融粘度の上限によるが通常 2. OOdlZ g以下である。
[0035] 本発明の脂環式ポリエステルは、その固有粘度 (IV )と、当該脂環式ポリエステル
0
を窒素雰囲気下、 280°Cで 1時間処理 (以下、耐熱性試験と言うこともある)した後の 固有粘度 (IV )とから下記の式(1)によって算出される粘度保持率 R力 0%以上で あるのが好ましぐより好ましくは 92%以上である。
[0036] [数 2] 粘度保持率 ( % ) = ( ! V j / l V o ) X 1 0 0 ( 1 )
[0037] 一般にポリエステル中のチタン含有量が 25重量 ppm以上、 100重量 ppm以下の 場合この粘度保持率の値はほぼ 80%以上、 90%未満の範囲に入ることが知られて いる。本発明の脂環式ポリエステルは、そのチタン含有量が 25重量 ppm未満と低濃 度であるので、粘度保持率が高ぐ非常に熱安定性に優れ成形時の劣化が少なく成 形品は高品質である。
[0038] 更に、本発明の脂環式ポリエステルは、その固有粘度 (IV )と、当該脂環式ポリエ
0
ステルを水蒸気雰囲気下、 l l lkPa (ゲージ圧)、 120°Cで 24時間処理 (以下、耐加 水分解性試験と 、うこともある)した後の固有粘度 (IV )とから下記の式 (2)によって
2
算出される粘度保持率 Rが 65%以上であるのが好ましぐより好ましくは 70%以上
2
である。粘度保持率力 sこの値以上であると、耐加水分解性が良好であるので好ましい [0039] [数 3] 粘度保持率 R 2 ( % ) = ( ! V 2 / I V o ) X 1 0 0 ( 2 ) [0040] 本発明の脂環式ポリエステルは色調 b値が 3以下であるのが好ましぐより好ましくは 2以下である。 b値が 3より高い値であると黄色味が増し、光学材料として好ましくない 。ここで、色調 b値 ίお IS Z8730の参考 1に記載される Lab表色系におけるハンター の色差式の色座標 b値である。
[0041] 本発明の脂環式ポリエステルは、そのポリマー末端のビュルシクロへキセン構造が 5 μ molZg未満であることが好ましぐより好ましくは 3 μ molZg未満である。この構 造が 5 /z molZg以上あると、溶融時の熱安定性特に、色調変化 (黄変)が大きい。ま た、耐加水分解性も悪い傾向となる。末端ビュルシクロへキセン構造は熱分解により 生成すると考えられているので生成を避けるためには、重縮合反応を短時間で終了 させる力、重縮合反応を 270°C以下、特に 265°C以下の重合温度で行うのが好まし い。また、生成した末端ビニルシクロへキセン構造は、重合反応に寄与しないため、 高分子量のポリマーを得ることが困難になり易い。
[0042] 本発明の脂環式ポリエステル 2. Ogを、クロ口ホルム 18. Ogに溶解させた溶液のへ ーズ値が 1. 5%以下であることが好ましぐより好ましくは 1. 2%以下である。この値 が低 、ことはポリマー中に異物が少な 、ことを意味しており、光学材料としての使用 を考えると重要である。ここで、溶液のヘーズ値は、後述の方法によって測定した値 である。
[0043] 本発明の脂環式ポリエステルは、ジカルボン酸成分として 1, 4 CHDAを、ジォー ル成分として 1, 4 CHDMを原料とすることが好ましい。また、本発明の脂環式ポリ エステル中の 1 , 4— CHDAに由来するシクロへキサンジカルボン酸単位のトランス 率は、 85モル%以上であることが好ましぐより好ましくは 88モル%以上である。トラ ンス率が 85モル%未満であると脂環式ポリエステルの耐熱性が劣るため好ましくない
[0044] 本発明の脂環式ポリエステルは、透明性、耐熱性に優れており、他の樹脂との組成 物として使用し得る力 特にポリカーボネート榭脂との組成物では色調の劣化や分子 量低下を生ずることがなく優れた榭脂組成物を提供し得る。
[0045] 本願の第 2の発明は、本発明の脂環式ポリエステル 1〜99重量部とポリカーボネー ト 99〜1重量部力も成る榭脂組成物に存する。脂環式ポリエステルとポリカーボネー トとの割合は、得られる榭脂組成物の使用目的に応じて適宜決められる力 好ましく は、脂環式ポリエステルが 10〜50重量部、更に好ましくは 20〜40重量部である。
[0046] また、本発明の榭脂組成物においてはリンィ匕合物を含有させることが出来、リンィ匕 合物は榭脂組成物の色調を良くするのに効果がある。榭脂組成物におけるリンィ匕合 物の使用量は、リン原子として、脂環式ポリエステル中の Ti触媒に由来するチタン( 金属原子換算)対しモル比で少なくとも 10倍量使用することにより効果を発揮させる ことが出来る。リンィ匕合物のチタンに対するモル比 (PZTi)は、金属原子換算で、通 常 10〜: LOOO、好ましくは 10〜500である。
[0047] リンィ匕合物は、脂環式ポリエステルとポリカーボネート榭脂を配合する際に添加する ことが出来る力 脂環式ポリエステルの重縮合反応が安定剤としてのリンィ匕合物の存 在下行われた場合には、そのまま使用してもよい。
[0048] リンィ匕合物としては特に限定はされないが、リン酸並びにリン酸トリメチル、リン酸トリ ェチル、リン酸フエ-ル、リン酸トリフエ-ル等のリン酸エステル類、亜リン酸並びにトリ メチルホスファイト、トリフエ-ルホスフアイト、トリス(2,4— t—ブチルフエ-ル)ホスファ イト、テトラキス(2,4— t—ブチルフエ-ル)ホスファイト等の亜リン酸エステル類、モノ ェチルアシッドホスフェート、ジェチルアシッドホスフェート、モノステアリルアシッドホ スフェート、ジステアリルアシッドホスフェート等のアシッドホスフェート類、メチルホス ホン酸ジメチル、メチルホスホン酸ジフエ-ル、フエ-ルホスホン酸ジメチル、フエニル ホスホン酸ジェチル、フエ-ルホスホン酸ジフエ-ル、ベンジルホスホン酸ジメチル、 ベンジルホスホン酸ジェチル等のホスホン酸化合物類、ジフエ-ルホスフィン酸、ジ フエ-ルホスフィン酸メチル、ジフエ-ルホスフィン酸フエ-ル、フエ-ルホスフィン酸、 フエ-ルホスフィン酸メチル、フエ-ルホスフィン酸フエ-ル等のホスフィン酸化合物 類、ジフエ-ルホスフィンオキサイド、メチルジフエ-ルホスフィンオキサイド、トリフエ- ルホスフィンオキサイド、トリフエ-ルホスホプロピオネート等のホスフィンオキサイド化 合物等、亜ホスホン酸ィ匕合物類、亜ホスフィン酸ィ匕合物類、ホスフィン化合物類、ホス ホ -ゥムベタイン化合物類等が挙げられる。これらの中では、リン酸、リン酸エステル 類、アシッドホスフェート類が好ましぐアシッドホスフェート類がより好ましい。
[0049] 本発明の脂環式ポリエステルは、他の熱可塑性榭脂、とりわけポリカーボネートと良 く相溶する。その際、触媒失活剤、 UV吸収剤、ゴム成分をコアとしアクリル系ポリマ 一成分をシェルとする衝撃吸収剤、ポリエーテルエステルエラストマ一、ポリエーテル イミドエステルエラストマ一、ポリオレフイン、 ABS榭脂、ポリアタリレート、ォレフィン アタリレート共重合体、ポリアリレート、シリコンオイル等を添加して機械的性質等を改 良することが出来る。
[0050] 本発明の榭脂組成物は、通常の熱可塑性榭脂組成物の加工方法で製造できる。
例えば脂環式ポリエステルとポリカーボネートとを必要に応じて配合される添加成分 とを予め混合した後、攪拌翼を装備した反応器、バンノ リーミキサー、ロール、ブラべ ンダ一、単軸混練押出し機、二軸混練押出し機、ニーダーなどで溶融混練すること によって製造することが出来る。
[0051] 本発明の脂環式ポリエステルは、上記のジカルボン酸成分及びジオール成分を原 料として、エステルイ匕反応を経て溶融重縮合反応させることにより製造されるが、製 造方法としては通常行われているポリエステルの製造方法に準ずることが出来る。
[0052] 好ま 、製造方法にお!、ては、例えばエステルイ匕反応は、原料ジカルボン酸成分 とジオール成分とを、攪拌機及び留出管を備えたエステルイ匕反応槽に仕込み、不活 性ガス雰囲気下で攪拌しつつ反応によって生ずる水を留去しながら行うことが出来る 。触媒のチタン化合物は、原料の仕込み時に添加してもよいしエステルイ匕反応の途 中で添カ卩してもょ 、。又はエステルイ匕の全工程をチタンィ匕合物なしで行ってもょ 、。 この場合はエステルイ匕反応終了後溶融重縮合が始まるまでの段階に添加する。
[0053] チタンアルコラートはエチレングリコール、 1, 4 ブタンジオールなどの有機溶媒に 溶解させて添加することが出来る。マグネシウム化合物、特に酢酸マグネシウムは水 溶液として添加するのが好ましい。またエチレングリコール、 1, 4 ブタンジオールな どの有機溶媒に溶解して添加してもよ ヽ。アルカリ土類金属化合物を有機溶媒に溶 解する場合、その溶液中の水分量は 2. 0重量%以上であることが好ましい。溶液中 の水分量が 2. 0重量%以上であると、アルカリ土類金属成分の溶液中での析出が抑 制され、ポリエステル中でより均一な分散が可能となる。このため、得られるポリエステ ルのヘーズが低く透明となり好ましい。エステルイ匕反応においてアルカリ土類金属化 合物の添カ卩は、チタンィ匕合物の添加より前であることが好ましいが、エステルイ匕反応 開始以前であってもよい。上記の溶液中の水分量の上限は、特に限定されないが、 通常 50重量%である。
[0054] エステル化反応の反応温度は、通常 150〜230°C、好ましくは 150〜220°Cであり 、反応圧力は通常 100〜110kPa (ゲージ圧)、反応時間は、通常 10分乃至 10時間 、好ましくは 30分乃至 5時間である。
[0055] エステル化反応終了後、エステル化反応物を攪拌機及び留出管を備えた重縮合 槽に移し、徐々に反応槽内を減圧にしつつ溶融重縮合反応を行う。場合により、エス テルィ匕反応槽に減圧付加装置を備えて、ー槽でエステルイ匕反応および溶融重縮合 反応を行うことも出来る。
[0056] 溶融重縮合反応は、エステル化反応終了時の温度以上で、 270°C以下、好ましく は 265°C以下で、反応槽内圧力が常圧力も最終的に 133Pa (絶対圧力)以下となる 圧力、好ましくは 67Pa (絶対圧力)以下で、 10分乃至 10時間、好ましくは 30分乃至 7時間行われ、固有粘度 (IV)が 0. 4dlZg以上のポリエステルが生成する。反応温 度を 270°C以下、好ましくは 265°C以下、特に好ましくは 260°C以下で行うことにより 、着色や末端ビュルシクロへキセン構造の生成を抑制することが出来る。重縮合反 応物 (ポリエステル)は、反応終了後、反応槽底部より通常ストランド状に抜き出され、 水冷しつつカッティングし、ペレットとして得られる。なお、これらの一連の反応は、回 分法でも連続法でも行うことが出来る。
[0057] 本発明の脂環式ポリエステル及び Z又は榭脂組成物には、必要に応じ各種の添 加成分を配合することが出来る。添加成分としては、例えば、ガラスビーズ、ガラスパ ウダ一、ガラスバルーン、マイ力、タルク、炭酸カルシウム等の無機充填材、酸化防止 剤、熱安定剤、紫外線吸収剤、中和剤、滑剤、相溶化剤、防曇剤、アンチブロッキン グ剤、パラフィンオイル等の可塑剤、フッソ榭脂パウダー、スリップ剤、分散剤、着色 剤、防菌剤、蛍光増白剤等の各種添加剤が挙げられる。
実施例
[0058] 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えな い限りこれらの実施例に限定されるものではない。以下に本発明の脂環式ポリエステ ルの物性の評価方法をまとめて示す。 [0059] [評価方法]
< 1.脂環式ポリエステル中のチタン量およびマグネシウム量 >
サンプル (脂環式ポリエステル) 2. 5gに硫酸 12mlを添加後、過酸化水素水 25ml をカロえて分解し、純水をカ卩えて 50mlとした後に、堀場製作所 ¾[Y138U ICP発光 分析装置により分析した。
[0060] < 2. 固有粘度 (IV) >
脂環式ポリエステルペレットを、フエノール Zテトラクロロェタン (重量比 1Z1)混合 液を溶媒として溶解し、ウベローデ型粘度計を使用して 30°Cで測定することにより求 めた。
< 3.色調 Mt>
ポリエステルペレット試料を、内径 30mm、深さ 13mmの円柱状の粉体測色用セル にすりきり充填し、測色色差計(日本電色工業社製「カラーメーター ZE2000」)を使 用し、 JIS Z8730の参考 1に記載される Lab表色系におけるハンターの色差式の色 座標 b値を、反射法により測定した。試料の b値は測定セルを 90度ずつ回転させて 4 箇所測定した値の単純平均値として求めた。
[0061] <4.末端ビュルシクロへキセン構造量 >
NMR法により測定した。重クロ口ホルム溶媒を使用し、 BRUKER社製「AV400M 」分光計でプロトン NMRスペクトルを測定した。テトラメチルシランを基準物質として、 4. 6ppm付近に現れるピークを末端ビュルシクロへキセン構造のプロトンと帰属し、 積分値より定量を行った。
[0062] < 5.溶液のヘーズ値 >
クロ口ホルム 18. Ogに、脂環式ポリエステルペレット 2. Ogを室温にて 30分間かけて 溶解し、溶解後 30± 1°Cの恒温水槽で 15分間調節した。この溶液を、光路長 10m mのセルに入れ、ヘーズメーター(スガ試験機社製「SMカラーコンピュータ一' SM —5— IS— 2B」)を使用して測定したヘーズ値を溶液ヘーズ(%)とした。
[0063] < 6.ポリエステル中のシクロへキサンジカルボン酸単位中のトランス体量〉
上記 4.と同様の NMR法により測定し、 2. 5ppm付近のシス体、 2. 3ppm付近のト ランス体との比で求め%で表示した。 [0064] < 7.耐熱性の評価 A b、粘度保持率 I^ >
脂環式ポリエステルペレット 10gを枝つき試験管に入れ、シリコーンゴム栓をした。 オイルバスを使用して 100°Cに加熱し 5時間真空乾燥した。次に枝つき試験管をオイ ルバスから引き上げた。オイルバスの温度を 280°Cに昇温し、前記枝つき試験管内 を窒素で復圧しシール状態にした後、 280°Cのオイルバスに漬け、 1時間処理した。 枝つき試験管の底部力 榭脂をストランド状に水中に抜き出し、その後、ペレット状に した。得られたポリエステルペレットの色調 b値を測定し耐熱試験前のペレットの色調 b値との差を とした。 は小さいほうが耐熱性は良好である。また、上記 280度 時間処理後のペレットを 100°Cで 5時間真空乾燥機で乾燥した後、固有粘度を測定 し、前記式 (1)から粘度保持率 Rを算出した。
[0065] < 8.耐加水分解性 粘度保持率 R >
2
脂環式ポリエステルペレット 10gを平山製作所製「PC— 242型」プレッシャータツ力 一装置に入れ、水蒸気雰囲気下 11 lkPa (ゲージ圧)、 120°Cで 24時間処理した。 処理後のポリエステルペレットは 100°Cで 5時間真空乾燥した。得られたポリエステル ペレットの固有粘度を測定し、前記式 (2)から粘度保持率 Rを算出した。
2
[0066] (実施例 1)
攪拌翼、留出管および減圧装置を装備した反応器に 1, 4— CHDM160g、酢酸マ グネシゥム 4水和物の 1%水溶液 2. 6g、 1, 4— CHDA184gを仕込み攪拌混合する 。更にテトラ— n—ブチルチタネート(TBT)の 6%1, 4—ブタンジオール溶液 0. 36g を仕込み、窒素フロー下で 180°Cに昇温させ、 180°Cで 2時間反応させ、その後 220 °Cまで 1時間かけて昇温し、エステル化反応を行った。その後 220°Cから 250°Cまで 1時間 30分かけて昇温すると同時に反応器内を徐々に減圧にしながら重縮合反応 を行った。反応器内圧 67Pa、反応温度 250°Cで減圧開始力もの時間として 3時間 4 6分重合した後、生成したポリエステルを反応器底部からストランド状に水中に抜出し た後カッティングしペレットにした。得られたポリエステルペレットは 100°Cで 5時間真 空乾燥機により乾燥した。乾燥後のポリエステルの固有粘度 (IV)は 0. 679dl/g, 色調 b値は 0. 8、溶液ヘーズは 0. 4%であった。
[0067] ポリエステルペレットについて、窒素雰囲気下、 280°Cで 1時間処理 (耐熱性試験) および水蒸気雰囲気下 11 lkPa (ゲージ圧)、 120°Cで 24時間処理 (耐加水分解性 試験)を行い、それぞれの固有粘度 (IV )、 (IV )を測定した。その結果、このポリェ
1 2
ステルの耐熱性試験後の b値の増加即ち A b値は 2. 5であり粘度保持率 Rは 92. 0 %であり、耐加水分解性試験後の粘度保持率 Rは 77. 8%であった。
2
ポリエステルの物性の測定結果を他の物性とまとめて表 1に示す。
[0068] (実施例 2〜4及び比較例 1〜3)
1, 4— CHDM量、 TBTの 6%1, 4 ブタンジオール溶液の添カ卩量、 1%酢酸マグ ネシゥム水溶液の添加量及び重合時間を表 1及び表 2に記載の値に変えた以外は 実施例 1と同様に行った。得られたポリエステルの固有粘度 (IV)、色調 b値、末端ビ -ルシクロへキセン量、 CHDA単位のトランス比、 A b、粘度保持率 Rおよび R、溶
1 2 液のヘーズ値等をまとめて表 1及び表 2に示す。
[0069] (実施例 5)
実施例 4において、 1, 4 CHDM量を 160gに代えて 158gに、及び酢酸マグネシ ゥム 4水和物の 1%水溶液 1. 3gの代わりに酢酸マグネシウム 4水和物の 1%1, 4— ブタンジオール溶液 (水分 5%)を 1. 3gにした以外は、実施例 4と同様に行った。得 られたポリエステルの固有粘度(IV)、色調 b値、末端ビュルシクロへキセン量、 CHD A単位のトランス比、 A b、粘度保持率 Rおよび R、溶液のヘーズ値等を表 1に示す
[0070] [表 1]
実施例
項 目 単 位
1 2 3 4 5
] , 4 -CHDM g 160 156 156 160 158
6 %TBT溶液 g 0.36 0.71 0.85 0.36 0.36
1 ¾;酢酸 M g 4水和物水溶液 g 2.6 2.6 5.2 1.3 注 1 ポリエステル中 T i濃度 重量 pm 10 20 24 10 10 ポリエステル中 Mg濃度 量 ppm 10 10 20 5 5
Mg/T i比 1.0 0.5 0.8 0.5 0.5 重合時間 時:分 3:46 3:20 3:42 2:50 2:50 固有粘度 (I V) dl/g 0.679 0.991 1.071 0.603 0.626 色調 (b値) 一 0.8 2.9 2.2 1.9 1.8 末端ビニルシクロへキセン構造 11 mol/ g 3 2 2 2 2
CHDA卜ランス体量 % 90 89 90 90 90 耐熱性試験 粘度保持率 R 1 % 92.0 91.2 90.6 95.1 94.7 色調変化 (Ab値) - 2.5 1.5 1.7 2.6 2.4 耐加水分解性試験 粘度保持率 R 2 77.8 70.7 63.5 68.7 66.5 溶液ヘーズ値 0.4 0.2 0.6 0.7 1
(注 1 :酢酸 M g 4水和物の 1 % 1,4-フ'タンシ'オ ル溶液 (水分 5重量%) 1.3 gを添カ0)
比較例
項 目 単 位
1 2 3
1, 4-CHDM g 156 156 157
6 %TBT溶液 g 0.89 0.71 0.85
1 %酢酸 M g 4水和物水溶液 g 1.3 6.5 0 ポリエステル中 T i濃度 量 ppm 25 20 24 ポリエステル中 Mg濃度 直量 ppm 5 25 0
Mg/T i比 ― 0.2 1.3 0 重合時間 時:分 2:42 5:00 3:30 固有粘度 (I V) dl/g 1.015 0.922 0.907 色調 (b値) ― 3.2 1.9 3.4 末端ビニルシク口へキセン構造 !丄 mol/g 2 6 2
CHDAトランス体量 89 84 89 耐熱性試験 粘度保持率 R 1 91.5 89.3 91.8 色調変化 (Ab値) ― 0.8 3.8 2.8 耐加水分解性試験 粘度保持率 R 2 66.8 56.5 69.2 溶 ί夜ヘーズ値 3.7 5.5 1.8 (実施例 6)
実施例 1と同じ反応器に実施例 1で製造した脂環式ポリエステル 30g、ポリカーボネ ート(三菱ィ匕学エンジニアリングプラスチックス社製「ユーピロン S— 3000FJ) 70g、「 アデカスタブ AX— 71」 ( (株) ADEKA製:モノステアリルアシッドホスフェートとジステ ァリルアシッドホスフェートの混合物) 0.03gを秤り取り、 100Pa、 280°Cで 20分間攪 拌混合した。得られた榭脂組成物は固有粘度 0.685dlZgで色調の b値は 2.5と良 好だった。 (比較例 4)
1, 4— CHDA184gの代わりに 1, 4— DMCD214gにした以外は実施例 1と同様 に行った。重合反応はあまり進まず、ポリエステルをストランド状に抜出すことは出来 なかった。

Claims

請求の範囲
[1] 脂環式ジカルボン酸を主成分とするジカルボン酸成分と脂環式ジオールを主成分 とするジオール成分とから、重縮合触媒としてチタンィ匕合物とアルカリ土類金属化合 物を使用して製造される脂環式ポリエステルであって、当該脂環式ポリエステル中に 含まれるチタンが金属原子換算で 1重量 ppm以上、 25重量 ppm未満であり、チタン( Ti)とアルカリ土類金属(M)との比(MZTi)が金属原子重量換算で 0. 25〜: L 0で あり、かつ固有粘度が 0. 4dlZg以上であることを特徴とする脂環式ポリエステル。
[2] 脂環式ジカルボン酸が 1, 4ーシクロへキサンジカルボン酸である請求項 1に記載の 脂環式ポリエステル。
[3] 脂環式ジオールが 1, 4ーシクロへキサンジメタノールである請求項 1又は 2に記載 の脂環式ポリエステル。
[4] 脂環式ポリエステルの色調 b値が 3以下である請求項 1〜3の何れかに記載の脂環 式ポリエステル。
[5] 脂環式ポリエステルのポリマー末端ビニルシクロへキセン構造が 5 μ molZg未満で ある請求項 1〜4の何れかに記載の脂環式ポリエステル。
[6] 脂環式ポリエステル中のシクロへキサンジカルボン酸単位のトランス率が 85モル0 /0 以上である請求項 1〜5の何れかに記載の脂環式ポリエステル。
[7] 脂環式ポリエステルの固有粘度 (IV )と、当該脂環式ポリエステルを窒素雰囲気下
0
、 280°Cで 1時間処理した後の固有粘度 (IV )とから、下記の式(1)により算出される 粘度保持率 Rが 90%以上である請求項 1〜6の何れかに記載の脂環式ポリエステ ル。
[数 1] 粘度保持率 R i (%) = ( I V i / I V Q) X 1 0 0 ( 1 )
[8] 脂環式ポリエステルの固有粘度 (IV )と、当該脂環式ポリエステルを水蒸気雰囲気
0
下、 l l lkPa (ゲージ圧)、 120°Cで 24時間処理した後の固有粘度 (IV )とから、下
2
記の式(2)により算出される粘度保持率 Rが 65%以上である請求項 1〜7の何れか
2
に記載の脂環式ポリエステル。 [数 2] 粘度保持率 R 2 ( ) = ( I V 2 / I V o) X I 0 0 ( 2 )
[9] クロ口ホルム 18. Ogに脂環式ポリエステル 2. Ogを溶解させた溶液の光路長 10mm におけるヘーズ値が 1. 5%以下である請求項 1〜8の何れかに記載の脂環式ポリエ ステル。
[10] 脂環式ジカルボン酸を主成分とするジカルボン酸成分と脂環式ジオールを主成分 とするジオール成分とから、重縮合触媒としてチタンィ匕合物とアルカリ土類金属化合 物を使用し、チタンが金属原子換算で 1重量 ppm以上、 25重量 ppm未満であり、チ タン (Ti)とアルカリ土類金属(M)との比(MZTi)が金属原子重量換算で 0. 25〜1 . 0であり、かつ固有粘度が 0. 4dlZg以上である脂環式ポリエステルを製造する方 法であって、上記のアルカリ土類金属化合物を水又は有機溶媒の溶液として使用す ることを特徴とする脂環式ポリエステルの製造方法。
[11] アルカリ土類金属化合物の有機溶媒溶液の水分が 2重量%以上である請求項 10 に記載の脂環式ポリエステルの製造方法。
[12] 請求項 1〜9の何れかに記載の脂環式ポリエステル 1〜99重量部とポリカーボネー ト 99〜1重量部力もなることを特徴とする榭脂組成物。
[13] リン化合物を含有する請求項 12に記載の榭脂組成物。
PCT/JP2006/313476 2005-07-12 2006-07-06 脂環式ポリエステル及びその製造方法ならびに樹脂組成物 WO2007007631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/988,165 US20090215933A1 (en) 2005-07-12 2006-06-07 Alicyclic Polyester and Process for Producing the Same, and Resin Composition Using the Same
EP06767935A EP1903067A1 (en) 2005-07-12 2006-07-06 Alicyclic polyester, process for producing the same, and resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-203629 2005-07-12
JP2005203629 2005-07-12
JP2005304321 2005-10-19
JP2005-304321 2005-10-19

Publications (1)

Publication Number Publication Date
WO2007007631A1 true WO2007007631A1 (ja) 2007-01-18

Family

ID=37637025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313476 WO2007007631A1 (ja) 2005-07-12 2006-07-06 脂環式ポリエステル及びその製造方法ならびに樹脂組成物

Country Status (5)

Country Link
US (1) US20090215933A1 (ja)
EP (1) EP1903067A1 (ja)
KR (1) KR20080024161A (ja)
TW (1) TW200714630A (ja)
WO (1) WO2007007631A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI530528B (zh) 2011-02-23 2016-04-21 Toyo Boseki Resin composition for electrical and electronic component packaging, manufacturing method of electrical and electronic parts, and electrical and electronic component package
TWI530530B (zh) 2011-03-17 2016-04-21 Toyo Boseki Polyester resin composition, package and method for manufacturing the same for electrical and electronic parts
TWI716369B (zh) * 2014-12-04 2021-01-21 日商三菱瓦斯化學股份有限公司 含有聚酯樹脂之功能性薄片及使用其之透鏡
CN107207716B (zh) 2015-02-06 2020-09-25 东洋纺株式会社 共聚聚酯树脂及其制造方法
WO2017038949A1 (ja) 2015-09-04 2017-03-09 三菱化学株式会社 ポリエステル樹脂及び該ポリエステル樹脂の製造方法並びにポリエステル樹脂組成物
KR20200027368A (ko) * 2018-09-04 2020-03-12 에스케이씨 주식회사 절연부를 포함하는 케이블 및 케이블 절연부의 제조방법
KR102478598B1 (ko) * 2019-08-30 2022-12-15 코오롱인더스트리 주식회사 바이오매스 유래 환형 단량체를 포함하는 고분자 화합물 및 그의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290356A (ja) * 1999-04-09 2000-10-17 Kuraray Co Ltd ポリエステルおよびそれからなる成形品
JP2004511594A (ja) * 2000-10-13 2004-04-15 イーストマン ケミカル カンパニー ポリ(1,4−シクロへキシレンジメチレン1,4−シクロヘキサンジカルボキシレート)の製造方法及びそれからの反応器グレードポリエステル
JP2004169009A (ja) * 2002-10-31 2004-06-17 Mitsubishi Chemicals Corp ポリエステル樹脂、ポリエステル樹脂組成物及びこれを用いて得られるシート、フィルム並びに中空成形容器
JP2004217721A (ja) * 2003-01-10 2004-08-05 Mitsubishi Chemicals Corp ポリエステル及びその製造法
JP2005154619A (ja) * 2003-11-27 2005-06-16 Mitsubishi Chemicals Corp ポリエステル樹脂
JP2006028318A (ja) * 2004-07-15 2006-02-02 Mitsubishi Chemicals Corp ポリエステル系樹脂およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2637813A1 (de) * 1976-08-21 1978-02-23 Bayer Ag Verfahren zur herstellung hochmolekularer polyester
US5986040A (en) * 1998-09-03 1999-11-16 General Electric Company Crystalline polyester resins and process for their preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290356A (ja) * 1999-04-09 2000-10-17 Kuraray Co Ltd ポリエステルおよびそれからなる成形品
JP2004511594A (ja) * 2000-10-13 2004-04-15 イーストマン ケミカル カンパニー ポリ(1,4−シクロへキシレンジメチレン1,4−シクロヘキサンジカルボキシレート)の製造方法及びそれからの反応器グレードポリエステル
JP2004169009A (ja) * 2002-10-31 2004-06-17 Mitsubishi Chemicals Corp ポリエステル樹脂、ポリエステル樹脂組成物及びこれを用いて得られるシート、フィルム並びに中空成形容器
JP2004217721A (ja) * 2003-01-10 2004-08-05 Mitsubishi Chemicals Corp ポリエステル及びその製造法
JP2005154619A (ja) * 2003-11-27 2005-06-16 Mitsubishi Chemicals Corp ポリエステル樹脂
JP2006028318A (ja) * 2004-07-15 2006-02-02 Mitsubishi Chemicals Corp ポリエステル系樹脂およびその製造方法

Also Published As

Publication number Publication date
EP1903067A1 (en) 2008-03-26
KR20080024161A (ko) 2008-03-17
US20090215933A1 (en) 2009-08-27
TW200714630A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
JP2007138139A (ja) 脂環式ポリエステル及びその製造方法ならびに樹脂組成物
WO2007007631A1 (ja) 脂環式ポリエステル及びその製造方法ならびに樹脂組成物
WO2006057228A1 (ja) 難燃性ポリエステル及びその製造方法
TWI494367B (zh) 聚乳酸樹脂與共聚酯樹脂之摻合物及使用該摻合物之物品
JP2011132505A (ja) 難燃性ポリエステル共重合体の製造方法、及びその成形品
JP2001323054A (ja) 1,4−シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造方法
KR20010083551A (ko) 폴리부틸렌테레프탈레이트 수지의 제조방법
KR20140076354A (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
AU2014374626A2 (en) Composition for producing biodegradable polyester resin, and production method for biodegradable polyester resin
KR20140076355A (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
TW201425458A (zh) 具有增進顏色的聚(對苯二甲酸1,4-環己二甲酯樹脂)的方法與以此方法製備的聚(對苯二甲酸1,4-環己二甲酯樹脂)
CN101218279A (zh) 脂环式聚酯、其制造方法以及树脂组合物
KR20140076356A (ko) 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법
CN108026257B (zh) 末端改性聚对苯二甲酸丁二醇酯树脂、包含其的热塑性树脂组合物、以及成型品
JP2003165832A (ja) ポリエステルおよびその製造方法並びにフイルム
KR102202138B1 (ko) 폴리싸이클로헥실렌디메틸렌 테레프탈레이트 글리콜의 제조방법
KR101911385B1 (ko) 유연성을 향상시킨 폴리시크로헥실렌디메틸렌테레프탈레이트 수지의 제조 방법
JP6019605B2 (ja) 良流動性ポリエステル樹脂及びその製造方法
JPS63168452A (ja) 耐炎性ポリエステル組成物
KR102155097B1 (ko) 내열성을 더욱 향상시킨 폴리시크로헥실렌디메틸렌테레프탈레이트 수지의 제조 방법
JP5729220B2 (ja) ポリエステルの製造方法
KR101184341B1 (ko) 난연성 폴리에스테르 수지의 제조방법
KR102252792B1 (ko) 향상된 충격 강도, 내변색성 및 반사성을 갖는 폴리(사이클로헥실렌디메틸렌 테레프탈레이트) 공중합체 및 이로부터 형성된 수지 성형품
TW202346435A (zh) 共聚聚酯樹脂
EP2711383B1 (en) Catalyst solution for use in production of polyester, and method for producing polyester resin using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025044.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077030712

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006767935

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11988165

Country of ref document: US