WO2007004320A1 - 食品加熱処理方法並びに食品加熱処理装置 - Google Patents

食品加熱処理方法並びに食品加熱処理装置 Download PDF

Info

Publication number
WO2007004320A1
WO2007004320A1 PCT/JP2005/023382 JP2005023382W WO2007004320A1 WO 2007004320 A1 WO2007004320 A1 WO 2007004320A1 JP 2005023382 W JP2005023382 W JP 2005023382W WO 2007004320 A1 WO2007004320 A1 WO 2007004320A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
sealed container
heating
injected
injection device
Prior art date
Application number
PCT/JP2005/023382
Other languages
English (en)
French (fr)
Inventor
Akira Yamazaki
Yoshimi Ohtaki
Tadao Kosaka
Akihiko Sasagawa
Original Assignee
Echigoseika Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Echigoseika Co., Ltd. filed Critical Echigoseika Co., Ltd.
Priority to CN2005800509862A priority Critical patent/CN101217889B/zh
Priority to US11/994,530 priority patent/US20090238937A1/en
Publication of WO2007004320A1 publication Critical patent/WO2007004320A1/ja
Priority to US13/006,794 priority patent/US20110107922A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • A23L3/0155Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation using sub- or super-atmospheric pressures, or pressure variations transmitted by a liquid or gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/10Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are not progressively transported through the apparatus
    • A23L3/12Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are not progressively transported through the apparatus with packages in intercommunicating chambers through which the heating medium is circulated
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/10Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating materials in packages which are not progressively transported through the apparatus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • A23L3/24Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials with the materials in spray form

Definitions

  • the present invention relates to a food heat treatment method and a food heat treatment apparatus used for sterilizing or cooking food.
  • Canned and retort foods are processed in high-temperature and high-pressure treatment at temperatures of about 110 ° C to 120 ° C (food-resistant bacteria) in food containers sealed in metal containers or heat-resistant and air-tight soft resin bags (bouches).
  • temperatures of about 110 ° C to 120 ° C food-resistant bacteria
  • metal containers or heat-resistant and air-tight soft resin bags bouches.
  • a calorific value equivalent to 4 121 ° CX 4 minutes
  • the food when a food is subjected to a high-temperature and high-pressure treatment at 100 ° C or higher, the food is generally treated with water (hot water) or steam as a heating and pressurizing medium.
  • water hot water
  • steam a heating and pressurizing medium.
  • the water is heated while being pressurized with a pump or the like, and maintained as high-temperature and high-pressure hot water for a predetermined time.
  • the sealed container in which the food is placed is filled with high-temperature and high-pressure steam to keep it for a predetermined time (hereinafter referred to as the prior art).
  • the above-described conventional technique fills the entire treatment tank with high-temperature and high-pressure water, and thus requires a long time to heat water (hot water) to a predetermined temperature. It requires a large amount of heat energy and is inferior in economic efficiency.Furthermore, the food floats when immersed in high-temperature and high-pressure water. This has led to a decline in productivity. Furthermore, since the food must be immersed in water, it is hermetically packaged, and there is a drawback that it is difficult to apply to food.
  • the present invention is to solve these problems, and cooking and heat sterilization equivalent to the prior art is more economical than the prior art. Providing an innovative food heat treatment method that can be performed while improving productivity and productivity, and a food heat treatment apparatus capable of realizing this food heat treatment method
  • the food 2 is disposed in the sealed container 1 capable of holding or maintaining a predetermined gas pressure, and a heated liquid of 100 ° C or higher heated by the heating source 8 is supplied to the food 2 into the inner space of the sealed container 1.
  • the heated liquid injected into the hermetic container 1 is not the food 2 or the food package 3 or these cover bodies 4, rather than being immersed and heated in the heated liquid.
  • the food 2 is disposed in the sealed container 1 serving as a sealed pressurized space, and the food 2 is heated by the heat of the heated liquid.
  • an injection device portion 12 for injecting the heated liquid into the sealed container 1 is provided, and the injection device portion 12 is provided in a sealed communication state with the inside of the sealed container 1, and the injection device portion 12 2.
  • the gas liquid in the sealed container 1 is configured to be able to be maintained equally, and a heating liquid heated by a heating source 8 is injected into the sealed container 1 from the injection device section 12. This relates to the food heat treatment method.
  • the sealed container 1 is maintained at a gas pressure equal to or higher than the saturated vapor pressure of the calothermal liquid injected into the sealed container 1 by the pressurizing means 10, and the sealed container 1 3.
  • the heated liquid injected into the sealed container 1 by the injection device section 12 is circulated and supplied to the injection device section 12 and circulated and injected from the injection apparatus section 12 into the sealed container 1. 3.
  • the food package 2 is hermetically packaged in the hermetic container 1 capable of holding or maintaining a predetermined gas pressure, and heated liquid of 80 ° C or higher is hermetically packaged in the inner space of the hermetic container 1.
  • heated liquid 80 ° C or higher is hermetically packaged in the inner space of the hermetic container 1.
  • the package 3 or the cover 2 of the hermetically packaged food 2 is applied to the cover 4 of the hermetically packaged food 2 and the hermetically packaged food 2 disposed in the hermetic container 1 serving as a hermetically pressurized space is heat-treated by the heat of the heating liquid This relates to a food heat treatment method.
  • an injection device portion 12 for injecting the heated liquid into the sealed container 1 is provided, and the injection device portion 12 is provided in a sealed communication state with the inside of the sealed container 1, and the injection device portion 12 7.
  • the gas pressure in the sealed container 1 is configured to be kept equal, and a heating liquid heated by a heating source 8 is injected into the sealed container 1 from the injection device section 12. This relates to the food heat treatment method.
  • the sealed container 1 is maintained at a gas pressure higher than the saturated vapor pressure of the calothermal liquid injected into the sealed container 1 by the pressurizing means 10, and the sealed container 1 7.
  • the sealed container 1 is maintained at a gas pressure higher than the saturated vapor pressure of the calothermal liquid injected into the sealed container 1 by the pressurizing means 10, and the sealed container 1 8.
  • the heated liquid injected into the sealed container 1 by the injection device section 12 is circulated and supplied to the injection device section 12 and circulated and injected from the injection apparatus section 12 into the sealed container 1. 8.
  • the heated liquid injected into the sealed container 1 by the injection device unit 12 is circulated and supplied to the injection device unit 12, and is circulated and injected from the injection device unit 12 into the sealed container 1.
  • the food heat treatment method according to claim 8 wherein: [0019] Further, the heated liquid injected into the sealed container 1 by the injection device unit 12 is circulated and supplied to the injection device unit 12, and is circulated and injected from the injection device unit 12 into the sealed container 1. 10. The food heat treatment method according to claim 9, wherein the food is heat-treated.
  • the inside of the sealed container 1 is maintained by the pressurizing means 10 at a gas pressure of 1.2 to 2.5 times the saturated vapor pressure of the heated liquid. Any one of -12 It relates to the food heat processing method of 1 paragraph.
  • the food 2 or the hermetically packaged food 2 can be disposed, and the heated liquid heated by the heating source 8 is placed in the sealed container 1 to hold or hold a predetermined gas pressure.
  • An injection device part 12 that can be injected is provided, and this injection device part 12 is provided in a closed communication state with the inside of the sealed container 1 so that the gas pressure in the injection device part 12 and the sealed container 1 is kept equal.
  • the present invention relates to a food heating apparatus characterized by having a configuration capable of
  • an injection path portion 8a for injecting the heated liquid into the sealed container 1 into the sealed container 1, and a heated liquid injected into the sealed container 1 are recovered and supplied to the injection path section 8a.
  • the recovery path section 8b is provided, and the sealed liquid 1, the injection path section 8a, and the recovery path section 8b allow the heated liquid recovered from the closed volume 1 through the recovery path section 8b to pass through the injection path section 8a.
  • the food heating apparatus according to claim 14 is characterized in that a circulation injection device section 12 for injecting again into the sealed container 1 is configured.
  • a pressurizing device section 10 is provided in the sealed container 1, and the pressurizing apparatus section 10 is configured to forcibly pressurize the inside of the sealed container 1 to maintain a predetermined gas pressure.
  • This relates to a food heating apparatus according to claim 14.
  • a pressurizing unit 10 is provided in the sealed container 1, and the inside of the sealed container 1 can be forcibly pressurized by the pressurizing unit 10 to maintain a predetermined gas pressure.
  • This relates to a food heating apparatus according to claim 15.
  • a pressurizing device section 10 is provided in the sealed container 1, and the inside of the sealed container 1 is forcibly pressurized by the pressurizing apparatus section 10 so that a predetermined gas pressure can be maintained.
  • the spraying unit 5 is provided with the spraying unit 5 so that the heated liquid can be sprayed and injected into the sealed container 1 from the spraying unit 5. Any one of -19 It relates to the food heating apparatus according to item 1.
  • a heated liquid heated at 100 ° C or higher heated by a heating source is used as the space in the sealed container. Since the liquid is injected toward the food, at least the injection of the heated liquid makes the sealed container a sealed pressurized space, and the heated liquid of 100 ° C or higher can be reliably injected into this sealed container.
  • the heat of the above heating liquid can efficiently apply the heat treatment equivalent to the prior art to the food, and for example, filling the sealed container with the liquid and submerging the food in the heating liquid for the heat treatment.
  • the heated liquid injected into the sealed container is applied to the food or the food packaging body or the cover body to form a sealed pressurized space.
  • the food disposed in the sealed container is heated by the heat of the heated liquid. Because Since the heat source requires only the amount of heat required to heat the liquid injected into the sealed container, the time required for heating the liquid is higher than in the conventional technique in which the entire treatment tank is filled with high-temperature and high-pressure hot water and immersed in food.
  • the heat energy required for heating is also significantly energy-saving, and the force is not submerged in water, so it can be applied to unpackaged foods, and food recovery after heat treatment is easy Energy-saving compared to conventional technologies, low-cost, versatile and efficient heat treatment production can be realized, and only by changing the gas pressure in the sealed container (in the sealed pressurized space) Because it is possible to inject a heated liquid at a temperature according to the purpose, it is possible to easily control the temperature while using a heated liquid of 100 ° C or higher.
  • the innovative food heat treatment methods are also significantly energy-saving, and the force is not submerged in water, so it can be applied to unpackaged foods, and food recovery after heat treatment is easy Energy-saving compared to conventional technologies, low-cost, versatile and efficient heat treatment production can be realized, and only by changing the gas pressure in the sealed container (in the sealed pressurized space) Because it is possible to inject a heated liquid at a temperature according to the purpose, it is possible to easily control the temperature while using a heated liquid of 100 ° C or higher.
  • the injection device portion for injecting the heating liquid is provided in a sealed communication state with the inside of the sealed container, the gas pressure is maintained at the same level as that of the sealed container.
  • a heated liquid of 100 ° C or higher that is reliably heated by a heating source can be injected into the closed container from the injecting device, and the food can be added to the food while ensuring that the sealed container is a sealed pressurized space. This is an epoch-making food heat treatment method with excellent practicality that can be heat-treated.
  • the saturated vapor pressure of the heated liquid that is reliably injected into the sealed container by the pressurizing means is equal to or higher than the saturated vapor pressure! ⁇ Since gas pressure can be maintained, it is easy to inject a heated liquid of 100 ° C or higher into a sealed container in a liquid state while suppressing vaporization and boiling, and pressurizing means Therefore, by maintaining the sealed container at a high pressure in advance, a heating liquid of 100 ° C or higher is immediately injected in a liquid state, and the heat efficiency is good and the heat treatment can be performed, so that the production efficiency is further improved.
  • the temperature of the heated liquid to be injected by the pressurizing means can be easily set (temperature control), food sterilization and food cooking can be easily performed by temperature control according to the purpose.
  • acrylamide may be formed by heating at temperatures higher than 180 ° C.
  • the temperature of the heated liquid can be reliably set to 180 ° C or less, and safe foods can be easily manufactured. And more practical The Xiu the innovative food heat processing method.
  • the heated liquid injected into the sealed container by the injection device is circulated and supplied to the injection device. Circulating injection from the device into the sealed container requires less consumption of heated liquid, and the recovered heated liquid recovers the reduced temperature required for heat exchange with food. Since it can be reused simply by heating it, energy is not wasted in heating the heating liquid, which can further improve economy, and the heating liquid does not accumulate excessively in the sealed container. Even if liquid is continuously injected, the sealed container becomes a sealed pressurized space, and a structure in which food is not submerged can be realized.
  • the same effect as the invention of claim 1 can be exerted on the hermetically packaged food. Even if both contain gas such as air and the internal pressure of the food package increases due to heating of the heated liquid, the pressure of the sealed container also increases due to the heat of the heated liquid and suppresses the expansion of the food package. So heat-treatment while preventing hermetically packaged food from bursting This is an epoch-making food heat treatment method with excellent practicality.
  • the hermetically sealed food contains a gas such as air together with a liquid, and can be ruptured by heating at about 80 ° C at normal pressure (zero gauge pressure).
  • a gas such as air together with a liquid
  • the sealed container is securely held at a gas pressure higher than the saturated vapor pressure of the heated liquid by the pressurizing means. While bursting can be easily prevented, the gas pressure in the sealed container can be easily increased to a gas pressure higher than the saturated vapor pressure of the heated liquid by the pressurizing means when heat treating with a heated liquid of 100 ° C or higher.
  • the gas pressure in the sealed container held at this high pressure suppresses boiling of the liquid in the food and the internal pressure of the food package rises, the gas pressure in the sealed container rises. Pressed by food packaging Therefore, the heat treatment can be performed while reliably preventing the explosion.
  • the pressurizing means by holding the sealed container at a high pressure in advance by the pressurizing means, it is possible to immediately inject a heating liquid of 100 ° C or higher in a liquid state to perform heat treatment with high thermal efficiency.
  • the temperature setting (temperature control) of the heated liquid injected by the pressurizing means can be easily performed, food sterilization and food cooking can be easily performed by temperature control according to the purpose, This is a revolutionary food heat treatment method with even more practicality, such as making it possible to easily produce safe foods by reliably setting the temperature of the heated liquid to 180 ° C or lower.
  • the heated liquid is surely injected into the sealed container in a liquid state while suppressing the vaporization and boiling, and the food packaged in a sealed package is efficiently heat-treated.
  • the gas pressure in the sealed container suppresses the increase in the internal pressure of the sealed packaged food, and rupture occurs.
  • This is an epoch-making food heat treatment method that is more practical and can prevent the packaged food from being compressed and ruptured by the external pressure in the sealed container.
  • the strength and sealing strength of the container itself such as a resin container with a top lid, are weak! This is effective for food packaging.
  • the sealed liquid is supplied with a heating liquid of 100 ° C or higher heated by a heating source from an injection device provided in a sealed communication state with the inside of the sealed container.
  • the epoch-making food heat treatment apparatus is excellent in practicality, and can be surely realized in the food heat treatment method having the above-mentioned actions and effects.
  • the circulating and injecting device portion that injects the heated liquid recovered from the sealed container through the recovery passage portion into the sealed container again through the injection passage portion. Because the consumption of heated liquid is reduced, the heated liquid recovered after injection can be reused by simply reheating the reduced temperature required for heat exchange to food. There is no waste of energy in heating the heated liquid, and the economy can be further improved. Even if the heated liquid does not accumulate excessively in the sealed container, It becomes a revolutionary food heat treatment device with excellent practicality that can be easily designed and realized in a structure where the food is sealed and pressurized and the food is not submerged.
  • the heating source is provided in the circulation injection device section, the circulating heating liquid can be efficiently heated, and energy is wasted in heating the heating liquid.
  • This is an epoch-making food heat treatment apparatus with excellent practicality, which can further improve economy.
  • the sealed container can be forcibly held under a predetermined gas pressure by the pressurizing device, a heated liquid of 100 ° C or higher is used. It becomes an epoch-making food heat treatment apparatus that can be efficiently injected and can easily control the temperature of the heated liquid to be injected.
  • the food 2 is placed in the sealed container 1, and a heating liquid of 100 ° C or higher heated by the heating source 8 is injected into the inner space of the sealed container 1 toward the food 2, but in the present invention, The heated liquid that fills the sealed container 1 with the injected heated liquid and does not immerse the food 2 in the heat treatment is applied to the food 2 or the food package 3 or their cover 4. Hit it. Then, the sealed container 1 becomes a sealed pressurized space, and the food 2 is also heated to 100 ° C or higher by the heat of the heated liquid of 100 ° C or higher.
  • the heating liquid does not exceed 100 ° C under normal pressure, but when a heating liquid of 100 ° C or more is injected into the sealed container 1, Then, the gas in the sealed container 1 is heated and expanded by the heat of the heated liquid, so that the sealed container 1 becomes a sealed pressurized space in which the gas pressure is increased, and the heated liquid exceeding 100 ° C is supplied.
  • the liquid can be injected without vaporization or boiling.
  • an injection device section 12 for injecting heated liquid into the sealed container 1 in a state of hermetically communicating with the sealed container 1 a heated liquid of 100 ° C. or more heated by the heating source 8 is contained in the sealed container 1. Can be reliably injected.
  • the food 2 is heat-treated efficiently in a short time by the heat of the heated liquid of 100 ° C or higher.
  • the gas pressure in the sealed container 1 is maintained at a gas pressure higher than the saturated vapor pressure of the heated liquid by the pressurizing means 10, the heated liquid of 100 ° C or higher is surely and immediately. Can be injected in a liquid state, so that the food 2 can be heat-treated in a shorter time and more efficiently.
  • the temperature of the heated liquid is increased to a heating temperature equivalent to that of fried cooking or fried cooking using oil by maintaining the gas pressure in the sealed container 1 at a high pressure.
  • the gas pressure in the sealed container 1 is maintained at a high pressure at which a heated liquid of about 180 ° C can be injected (same or higher than the saturated vapor pressure of the heated liquid at 180 ° C).
  • the food 2 is heat-treated with a heated liquid of about 180 ° C. and maintained at a high pressure, and so-called non-fry cooking without using oil can be achieved.
  • the heat treatment temperature for food 2 is higher than 180 ° C, acrylamide and melanoidin may be produced depending on the food, so a heating liquid of 180 ° C or lower (preferably lower than 180 ° C) is injected. It is preferable to do heat treatment.
  • Escherichia coli in food 2 is about 60 ° C
  • botulinum which is a heat-resistant bacterium, is 110 ° C to 120 ° C. It can be sterilized at about ° C, and almost all microorganisms can be sterilized at about 110 ° C to 120 ° C.
  • the gas pressure in the sealed container 1 is maintained at a high pressure at which a heated liquid of about 120 ° C can be injected (at a pressure equal to or higher than the saturated vapor pressure of the heated liquid at 120 ° C).
  • a heated liquid at 120 ° C By injecting a heated liquid at 120 ° C, the food 2 can be reliably heat-sterilized.
  • the inside of the sealed container 1 is maintained at a gas pressure higher than the saturated vapor pressure of the heated liquid of 100 ° C or higher, the food 2 is heated in the food 2 even if it is heated to 100 ° C or higher. It is possible to heat-treat the food 2 that does not easily vaporize or evaporate, without significantly degrading the texture and umami of the food.
  • the food 2 can be subjected to the heat treatment equivalent to the conventional technique more efficiently than the conventional technique.
  • the hermetically packaged food 2 is, for example, a hermetically packaged food that does not contain a non-condensable gas such as air, that is, a deaerated food 2 and a non-condensable gas such as air.
  • a non-condensable gas such as air
  • Possible power of hermetically sealed food that is, air-packed food 2 Any force, if food 2 contains liquid, is the force! ]
  • the vapor pressure of the liquid in food 2 becomes equal to the external pressure due to heat, it boils and vaporization occurs from the inside of the liquid in food 2.
  • the vapor pressure of the liquid at a predetermined temperature can be easily obtained by the Antoine equation (1). Even multi-component systems such as food 2 can be calculated.
  • Equation (1) P is the vapor pressure, ⁇ is the temperature, and A, B, and C are constants specific to various components.
  • the gauge pressure is 0.042MPa
  • the water pressure of 120 ° C water is 0.097MPa, which is in the range from 10 ° C to 168 ° C. According to the formula (1).
  • the lower limit of the temperature of the heated liquid was set to 80 ° C or higher in the heat treatment of the food 2 hermetically packaged in the food package 3.
  • the strength of the container itself and the sealing strength are weak, and when the food packaging 3 is used, even if the heat treatment is performed with a heated liquid at a temperature that can be injected as a liquid under normal pressure, the inside of the sealed container 1 Before gas pressure It was necessary to maintain the gas pressure higher than the saturated vapor pressure of the heating liquid.
  • the pressure Pg accompanying the expansion of the gas is generated along with the vapor pressure of the liquid, according to Boyle's Law.
  • the partial pressure Pw of the liquid component in the gas pressurized by the pressure of the non-condensable gas is larger than the saturated vapor pressure P.
  • is a constant fugacity
  • V is the molar volume of the liquid
  • R is the gas constant
  • T is the temperature
  • the vapor pressure of a liquid containing a non-condensable gas such as air is ⁇ (Pg + PXE) ZP ⁇ times larger than the vapor pressure of the liquid without it.
  • the saturated vapor pressure (gauge pressure) of water is 0.097 MPa from the Antoine equation.
  • the actual measurement was 0.180 MPa, and an internal pressure of about 1.4 times the saturated vapor pressure was generated.
  • the force depending on what food package 3 is used for the heat treatment At least the strength of the container itself and the sealing strength, such as the resin container 7 with the upper lid 6 are relatively weak!
  • the gas pressure in the closed body 1 is less than 1.2 times the saturated vapor pressure of the heated liquid, the pressure in the food package 3 due to moisture vaporization or air expansion will be greater than the pressure in the closed container 1.
  • the above-described food heat treatment method of the present invention can arrange the food 2 hermetically packaged in the food 2 or the food packaging 3 and can provide a hermetic container 1 capable of holding or holding a predetermined gas pressure.
  • an injection device 12 that can inject the heated liquid heated by the heating source 8 into the sealed container 1 is provided, and the injection device 12 is provided in a sealed communication state with the inside of the sealed container 1. This can be easily realized by using a food heating apparatus configured to be able to keep the gas pressure in the injection device section 12 and the sealed container 1 equal.
  • Fig. 1 shows a food heat treatment apparatus according to the present embodiment.
  • This example shows food 2 (hereinafter, aeration-packed food 2) hermetically packaged in a food package 3 such as a grease container 7 with an upper lid 6 shown in FIG.
  • a plurality of case-like cover bodies 4 are accommodated in the case-like cover body 4, and a plurality of case-like cover bodies 4 are arranged in the sealed container 1 capable of holding or holding a predetermined gas pressure of the food heating apparatus.
  • the sealed container 1 Rather than injecting hot water of 80 ° C to 120 ° C into the sealed container 1 and submerging the cover body 4 containing the food 2 in the heated liquid, the sealed container 1 In this case, the heated liquid injected into the cover body 4 is applied to the cover body 4 in which the food 2 is stored, and the food 2 disposed in the sealed container 1 serving as a sealed pressurized space is heated by the heat of the heated liquid. is there. [0074] Each part of the food heat treatment apparatus of the present embodiment will be specifically described.
  • the sealed container 1 is provided with food 2 or hermetically packaged food 2 and is configured to have heat resistance as well as pressure resistance capable of holding or holding a predetermined gas pressure.
  • Reference numeral 11 in the figure denotes a shelf board.
  • the hermetically sealed container 1 and the shelf board 11 are made of stainless steel and have excellent corrosion resistance.
  • the pressurizing device unit 10 is provided in the hermetic container 1, and the pressurizing device unit 10 can forcibly pressurize the inside of the hermetic container 1 to maintain a predetermined gas pressure. It is said.
  • the compressor 10 is used as the pressurizing device unit 10.
  • the compressor 10 can feed a gas such as air into the sealed container 1 to reliably maintain the gas pressure in the sealed container 1 higher than the saturated vapor pressure of the heated liquid.
  • an injection device unit 12 for injecting a heating liquid into the sealed container 1 is provided, and the injection device unit 12 is provided in a sealed communication state with the sealed container 1. It has a configuration. Further, in this embodiment, the heating device 8 is provided in the injection device section 12.
  • the gas pressures in the heating source 8, the injection device unit 12, and the sealed container 1 are equalized. Therefore, it is possible to efficiently heat the heating liquid of the heating source 8 while applying the same pressure as the inside of the sealed container 1 without providing a special pressurizing device to the heating source 8. .
  • the injection device section 12 is configured by the sealed container 1, the injection path section 8a, and the recovery path section 8b, and the heating liquid is injected into the sealed container 1 from the injection path section 8a, The heated liquid injected into the hermetic container 1 is recovered by the recovery path part 8b, and is reinjected into the sealed container 1 through the injection path part 8a.
  • a heating source 8 is provided as a configuration in which a heating source 8 is provided.
  • the injection device unit 12 is the circulation injection device unit 12
  • the consumption of the heating liquid is small, and the heating liquid recovered after the injection is necessary for heat exchange with the food. Then drop Therefore, it is possible to reuse the heated liquid only by reheating, so that there is no waste of energy in heating the heated liquid, which can further improve the economy, and the heated liquid is excessive in the sealed container 1.
  • the food in the sealed container 1 is not submerged even if the heated liquid is continuously injected.
  • the heating source 8 is provided on the recovery path portion 8b side of the circulating injection device portion 12. Therefore, as compared with the case where the heating source 8 is provided on the injection path portion 8a side of the circulating injection device section 12, the temperature of the heating liquid can be suppressed and heating by the heating source 8 can be performed at low cost.
  • the heating source 8 may be, for example, a configuration provided in the sealed container 1.
  • the heating liquid 8 Therefore, the heating by the heating source 8 can be performed at a lower cost.
  • the heating source 8 an appropriate heating device such as a gas heater, an electric heater or a heat exchanger was provided, and a temperature control device for controlling the heating temperature of the heating liquid was provided. With this heating device and temperature control device, heating is performed when the temperature of the heating liquid of the heating source 8 is lower than the set temperature, and heating is not performed when the set temperature is reached. Yes.
  • a thermostat is specifically employed as the temperature control device. According to the thermostat, the heating temperature of the heated liquid can be easily adjusted, and a heated liquid with the desired temperature can be obtained reliably. Can do.
  • the liquid spraying unit 5 is provided in the circulating injection device unit 12, and the heated liquid can be sprayed and injected from the liquid spraying unit 5 into the internal space of the sealed container 1.
  • a nozzle 5 that sprays and injects the heating liquid from the upper side of the sealed container 1 in the form of a mist or a spray is used as the spray part 5.
  • the nozzle 5 that sprays and injects the heated liquid in the form of a mist or shower the heated liquid can be evenly distributed in the space inside the sealed container 1 to heat the food 2 uniformly, and the production efficiency can be improved. improves.
  • the spraying part 5 can be appropriately employed as long as the heated liquid can be dripped or poured into the food 2 in the space inside the sealed container 1, and is not limited to the upper side of the sealed container 1. Lower side or side It is good also as a structure provided in the surface.
  • the present embodiment is configured to include a cooling source 9 that is in a closed communication state with the hermetic container 1, and the cooling liquid cooled by this cooling source 9 is contained in the hermetic container 1 via the injection path 9 a. And a recovery path 9b for recovering the cooling liquid in the sealed container 1 injected from the injection path 9a.
  • the cooling source 9 may have a ventilation cooling structure by sending a gas such as air into the sealed container 1. Alternatively, it may be configured to spray water directly or from a water storage tank into the sealed container 1.
  • heating source 8 and the cooling source 9 of the present embodiment can be installed inside the sealed container 1.
  • reference numeral 13 denotes a pump for circulating injection of the heating liquid
  • reference numeral 14 in the figure denotes a pump for circulating injection of the cooling liquid.
  • the food 2 is not arranged directly in the sealed container 1, but stored in the case-like force bar body 4, so that the food 2 in the sealed container 1 can be arranged and arranged.
  • This makes it easy to automate this work, so that it is excellent in workability and mass productivity, and the food 2 stored in the case-like force bar body 4 does not get wet. It can also be applied to food 2 in open containers and foods 2 that are vulnerable to water soaking, and a water removal process is certainly unnecessary.
  • the cover body 4 may employ an appropriate cover body such as an eaves shape or a cylindrical shape so that the heated liquid does not directly hit the food 2.
  • the case-like cover body 4 is excellent in hermeticity and it is difficult for the heat of the heated liquid to escape, so the food 2 can be heated efficiently.
  • a force configured to place a plurality of the case-like cover bodies 4 on the shelf plate 11
  • the case-like cover bodies 4 are placed in the sealed container 1.
  • An appropriate arrangement method can be employed, for example, in a suspended state.
  • Experimental example 1 is a food package 3 such as a grease container 7 with a top lid 6 containing 20 ° C air. This is the case when hermetically packaged food 2 (hereinafter aerated packaged food 2) is heated to 80 ° C under atmospheric pressure.
  • hermetically packaged food 2 hereinafter aerated packaged food 2
  • the air-wrapped food 2 is inserted into the case-shaped cover body 4 and pressurized by sending air into the sealed container 1 with the compressor 10 to maintain a pressure of 0.036 MPa (gauge pressure). It was.
  • the water in the heating source 8 was heated to 100 ° C hot water, and this hot water was distributed from the top of the case 4. After about 35 minutes, the spraying of hot water was stopped, and water from the cooling device 9 to 20 ° C was sprayed from the top of the case 4 and cooled.
  • Fig. 4 shows the results of measurement with the temperature of food 2 being Tl, the temperature in case-like cover body 4 being ⁇ 2, and the temperature of water (heating liquid) of heating source 8 being ⁇ 3.
  • food package 2 such as a resin container 7 with an upper lid 6 and the like was sealed and packaged in a state containing air at 20 ° C (hereinafter referred to as air-packaged food 2) at a pressure lower than atmospheric pressure. lOOMPa when heated to 110 ° C under high pressure.
  • Fig. 5 shows the results of actual measurements with ⁇ 2 and the temperature of water (heating liquid) of heating source 8 as ⁇ 3.
  • Experimental example 5 is a food package 3 such as a resin container 7 with a top lid 6 or the like, and food 2 (sealed packaged food 2) hermetically packaged in a state containing 20 ° C air, and water 120 ° C.
  • food 2 sealed packaged food 2
  • the air-packed food 2 is inserted into the case-like cover body 4 and pressurized by sending air into the sealed container 1 with the compressor 10, which is 2.5 times the saturated vapor pressure at 120 ° C. 0.243MPa
  • the pressure of (gauge pressure) was maintained.
  • the water in the heating source 8 was heated to 120 ° C.
  • the medium When water is employed as the heating medium, the medium itself needs to be pressurized when water is heated to 100 ° C or higher. When heating at 120 ° C, it can be said that if the gas pressure is about 1.4 times the saturated vapor pressure, bag breakage will not occur.
  • Experimental example 6 is water 2 (hereinafter referred to as an object to be treated) that contains 20 ° C air and 10 8 Zml of Escherichia coli and lactic acid bacteria in a food packaging 3 such as a grease container 7 with an upper lid 6.
  • the object to be treated is heated to 80 ° C under a pressure of 180 MPa higher than atmospheric pressure.
  • the object to be treated is inserted into the case-like cover body 4 and the air is sealed with the compressor 10. It was pressurized by being fed into it and maintained a pressure of 0.180 MPa.
  • 80 ° C. hot water obtained by heating the water (heating liquid) in the heating source 8 with a heater was sprayed from the top of the case-like cover body 4 through the spraying part 5.
  • the food 2 can be sterilized at 80 ° C to 120 ° C in the same manner as before while preventing rupture due to an increase in the internal pressure of the packaged food 2. It can be cooked, food 2 can be heat-treated equivalent to the prior art more efficiently than the prior art, and it only needs the amount of heat to heat the liquid injected into the sealed container 1 Therefore, compared with the conventional technology that fills the entire treatment tank with high-temperature and high-pressure hot water and immerses food, The time required for heating the body is remarkably shortened, and the heat energy required for heating is significantly reduced, and the force is not soaked in water as in the prior art.
  • the heated liquid since the inside of the sealed container 1 is maintained at a gas pressure higher than the saturated vapor pressure of the heated liquid, the heated liquid remains in the sealed container 1 in a liquid state without vaporization or boiling. Because the heated liquid can be heated efficiently with this heated liquid, and the heated food will be calo-heat treated to the same temperature as this heated liquid without any change in state such as vaporization or boiling. In addition, it can be cooked and sterilized while keeping the food in good condition, and in particular, it is an aerated type packaged food 2 containing non-condensable gas such as air, which was impossible with the prior art. However, cooking and sterilization can be performed without causing rupture.
  • the packaged food 2 does not contain non-condensable gas such as air! Even in the case of food that has been sealed and packaged in a sealed state, that is, food 2 that has been degassed, the liquid is vaporized by heating, and internal pressure is generated in the food package 3, leading to broken bags. Similarly, this embodiment is effective.
  • the present example is applicable to food packaged in a metal container, a heat-resistant and air-tight soft grease bag (bouch), etc. You may do it.
  • Example 2
  • Example 2 of the present invention will be described.
  • a plurality of starch-containing materials 2 that are not packaged are stored side by side in the case-like cover integral 4 shown in Fig. 3, and the case-like cover body containing the starch-containing materials 2 is stored.
  • This is a case where the starch-containing material 2 is heated through the case-like cover body 4 by arranging a plurality of 4 in the sealed container 1 and injecting a heated liquid at 180 ° C. into the sealed container 1. The rest is the same as in Example 1.
  • Specific experimental examples of the present invention are shown below.
  • the present embodiment is as described above, even when the food 2 is stored in the cover body 4 as it is, the food 2 can be prevented from getting wet, and the food 2 that is not packaged. However, it can be easily cooked and sterilized, and the strength can also suppress the formation of harmful acrylamide, for example when cooking starch foods at temperatures above 180 ° C. It becomes a food cooking device.
  • FIG. 1 is a schematic view of a food processing apparatus of Example 1.
  • FIG. 1 is a schematic view of a food processing apparatus of Example 1.
  • FIG. 2 is an explanatory view of the aerated packaged food of Example 1.
  • FIG. 3 is an explanatory diagram of a case of Example 1.
  • FIG. 4 is a graph showing measured values in Experimental Example 2.
  • FIG. 5 is a graph showing measured values of Experimental Example 3.
  • FIG. 6 is a graph showing measured values in Experimental Example 4.
  • Pressurizing means pressurizing unit, injection unit, circulating injection unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

 本発明は、従来技術と同等の加熱調理及び加熱殺菌を、従来技術よりも経済性や生産性を向上させながら行うことができる実用性に秀れた画期的な食品加熱処理方法を提供することを課題としている。所定の気体圧力を保持若しくは保持し得る密閉容体1内に食品2を配置し、加熱源8により加熱した100°C以上の加熱液体を、前記密閉容体1内空間へ前記食品2に向けて注入し、前記食品2を前記加熱液体内に液没させて加熱処理するのではなく、前記密閉容体1内に注入する加熱液体を食品2若しくはこの食品包装体3若しくはこれらのカバー体4に当てて、密閉加圧空間となる前記密閉容体1内に配置された食品2をこの加熱液体の熱により加熱処理することを特徴とする食品加熱処理方法。

Description

明 細 書
食品加熱処理方法並びに食品加熱処理装置
技術分野
[0001] 本発明は、食品の殺菌や調理を行うために用いる食品加熱処理方法並びに食品 加熱処理装置に関するものである。
背景技術
[0002] 缶詰やレトルト食品は、金属容器や耐熱性及び気密性のある軟質榭脂袋 (バウチ) 内に封入した食品を 110°C〜120°C程度の温度で高温高圧処理 (耐熱性菌であるボ ッリヌス菌等を滅菌するため、 F値で 4 (121°C X 4分)に相当する熱量が加えられてい る。)することによって加熱調理及び加熱殺菌を施した保存食であり、容易に製造販 売され広く利用されている。
[0003] また、従来、食品に 100°C以上の高温高圧処理を施す場合は、食品を加熱加圧媒 体である水 (湯)若しくは水蒸気で処理するのが一般的であり、具体的には前者の場 合、処理槽を水 (湯)で満たして食品を浸漬した後、その水をポンプ等で加圧しなが ら加熱して高温高圧の湯として所定の時間の保持を行い、後者の場合、食品を配置 した密閉容体に高温高圧の水蒸気を充満して所定の時間の保持を行っている(以下 、従来技術と称す。)。
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上述した従来技術は、前者の場合には、処理槽全体を高温高圧の 水で満たすため、水 (湯)を所定温度に加熱するために長時間を要すると共に、大量 の熱エネルギーを要し経済性に劣り、また、高温高圧の水中に浸漬することで食品 が浮遊してしまうために処理後の食品回収作業に手間がかかり、速やかに次工程へ と移行できず、生産性の低下を招いている。更に、食品を水中へ浸漬しなければなら な 、ため、密封包装されて 、な!、食品への適用が困難であると 、う欠点もあった。
[0005] また、後者の場合には、食品を包装せずとも処理可能であるが、水に比べて水蒸 気は熱効率が悪いため、食品を内部まで加熱するのに長時間を要し、生産性が悪い という欠点があった。
[0006] 本発明は、このような従来の食品加熱処理方法の現状に鑑み、これらの問題点を 解決するためのもので、従来技術と同等の加熱調理及び加熱殺菌を、従来技術より も経済性や生産性を向上させながら行うことができる画期的な食品加熱処理方法並 びにこの食品加熱処理方法を実現可能な食品加熱処理装置を提供するものである 課題を解決するための手段
[0007] 添付図面を参照して本発明の要旨を説明する。
[0008] 所定の気体圧力を保持若しくは保持し得る密閉容体 1内に食品 2を配置し、加熱源 8により加熱した 100°C以上の加熱液体を、前記密閉容体 1内空間へ前記食品 2に 向けて注入し、前記食品 2を前記加熱液体内に液没させて加熱処理するのではなく 、前記密閉容体 1内に注入する加熱液体を食品 2若しくはこの食品包装体 3若しくは これらのカバー体 4に当てて、密閉加圧空間となる前記密閉容体 1内に配置された食 品 2をこの加熱液体の熱により加熱処理することを特徴とする食品加熱処理方法に 係るものである。
[0009] また、前記密閉容体 1に前記加熱液体を注入する注入装置部 12を設け、この注入 装置部 12は、前記密閉容体 1の内部と密閉連通状態に設けて、この注入装置部 12と 前記密閉容体 1内の気体圧力を同等に保持し得る構成とし、この注入装置部 12から 前記密閉容体 1内に加熱源 8により加熱された加熱液体を注入することを特徴とする 請求項 1記載の食品加熱処理方法に係るものである。
[0010] また、前記密閉容体 1内を、加圧手段 10により該密閉容体 1内に注入される前記カロ 熱液体の飽和蒸気圧と同一若しくは高 、気体圧力に保持して、この密閉容体 1内に 100°C以上 180°C以下の加熱液体を注入することを特徴とする請求項 1, 2のいずれ 力 1項に記載の食品加熱処理方法に係るものである。
[0011] また、前記注入装置部 12により前記密閉容体 1内に注入された前記加熱液体を、 前記注入装置部 12へ循環供給してこの注入装置部 12から密閉容体 1内へと循環注 入させることを特徴とする請求項 2記載の食品加熱処理方法に係るものである。
[0012] また、前記注入装置部 12により前記密閉容体 1内に注入された前記加熱液体を、 前記注入装置部 12へ循環供給してこの注入装置部 12から密閉容体 1内へと循環注 入させることを特徴とする請求項 3記載の食品加熱処理方法に係るものである。
[0013] また、所定の気体圧力を保持若しくは保持し得る密閉容体 1内に密閉包装した食 品 2を配置し、 80°C以上の加熱液体を、前記密閉容体 1内空間へ前記密閉包装した 食品 2に向けて注入し、前記密閉包装した食品 2を前記加熱液体内に液没させてカロ 熱処理するのではなく、前記密閉容体 1内に注入する加熱液体を密閉包装した食品 2の食品包装体 3若しくはこの密閉包装した食品 2のカバー体 4に当てて、密閉加圧 空間となる前記密閉容体 1内に配置された密閉包装した食品 2をこの加熱液体の熱 により加熱処理することを特徴とする食品加熱処理方法に係るものである。
[0014] また、前記密閉容体 1に前記加熱液体を注入する注入装置部 12を設け、この注入 装置部 12は、前記密閉容体 1の内部と密閉連通状態に設けて、この注入装置部 12と 前記密閉容体 1内の気体圧力を同等に保持し得る構成とし、この注入装置部 12から 前記密閉容体 1内に加熱源 8により加熱された加熱液体を注入することを特徴とする 請求項 6記載の食品加熱処理方法に係るものである。
[0015] また、前記密閉容体 1内を、加圧手段 10により該密閉容体 1内に注入される前記カロ 熱液体の飽和蒸気圧よりも高!、気体圧力に保持して、この密閉容体 1内に 80°C以上 180°C以下の加熱液体を注入することを特徴とする請求項 6記載の食品加熱処理方 法に係るものである。
[0016] また、前記密閉容体 1内を、加圧手段 10により該密閉容体 1内に注入される前記カロ 熱液体の飽和蒸気圧よりも高!、気体圧力に保持して、この密閉容体 1内に 80°C以上 180°C以下の加熱液体を注入することを特徴とする請求項 7記載の食品加熱処理方 法に係るものである。
[0017] また、前記注入装置部 12により前記密閉容体 1内に注入された前記加熱液体を、 前記注入装置部 12へ循環供給してこの注入装置部 12から密閉容体 1内へと循環注 入させることを特徴とする請求項 7記載の食品加熱処理方法に係るものである。
[0018] また、前記注入装置部 12により前記密閉容体 1内に注入された前記加熱液体を、 前記注入装置部 12へ循環供給してこの注入装置部 12から密閉容体 1内へと循環注 入させることを特徴とする請求項 8記載の食品加熱処理方法に係るものである。 [0019] また、前記注入装置部 12により前記密閉容体 1内に注入された前記加熱液体を、 前記注入装置部 12へ循環供給してこの注入装置部 12から密閉容体 1内へと循環注 入させることを特徴とする請求項 9記載の食品加熱処理方法に係るものである。
[0020] また、前記密閉容体 1内は、加圧手段 10により前記加熱液体の飽和蒸気圧の 1. 2 倍以上から 2. 5倍以下の気体圧力に保持することを特徴とする請求項 6〜 12のいず れか 1項に記載の食品加熱処理方法に係るものである。
[0021] また、食品 2若しくは密閉包装した食品 2を配置可能であって、所定の気体圧力を 保持若しくは保持し得る密閉容体 1に、加熱源 8により加熱された加熱液体を密閉容 体 1内に注入し得る注入装置部 12を設け、この注入装置部 12は、前記密閉容体 1の 内部と密閉連通状態に設けて、この注入装置部 12と前記密閉容体 1内の気体圧力 を同等に保持し得る構成としたことを特徴とする食品加熱処理装置に係るものである
[0022] また、前記密閉容体 1に、前記加熱液体を密閉容体 1内に注入する注入経路部 8a と、密閉容体 1内に注入された加熱液体を回収して前記注入経路部 8aへ供給する 回収経路部 8bとを設けて、この密閉容体 1と注入経路部 8aと回収経路部 8bとで、密 閉容体 1内から回収経路部 8bを介して回収された加熱液体を注入経路部 8aを介し て再び密閉容体 1内へと注入する循環注入装置部 12を構成したことを特徴とする請 求項 14記載の食品加熱処理装置に係るものである。
[0023] また、前記循環注入装置部 12に前記加熱源 8を設けたことを特徴とする請求項 15 記載の食品加熱処理装置に係るものである。
[0024] また、前記密閉容体 1に加圧装置部 10を設け、この加圧装置部 10により密閉容体 1 内を強制的に加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請 求項 14記載の食品加熱処理装置に係るものである。
[0025] また、前記密閉容体 1に加圧装置部 10を設け、この加圧装置部 10により密閉容体 1 内を強制的に加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請 求項 15記載の食品加熱処理装置に係るものである。
[0026] また、前記密閉容体 1に加圧装置部 10を設け、この加圧装置部 10により密閉容体 1 内を強制的に加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請 求項 16記載の食品加熱処理装置に係るものである。
[0027] また、前記注入装置部 12に散液部 5を設けて、この散液部 5から前記密閉容体 1内 に加熱液体を散布注入し得るように構成したことを特徴とする請求項 14〜 19のいず れか 1項に記載の食品加熱処理装置に係るものである。
発明の効果
[0028] 本発明は上述のように、所定の気体圧力を保持若しくは保持し得る密閉容体内に 食品を配置し、加熱源により加熱した 100°C以上の加熱液体を、前記密閉容体内空 間へ前記食品に向けて注入するから、少なくとも加熱液体の注入により密閉容体内 が密閉加圧空間となってこの密閉容体内に確実に 100°C以上の加熱液体を注入で き、この 100°C以上の加熱液体の熱により食品に従来技術と同等の加熱処理を効率 良く施すことができ、また、例えば密閉容体内を液体で満たし食品を前記加熱液体 内に液没させて加熱処理するのではなく、前記密閉容体内に注入する加熱液体を 食品若しくはこの食品包装体若しくはこれらのカバー体に当てて密閉加圧空間となる 前記密閉容体内に配置された食品をこの加熱液体の熱により加熱処理するから、加 熱源においては密閉容体内へ注入する液体を加熱するだけの熱量しか要しないた め、処理槽全体を高温高圧の湯で満たして食品を浸漬する従来技術と比べて、液体 の加熱に要する時間が著しく短縮すると共に、加熱に要する熱エネルギーも著しく省 エネルギーとなり、し力も、食品を水中に液没しないから、包装されていない食品にも 適用可能であるし、加熱処理後の食品回収作業が容易に行われるなど、従来技術よ り省エネルギー ·低コストで汎用性が高く効率の良い加熱処理生産を実現でき、その 上、密閉容体内 (密閉加圧空間内)の気体圧力を変更することだけで、目的に応じた 温度の加熱液体を注入可能であるので、 100°C以上の加熱液体を使用する構成で ありながら、その温度管理を容易に行うことができる極めて実用性に秀れた画期的な 食品加熱処理方法となる。
[0029] また、請求項 2, 7に記載の発明によれば、加熱液体を注入する注入装置部を密閉 容体の内部と密閉連通状態に設けたから、密閉容体内と同等の気体圧力に保持さ れる注入装置部から確実に加熱源によって加熱された 100°C以上の加熱液体を密 閉容体内に注入できると共に、密閉容体内を確実に密閉加圧空間としながら食品に 加熱処理を施し得ることとなる一層実用性に秀れた画期的な食品加熱処理方法とな る。
[0030] また、請求項 3に記載の発明によれば、密閉容体内を、加圧手段によって確実にこ の密閉容体内に注入される前記加熱液体の飽和蒸気圧と同一若しくは高!ヽ気体圧 力に保持することができるから、 100°C以上の加熱液体を気化や沸騰を抑制して確 実に液体の状態で密閉容体内に注入することが容易に行われると共に、加圧手段に よって予め密閉容体内を高圧に保持しておくことにより、直ちに 100°C以上の加熱液 体を液体の状態で注入して熱効率の良 、加熱処理を行えるので生産効率が一層向 上することになり、し力も加圧手段により注入する加熱液体の温度設定 (温度管理)を 容易に行うことができるので、食品の殺菌や食品の調理などを目的に応じた温度管 理によって容易に行うことができるし、食品によっては 180°Cより高い温度加熱でァク リルアミドゃメラノィジンが生成することがある力 加熱液体の温度を確実に 180°C以 下に設定でき安全な食品を容易に製造可能となるなど一層実用性に秀れた画期的 な食品加熱処理方法となる。
[0031] また、請求項 4, 5, 10〜12に記載の発明によれば、注入装置部により前記密閉容 体内に注入された前記加熱液体を、前記注入装置部へ循環供給してこの注入装置 部から密閉容体内へと循環注入させるから、加熱液体の消費量が少なくて済み、ま た、注入後回収される加熱液体は、食品への熱交換に要して低下した温度分を再カロ 熱するだけで再利用できるため、加熱液体の加熱におけるエネルギーの無駄が生じ ず、一層経済性を向上し得ることになり、しかも、加熱液体が密閉容体内で過剰にた まらず、加熱液体を注入し続けても密閉容体内が密閉加圧空間となって食品が液没 しない構成を実現できることになる極めて実用性に秀れた画期的な食品加熱処理方 法となる。
[0032] また、請求項 6に記載の発明によれば、密閉包装した食品に対して前記請求項 1記 載の発明と同等の作用 ·効果を発揮すると共に、例えば密閉包装した食品が液体と 共に空気等の気体を含み、加熱液体の加熱により食品包装体の内圧が高くなるもの であっても、同時に加熱液体の熱によって密閉容体内の圧力も高くなつて食品包装 体の膨張を抑制するので、密閉包装した食品が破裂することを防止しつつ加熱処理 が行われることとなる極めて実用性に秀れた画期的な食品加熱処理方法となる。
[0033] また、請求項 8, 9に記載の発明によれば、例えば密閉包装した食品が液体と共に 空気等の気体を含み、常圧 (ゲージ圧ゼロ)において 80°C程度の加熱でも破裂して しまうような食品包装体を用いた場合であっても、密閉容体内を、加圧手段によって 確実に加熱液体の飽和蒸気圧より高 、気体圧力に保持して加熱処理時の包装した 食品の破裂を容易に防止することができると共に、 100°C以上の加熱液体により加 熱処理する場合において、加圧手段により容易に密閉容体内の気体圧力を加熱液 体の飽和蒸気圧より高い気体圧力に保持できるため、この高圧に保持された密閉容 体内の気体圧力により食品中の液体の沸騰が抑制されて食品包装体内の内圧が上 昇しにくぐ内圧が上昇しても密閉容体内の気体圧力により押圧されて食品包装体 の膨張が抑制されるために、確実に破裂を防止しつつ加熱処理を行うことができる。
[0034] また、加圧手段によって予め密閉容体内を高圧に保持しておくことにより、直ちに 1 00°C以上の加熱液体を液体の状態で注入して熱効率の良い加熱処理を行うことも でき、しかも加圧手段により注入する加熱液体の温度設定 (温度管理)を容易に行う ことができるので、食品の殺菌や食品の調理などを目的に応じた温度管理によって 容易に行うことができるし、加熱液体の温度を確実に 180°C以下に設定して安全な 食品を容易に製造可能となるなど一層実用性に秀れた画期的な食品加熱処理方法 となる。
[0035] また、請求項 13に記載の発明によれば、加熱液体を気化や沸騰を抑制しながら確 実に液体の状態で密閉容体内に注入して密閉包装した食品を効率的に加熱処理す ることができ、しかも、例えば密閉包装した食品が液体と共に空気等の気体を含む場 合であっても、密閉容体内の気体圧力によりこの密閉包装した食品の内圧の上昇が 抑制されて破裂を防止できるし、包装した食品が密閉容体内の外圧によって圧縮さ れて破裂することも防止できる一層実用性に秀れた画期的な食品加熱処理方法とな る。例えば上蓋付き榭脂容器のような容器自体の強度もシール強度も弱!ヽ食品包装 体においては有効である。
[0036] また、請求項 14に記載の発明によれば、密閉容体の内部と密閉連通状態に設けら れた注入装置部から加熱源によって加熱された 100°C以上の加熱液体を密閉容体 内に注入可能であり、前記作用 ·効果を奏する食品加熱処理方法を確実に実現可 能となる極めて実用性に秀れた画期的な食品加熱処理装置となる。
[0037] また、請求項 15に記載の発明によれば、密閉容体内から回収経路部を介して回収 された加熱液体を注入経路部を介して再び密閉容体内へと注入する循環注入装置 部を構成したから、加熱液体の消費量が少なくて済み、また、注入後回収される加熱 液体は、食品への熱交換に要して低下した温度分を再加熱するだけで再利用できる ため、加熱液体の加熱におけるエネルギーの無駄が生じず、一層経済性を向上し得 ることになり、し力も、加熱液体が密閉容体内で過剰にたまらず、加熱液体を注入し 続けても密閉容体内が密閉加圧空間となって食品が液没しない構成を簡易に設計 実現可能となる極めて実用性に秀れた画期的な食品加熱処理装置となる。
[0038] また、請求項 16に記載の発明によれば、循環注入装置部に加熱源を設けたから、 循環する加熱液体を効率良く加熱することができ、加熱液体の加熱におけるエネル ギ一の無駄が一層生じず、一層経済性を向上し得ることになる極めて実用性に秀れ た画期的な食品加熱処理装置となる。
[0039] また、請求項 17〜 19に記載の発明によれば、密閉容体内を加圧装置部によって 所定の気体圧力に強制的に加圧保持できるため、 100°C以上の加熱液体を、効率 良く注入可能となると共に、注入する加熱液体の温度管理を容易に行うことができる 一層実用性に秀れた画期的な食品加熱処理装置となる。
[0040] また、請求項 20に記載の発明によれば、加熱液体を密閉容体内にムラ無く均一に 散布注入することも容易に可能となる為、一層効果的に加熱調理及び加熱殺菌を行 い得る実用性に秀れた画期的な食品加熱処理装置となる。
発明を実施するための最良の形態
[0041] 好適と考える本発明の実施形態 (発明をどのように実施するか)を、本発明の作用 を示して簡単に説明する。
[0042] 密閉容体 1内に食品 2を配置し、加熱源 8により加熱した 100°C以上の加熱液体を 、前記密閉容体 1内空間へ前記食品 2に向けて注入するが、本発明では、この注入 した加熱液体で密閉容体 1内を満たし前記食品 2を液没させて加熱処理するのでは なぐ前記加熱液体を食品 2若しくはこの食品包装体 3若しくはこれらのカバー体 4に 当てる。すると、密閉容体 1は密閉加圧空間となり、 100°C以上の加熱液体の熱によ つて食品 2も 100°C以上に加熱処理される。
[0043] 具体的には、例えば、加熱液体として水を採用した場合、常圧下では 100°Cを越え る加熱液体とはならないが、密閉容体 1内に 100°C以上の加熱液体を注入すると、こ の加熱液体の熱で密閉容体 1内の気体が加熱されて膨張し、これにより、密閉容体 1 内は気体圧力が上昇した密閉加圧空間となって、 100°Cを超える加熱液体を気化や 沸騰を生じることなく液体の状態のまま注入可能となる。また、例えば、密閉容体 1に 加熱液体を注入する注入装置部 12を、密閉容体 1内と密閉連通状態に設けることで 、加熱源 8により加熱した 100°C以上の加熱液体を密閉容体 1内に確実に注入可能 となる。
[0044] そして、液体は、蒸気などの気体に比べて熱伝導効率が良いので、この 100°C以 上の加熱液体の熱により短時間で効率良く食品 2が加熱処理される。また、この際、 特に、密閉容体 1内の気体圧力を、加圧手段 10によって加熱液体の飽和蒸気圧より 高い気体圧力に保持することとすれば、確実に且つ直ちに 100°C以上の加熱液体 を液体の状態のまま注入可能となるので、一層短時間で熱効率良く食品 2が加熱処 理されること〖こなる。
[0045] この 100°C以上の加熱液体の熱により、未調理若しくは半調理の食品 2に対しては 加熱調理がなされる。
[0046] また、本発明によれば、密閉容体 1内の気体圧力を高圧に保持することにより、油を 使用しての炒め調理や揚げ調理と同等の加熱温度まで加熱液体の温度を上昇させ ることが可能であり、例えば、密閉容体 1内の気体圧力を、 180°C程度の加熱液体を 注入可能となる高圧に保持(180°Cの加熱液体の飽和蒸気圧と同一若しくはそれよ り高!ヽ圧力に保持)して 180°C程度の加熱液体で食品 2を加熱処理することにより、 食品 2に対して油を使用しない所謂ノンフライ調理も達成できる。尚、食品 2に対する 加熱処理温度が 180°Cより高いと、食材によってはアクリルアミドゃメラノィジンが生 成するため、 180°C以下(180°Cより低い温度が好ましい。)の加熱液体を注入して 加熱処理を行うことが好まし 、。
[0047] また、食品 2中の大腸菌は 60°C程度、耐熱性菌であるボツリヌス菌は 110°C〜120 °C程度で殺菌でき、 110°C〜120°C程度でほぼ全ての微生物が殺菌できる。
[0048] 即ち、密閉容体 1内の気体圧力を、 120°C程度の加熱液体を注入可能となる高圧 に保持(120°Cの加熱液体の飽和蒸気圧と同一若しくはそれより高い圧力に保持)し て 120°Cの加熱液体を注入することにより、食品 2に対し確実な加熱殺菌処理を施す ことちでさる。
[0049] このように、密閉容体 1内の気体圧力を変更することで、目的に応じた温度の加熱 液体を注入可能であるので、 100°C以上の加熱液体を使用する構成でありながら、 その温度管理を容易に行うことができる。また、例えば、加圧手段 10を用いることで、 この温度管理を一層容易に行うことが可能となる。
[0050] また、密閉容体 1内が 100°C以上の加熱液体の飽和蒸気圧よりも高い気体圧力に 保持されていることで、食品 2が 100°C以上に加熱処理されても食品 2中の水分の気 化や蒸発が生じにくぐ食品 2の食感や旨味を大きく損なうことなく加熱処理すること が可能である。
[0051] 従って、本発明では、上記したように食品 2に従来技術と同等の加熱処理を、従来 技術よりも効率良く施すことができる。
[0052] また、密閉容体 1内へ注入する液体 (加熱液体)を加熱するだけの熱量しか要しな いため、処理槽全体を高温高圧の湯で満たして食品を浸漬する従来技術と比べて、 液体の加熱に要する時間が著しく短縮すると共に、加熱に要する熱エネルギーも著 しく省エネルギーとなり、し力も、従来技術のように食品を水中に浸漬しないから、カロ 熱処理後の食品 2の回収作業が容易に行われて効率の良い生産が可能となり、生 産性の向上とコストダウンとを両立して実現できた。
[0053] また、密閉包装した食品 2を加熱処理する場合を説明する。
[0054] 密閉包装した食品 2には、例えば、空気等の非凝縮性気体を含まない状態で密封 包装した食品、即ち脱気包装した食品 2と、空気等の非凝縮性気体を含む状態で密 封包装した食品、即ち含気包装した食品 2との二種類が考えられる力 いずれの包 装形態であっても、食品 2が液体を含んだものである場合、力!]熱によって食品 2中の 液体の蒸気圧が外圧と等しくなると沸騰し、この食品 2中の液体の内部から気化が起 こる。 [0055] 液体の所定温度における蒸気圧はアントワンの式(1)により容易に求められる。食 品 2のような多成分系でも計算で求めることができる。
[0056] P=A-B/ (C+ Θ ) · · · (1)
尚、前記式(1)において、 Pは蒸気圧、 Θは温度、 A、 B、 Cは各種成分に特有な定 数である。
[0057] 例えば、 110°Cの水の蒸気圧であれば、ゲージ圧で 0. 042MPa、 120°Cの水の蒸 気圧は 0. 097MPaであり、 10°Cから 168°Cまでの範囲で前記式(1)に従う。
[0058] ここで、 1mlの水が加熱により水蒸気へと状態変化した場合は、 1700ml (100°C) の体積を占めるようになる。
[0059] そのため、密閉包装した食品 2の場合、加熱液体の熱によって加熱されると、食品 包装体 3が食品 2に含まれる水の気化により膨張して破裂すると考えられるが、本発 明では、加熱液体の熱によって密閉容体 1内の空気も加熱されて食品包装体 3の内 圧と略同等の密閉加圧空間となるため、この密閉容体 1内の気体圧力によって食品 包装体 3の膨張が抑制され、破裂を防止しつつ加熱処理が行われることになる。
[0060] ところが、榭脂容器 7を上蓋 6でシールする食品包装体 3で食品 2を包装し、これを 1気圧 (ゲージ圧 0)の密閉容体 1内で 80°Cの加熱液体の注入により加熱処理する実 験 (後述する実験例 1)を行ったところ、この条件下で食品包装体 3に破裂を生じるこ とが確認された。つまり、食品包装体 3の破損の要因は、食品包装体 3自体の強度、 食品包装体 3内部の空気の容量、食品包装体 3のシール強度等が大きく関係するが 、特に、強度の弱い食品包装体 3に対しては上記したような作用 '効果が得られない 場合があることが分力つた (缶詰の缶のような強度のある食品包装体 3であれば上記 効果'作用は達成できると考えられる)。更に、同様の食品包装体 3 (上蓋 6付き榭脂 容器 7)において、含気容量が多かったり、シール強度が弱力つたりするものは 80°C 程度の湯をかけても破裂する場合があることが確認された。
[0061] これらの実験結果をふまえて、食品包装体 3に密閉包装した食品 2の加熱処理に 際しては加熱液体の温度の下限を 80°C以上とした。また、特に、容器自体の強度や シール強度の弱 、食品包装体 3を使用する場合には、常圧下で液体として注入可能 な温度の加熱液体による加熱処理であった場合でも、密閉容体 1内の気体圧力を前 記加熱液体の飽和蒸気圧より高い気体圧力に保持する必要があることがわ力つた。
[0062] また、含気包装した食品 2を加熱する場合は、脱気包装した食品 2を加熱する場合 よりも保持圧力を高めに設定する必要がある。
[0063] その理由は次の通りと推測される。
[0064] 含気包装した食品 2を加熱すると、ボイル'シャルルの法則により、液体の蒸気圧と 共に、気体の膨張に伴う圧力 Pgが発生する。かつ、非凝縮性気体の圧力によって加 圧された気体中の液体成分の分圧 Pwは、飽和蒸気圧 Pよりも大きい。
[0065] 即ち、含気包装した食品 2の場合、アントワンの式(1)よりも高い蒸気圧となり、増加 割合を表すのに増加率 Eが用いられ、(2)の計算式で求まることが知られている。
[0066] E = Pw/P = ( 1 Z Φ ) exp{V (Pg— P) /RT} · · · (2)
尚、前記式(2)において、 φはフガシティ一定数、 Vは液体のモル体積、 Rは気体 定数、 Tは温度である。
[0067] つまり、前記式 (2)により、空気などの非凝縮性気体を含んだ液体の蒸気圧は、そ れを含まな 、液体の蒸気圧よりも { (Pg+P X E) ZP}倍大きくなると言える。例えば、 水を 120°Cに加熱した場合では、アントワンの式より、水の飽和蒸気圧 (ゲージ圧)は 0. 097MPaとなる。また、空気の膨張による圧力は、ボイル'シャルルの法則力 計 算で求められ、初発を 20。Cとすると、 {(273 + 120) / (273 + 20)}X 0. 101 = 0. 1 35MPa (絶対圧)、ゲージ圧で 0. 034MPaとなる。従って、空気を含んだ水を密封し 、 120°Cに加熱すると、ゲージ圧で 0. 097 (水蒸気の分圧) +0. 034 (空気の分圧) =0. 131MPa (全圧)と計算できる。しかし、実測では 0. 180MPaとなり、飽和蒸気 圧の約 1. 4倍の内圧が発生した。
[0068] 従って、含気包装した食品 2を加熱する場合は、空気を含まな!/ヽ場合よりも保持圧 力を高めに設定する必要があり、この場合においても、密閉容体 1内の気体圧力を 加熱液体の飽和蒸気圧より高い気体圧力に保持することが、食品包装体 3の破裂防 止に有効である。
[0069] 尚、どのような食品包装体 3を用いて加熱処理を行うかにもよる力 少なくとも上蓋 6 付き榭脂容器 7のような比較的容器自体の強度もシール強度も弱!、ものを用いる場 合には、後述の実施例でも示したように、加熱液体を密閉容体 1内に注入する際、密 閉容体 1内の気体圧力が加熱液体の飽和蒸気圧の 1. 2倍よりも小さいと、水分の気 化や空気の膨張による食品包装体 3の圧力が密閉容体 1内の圧力よりも大きくなり、 食品包装体 3の条件や含気量によっては破裂が生じてしまう可能性があり、また、密 閉容体 1内の圧力が 2. 5倍よりも大きいと食品包装体 3内の圧力に対して密閉容体 1 内の圧力が大きくなりすぎるため、食品包装体 3の条件によっては破裂が生じてしまう 可能性があることを実験により確認している。
[0070] これらの実験結果から、密閉容体 1内の気体圧力を、加熱液体の飽和蒸気圧の 1.
2倍以上から 2. 5倍以下の気体圧力に保持して加熱液体を注入することで、少なくと も上蓋 6付き榭脂容器 7のような比較的容器自体の強度もシール強度も弱!、食品包 装体 3を用いた場合であっても、密封包装した食品 2に破裂を生じることなく極めて良 好に加熱処理されると考えられる。
[0071] また、上記した本発明の食品加熱処理方法は、食品 2若しくは食品包装体 3に密閉 包装した食品 2を配置可能であって、所定の気体圧力を保持若しくは保持し得る密 閉容体 1に、加熱源 8により加熱された加熱液体を密閉容体 1内に注入し得る注入装 置部 12を設け、この注入装置部 12は、前記密閉容体 1の内部と密閉連通状態に設け て、この注入装置部 12と前記密閉容体 1内の気体圧力を同等に保持し得る構成とし た食品加熱処理装置を用いることで、容易に実現可能である。
実施例 1
[0072] 本発明の具体的な実施例について図面に基づいて説明する。
[0073] 図 1は、本実施例における食品加熱処理装置である。本実施例は、図 2に図示した 上蓋 6付き榭脂容器 7等の食品包装体 3に空気を含む状態で密封包装した食品 2 ( 以下、含気包装した食品 2)を、図 3に図示したようにケース状のカバー体 4内に複数 個収納し、このケース状のカバー体 4を前記食品加熱処理装置の所定の気体圧力を 保持若しくは保持し得る密閉容体 1内に複数配置し、この密閉容体 1内に 80°C〜 12 0°Cのお湯を注入し、食品 2を収納した前記カバー体 4を前記加熱液体内に液没さ せて加熱処理するのではなく、前記密閉容体 1内に注入する加熱液体を食品 2を収 納した前記カバー体 4に当てて、密閉加圧空間となる前記密閉容体 1内に配置され た食品 2をこの加熱液体の熱により加熱処理する場合である。 [0074] 本実施例の食品加熱処理装置につ!、て各部を具体的に説明する。
[0075] 密閉容体 1は、食品 2若しくは密閉包装した食品 2が配置されるものであり、所定の 気体圧力を保持若しくは保持し得る耐圧性と共に、断熱性を有する構成としている。 また、図中符号 11は棚板である。本実施例は、密閉容体 1及び棚板 11をステンレス 製とし、耐食性に優れた構成としている。
[0076] また、本実施例は、密閉容体 1に加圧装置部 10を設け、この加圧装置部 10により密 閉容体 1内を強制的に加圧して所定の気体圧力を保持し得る構成としている。
[0077] 加圧装置部 10として、具体的にはコンプレッサー 10を用いている。このコンプレッサ 一 10により密閉容体 1内に空気などの気体を送り込み、密閉容体 1内を確実に加熱 液体の飽和蒸気圧よりも高 、気体圧力に保持することができる。
[0078] また、本実施例は、前記密閉容体 1内に加熱液体を注入するための注入装置部 12 を設けた構成とし、この注入装置部 12は、密閉容体 1と密閉連通状態に設けられた 構成としている。更に本実施例は、注入装置部 12に加熱源 8を設けた構成としている
[0079] よって、本実施例は、密閉容体 1と注入装置部 12と加熱源 8とが密閉連通状態とな つて、加熱源 8と注入装置部 12と密閉容体 1内の気体圧力を同等に保持することがで きるため、加熱源 8に特別な加圧装置を設けずとも、この加熱源 8の加熱液体に密閉 容体 1内と同等の圧力をかけながら効率的に加熱を施すことができる。また、密閉容 体 1内と同等の気体圧力に保持される注入装置部 12カゝら確実に加熱源 8によってカロ 熱された 100°C以上の加熱液体を密閉容体 1内に注入できると共に、密閉容体内を 確実に密閉加圧空間としながら食品に加熱処理を施することができる。
[0080] また、本実施例は、注入装置部 12を密閉容体 1と注入経路部 8aと回収経路部 8bと によりなる構成とし、加熱液体が注入経路部 8aから密閉容体 1内に注入され、この密 閉容体 1内に注入された加熱液体を回収経路部 8bで回収し、注入経路部 8aを介し て再び密閉容体 1内へと注入する循環注入装置部 12とし、この循環注入装置部 12に 加熱源 8を設ける構成として 、る。
[0081] 本実施例は、注入装置部 12を循環注入装置部 12としたから、加熱液体の消費量が 少なくて済み、また、注入後回収される加熱液体は、食品への熱交換に要して低下 した温度分を再加熱するだけで再利用できるため、加熱液体の加熱におけるェネル ギ一の無駄が生じず、一層経済性を向上し得ることになり、しかも、加熱液体が密閉 容体 1内で過剰にたまらず、加熱液体を注入し続けても密閉容体 1内の食品が液没 することがない。
[0082] また、本実施例は、前記加熱源 8を循環注入装置部 12の回収経路部 8b側に設け た構成としている。よって、加熱源 8を循環注入装置部 12の注入経路部 8a側に設け た場合に比し、加熱液体の温度低下を抑制して加熱源 8による加熱を低コストに行う ことができる。
[0083] 尚、加熱源 8は、本実施例以外にも、例えば密閉容体 1内に設けた構成としても良 ぐ加熱源 8を密閉容体 1内に設けた構成とした場合には、加熱液体の温度低下が 一層少なくなつて、加熱源 8による加熱を一層低コストに行うことができる。
[0084] また、前記加熱源 8として、ガス加熱器や電気加熱器や熱交換器等の適宜な加熱 装置を備えると共に、加熱液体の加熱温度を制御するための温度制御装置が設けら れた構成とし、この加熱装置と温度制御装置により、加熱源 8の加熱液体の温度が設 定温度より低 ヽ場合には加熱が行われ、設定温度に達した場合には加熱が行われ ない構成としている。
[0085] 前記温度制御装置として具体的にサーモスタットを採用している。サーモスタットに よれば、簡単に加熱液体の加熱温度を調節でき、確実に所望の温度の加熱液体を 得ることができ、し力も加熱液体の過剰な温度上昇を防止しながら省エネルギーにカロ 熱を行うことができる。
[0086] また、本実施例は、前記循環注入装置部 12に散液部 5を設け、この散液部 5から前 記密閉容体 1内空間へ加熱液体を散布注入し得る構成として ヽる。
[0087] 具体的には、散液部 5として、加熱液体を密閉容体 1の上側から霧状若しくはシャヮ 一状に散布注入するノズル 5を採用している。加熱液体を霧状若しくはシャワー状に 散布注入するノズル 5を採用することで、密閉容体 1内空間に均一に加熱液体を散 布して食品 2の加熱を均一に行うことができ、生産効率が向上する。
[0088] 尚、散液部 5は、加熱液体を密閉容体 1内空間の食品 2に向けて滴下したり注入し たりできるものであれば適宜採用でき、また、密閉容体 1の上側のみでなく下側や側 面に設けた構成としても良い。
[0089] また、本実施例は、密閉容体 1と密閉連通状態となる冷却源 9を備えた構成とし、こ の冷却源 9で冷却された冷却液体が注入経路 9aを介して密閉容体 1内に注入される 構成とすると共に、この注入経路 9aから注入された密閉容体 1内の冷却液体を回収 する回収経路 9bとを備えた構成としている。これにより密閉容体 1内の食品の冷却を 効率的に行うことができる。本実施例以外にも、冷却源 9は、密閉容体 1内に空気等 の気体を送り込むことによる通風冷却構造としても良い。あるいは、水道力 直接若し くは貯水タンクから直接水を前記密閉容体 1内に散布する構成としても良 、。
[0090] また、本実施例の前記加熱源 8及び冷却源 9は、密閉容体 1の内部に設置すること ちでさる。
[0091] 尚、図中符号 13は、加熱液体の循環注入のためのポンプ、図中符号 14は冷却液 体の循環注入のためのポンプである。
[0092] また、本実施例は、密閉容体 1内に食品 2を直接配置するのではなくケース状の力 バー体 4内に収納することにより、密閉容体 1内の食品 2の配置及び整理が容易にな り、この作業の自動化も可能となって作業性や量産性に秀れると共に、ケース状の力 バー体 4に収納された食品 2が濡れてしまうことがなくなって、トレー等の上部開放容 器内の食品 2や水濡れに弱い食品 2への適用も可能となり、確実に水分除去工程も 不要となる。
[0093] 尚、カバー体 4は本実施例のケース状以外にも、加熱液体が直接食品 2に当たらな いようなひさし状や筒状等の適宜なカバー体を採用することができるが、ケース状の カバー体 4は密閉性にすぐれており、加熱液体の熱を逃がし難いため、食品 2の加 熱を効率良く行うことができる。
[0094] また、本実施例は、前記ケース状のカバー体 4を前記棚板 11に複数載置する構成 としている力 本実施例以外にも、ケース状のカバー体 4は密閉容体 1内に吊下げ状 態に配置したりする等して適宜な配置方法を採用できる。
[0095] 以下に本実施例の具体的な実験例を示す。
[0096] (実験例 1)
実験例 1は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含む状態で 密封包装した食品 2 (以下、含気包装した食品 2)を、大気圧下で 80°Cに加熱した場 合である。
[0097] 水は空気などの界面 (表面)から 0°Cでも蒸発し、水は沸点以下でも液体力 気体 への気化が起こる。また、水分を含む食品 2を 80°Cに加熱すると、 0. lOlMPaの大 気圧下でも、水は表面力 蒸発し、空気が膨張して食品包装体 3が破袋した。
[0098] 空気の膨張により発生した圧力は { (273 + 80)Z(273 + 20)}X 0. 101 = 0. 122 MPa (絶対圧)である。
[0099] 従って、含気包装した食品 2を 80°Cに加熱する場合には、大気圧の 1. 21倍 (0. 1
22/0. 101)の加圧が必要であることを確認した。尚、 75°Cの加熱では食品包装体
3は膨張したが、破袋は起こらな力つた。
[0100] (実験例 2)
実験例 2は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含む状態で 密封包装した食品 2 (以下、含気包装した食品 2)を、大気圧よりも 0. 036MPa高い 圧力下で 100°Cに加熱した場合である。
[0101] 前記含気包装した食品 2をケース状のカバー体 4に挿入し、コンプレッサー 10で空 気を密閉容器 1内に送り込むことで加圧して、 0. 036MPa (ゲージ圧)の圧力を保つ た。
[0102] 次いで、加熱源 8の水を加熱して 100°Cのお湯とし、このお湯をケース 4の上から散 布した。 35分程度経過後、お湯の散布を停止し、冷却装置 9から 20°Cの水をケース 4の上カゝら散布して冷却した。
[0103] 食品 2の温度を Tl、ケース状のカバー体 4内の温度を Τ2、加熱源 8の水(加熱液 体)の温度を Τ3として実測した結果を図 4に示した。
[0104] 水を 100°Cに加熱した場合では、アントワンの式より、水の飽和蒸気圧 (絶対圧)は 0. lOlMPaであり、ゲージ圧は OMPaとなる。また、空気の膨張による圧力は、 {(27 3 + 100) / (273 + 20) } X 0. 101 = 0. 129MPa (絶対圧)、ゲージ圧で 0. 028M Paとなる。
[0105] つまり、食品 2を 100°Cに加熱すると、ゲージ圧で 0 (水蒸気の分圧) +0. 028 (空 気の分圧) =0. 028MPa (全圧)の内圧が発生すると計算できる。しかし、実測では 0. 036MPa (ゲージ圧)となり、約 1. 3倍の内圧が発生した。
[0106] 従って、食品包装体 3を破袋させずに食品 2を 100°Cに加熱する場合には、大気圧 の 1. 3倍の加圧が必要であることを確認した。
[0107] 尚、空気で加圧しない場合 (コンプレッサー 10を作動させない場合)は、食品包装 体 3は加熱途中の 80°Cで破袋した。
[0108] (実験例 3)
実験例 3は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含む状態で 密封包装した食品 2 (以下、含気包装した食品 2)を、大気圧よりも 0. lOOMPa高い 圧力下で 110°Cに加熱した場合である。
[0109] 実験例 3も実験例 2と同様、食品 2の温度を Tl、ケース状のカバー体 4内の温度を
Τ2、加熱源 8の水 (加熱液体)の温度を Τ3として実測した結果を図 5に示した。
[0110] 水を 110°Cに加熱した場合では、アントワンの式より、水の飽和蒸気圧はゲージ圧 で 0. 042MPaとなる。また、空気の膨張による圧力は、 {(273 + 110) / (273 + 20)
} X O. 101 = 0. 132MPa (絶対圧)、ゲージ圧で 0. 031MPaとなる。
[0111] つまり、食品 2を 110°Cに加熱すると、ゲージ圧で 0. 042 (水蒸気の分圧) +0. 03
1 (空気の分圧) =0. 073MPa (全圧)の内発が発生すると計算できる。しかし、実測 では 0. lOOMPaとなり、約 1. 4倍の内圧が発生した。
[0112] 従って、食品包装体 3を破袋させずに食品 2を 110°Cに加熱する場合には、大気圧 の 1. 4倍の加圧が必要であることを確認した。
[0113] 尚、空気で加圧しない場合 (コンプレッサー 10を作動させない場合)は、食品包装 体 3は加熱途中の 80°Cで破袋した。
[0114] (実験例 4)
実験例 4は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含む状態で 密封包装した食品 2 (以下、含気包装した食品 2)を、大気圧よりも 0. 180MPa高い 圧力下で 120°Cに加熱した場合である。
[0115] 実験例 4も実験例 2, 3と同様、食品 2の温度を Tl、ケース状のカバー体 4内の温度 を Τ2、加熱源 8の水 (加熱液体)の温度を Τ3として実測した結果を図 6に示した。
[0116] 水を 120°Cに加熱した場合では、アントワンの式より、水の飽和蒸気圧はゲージ圧 で 0. 097MPaとなる。また、空気の膨張による圧力は、 {(273 + 120) / (273 + 20) } X O. 101 = 0. 135MPa (絶対圧)、ゲージ圧で 0. 034MPaとなる。
[0117] つまり、食品 2を 120°Cに加熱すると、ゲージ圧で 0. 097 (水蒸気の分圧) +0. 03 4 (空気の分圧) =0. 131MPa (全圧)の内圧が発生すると計算できる。しかし、実測 では 0. 180MPaとなり、約 1. 4倍の内圧が発生した。
[0118] 従って、食品包装体 3を破袋させずに食品 2を 120°Cに加熱する場合には、大気圧 の 1. 4倍の加圧が必要であることを確認した。
[0119] 尚、空気で加圧しない場合 (コンプレッサー 10を作動させない場合)は、食品包装 体 3は加熱途中の 80°Cで破袋した。
[0120] (実験例 5)
実験例 5は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含む状態で 密封包装した食品 2 (以下、含気包装した食品 2)を、水の 120°Cにおける飽和蒸気 圧の 2. 5倍の圧力である 0. 243MPa (ゲージ圧)の圧力下、及び 3倍の圧力である 0 . 291MPa (ゲージ圧)で 120°Cに加熱した場合であり、含気包装した食品 2をケース 状のカバー体 4に挿入し、コンプレッサー 10で空気を密封容体 1内に送り込むことで 加圧して、 120°Cの飽和蒸気圧の 2. 5倍である 0. 243MPa (ゲージ圧)の圧力を保 つた。次いで、加熱源 8内の水をヒーターで加熱して 120°Cとした、これを散液部 5か らケース状のカバー体 4の上へ散布した。実験開始から 40分の経過後にお湯の散 布を停止し、冷却装置 9の 20°Cの水を散液部 5から散布して冷却した。
[0121] その結果、食品包装体 3は破袋していな力つた。一方、コンプレッサー 10による加 圧を 120°Cの飽和蒸気圧の 3倍である 0. 291MPa (ゲージ圧)として同様な実験を 行なったところ、食品包装体 3の破袋が見られた。
[0122] 従って、大気圧の 2. 5倍の加圧を施しても、食品包装体 3は破袋しないが、これ以 上になると破袋してしまうことを確認した。
[0123] 尚、上蓋 6により密閉された榭脂容器 7等の食品包装体 3において、常圧 (密閉容 体 1のゲージ圧ゼロ)下で高温の湯 (加熱液体)をかけると、湯の温度によって食品包 装体 3が破損 (破裂)する問題があるが、食品包装体 3が破損 (破裂)する湯の温度は 、食品包装体 3内部の空気の容量、食品包装体 3のシール強度等の関係力 決定さ れ、実験例 1〜5においては、 80°Cで破裂 (破袋)が見られ、食品包装体 3自体の強 度やシール強度が弱い場合においては、 80°C以上の湯をかけるとこの問題が生じる ことが分力つている。従って、食品包装体 3に 80°C以上の湯をかける場合には、密閉 容体 1内を加圧する必要があると 、える。
[0124] 上記実験例 1〜5の結果から、含気包装した食品 2に 80°Cの加熱を施す場合は、 大気圧の 1. 2倍以上の加圧下での加熱が必要であると言える。
[0125] また、加熱媒体として水を採用した場合では、 100°C以上に水を加熱する場合は、 媒体自身を加圧する必要がある。 120°Cでの加熱では、飽和蒸気圧の 1. 4倍程度 の気体圧力を保持すれば、破袋は起こらないと言える。
[0126] 一方、飽和蒸気圧の 2. 5倍以上の気体圧力を保持しながら加熱すると、食品包装 体 3が外圧によって圧縮さ; |τ¾袋することも確認できた。
[0127] (実験例 6)
実験例 6は、上蓋 6付き榭脂容器 7等の食品包装体 3に 20°Cの空気を含むとともに 大腸菌および乳酸菌を各々 108Zml含む状態で密封包装した水 2 (以下、被処理物 と称す)を、大気圧よりも 0. 180MPa高い圧力下で被処理物を 80°Cに加熱した場合 であり、被処理物をケース状のカバー体 4に挿入し、コンプレッサー 10で空気を密封 容器内に送り込むことで加圧して、 0. 180MPaの圧力を保った。次いで、加熱源 8 内の水(加熱液体)をヒーターで加熱した 80°Cのお湯をケース状のカバー体 4の上か ら散液部 5を介して散布した。 30分の経過後にお湯の散布を停止し、冷却装置 9内 の 20°Cの水を散液部 5から散布して冷却した。被処理物の大腸菌および乳酸菌を検 出したところ、被処理物の大腸菌および乳酸菌は陰性であった。
[0128] 上記実験例 6の結果から、 80°Cの加熱により被処理物を破袋させることなぐ内部 の大腸菌および乳酸菌を殺菌できることが確認できた。
[0129] 以上、本実施例は、上述のようにするから、包装した食品 2の内圧の上昇による破 裂を防止しながら従来と同様に食品 2に 80°C〜120°Cの加熱滅菌及び加熱調理を 施すことができ、食品 2に従来技術と同等の加熱処理を、従来技術よりも効率良く施 すことができる上、密閉容体 1内へ注入する液体を加熱するだけの熱量しか要しない ため、処理槽全体を高温高圧の湯で満たして食品を浸漬する従来技術と比べて、液 体の加熱に要する時間が著しく短縮すると共に、加熱に要する熱エネルギーも著しく 省エネルギーとなり、し力も、従来技術のように食品を水中に浸漬しないから、加熱処 理後の食品 2回収作業が容易であると共に水分除去工程も不要となる分、効率の良 い生産が可能となり、生産性の向上とコストダウンとを両立して実現でき、密閉容体 1 内の気体圧力を変更することだけで、目的に応じた温度の加熱液体を注入可能であ るので、 100°C以上の加熱液体を使用する構成でありながら、その温度管理を容易 に行うことができる。
[0130] また、本発明は、密閉容体 1内を加熱液体の飽和蒸気圧より高い気体圧力に保持 するから、加熱液体は気化や沸騰を伴うことなく液体のままの状態で密閉容体 1内に 注入されて、この加熱液体により熱効率良く食品を加熱することができ、加熱される 食品も気化や沸騰等の状態変化が生じることなぐこの加熱液体と同等の温度にカロ 熱処理されることになる為、食品を良好な状態に保持したまま加熱調理及び加熱殺 菌を施すことができ、特に、従来技術では不可能であった空気等の非凝縮性気体を 含む含気タイプの包装食品 2であっても、破裂を生じさせること無く調理及び滅菌を 施すことができる。
[0131] 尚、包装した食品 2として、空気等の非凝縮性気体を含まな!/ヽ状態で密封包装した 食品、即ち脱気包装した食品 2であっても、加熱によって液体は気化し、食品包装体 3内に内圧が発生し、破袋に至るので、このような場合にも同様に本実施例は有効で ある。
[0132] また、本実施例は、食品包装体 3に密封包装された食品 2以外にも、金属容器、耐 熱性や気密性のある軟質榭脂袋 (バウチ)等へ包装された食品に適用しても良い。 実施例 2
[0133] 本発明の実施例 2について説明する。
[0134] 本実施例は、包装を行わないデンプン含有物 2を、図 3に図示したケース状のカバ 一体 4内に複数個並べて収納し、このデンプン含有物 2を収納したケース状のカバー 体 4を密閉容体 1内に複数配置し、この密閉容体 1内に 180°Cの加熱液体を注入す ることにより、ケース状のカバー体 4を介してデンプン含有物 2を加熱する場合である 。その余は実施例 1と同様である。 [0135] 以下に本発明の具体的な実験例を示す。
[0136] (実験例 7)
実験例 7は、デンプン含有物 2をケース状のカバー体 4に挿入し、コンプレッサー 10 で空気を密封容器内に送り込むことで加圧して、 0. 901MPa(180°Cのゲージ圧で の水の飽和蒸気圧)の圧力を保った。次いで、加熱源 8内の水をヒーターで 180°Cに 加熱し、この 180°Cのお湯をケース状のカバー体 4の上力も散液部 5を介して散布し た。 30分の経過後にお湯の散布を停止し、冷却装置 9の 20°Cの水を散液部 5から散 布して冷却した。デンプンを分析した結果、アクリルアミドの生成は見られな力つた。
[0137] 以上、本実施例は、上述のようにするから、食品 2をそのままカバー体 4に収納した 場合であっても、食品 2が濡れてしまうことを防止でき、包装を施さない食品 2であつ ても、簡単に調理及び滅菌を施すことができ、し力も、例えばデンプン食品の調理に 際して 180°C以上の温度で調理した際に発生する有害なアクリルアミドの生成を抑 制できる食品調理装置となる。
図面の簡単な説明
[0138] [図 1]実施例 1の食品処理装置の概略図である。
[図 2]実施例 1の含気包装食品の説明図である。
[図 3]実施例 1のケースの説明図である。
[図 4]実験例 2の測定値を示すグラフ図である。
[図 5]実験例 3の測定値を示すグラフ図である。
[図 6]実験例 4の測定値を示すグラフ図である。
符号の説明
[0139] 1 密閉容体
Δ ロロ
3 食品包装体
4 カバー体
5 散液部
8 加熱源
8a 注入経路部 回収経路部
加圧手段,加圧装置部 注入装置部,循環注入装置部

Claims

請求の範囲
[1] 所定の気体圧力を保持若しくは保持し得る密閉容体内に食品を配置し、加熱源に より加熱した 100°C以上の加熱液体を、前記密閉容体内空間へ前記食品に向けて 注入し、前記食品を前記加熱液体内に液没させて加熱処理するのではなぐ前記密 閉容体内に注入する加熱液体を食品若しくはこの食品包装体若しくはこれらのカバ 一体に当てて、密閉加圧空間となる前記密閉容体内に配置された食品をこの加熱 液体の熱により加熱処理することを特徴とする食品加熱処理方法。
[2] 前記密閉容体に前記加熱液体を注入する注入装置部を設け、この注入装置部は 、前記密閉容体の内部と密閉連通状態に設けて、この注入装置部と前記密閉容体 内の気体圧力を同等に保持し得る構成とし、この注入装置部から前記密閉容体内に 加熱源により加熱された加熱液体を注入することを特徴とする請求項 1記載の食品 加熱処理方法。
[3] 前記密閉容体内を、加圧手段により該密閉容体内に注入される前記加熱液体の 飽和蒸気圧と同一若しくは高 、気体圧力に保持して、この密閉容体内に 100°C以上 180°C以下の加熱液体を注入することを特徴とする請求項 1, 2のいずれカゝ 1項に記 載の食品加熱処理方法。
[4] 前記注入装置部により前記密閉容体内に注入された前記加熱液体を、前記注入 装置部へ循環供給してこの注入装置部から密閉容体内へと循環注入させることを特 徴とする請求項 2記載の食品加熱処理方法。
[5] 前記注入装置部により前記密閉容体内に注入された前記加熱液体を、前記注入 装置部へ循環供給してこの注入装置部から密閉容体内へと循環注入させることを特 徴とする請求項 3記載の食品加熱処理方法。
[6] 所定の気体圧力を保持若しくは保持し得る密閉容体内に密閉包装した食品を配置 し、 80°C以上の加熱液体を、前記密閉容体内空間へ前記密閉包装した食品に向け て注入し、前記密閉包装した食品を前記加熱液体内に液没させて加熱処理するの ではなく、前記密閉容体内に注入する加熱液体を密閉包装した食品の食品包装体 若しくはこの密閉包装した食品のカバー体に当てて、密閉加圧空間となる前記密閉 容体内に配置された密閉包装した食品をこの加熱液体の熱により加熱処理すること を特徴とする食品加熱処理方法。
[7] 前記密閉容体に前記加熱液体を注入する注入装置部を設け、この注入装置部は 、前記密閉容体の内部と密閉連通状態に設けて、この注入装置部と前記密閉容体 内の気体圧力を同等に保持し得る構成とし、この注入装置部から前記密閉容体内に 加熱源により加熱された加熱液体を注入することを特徴とする請求項 6記載の食品 加熱処理方法。
[8] 前記密閉容体内を、加圧手段により該密閉容体内に注入される前記加熱液体の 飽和蒸気圧よりも高い気体圧力に保持して、この密閉容体内に 80°C以上 180°C以 下の加熱液体を注入することを特徴とする請求項 6記載の食品加熱処理方法。
[9] 前記密閉容体内を、加圧手段により該密閉容体内に注入される前記加熱液体の 飽和蒸気圧よりも高い気体圧力に保持して、この密閉容体内に 80°C以上 180°C以 下の加熱液体を注入することを特徴とする請求項 7記載の食品加熱処理方法。
[10] 前記注入装置部により前記密閉容体内に注入された前記加熱液体を、前記注入 装置部へ循環供給してこの注入装置部から密閉容体内へと循環注入させることを特 徴とする請求項 7記載の食品加熱処理方法。
[11] 前記注入装置部により前記密閉容体内に注入された前記加熱液体を、前記注入 装置部へ循環供給してこの注入装置部から密閉容体内へと循環注入させることを特 徴とする請求項 8記載の食品加熱処理方法。
[12] 前記注入装置部により前記密閉容体内に注入された前記加熱液体を、前記注入 装置部へ循環供給してこの注入装置部から密閉容体内へと循環注入させることを特 徴とする請求項 9記載の食品加熱処理方法。
[13] 前記密閉容体内は、加圧手段により前記加熱液体の飽和蒸気圧の 1. 2倍以上か ら 2. 5倍以下の気体圧力に保持することを特徴とする請求項 6〜 12のいずれか 1項 に記載の食品加熱処理方法。
[14] 食品若しくは密閉包装した食品を配置可能であって、所定の気体圧力を保持若し くは保持し得る密閉容体に、加熱源により加熱された加熱液体を密閉容体内に注入 し得る注入装置部を設け、この注入装置部は、前記密閉容体の内部と密閉連通状 態に設けて、この注入装置部と前記密閉容体内の気体圧力を同等に保持し得る構 成としたことを特徴とする食品加熱処理装置。
[15] 前記密閉容体に、前記加熱液体を密閉容体内に注入する注入経路部と、密閉容 体内に注入された加熱液体を回収して前記注入経路部へ供給する回収経路部とを 設けて、この密閉容体と注入経路部と回収経路部とで、密閉容体内から回収経路部 を介して回収された加熱液体を注入経路部を介して再び密閉容体内へと注入する 循環注入装置部を構成したことを特徴とする請求項 14記載の食品加熱処理装置。
[16] 前記循環注入装置部に前記加熱源を設けたことを特徴とする請求項 15記載の食 品加熱処理装置。
[17] 前記密閉容体に加圧装置部を設け、この加圧装置部により密閉容体内を強制的に 加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請求項 14記載の 食品加熱処理装置。
[18] 前記密閉容体に加圧装置部を設け、この加圧装置部により密閉容体内を強制的に 加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請求項 15記載の 食品加熱処理装置。
[19] 前記密閉容体に加圧装置部を設け、この加圧装置部により密閉容体内を強制的に 加圧して所定の気体圧力を保持し得る構成としたことを特徴とする請求項 16記載の 食品加熱処理装置。
[20] 前記注入装置部に散液部を設けて、この散液部から前記密閉容体内に加熱液体 を散布注入し得るように構成したことを特徴とする請求項 14〜19のいずれか 1項に 記載の食品加熱処理装置。
PCT/JP2005/023382 2005-07-04 2005-12-20 食品加熱処理方法並びに食品加熱処理装置 WO2007004320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800509862A CN101217889B (zh) 2005-07-04 2005-12-20 食品加热处理方法和食品加热处理装置
US11/994,530 US20090238937A1 (en) 2005-07-04 2005-12-20 Food product heat treatment method and food product heat treatment apparatus
US13/006,794 US20110107922A1 (en) 2005-07-04 2011-01-14 Food product heat treatment method and food product heat treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005194878A JP4684026B2 (ja) 2005-07-04 2005-07-04 食品加熱処理方法並びに食品加熱処理装置
JP2005-194878 2005-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/006,794 Division US20110107922A1 (en) 2005-07-04 2011-01-14 Food product heat treatment method and food product heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2007004320A1 true WO2007004320A1 (ja) 2007-01-11

Family

ID=37604197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023382 WO2007004320A1 (ja) 2005-07-04 2005-12-20 食品加熱処理方法並びに食品加熱処理装置

Country Status (5)

Country Link
US (2) US20090238937A1 (ja)
JP (1) JP4684026B2 (ja)
KR (1) KR101006642B1 (ja)
CN (1) CN101217889B (ja)
WO (1) WO2007004320A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876267B1 (ja) * 2005-08-01 2007-01-31 シャープ株式会社 加熱調理器
DE102009042083B3 (de) * 2009-09-18 2011-04-21 Multivac Sepp Haggenmüller Gmbh & Co. Kg Maschine und Verfahren zum Verpacken und Hochdruckbehandeln von Produkten
JP5682746B2 (ja) * 2010-06-22 2015-03-11 東洋製罐株式会社 包装体の殺菌方法
US10252852B2 (en) 2011-04-22 2019-04-09 Jbt Food & Dairy Systems B.V. Adaptive packaging for food processing systems
US9241510B2 (en) 2011-04-23 2016-01-26 Ics Solutions B.V. Apparatus and method for optimizing and controlling food processing system performance
US8893518B2 (en) 2011-04-25 2014-11-25 Ics Solutions B.V. Accelerating, optimizing and controlling product cooling in food processing systems
US9955711B2 (en) 2011-05-20 2018-05-01 Jbt Food & Dairy Systems B.V. Method and apparatus for increased product throughput capacity, improved quality and enhanced treatment and product packaging flexibility in a continuous sterilizing system
US9131729B2 (en) 2011-09-28 2015-09-15 Ics Solutions B.V. Safe and efficient thermal transfer media for processing of food and drink products
DE102012019937A1 (de) 2012-10-11 2014-04-17 Fresenius Medical Care Deutschland Gmbh Sterilisationsverfahren
ES2607689B1 (es) * 2015-10-02 2017-10-18 Metronics Technologies, S.L. Sistema de tratamiento de alimentos mediante alta presión y temperatura
JP6748051B2 (ja) 2017-10-24 2020-08-26 株式会社ソディック 食品高温加熱装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304857A (ja) * 1997-05-08 1998-11-17 Daiwa Can Co Ltd 缶詰の加熱殺菌装置
JP2003072716A (ja) * 2001-08-31 2003-03-12 Motoharu Takano 加圧加熱方法および加圧加熱装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1365922A (en) * 1921-01-18 Method of and apparatus for separating sulfur from sulfur ores
CH404376A (it) * 1962-11-30 1965-12-15 Industrieverwertungsprodukte A Procedimento e dispositivo per sterilizzare con riscaldamento prodotti alimentari confezionati in contenitori a parete sottile a tenuta ermetica
JPS5616954Y2 (ja) * 1974-12-31 1981-04-20
JPS62128786U (ja) * 1986-02-05 1987-08-14
FR2663609A1 (fr) * 1990-06-21 1991-12-27 Kaysersberg Emballages Sa Procede de sterilisation de barquettes en carton contenant des plats cuisines.
JP2772586B2 (ja) * 1991-02-04 1998-07-02 ハウス食品株式会社 レトルト殺菌機
JP2779870B2 (ja) * 1991-02-04 1998-07-23 ハウス食品株式会社 レトルト殺菌機
AU647466B2 (en) * 1991-03-11 1994-03-24 Hisaka Works Limited Spray type retort sterilizer
JP2562134Y2 (ja) * 1991-10-31 1998-02-10 株式会社サムソン 熱水噴流式殺菌装置
JP3056924B2 (ja) * 1993-11-15 2000-06-26 ハウス食品株式会社 シャワー式レトルト殺菌装置
JP2851238B2 (ja) * 1994-04-22 1999-01-27 東洋水産株式会社 包装食品の加圧加熱殺菌方法
JP2779340B2 (ja) * 1996-02-15 1998-07-23 株式会社日阪製作所 揺動型スプレー式レトルト殺菌方法及び装置
JP2779341B2 (ja) * 1996-02-15 1998-07-23 株式会社日阪製作所 回転型スプレー式レトルト殺菌方法及び装置
US6048502A (en) * 1996-03-27 2000-04-11 Easter; Basil O. Water recirculating sterilization mechanism
JP3676494B2 (ja) * 1996-05-27 2005-07-27 株式会社日阪製作所 揺動回転型スプレー式レトルト殺菌機への配線・配管 接続構造
JP3677121B2 (ja) * 1996-07-26 2005-07-27 株式会社日阪製作所 揺動回転型スプレー式レトルト殺菌方法及び装置
US5956896A (en) * 1997-01-16 1999-09-28 Miekka; Fred N. Methods and apparatus for reducing carbon 14 in living tissue
DE10205458A1 (de) * 2002-02-08 2003-08-28 Sig Combibloc Sys Gmbh Verfahren zum Sterilisieren eines in einer Verpackung abgepackten Produktes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304857A (ja) * 1997-05-08 1998-11-17 Daiwa Can Co Ltd 缶詰の加熱殺菌装置
JP2003072716A (ja) * 2001-08-31 2003-03-12 Motoharu Takano 加圧加熱方法および加圧加熱装置

Also Published As

Publication number Publication date
JP4684026B2 (ja) 2011-05-18
JP2007006857A (ja) 2007-01-18
US20110107922A1 (en) 2011-05-12
CN101217889B (zh) 2010-09-22
US20090238937A1 (en) 2009-09-24
KR101006642B1 (ko) 2011-01-10
CN101217889A (zh) 2008-07-09
KR20080033344A (ko) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2007004320A1 (ja) 食品加熱処理方法並びに食品加熱処理装置
JP2007006857A5 (ja)
JP4447013B2 (ja) 滅菌室を加湿する装置および方法
JPH02182157A (ja) 高圧処理装置
JP2014226107A (ja) 殺菌装置
JP2011024455A (ja) 加熱殺菌装置
US10028518B2 (en) System and method for sterilizing food products
JP4831952B2 (ja) 飲料殺菌方法および飲料殺菌装置
JP5028377B2 (ja) 加熱殺菌装置
JP2014100071A (ja) レトルト殺菌システム
MX2009005141A (es) Metodo para tratar un alimento empacado con el proposito de prolongar su vida de anaquel.
JP6036274B2 (ja) 殺菌装置
JP3069060B2 (ja) レトルト釜
JP2013009642A (ja) レトルト装置
JPH11253141A (ja) 加圧殺菌装置
JP5558290B2 (ja) 蒸煮装置
JPH0241317B2 (ja)
JP4375874B2 (ja) 薬液用高圧蒸気滅菌装置
JP2010000176A (ja) 熱処理装置の運転方法
KR101217350B1 (ko) 저온비등 방법을 이용한 식품 추출장치
JP6727809B2 (ja) 飲料供給装置、並びに、飲料供給装置の運転方法及び殺菌方法
JP4900582B2 (ja) 固形物の加熱殺菌方法及びその装置
JPS61260863A (ja) シヤワ−式レトルト殺菌方法
KR20230154197A (ko) 적당한 온도에서 고압 처리를 위한 캐리어
JP6690365B2 (ja) レトルト装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11994530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580050986.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002846

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05820056

Country of ref document: EP

Kind code of ref document: A1