WO2007004506A1 - 光部品およびその製造方法 - Google Patents
光部品およびその製造方法 Download PDFInfo
- Publication number
- WO2007004506A1 WO2007004506A1 PCT/JP2006/312984 JP2006312984W WO2007004506A1 WO 2007004506 A1 WO2007004506 A1 WO 2007004506A1 JP 2006312984 W JP2006312984 W JP 2006312984W WO 2007004506 A1 WO2007004506 A1 WO 2007004506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical fiber
- collimator lens
- face
- optical member
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
Definitions
- the present invention relates to a technology for bonding an optical fiber to an optical member used for optical communication, optical information processing and the like, and, for example, to a technology for bonding a collimator lens and the like to an optical fiber.
- optical fibers are connected to these optical members directly or via an optical member called a collimator lens.
- a structure in which an optical fiber is joined to a collimator lens is called an optical fiber collimator.
- the optical fiber collimator has the function of guiding the light beam emitted from the end face of the optical fiber into a parallel light beam by means of a collimator lens and guiding the light beam into the optical member, or conversely the parallel light beam passing through the optical member is converged by the collimator lens It has the function of leading to an optical fiber.
- An optical fiber collimator is an important component that does not lose power when connecting various optical members and an optical fiber.
- communication networks using optical fibers are widely used from long distance communication to communication networks in buildings and offices, and their use tends to further increase in the future. Under such circumstances, significant cost reduction is desired for optical fiber collimators.
- it is effective to reduce the number of parts.
- a technology for directly bonding an optical fiber and a collimator lens has been proposed.
- Non-Patent Document 1 an optical fiber composed mainly of quartz glass and a collimator lens composed mainly of multicomponent glass are subjected to optical axis alignment and then discharged to form a collimator lens.
- a technique has been described that captures the moment when the lens softens and pushes the optical fiber into the softened portion of the collimator lens, thereby directly bonding the two.
- the collimator lens holds down the optical fiber due to the difference in thermal expansion coefficient between the optical fiber and the collimator lens, and the two are joined.
- the optical fiber collimator since the optical fiber collimator is inserted into the transmission path of the optical signal, the optical fiber end is It is required to minimize the disturbance of the transmitted light signal caused by harmful reflection light on the surface.
- a technique to meet this demand there is known a technique of obliquely cutting the end face (end face of the end) of the joint portion of the optical fiber to be joined with the collimator lens.
- the cut surface at the end of the optical fiber is slightly inclined at an angle of 82 degrees between the optical axis and the cut surface, which is not completely perpendicular to the optical axis.
- an optical fiber may be directly bonded to the optical member without using a collimator lens.
- a collimator lens it is not necessary to use a collimator lens.
- the above-described technique of bonding the collimator lens and the optical fiber can be applied.
- Patent Document 1 Japanese Patent Application Laid-Open No. 09-258059 (paragraph “0002”)
- Patent Document 2 Japanese Patent Application Laid-Open No. 2002-196172 (paragraph "0002")
- Non-Patent Document 1 Toshiaki Takahara "Implementation Technology of Ultra-compact Fiber Collimator," The 92nd Micro-Optics' 6th System Photo-Tsu Joint Research Meeting, 2004
- the optical axis of the optical fiber and the optical axis of the collimator lens need to be exactly aligned.
- the method of directly bonding the above-described optical fiber and collimator lens has a problem in securing the accuracy of optical axis alignment as described below.
- the method of softening the collimator lens and pushing and fixing the optical fiber there is a soft state even if alignment of the optical axis can be accurately performed.
- the optical fiber When the optical fiber is pushed and moved into the collimator lens at the position, the optical fiber may shift in the lateral direction (direction perpendicular to the optical axis), which may cause the optical axes of the both to shift relative to each other. was there. This is intended to push the optical fiber vertically Also, the resistance received by the optical fiber may cause the optical fiber to move obliquely.
- the optical fiber is inserted into the place where the hardness of the soft lens portion of the collimator lens is unstable, the hardness of the softened portion of the collimator lens is rapid while the optical fiber is being powered. It also causes the optical axis of the optical fiber to shift.
- the frequency of occurrence of this optical axis misalignment becomes high. This is because the inclined surface of the end face of the optical fiber pushes and advances the softened glass component, so that the optical fiber traveling inside the collimator lens tends to be inclined. This problem also occurs when joining an optical fiber and an optical waveguide.
- the present invention relates to a method of manufacturing an optical component, and an optical member having a first softening point is joined to an optical fiber having a second softening point higher than the first softening point. Positioning the optical fiber with the end face inclined with respect to the optical axis to the optical member in a state in which the optical fiber is in proximity or in contact with the optical member, and fixing the positional relationship between the optical member and the optical fiber. Heating is performed at a temperature higher than the first softening point and lower than the second softening point in a fixed state, and the configuration of the optical member is set between the optical member and the end face of the optical fiber. Filling the material.
- the present invention heating to a temperature exceeding the softening point of the material forming the optical member and not reaching the soft strain point of the material forming the optical fiber while the optical axes are aligned.
- the optical member side is melted while expanding, and the gap between the two is filled by capillary action caused by surface tension, and the two are joined.
- both can be joined without moving the relative positional relationship between the two. For this reason, the shift of the optical axis at the time of the bonding process can be suppressed.
- the number of component members can be increased, low cost can be realized.
- the surface on the side of the expanded and raised optical member melts and becomes liquid, which fills the gap between the optical fiber and the optical member by capillary action due to surface tension.
- the optical fiber and the optical member can be bonded reliably.
- the end face of the optical member to which the optical member is bonded is inclined and bent, it is possible to eliminate the return light of the reflected light at the bonding interface, and to suppress the problem that the transmission waveform is disturbed.
- a method by discharge is preferred.
- the heating by discharge selectively heats the end face of the optical member to which the optical fiber is bonded, and can instantaneously melt the optical member described above, and the optical fiber and the optical member can be It can be joined securely.
- the optical member in the present invention includes a collimator lens, an optical switch, an optical isolator, an optical scanner, an optical attenuator, an optical waveguide and the like.
- the optical component of the present invention includes a configuration in which the optical component and an optical fiber are joined.
- an optical fiber collimator in which an optical fiber and a collimator lens are joined and a configuration in which an optical fiber and an optical waveguide are joined can be mentioned.
- an optical module in which a collimator lens is combined with an optical switch, an optical attenuator or the like can be mentioned.
- optical module refers to an optical device in which two or more optical members are combined and modularized! .
- the step of aligning the optical axis of the present invention includes the step of dropping a liquid between the optical member and the end face of the optical fiber.
- the end of the optical fiber on the side of the joint portion to the optical member is obliquely cut and has an end face shape which is inclined with respect to the optical axis. Therefore, when the optical axis is aligned, a wedge-shaped gap is inevitably formed between the end face of the optical member and the optical fiber. In this state, optical alignment through the air layer will be performed partially, though. For this reason, due to the difference between the refractive index of the material constituting the optical fiber and the refractive index of air, the light beam passing through the interface oblique to the optical axis is refracted.
- the thickness of the wedge-shaped air layer is extremely small, but the refractive index Due to the difference, the optical axis is slightly offset. That is, in the step of aligning the optical member and the optical fiber, an extremely thin wedge-shaped air layer exists between the central portion of the optical fiber and the optical member, but after bonding, the optical fiber is in Because the core portion and the optical member are in direct contact, a difference occurs in the refractive state of the light flux due to the difference in refractive index. That is, a deviation occurs in the path of light flux. This deviation leads to a slight deviation of the optical axis.
- the space between the optical member and the end face of the optical fiber is filled with the liquid, so that the luminous flux path caused by the difference in refractive index described above Deviation can be suppressed.
- the refractive index between the optical fiber and the optical fiber can be made approximately equal, so the influence of refraction at the above-mentioned oblique cut surface should be suppressed.
- the difference in refractive index with the quartz material that constitutes the optical fiber is as small as possible. If a liquid is used, the type of this liquid is not limited.
- the present invention can also be grasped as an optical component obtained by the above-described manufacturing method.
- the optical component of the present invention has an optical member having a first softening point, and a second soft softening point higher than the first soft softening point, and the end face of the tip is with respect to the optical axis.
- the optical component of the present invention also has an optical member having a first softening point, and a second softening point higher than the first softening point, and the end face of the tip is with respect to the optical axis.
- the optical fiber having the inclined structure and the constituent material of the melted and solidified optical member filled between the optical member and the end face of the optical fiber; The center is located outside the end face of the optical member.
- the gap between the optical fiber and the optical member which is present in the step of aligning the optical axis, is filled with the material that has melted and expanded on the optical member side.
- the material of the optical member expands and melts, and the capillary phenomenon caused by the surface tension of the material fills the gap between the two, so that the center of the end face of the optical fiber (core center of beveled inclined surface Part) is a structure located outside the end face of the optical member.
- FIG. 1 is a cross-sectional view showing steps of bonding an optical fiber to a collimator lens.
- FIG. 2 is a schematic cross-sectional view in which the vicinity of a junction between an optical fiber and a collimator lens is enlarged.
- FIG. 3 It is process sectional drawing which shows the process of the operation
- FIG. 4 It is a perspective view showing a part of process of bonding an optical fiber to an optical waveguide.
- FIG. 5 Top view (A) and side view showing part of the process of bonding an optical fiber to an optical waveguide
- FIG. 1 is a process sectional view showing a process of bonding an optical fiber to a collimator lens.
- FIG. 1 is a process sectional view showing a process of bonding an optical fiber to a collimator lens.
- an optical fiber 101 whose tip is obliquely cut and a collimator lens 102 are prepared.
- the optical fiber 101 is a normal optical fiber and is mainly made of quartz.
- an optical fiber composed of a material having a softening temperature of about 1600 ° C. is used.
- the optical fiber 101 is obtained by cutting its tip obliquely and processing the end face 101a of the tip into a slope. Here, the cutting is performed so that the angle between the end face 101a and the plane perpendicular to the optical axis of the optical fiber 101 is an inclination of 8 °. This angle can be selected from about 1 ° to 10 °.
- the collimator lens 102 uses a multicomponent glass as a material and is formed by molding.
- the collimator lens 102 one made of borosilicate multicomponent glass having a softening point of 607 ° C. is used.
- the collimator lens 102 is designed to be optically designed to be near the surface of the end face 102 a to which the lens system focusing power optical fiber 101 is connected.
- a test device (not shown) is connected to the opposite end (the end opposite to the end face 101 a) of the optical fiber 101.
- This test device has the function of outputting laser light of a predetermined intensity and a predetermined wavelength, and capable of accurately measuring the intensity of the input light.
- a test device force test light (not shown) is output and emitted from the optical fiber 101 to the collimator lens 102.
- This test light is irradiated from the collimator lens 102 to the reflecting surface 103, and is further reflected by the reflecting surface 103, and is not shown in the reverse path, and returns to the test device as reflected light.
- Optical axis alignment is performed by adjusting the relative positional relationship between the optical fiber 101 and the collimator lens 102 so as to maximize the amount of reflected light.
- optical axis alignment of the optical fiber 101 and the collimator lens 102 is performed by utilizing this.
- joining of the optical fiber 101 and the collimator lens 102 can be performed by using the collimator lens 1 Since the expansion is caused by the expansion of the end face 102 a of 02, bonding can be performed while the positional relationship is fixed after the optical axis alignment is completed. For this reason, as shown in FIG. 1 (B), the optical fiber 101 and the collimator lens 102 are in contact with each other as shown in FIG. It is preferable that optical design be performed.
- the needle electrodes 104a and 104b are brought close to their contact parts, and a high voltage is applied between the two electrodes to generate a discharge 105 (FIG. 1 (C)).
- the energy of this discharge heats the vicinity of the end surface 102 a of the collimator lens 102.
- the heating temperature becomes higher than the soft softening point of the collimator lens 102 and lower than the soft melting point of the optical fiber 101.
- the soft spot of the optical fiber 101 and the soft spot of the collimator lens 102 are far apart, setting of the heating temperature is easy.
- the end face 102 a of the collimator lens 102 is expanded and melted, and contacts the obliquely cut end face 101 a of the optical fiber 101.
- the constituent material of the expanded and melted collimator lens 102 fills the gap by capillary action, and substantial adhesion is performed.
- the collimator lens 102 having the first soft wedge point, the second softening point higher than the first soft wedge point, and the end face 101a of the tip is inclined with respect to the optical axis
- the center of the end face 101a of the optical fiber 101 (the central core portion of the fiber cross section) including the optical fiber 101 having the structure, and the constituent material of the collimator lens 102 filled between the collimator lens 102 and the end face 101a. Can obtain a structure located outside the end face 102 a of the collimator lens 102.
- FIG. 2 is an enlarged schematic cross-sectional view of the vicinity of the junction between the optical fiber 101 and the collimator lens 102 in FIG. 1 (D).
- Fig. 2 is created based on the SEM (scanning electron microscope) photograph.
- a swelling occurs on the side of the collimator lens 102 as shown by the reference numeral 201, and a clearance force between an end face 101a of the optical fiber 101 cut obliquely and an end face 102a of the collimator lens 102
- the structure filled with the material of the lens 102 is observed. That is, in FIG. 2, the end face 102a of the collimator lens 102 is melted instantaneously.
- the two are not relatively powered, but both are It can be fixed. Therefore, the deviation of the optical axis accompanying the relative movement of the optical fiber 101 with respect to the collimator lens 102 does not occur in principle.
- a liquid such as water or alcohol is dropped in the gap between the optical fiber 101 and the collimator lens 102, and the operation of aligning the optical axes in that state is performed.
- the refractive index of the glass at least extremely compared with air (n ⁇ l)
- the refraction of light rays due to the difference between the refractive index of air 101 and that of air and the difference of the refractive index of collimator lens 102 and air can be suppressed.
- an example in which the present invention is applied to an optical module which is a typical optical component will be described.
- an optical module an example of an optical attenuator module in which collimator lenses are disposed on both sides of the optical attenuator and arranged on the both sides of the optical attenuator is exemplified, and a case of using the present invention as a technique for joining an optical fiber to this optical attenuator module is described. Do.
- FIG. 3 is a cross-sectional view showing steps of an operation of bonding an optical fiber to an optical attenuator module.
- the light attenuator module 401 shown in FIG. 3 (A) is prepared.
- the optical attenuator module 401 has a function of attenuating light passing therethrough with a predetermined attenuation amount, and is used, for example, when inserted into an optical fiber path to adjust the level of an optical signal to be transmitted. Ru.
- the light attenuator module 401 includes the collimator lens 402 and the light attenuation.
- An element 403 and a collimator lens 404 are provided.
- the optical attenuator module 401 has an optical axis alignment between the collimator lens 402 and the collimator lens 404 at the time of its manufacture, and has a structure entirely molded with a soft glass.
- test apparatus described in the first embodiment is connected to the other end (not shown) of the optical fiber 405, and the relative relation between the optical fiber 405 and the collimator lens 402 is such that the reflected light of the test light becomes maximum. Adjust the positional relationship.
- the other optical fiber is brought close to the exposed end face of the collimator lens 404 to perform optical axis alignment.
- a second test apparatus is connected to the other end of this optical fiber, and in this state, an optical attenuator from the first test apparatus connected to the above-mentioned optical Fino 405 via the optical Fino 405 is used.
- the positional relationship between the collimator lens 404 and the optical fiber is adjusted so that the test light detected by the second test apparatus becomes maximum.
- optical alignment is performed with one of the optical fibers (optical fiber indicated by reference numeral 409 in FIG. 3 (D)), which is also the collimator lens 404.
- an optical signal input to the collimator lens 402 via the optical fiber 405 is collimated by the optical function of the collimator lens 402 and When the light passes through the light attenuating element 403, the light signal is attenuated by a predetermined level, and this attenuated light signal is converged by the optical function of the collimator lens 404, and output from the collimator lens 404 to the light fino 409 Be done.
- FIG. 4 is a perspective view showing an outline of a bonding process in the present embodiment.
- FIG. 5 is a top view (A) in which the upper force is also seen in the state shown in FIG. 4 and a side view (B) in which the lateral force is also seen.
- the optical waveguide 501 divides the optical signal path of one optical fiber into a plurality of parts and functions as a distributor for obtaining a plurality of optical signal paths, or conversely combines a plurality of optical signal paths to obtain one optical signal. It has a function as a synthesizer that makes a route.
- the optical waveguide functions as a distributor or a synthesizer depending on the connection direction.
- the optical waveguide 501 has a structure in which a substrate 501a and a substrate 501b made of multi-component borosilicate glass having a soft solder point of 607 ° C. are bonded. At the interface between the substrates 501a and 501b, optical paths 503 and 504 having a structure branched from the optical path 502 are formed.
- optical fibers 505, 506 and 507 whose main material is quartz having a softening point of about 1600 ° C. are prepared, and the end faces thereof are obliquely cut in the same manner as in the first embodiment.
- the obliquely cut end of the optical fiber 505 is positioned at the end of the optical path 502 of the optical waveguide 501, the optical axes are aligned, and discharge is performed in that state.
- the end face portion of the optical waveguide 501 in which the optical fiber 505 is positioned is instantaneously melted to form a bulge 51, and the optical fiber 505 is bonded to the optical waveguide 501.
- the steps of optical axis alignment and discharge are the same as those described in the first embodiment.
- the optical fibers 506 and 507 are bundled in parallel, and each optical fiber is positioned at the end of the optical path 503 of the optical waveguide 501 and the end of the optical path 504, respectively. Align the optical axis. Then, as shown in FIGS. 4 and 5, the electrodes 508a and 508b are brought close to the junction and discharge is performed. Thus, the optical fibers 506 and 507 are bonded to the optical waveguide 501.
- the alignment method of the optical axis and the discharge method are the same as those described in the first embodiment. It is
- the optical component obtained in this embodiment has a function in which optical fibers 505, 506 and 507 are joined to an optical waveguide 501, and the optical signal transmitted through the optical fiber 505 is distributed to the optical fibers 506 and 507, Alternatively, it has a function of combining the optical signals transmitted through the optical fibers 506 and 507 and transmitting the combined optical signals to the optical fiber 505. Further, as indicated by reference numeral 51 in FIG. 5 of each optical fiber force, it is fixed to the optical waveguide 501 by the rise of the melt of the material constituting the optical waveguide 501.
- the bonding is performed by a discharge that moves the relative positional relationship between the optical fiber and the optical waveguide 501 after aligning the optical axes, the optical axis may be shifted along with the change in the positional relationship. There is no For this reason, it is possible to suppress reflection and loss of the transmitted optical signal caused by the deviation of the optical axis at the time of bonding.
- the present invention can be applied to a technique for connecting an optical fiber to an optical member such as a collimator lens. Furthermore, the present invention can be used in the technology of connecting an optical fiber to an optical module. Further, the present invention can be used for an optical member having an optical fiber connected or an optical module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Couplings Of Light Guides (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
先端の端面101aを斜めカットした光ファイバ101をコリメータレンズ102に接合する際に、図1(B)に示す両者の光軸合わせを行った後に、図1(C)に示す放電による加熱を行って、両者を接合する。この際、加熱温度を光ファイバ101の軟化点より低く、コリメータレンズ102の軟化点よりも高い温度とする。こうすることで、コリメータレンズ102側の端面102aを膨張させつつ溶融させ、その際に表面張力により生じる毛細管現象により、光ファイバ101とコリメータレンズ102との間の隙間をコリメータレンズ102の構成材料により充填し、両者を接合する。この方法によれば、光軸合わせを行った後に光ファイバ101とコリメータレンズ102とを動かす必要がないので、光軸ずれの発生を抑えることができる。
Description
光部品およびその製造方法
技術分野
[0001] 本発明は、光通信や光情報処理等に用いられる光学部材に光ファイバを接合する 技術に係り、例えばコリメータレンズ等と光ファイバとを接合する技術に関する。 背景技術
[0002] 光通信の分野にお!、ては、光スィッチ、光アイソレータ、光サーキユレータ、光アツ テネータ、光導波路等の様々な光学部材が必要となる。これらの光学部材に、光ファ ィバが直接あるいはコリメータレンズと呼ばれる光学部材を介して接続される。コリメ ータレンズに光ファイバが接合された構造は、光ファイバコリメータと呼ばれて 、る。 光ファイバコリメータは、光ファイバ端面から出射される光束をコリメータレンズによつ て平行光束とし、光学部材内に導く機能、或いは逆に、光学部材を通過した平行光 束をコリメータレンズによって収束して光ファイバに導く機能を有する。
[0003] 光ファイバコリメータは、各種の光学部材と光ファイバを接続する際に欠力せない重 要な構成部品である。一方、光ファイバを用いた通信網は、長距離通信からビル内 やオフィス内における通信ネットワークにまで広く利用され、その利用は今後さらに増 へてゆく傾向にある。このような背景において、光ファイバコリメータには、大幅な低価 格ィ匕が望まれている。光ファイバコリメータを低価格ィ匕するには、部品点数を削減す るのが有効となる。この部品点数を削減する技術として、光ファイバとコリメータレンズ とを直接接合する技術が提案されて 、る。
[0004] 例えば、非特許文献 1には、石英ガラスが主成分である光ファイバと多成分ガラスを 主成分とするコリメータレンズとを、互いに光軸合わせを行った後に放電を行い、コリ メータレンズが軟ィ匕した瞬間を捉えて、光ファイバをコリメータレンズの軟ィ匕した部分 に押し込み、それにより両者を直接接合する技術が記載されている。この技術によれ ば、光ファイバとコリメータレンズとの熱膨張率の違いによって、コリメータレンズが光 ファイバを押さえ込む形となり、両者の接合が行われる。
[0005] 一方、光ファイバコリメータは、光信号の伝送経路に挿入されるので、光ファイバ端
面での有害反射光により生じる伝送光信号の乱れを極力小さくすることが要求される 。この要求に応える技術として、コリメータレンズと接合される光ファイバの接合部分 の端面 (端部の端面)を斜めにカットする技術が知られている。この技術は、光フアイ バ端部のカット面を光軸に対して完全に垂直にするのではなぐ光軸とカット面とのな す角度を 82度というような少し斜めにする技術である。この技術によれば、コリメータ レンズに結合される側の光ファイバの端面力 の反射があっても、その反射光の光束 を光ファイバの光軸外に逃がすことで、その影響を排除することができ、伝送する光 信号の波形の乱れを抑えることができる。この光ファイバ端面の斜めカットに関しては 、例えば特許文献 1や特許文献 2に記載されて ヽる。
[0006] また、光学部材にコリメータレンズを利用せずに光ファイバを直接接合する場合もあ る。例えば、光路を分岐あるいは合成する光導波路に光ファイバを接合する場合、コ リメータレンズを利用しなくてもよい。この構造においても上述したコリメータレンズと 光ファイバとを接合する技術を適用することができる。
[0007] 特許文献 1:特開平 09— 258059号公報(「0002」段落)
特許文献 2:特開 2002— 196172号公報(「0002」段落)
非特許文献 1:高原敏明 「超小型ファイバコリメータの実装技術」、第 92回微少光学 '第 6回システムフォト-タス合同研究会、 2004
発明の開示
発明が解決しょうとする課題
[0008] ところで、光ファイバコリメータには、伝送損失を極力低く抑える必要があるので、光 ファイバの光軸と、コリメータレンズの光軸とが正確に合っている必要がある。しかしな がら、上述した光ファイバとコリメータレンズとを直接接合する方法には、以下に述べ るように光軸合わせの精度確保に難点があった。
[0009] 上述したような、コリメータレンズを軟ィ匕させ、そこに光ファイバを押し込み固定する 方法は、仮に光軸の位置合わせ (ァライメント)を正確に行うことができたとしても、軟 化状態にあるコリメータレンズ内に、光ファイバを押し込み移動させる際に、光フアイ バが横方向(光軸に対して垂直な方向)にずれ、それにより両者の光軸が相対的に ずれてしまう可能性があった。これは、垂直に光ファイバを押し込んだつもりであって
も、光ファイバが受ける抵抗によって光ファイバが斜めに動 、てしまうことがあるからで ある。また、コリメータレンズの軟ィ匕部分の固さが不安定なところに、光ファイバを差し 込むことになるので、光ファイバを動力している最中に、コリメータレンズの軟化部分 の固さが急激に変化し、それにより光ファイバの光軸がずれてしまうことも原因となる。 特に、上述した斜めカット処理を施した光ファイバを用いた場合、この光軸ずれの発 生頻度が高くなる。これは、光ファイバ端面の斜面が、軟化したガラス成分を押し分 けて進むことになるので、コリメータレンズ内を進む光ファイバが斜めになり易いから である。この問題は、光ファイバと光導波路を接合する場合にも同様に発生する。
[0010] そこで本発明は、先端が斜めカットされた光ファイバとコリメータレンズ等の光学部 材とを直接接合した場合に、光軸のずれが発生し難 ヽ技術を提供することを目的と する。
課題を解決するための手段
[0011] 本発明は、光部品の製造方法に係り、第 1の軟化点を有する光学部材に前記第 1 の軟ィ匕点よりも高 、第 2の軟ィ匕点を有する光ファイバを接合する方法であって、前記 光学部材に、端面が光軸に対して傾斜した前記光ファイバを、近接または接触させ た状態に位置決めするステップと、前記光学部材と前記光ファイバとの位置関係を固 定した状態で前記第 1の軟化点よりも高ぐ且つ前記第 2の軟化点よりも低い温度に 加熱を行い、前記光学部材と前記光ファイバの前記端面との間に、前記光学部材の 構成材料を充填するステップとを備えることを特徴とする。
[0012] 本発明によれば、光軸を合わせた状態にぉ ヽて、光学部材を構成する材料の軟化 点を超え、且つ光ファイバを構成する材料の軟ィ匕点に至らない温度に加熱を行うこと で、光学部材側は膨張しながら溶融され、表面張力により生じる毛細管現象により両 者の間の隙間を埋め、両者を接合する。この方法においては、光軸を合わせた状態 にお 、て、両者の相対的な位置関係を動かすことなしに両者を接合することができる 。このため、接合工程時における光軸のずれを抑えることができる。また、構成部材を 増やすことがな 、ので、低コストィ匕を実現することができる。
[0013] 本発明においては、膨張して盛り上がった光学部材側の表面が溶融して液状ィ匕し 、それが表面張力による毛細管現象により光ファイバと光学部材との隙間を埋める。
これにより、光ファイバと光学部材との接合を確実に行うことができる。また、光学部材 の接合されて ヽる光ファイバ端面は傾斜して ヽるため、その接合境界面での反射光 の戻り光を排除することができ、伝送波形の乱れが発生する不都合を抑えることがで きる。
[0014] 加熱の手段としては、放電による方法が好ま 、。放電による加熱は、光ファイバが 接合する光学部材の端面を選択的に加熱し、上述した光学部材の瞬間的な溶融を 効果的に行うことができ、上述したメカニズムにより光ファイバと光学部材とを確実に 接合することができる。
[0015] 本発明における光学部材には、コリメータレンズ、光スィッチ、光アイソレータ、光サ ーキユレータ、光アツテネータ、光導波路等が含まれる。本発明の光部品には、これ ら光部品と光ファイバとを接合した構成が含まれる。例えば本発明の光部品として、 光ファイバとコリメータレンズとを接合した光ファイバコリメータ、ある 、は光ファイバと 光導波路とを接合した構成を挙げることができる。また、本発明の光部品として、コリメ ータレンズと光スィッチや光アツテネータ等とを組み合わせた光モジュールを挙げる ことができる。なお光モジュールというのは、 2つ以上の光学部材を組み合わせモジ ユール化した光デバイスのことを!、う。
[0016] 本発明の光軸を合わせるステップにおいて、光学部材と光ファイバの端面との間に 液体を滴下するステップが含まれることが好ましい。本発明においては、光ファイバの 光学部材への接合部分側の端部は、斜めカットされ、光軸に対して傾斜した端面の 形状となっている。したがって、光軸を合わせた状態において、光学部材の端面と光 ファイバとの間には、必然的に楔形の隙間ができる。この状態においては、部分的と はいえ間に空気層を介しての光軸合わせが行われることになる。このため、光フアイ バを構成する材料の屈折率と空気の屈折率の違いに起因して、光軸に対して斜めに なった界面を通過する光線が屈折する。空気の屈折率( 1)と光ファイバの屈折率( n= l. 4〜1. 5程度)とは値が異なるので、楔形の空気層の厚さが極めて小さいとは いえ、この屈折率の違いに起因して、光軸が僅かにずれる。すなわち、光学部材と光 ファイバとの位置合わせを行う段階においては、光ファイバの中心部分と光学部材と の間には極薄い楔形の空気層が存在するが、接合を行った後には、光ファイバの中
心部分と光学部材とは直接接触するので、屈折率の差に起因する光束の屈折状態 に違いが発生する。つまり、光束の経路にずれが生じる。このずれが、光軸の僅かな ずれにつながる。
[0017] 上述した液体を滴下した状態で光軸を合わせる作業を行った場合、光学部材と光 ファイバ端面との間が液体で満たされるので、上述した屈折率の違いに起因する光 束経路のずれを抑えることができる。例えば、液体としてアルコール (屈折率 =約 1. 4)を利用した場合、光ファイバとの間の屈折率をほぼ等しくすることができるので、上 述した斜めカット面での屈折の影響を抑えることができる。液体としては、水(屈折率 =約 1. 3)を用いることもできる。光ファイバを構成する石英材料との屈折率の差がで きるだけ小さ 、液体を用いるのであれば、この液体の種類は限定されな 、。
[0018] 本発明は、上述した製造方法によって得られた光部品として把握することもできる。
すなわち、本発明の光部品は、第 1の軟化点を有する光学部材と、前記第 1の軟ィ匕 点よりも高い第 2の軟ィ匕点を有し、先端の端面が光軸に対して傾斜した構造を有する 光ファイバと、前記光学部材と前記光ファイバとの位置関係を固定した状態で前記第 1の軟ィ匕点よりも高ぐ且つ前記第 2の軟ィ匕点よりも低い温度に加熱を行うことにより 前記光学部材と前記端面との間に充填された前記光学部材の構成材料とを有し、前 記光ファイバの前記端面の中心は前記光学部材の端面の外側に位置することを特 徴とする。また本発明の光部品は、第 1の軟ィ匕点を有する光学部材と、前記第 1の軟 化点よりも高い第 2の軟ィ匕点を有し、先端の端面が光軸に対して傾斜した構造を有 する光ファイバと、前記光学部材と前記光ファイバの前記端面との間に充填された溶 融固化した前記光学部材の構成材料とを有し、前記光ファイバの前記端面の中心は 前記光学部材の端面の外側に位置することを特徴とする。
[0019] この光部品においては、光軸を合わせる段階で存在する光ファイバと光学部材との 間の隙間が、光学部材側の構成材料が溶融し膨張したものによって埋められる。こ の際、両者を動力さなくてよいので、両者を動かすことによる光軸のずれが発生しな い。また、光学部材の材料が、膨張および溶融し、その表面張力により生じる毛細管 現象により両者の間の隙間を埋める形になるので、光ファイバの端面の中心 (斜め力 ットされた斜面のコア中心部分)は、光学部材の端面より外側に位置する構造となる。
発明の効果
[0020] 本発明によれば、先端が斜めカットされた光ファイバと光学部材とを直接接合する 場合に、光学部材を構成する材料が溶融する際の膨張、毛細管現象を利用すること で、両者を動力さずに接合させることができる。これにより、製造時に光軸のずれが発 生し難い光部品を提供することができる。
図面の簡単な説明
[0021] [図 1]コリメータレンズに光ファイバを接合する工程を示す工程断面図である。
[図 2]光ファイバとコリメータレンズとの接合付近を拡大した模式断面図である。
[図 3]光アツテネータモジュールに光ファイバを接合する作業の工程を示す工程断面 図である。
[図 4]光導波路に光ファイバを接合する工程の一部を示す斜視図である。
[図 5]光導波路に光ファイバを接合する工程の一部を示す上面図 (A)および側面図
(B)である。
符号の説明
[0022] 101 · · ·光ファイバ、 101a…斜めカットされた光ファイバの端面、 102…コリメ一タレ ンズ、 102a…光ファイバが接続される端面、 103· "反射鏡、 104a…針状の電極、 1 04b…針状の電極、 105· · ·放電、 201…膨張によって盛り上がった部分、 401 · · ·光 アツテネータモジユーノレ、 402· · ·コリメータレンズ、 403· · ·光減衰素子、 404· · ·コリメ ータレンズ、 405· · ·光ファイノく、 407a…針状の電極、 407b…針状の電極、 408· "反 射鏡、 409…光ファイバ。
発明を実施するための最良の形態
[0023] 1.第 1の実施形態
図 1は、コリメータレンズに光ファイバを接合する工程を示す工程断面図である。以 下、コリメータレンズに光ファイバを接合した構造の光ファイバコリメータの製造工程 の一例を説明する。
[0024] まず、図 1 (A)に示すように、先端を斜めカットした光ファイバ 101と、コリメータレン ズ 102とを用意する。光ファイバ 101は、通常の光ファイバであり、石英を主材料とし
て構成されるものを使用する。本実施形態では、軟ィ匕点が約 1600°Cの材料によって 構成された光ファイバを利用する。光ファイバ 101は、その先端を斜めにカットし、先 端の端面 101aを斜面に加工したものを使用する。ここでは、端面 101aと、光フアイ ノ 101の光軸に垂直な面とのなす角度が 8° の傾きとなるように、カッティングを行う 。この角度は、 1° 〜10° 程度の間から選択可能である。
[0025] コリメータレンズ 102は、多成分ガラスを材料としてモールド成形により形成されたも のを用いる。ここでは、コリメータレンズ 102として、軟化点が 607°Cであるホウ珪酸系 の多成分ガラスによって構成されるものを用いる。またコリメータレンズ 102は、そのレ ンズ系の焦点力 光ファイバ 101が接続される端面 102aの表面付近になるように光 学設計がされたものを用いる。
[0026] 先端を斜めカットした光ファイバ 101と、コリメータレンズ 102とを用意したら、両者の 光軸合わせを行う。まず、光ファイバ 101の反対側の端部 (端面 101aと反対側の端 部)に図示しない試験装置を接続する。この試験装置は、所定強度および所定波長 のレーザー光を出力し、さらに入力された光の強度を正確に計測することができる機 能を備えている。図示しない試験装置を光ファイバ 101の一方の端部に接続したら、 図 1 (A)に示すように、光ファイバ 101の斜めカットした端部の端面 101aをコリメータ レンズ 102に近接した状態で光軸合わせを行う。この際、コリメータレンズ 102からの 光束が反射鏡 103に垂直に入射するようにする。
[0027] この光軸調整について説明する。まず、図示しない試験装置力 試験光を出力し、 それを光ファイバ 101からコリメータレンズ 102に射出する。この試験光は、コリメータ レンズ 102から反射面 103に照射され、さらに反射面 103で反射されて、逆経路を迪 つて図示しな!、試験装置に反射光として戻る。この反射光量が最大となるように光フ アイバ 101とコリメータレンズ 102との相対的な位置関係を調整することで、光軸合わ せが行われる。すなわち、光ファイバ 101とコリメータレンズ 102の光軸が合えば、両 者間の光伝送効率は最大となるから、図示しない試験装置で検出される反射光量も 最大となる。このことを利用して、光ファイバ 101とコリメータレンズ 102との光軸合わ せが行われる。
[0028] 後述するように、光ファイバ 101とコリメータレンズ 102との接合を、コリメータレンズ 1
02の端面 102aの膨張に起因する盛り上がりによって行うので、光軸合わせが済んだ 状態の後はその位置関係は固定したままで接合をすることができる。このため、光フ アイバ 101とコリメータレンズ 102とが、図 1 (B)に示すように接触するか、接触はしな V、までも近接した状態で光軸が合うように、コリメータレンズ 102の光学設計が行われ ていることが好ましい。
[0029] 図 1 (B)に示す光軸合わせが終了したら、針状の電極 104aおよび 104bを両者の 接触部分に近接させ、両電極間に高電圧を加えて、放電 105を発生させる(図 1 (C) )。この放電のエネルギーにより、コリメータレンズ 102の端面 102a表面付近の加熱 が行われる。この際、放電条件を調整することにより、この加熱温度が、コリメータレン ズ 102の軟ィ匕点よりも高温になり、且つ光ファイバ 101の軟ィ匕点より低温になるように する。本実施形態においては、光ファイバ 101の軟ィ匕点とコリメータレンズ 102の軟 化点とが大きく離れているので、この加熱温度の設定は容易である。この放電による 加熱によって、コリメータレンズ 102の端面 102aは膨張されるとともに溶融され、光フ アイバ 101の斜めカットされた端面 101aに接触する。この際、この膨張し溶融したコリ メータレンズ 102の構成材料が毛細管現象により隙間を埋める形となり、実質的な溶 着が行われる。
[0030] こうして、第 1の軟ィ匕点を有するコリメータレンズ 102と、第 1の軟ィ匕点よりも高い第 2 の軟化点を有し、先端の端面 101aが光軸に対して傾斜した構造を有する光ファイバ 101と、コリメータレンズ 102と前記端面 101aとの間に充填されたコリメータレンズ 10 2の構成材料とを有し、光ファイバ 101の端面 101aの中心(ファイバ断面の中心コア 部分)は、コリメータレンズ 102の端面 102aの外側に位置する構造を得ることができ る。
[0031] 図 2は、図 1 (D)の光ファイバ 101とコリメータレンズ 102との接合付近を拡大した模 式断面図である。図 2は、 SEM (走査型電子顕微鏡)写真に基づいて作成したもの である。図 2に示すように、コリメータレンズ 102側に、符号 201で示されるように盛り 上がりが発生し、光ファイバ 101の斜めカットされた端面 101aと、コリメータレンズ 10 2の端面 102aとの隙間力 コリメータレンズ 102の構成材料によって充填された構造 が観察される。すなわち図 2には、コリメータレンズ 102の端面 102aが瞬間的に溶融
し、それが光ファイバ 101の斜めカットされた端面 101a側に毛管力によって移動し、 この溶融物によって端面 102aと端面 101aとの間の隙間が埋められ、その状態でコリ メータレンズ 102の構成材料の溶融物が固化した状態が示されている。そして、コリメ ータレンズ 102の構成材料力 光ファイバ 101の端面 101a側に盛り上がるようにして 両者の隙間を埋めた状態が示されている。
[0032] 本実施形態において説明した方法によれば、光ファイバ 101とコリメータレンズ 102 との光軸合わが完了した図 1 (B)の状態から、両者を相対的に動力さずに、両者の固 定を行うことができる。したがって、コリメータレンズ 102に対する光ファイバ 101の相 対的な移動に伴う光軸のずれは、原理的に発生しない。
[0033] 2.第 2の実施形態
図 1 (B)に示す光軸合わせを行う工程において、光ファイバ 101とコリメータレンズ 1 02との隙間に水やアルコール等の液体を滴下し、その状態において光軸を合わせ る作業を行うことが好ましい。水やアルコールの屈折率 (n= l. 3〜1. 4程度)は、ガ ラスの屈折率に比較的近い (少なくとも空気 (n^ l)に比較すれば、極めて近い)の で、光ファイバ 101と空気の屈折率の違い、コリメータレンズ 102と空気の屈折率の違 いによる光線の屈折が抑えられる。これにより、図 1 (B)の光軸合わせ時と、図 1 (D) の接合時との間における光軸のずれの発生を抑えることができる。
[0034] 3.第 3の実施形態
以下、代表的な光部品である光モジュールへ、本発明を適用した場合の例を説明 する。ここでは、光モジュールとして、光アツテネータの入出両側にコリメータレンズを 配置しモジュール化した光アツテネータモジュールの例を挙げ、この光アツテネータ モジュールに光ファイバを接合する技術に本発明を使用した場合を説明する。
[0035] 図 3は、光アツテネータモジュールに光ファイバを接合する作業の工程を示す工程 断面図である。まず、図 3 (A)に示す光アツテネータモジュール 401を用意する。光 アツテネータモジュール 401は、通過する光を所定の減衰量で減衰させる機能を有 し、例えば、光ファイバ経路の中に挿入されて、伝送される光信号のレベル調整を行 う場合に利用される。
[0036] この例において、光アツテネータモジュール 401は、コリメータレンズ 402、光減衰
素子 403、およびコリメータレンズ 404を備えている。また、光アツテネータモジュール 401は、その製造時に、コリメータレンズ 402とコリメータレンズ 404との光軸合わせが 行われ、全体が榭脂ゃガラスによってモールドされた構造を有して 、る。
[0037] 以下、光アツテネータモジュール 401への光ファイバの接続を行う工程手順を説明 する。まず、図 3 (A)に示す光アツテネータモジュール 401を用意したら、コリメ一タレ ンズ 404の露呈した端面に反射鏡 408を押し当てる。そして、コリメータレンズ 402の 露呈した端面に先端を斜めカットした光ファイバ 405を軽く接触させ、コリメータレンズ 402と光ファイバ 405との光軸合わせを行う(図 3 (B) )。この際、光ファイバ 405の図 示しない他端に第 1の実施形態で説明した試験装置を接続し、試験光の反射光が 最大となるように光ファイバ 405とコリメータレンズ 402との相対的な位置関係を調整 する。
[0038] 光ファイノ 405とコリメータレンズ 402との光軸合わせが終了したら、両者の位置関 係を固定した状態で、両者が接触した付近に針状の電極 407aおよび 407bを近づ け、放電を行う(図 3 (C) )。この放電により、第 1の実施形態において説明したのと同 様に、光ファイノく 405とコリメータレンズ 402とが接合される。
[0039] 次に、コリメータレンズ 404の露出した端面にもう一方の光ファイバを近づけ、光軸 合わせを行う。この際、この光ファイバの他端に、第 2の試験装置を接続し、この状態 において、上述した光ファイノく 405に接続した第 1の試験装置から、光ファイノく 405 を介して光アツテネータモジュール 401に試験光を送り込む。そして、コリメータレン ズ 404側において、第 2の試験装置が検出する試験光が最大となるように、コリメータ レンズ 404と光ファイバとの位置関係が調整される。こうして、コリメータレンズ 404とも う一方の光ファイバ(図 3 (D)の符号 409によって示される光ファイバ)との光軸合わ せが行われる。
[0040] この光軸合わせが終了したら、図 3 (C)に示すのと同様な方法により、両者の接合 を行い、図 3 (D)に示す状態を得る。つまり、コリメータレンズ 402に光ファイノく 405が 接続され、コリメータレンズ 404に光ファイバ 409が接続された構造を得る。
[0041] この構成においては、例えば、光ファイバ 405を介して、コリメータレンズ 402に入 力された光信号が、コリメータレンズ 402の光学的な機能により平行光束にされ、そ
れが光減衰素子 403を通過する際に所定レベルの減衰を受け、さらにこの減衰され た光信号は、コリメータレンズ 404の光学的な機能により収束され、コリメータレンズ 4 04から光ファイノく 409に出力される。
[0042] 4.第 4の実施形態
本実施形態においては、光学部材の一例である光導波路に光ファイバを直接接合 する例を説明する。図 4は、本実施形態における接合工程の概要を示す斜視図であ る。図 5は、図 4に示す状態を上力も見た上面図 (A)と横力も見た側面図 (B)である。 まず、光導波路について説明する。光導波路 501は、 1本の光ファイバの光信号経 路を複数に分割し、複数の光信号経路を得る分配器としての機能、または逆に複数 の光信号経路を合成し 1本の光信号経路にする合成器としての機能を有している。 一般に光導波路は、接続方向によって分配器としても機能するし、合成器としても機 能する。
[0043] 以下、光導波路 501に光ファイバ 505、 506および 507を接合する手順を説明する 。まず、光導波路 501を用意する。光導波路 501は、軟ィ匕点が 607°Cであるホウ珪酸 系の多成分ガラスによって構成される基板 501aと 501bとが張り合わされた構造を有 している。基板 501aと 501bとの間の界面には、光路 502から分岐する構造の光路 5 03および 504が形成されている。また、軟ィ匕点が約 1600°Cの石英を主材料とする 光ファイバ 505、 506および 507を用意し、その端面を第 1の実施形態の場合と同様 に斜めカットする。そして、光ファイバ 505の斜めカットされた端部を光導波路 501の 光路 502の端部に位置決めし、光軸を合わせ、その状態で放電を行う。この際、光フ アイバ 505が位置決めされた光導波路 501の端面部分が瞬間的に溶融し、盛り上が り 51が形成され、光ファイバ 505が光導波路 501に接合される。なお、光軸合わせお よび放電の工程は、第 1の実施形態において説明したものと同じである。
[0044] 次に図 5 (A)および(B)に示すように、光ファイバ 506と 507を平行に束ね、各光フ アイバを光導波路 501の光路 503および光路 504の端部にそれぞれ位置決めし、光 軸を合わせる。そして、図 4および図 5に示すように、電極 508aおよび 508bを接合 付近に近づけ、放電を行う。これにより、光ファイバ 506および 507が光導波路 501 に接合される。光軸の合わせ方や放電の方法は、第 1の実施形態に説明したのと同
じである。
[0045] 本実施形態において得られた光部品は、光導波路 501に光ファイバ 505、 506お よび 507が接合され、光ファイバ 505を伝送される光信号を光ファイバ 506と 507に 分配する機能、あるいは光ファイバ 506と 507を伝送される光信号を合成し、光フアイ ノ 505に伝送させる機能を有している。また、各光ファイバ力 図 5の符号 51によって 示されるように、光導波路 501を構成する材料の溶融物の盛り上がりによって光導波 路 501に固定される。この固定時において、ー且光軸を合わせた後に光ファイバと光 導波路 501の相対的な位置関係を動かすことなぐ放電により接合が行われるので、 位置関係の変更に伴って光軸がずれることがない。このため、接合時の光軸のずれ に起因する伝送される光信号の反射や損失を抑えることができる。
産業上の利用可能性
[0046] 本発明は、コリメータレンズ等の光学部材に光ファイバを接続する技術に利用する ことができる。また、本発明は、光モジュールに光ファイバを接続する技術に利用する ことができる。また本発明は、光ファイバを接続した光学部材ゃ光モジュールに利用 することができる。
Claims
[1] 第 1の軟ィ匕点を有する光学部材に前記第 1の軟ィ匕点よりも高い第 2の軟ィ匕点を有す る光ファイバを接合する方法であって、
前記光学部材に、端面が光軸に対して傾斜した前記光ファイバを、近接または接 触させた状態に位置決めするステップと、
前記光学部材と前記光ファイバとの位置関係を固定した状態で前記第 1の軟化点 よりも高ぐ且つ前記第 2の軟化点よりも低い温度に加熱を行い、前記光学部材と前 記光ファイバの前記端面との間に、前記光学部材の構成材料を充填するステップと を備えることを特徴とする光部品の製造方法。
[2] 前記位置決めするステップにおいて、
前記光学部材と前記光ファイバとの隙間に液体を滴下するステップをさらに備える ことを特徴とする請求項 1に記載の光部品の製造方法。
[3] 前記光学部材として、コリメータレンズまたは光導波路が利用されることを特徴とす る請求項 1または 2に記載の光部品の製造方法。
[4] 前記充填するステップにおける加熱は放電によって行うことを特徴とする請求項 1
〜3のいずれかに記載の光部品の製造方法。
[5] 第 1の軟化点を有する光学部材と、
前記第 1の軟ィ匕点よりも高い第 2の軟ィ匕点を有し、先端の端面が光軸に対して傾斜 した構造を有する光ファイバと、
前記光学部材と前記光ファイバとの位置関係を固定した状態で前記第 1の軟化点 よりも高ぐ且つ前記第 2の軟化点よりも低い温度に加熱を行うことにより前記光学部 材と前記端面との間に充填された前記光学部材の構成材料と
を有し、
前記光ファイバの前記端面の中心は前記光学部材の端面の外側に位置することを 特徴とする光部品。
[6] 第 1の軟化点を有する光学部材と、
前記第 1の軟ィ匕点よりも高い第 2の軟ィ匕点を有し、先端の端面が光軸に対して傾斜 した構造を有する光ファイバと、
前記光学部材と前記光ファイバの前記端面との間に充填された溶融固化した前記 光学部材の構成材料と
を有し、
前記光ファイバの前記端面の中心は前記光学部材の端面の外側に位置することを 特徴とする光部品。
[7] 前記光学部材と前記光ファイバとの接合部分にお!、て、
前記光学部材の端面が盛り上がった形状を有することを特徴とする請求項 5または 6に記載の光部品。
[8] 前記光学部材として、コリメータレンズまたは光導波路が利用されることを特徴とす る請求項 5〜7のいずれかに記載の光部品。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-191354 | 2005-06-30 | ||
JP2005191354 | 2005-06-30 | ||
JP2006063806A JP5138172B2 (ja) | 2005-06-30 | 2006-03-09 | 光部品およびその製造方法 |
JP2006-063806 | 2006-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007004506A1 true WO2007004506A1 (ja) | 2007-01-11 |
Family
ID=37604374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312984 WO2007004506A1 (ja) | 2005-06-30 | 2006-06-29 | 光部品およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5138172B2 (ja) |
WO (1) | WO2007004506A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT504740B1 (de) * | 2008-04-01 | 2009-08-15 | Avl List Gmbh | Brennkraftmaschine |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4795790B2 (ja) * | 2005-12-15 | 2011-10-19 | 富士通株式会社 | 光デバイス及び光結合方法 |
JP2007171676A (ja) | 2005-12-22 | 2007-07-05 | Topcon Corp | 光ファイバケーブル |
CN101825712A (zh) * | 2009-12-24 | 2010-09-08 | 哈尔滨工业大学 | 一种2μm全光纤相干激光多普勒测风雷达系统 |
JP5968033B2 (ja) * | 2012-04-18 | 2016-08-10 | アルプス電気株式会社 | 傾斜面付きレンズの製造方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5357052A (en) * | 1976-11-03 | 1978-05-24 | Showa Electric Wire & Cable Co | Method of and apparatus for fusion bonding of light transmitting fiber |
JPS5975215A (ja) * | 1982-10-25 | 1984-04-27 | Nippon Telegr & Teleph Corp <Ntt> | 光フアイバの接続方法 |
JPS63294505A (ja) * | 1987-05-27 | 1988-12-01 | Nec Corp | 光ファイバ接続方法 |
JPH01261604A (ja) * | 1988-04-13 | 1989-10-18 | Hitachi Ltd | 光結合装置 |
JPH04180004A (ja) * | 1990-11-15 | 1992-06-26 | Kyocera Corp | 光回路の接続装置 |
JPH07134220A (ja) * | 1993-11-12 | 1995-05-23 | Hitachi Cable Ltd | 光ファイバと光導波路との接続部の構造およびその接続方法 |
JPH1090553A (ja) * | 1996-09-13 | 1998-04-10 | Sumitomo Electric Ind Ltd | コリメータ付光ファイバおよび光アイソレータ |
JPH11287922A (ja) * | 1998-04-01 | 1999-10-19 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法ならびに接続装置 |
JP2002055276A (ja) * | 2000-06-22 | 2002-02-20 | Eastman Kodak Co | 微小非球面コリメータレンズ |
JP2002182064A (ja) * | 2000-12-11 | 2002-06-26 | Fujikura Ltd | 2心ファイバコリメータ及び光合分波器 |
JP2002189144A (ja) * | 2000-12-20 | 2002-07-05 | Fujikura Ltd | 2心ファイバコリメータ及び光合分波器 |
JP2003161858A (ja) * | 2001-11-27 | 2003-06-06 | Hitachi Cable Ltd | 石英系光導波路素子と光ファイバとの融着接続方法及び装置 |
JP2003528347A (ja) * | 2000-03-17 | 2003-09-24 | コーニング インコーポレイテッド | 光導波路レンズ及び作成方法 |
JP2004531774A (ja) * | 2001-06-26 | 2004-10-14 | コーニング インコーポレイテッド | ドープされた二酸化ケイ素を用いたマイクロレンズ付きファイバの製造 |
JP2005234441A (ja) * | 2004-02-23 | 2005-09-02 | Juki Corp | 光ファイバーと光学レンズとの接続方法及び接続装置 |
JP2006209085A (ja) * | 2004-12-28 | 2006-08-10 | Precise Gauges Co Ltd | 光部品の製造方法及び製造装置、並びに、光部品 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156652A (ja) * | 2001-11-20 | 2003-05-30 | Central Glass Co Ltd | 異種光ファイバの接続方法 |
-
2006
- 2006-03-09 JP JP2006063806A patent/JP5138172B2/ja not_active Expired - Fee Related
- 2006-06-29 WO PCT/JP2006/312984 patent/WO2007004506A1/ja active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5357052A (en) * | 1976-11-03 | 1978-05-24 | Showa Electric Wire & Cable Co | Method of and apparatus for fusion bonding of light transmitting fiber |
JPS5975215A (ja) * | 1982-10-25 | 1984-04-27 | Nippon Telegr & Teleph Corp <Ntt> | 光フアイバの接続方法 |
JPS63294505A (ja) * | 1987-05-27 | 1988-12-01 | Nec Corp | 光ファイバ接続方法 |
JPH01261604A (ja) * | 1988-04-13 | 1989-10-18 | Hitachi Ltd | 光結合装置 |
JPH04180004A (ja) * | 1990-11-15 | 1992-06-26 | Kyocera Corp | 光回路の接続装置 |
JPH07134220A (ja) * | 1993-11-12 | 1995-05-23 | Hitachi Cable Ltd | 光ファイバと光導波路との接続部の構造およびその接続方法 |
JPH1090553A (ja) * | 1996-09-13 | 1998-04-10 | Sumitomo Electric Ind Ltd | コリメータ付光ファイバおよび光アイソレータ |
JPH11287922A (ja) * | 1998-04-01 | 1999-10-19 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバの接続方法ならびに接続装置 |
JP2003528347A (ja) * | 2000-03-17 | 2003-09-24 | コーニング インコーポレイテッド | 光導波路レンズ及び作成方法 |
JP2002055276A (ja) * | 2000-06-22 | 2002-02-20 | Eastman Kodak Co | 微小非球面コリメータレンズ |
JP2002182064A (ja) * | 2000-12-11 | 2002-06-26 | Fujikura Ltd | 2心ファイバコリメータ及び光合分波器 |
JP2002189144A (ja) * | 2000-12-20 | 2002-07-05 | Fujikura Ltd | 2心ファイバコリメータ及び光合分波器 |
JP2004531774A (ja) * | 2001-06-26 | 2004-10-14 | コーニング インコーポレイテッド | ドープされた二酸化ケイ素を用いたマイクロレンズ付きファイバの製造 |
JP2003161858A (ja) * | 2001-11-27 | 2003-06-06 | Hitachi Cable Ltd | 石英系光導波路素子と光ファイバとの融着接続方法及び装置 |
JP2005234441A (ja) * | 2004-02-23 | 2005-09-02 | Juki Corp | 光ファイバーと光学レンズとの接続方法及び接続装置 |
JP2006209085A (ja) * | 2004-12-28 | 2006-08-10 | Precise Gauges Co Ltd | 光部品の製造方法及び製造装置、並びに、光部品 |
Non-Patent Citations (1)
Title |
---|
NAGANO T. ET AL.: "Hikyumen Lens to Fiber o Chokusetsu Setsugo shita Fiber Collimeter no Kogaku Tokusei Hyoka", 2005 NEN (HEISEI 17 NEN) SHUKI DAI 66 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 3, 7 September 2005 (2005-09-07), pages 861 (KOEN BANGO 11A-ZF-2), XP003005966 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT504740B1 (de) * | 2008-04-01 | 2009-08-15 | Avl List Gmbh | Brennkraftmaschine |
Also Published As
Publication number | Publication date |
---|---|
JP2007041512A (ja) | 2007-02-15 |
JP5138172B2 (ja) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7400799B2 (en) | Optical device and fabrication method and apparatus for the same | |
JP3615735B2 (ja) | 相当大きな断面積の光学素子に溶着接続された光ファイバを使用するコリメータの製造 | |
KR101711247B1 (ko) | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 | |
US7746914B2 (en) | Waveguide retroreflector and method of fabricating the same | |
JP2006515680A (ja) | 導波路及び/又はファイバーの間の自由空間光伝搬のための光学集成体 | |
JPH06202010A (ja) | 光エレメント | |
WO2019160918A1 (en) | Fiber array formed using laser bonded optical fibers | |
WO2007004506A1 (ja) | 光部品およびその製造方法 | |
JP4729394B2 (ja) | 光部品の製造方法及び製造装置、並びに、光部品 | |
US6873768B2 (en) | Compact optical fiber coupler | |
KR20050092126A (ko) | 작은 형태 인자를 가진 렌즈형 광섬유 및 그 제조방법 | |
US7111993B2 (en) | Optical monitor module | |
US20030174964A1 (en) | Lens coupling fiber attachment for polymer optical waveguide on polymer substrate | |
US6571040B2 (en) | Multiple planar complex optical devices and the process of manufacturing the same | |
JP2007178603A (ja) | 光部品およびその製造方法 | |
US7561768B2 (en) | Optical branching device | |
JPH0815539A (ja) | 光学結合装置 | |
JPH0634837A (ja) | 光部品 | |
JP5848474B1 (ja) | 光学部品の製造方法 | |
JP4118752B2 (ja) | 2心ファイバコリメータの製造方法、2心ファイバコリメータの製造装置、2心ファイバコリメータ、光合分波器 | |
JPH05288956A (ja) | 微小レンズ付光ファイバ端末光学装置 | |
JP2011027900A (ja) | 光ファイバモジュール、光ファイバモジュールの製造方法 | |
JP2004334003A (ja) | 光結合素子の製造法及び光記録装置 | |
JPS597324A (ja) | 光フアイバ用結合器 | |
US6652162B1 (en) | Stand-off fusion-terminated optical waveguide interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06767601 Country of ref document: EP Kind code of ref document: A1 |