WO2007003357A1 - Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes - Google Patents

Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes Download PDF

Info

Publication number
WO2007003357A1
WO2007003357A1 PCT/EP2006/006350 EP2006006350W WO2007003357A1 WO 2007003357 A1 WO2007003357 A1 WO 2007003357A1 EP 2006006350 W EP2006006350 W EP 2006006350W WO 2007003357 A1 WO2007003357 A1 WO 2007003357A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller chamber
metal strip
gas
space
metal
Prior art date
Application number
PCT/EP2006/006350
Other languages
English (en)
French (fr)
Inventor
Holger Behrens
Rolf Brisberger
Hans Georg Hartung
Bodo Falkenhahn
Original Assignee
Sms Demag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Demag Ag filed Critical Sms Demag Ag
Priority to BRPI0609611-5A priority Critical patent/BRPI0609611A2/pt
Priority to DE502006002323T priority patent/DE502006002323D1/de
Priority to MX2007012579A priority patent/MX2007012579A/es
Priority to JP2008514037A priority patent/JP4733179B2/ja
Priority to US11/884,416 priority patent/US20080145569A1/en
Priority to PL06762294T priority patent/PL1838892T3/pl
Priority to EP06762294A priority patent/EP1838892B1/de
Priority to AU2006265394A priority patent/AU2006265394B2/en
Priority to CN2006800091697A priority patent/CN101384746B/zh
Publication of WO2007003357A1 publication Critical patent/WO2007003357A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing

Definitions

  • the invention relates to a process for the hot dip coating of a metal strip, in particular a steel strip, in which the metal strip is fed through a furnace and a roll chamber subsequent to the conveying direction of the metal strip to a container receiving the molten coating metal through an opening in the bottom region of the container Container is generated an electromagnetic field for retaining the coating metal in the container. Furthermore, the invention relates to a device for hot dip coating.
  • the belts are introduced from above into the dip coating bath in a plunger. Since the coating metal is in liquid form and one would like to use the gravitation together with blow-off devices for setting the coating thickness, the following processes but to prohibit belt contact until complete solidification of the coating metal, the tape in the coating vessel must be deflected in the vertical direction. This happens with a roller that runs in liquid metal. Due to the liquid coating metal, this roller is subject to heavy wear and is the cause of downtimes and thus failures in the production plant.
  • the steel strip enters the oven via a brush seal and leaves the oven by immersion in the coating container.
  • the furnace trunk immersed to seal against the atmospheric oxygen while also in the liquid metal.
  • WO 2004/003250 A1 proposes that above the metal bath a gas or a gas mixture is to be used as separation gas, which has a poor thermal conductivity and the properties has to reduce or prevent turbulence of the gas or gas mixture over the surface of the metal bath.
  • solutions are also known in which a downwardly open vertical vertical band-up coating vessel is used, an electromagnetic closure being used for sealing. These are electromagnetic inducers that work with backward, pumping or constricting electromagnetic alternating or traveling fields that seal the coating vessel down.
  • Such a solution is known, for example, from EP 0 673 444 B1, from WO 96/03533 or from JP 5086446.
  • CVGL Continuous Vertical Galvanizing Line
  • the system consists essentially of three main components, namely the coating vessel, the electromagnetic seal and the roller chamber with band deflection in the vertical.
  • the roller chamber deflects the hot steel strip coming from an annealing furnace into the vertical and leads it further vertically to the connecting channel and coating container.
  • the coating container is connected to the furnace via a channel region and the roller chamber.
  • the mechanical properties and the surface conditions for the coating of liquid metal are adjusted.
  • a protective gas atmosphere which mainly consist of nitrogen and hydrogen.
  • the annealing treatment is eliminated.
  • the steel strip is brought directly to a coating temperature of 460 ° C. to 700 ° C.
  • the furnace atmosphere is set according to the start conditions. It is particularly important to ensure a low oxygen content in the oven. This is achieved by purging the furnace with nitrogen.
  • the protective gas atmosphere of the annealing furnace as a whole must not be impaired by the ingress of atmospheric oxygen.
  • the furnace atmosphere is present everywhere in the roller chamber. Depending on the process setting, this is composed of nitrogen and hydrogen (in concentrations equal to or greater than 5% by volume).
  • the invention is therefore based on the object, a method and associated apparatus for hot dip coating a metal strip with which it is possible to overcome the said disadvantages. It should therefore be ensured that even with irregularities in the process flow to no unfavorable gas composition in the system.
  • the solution of this problem by the invention is characterized in that different gas atmospheres are maintained in the roller chamber in at least two separate spaces, which are passed by the metal strip.
  • the first chamber of the roller chamber in the conveying direction of the metal strip has a gas atmosphere with a hydrogen content of more than 5% by volume, in particular more than 7% by volume.
  • the last in the conveying direction of the metal belt space of the roller chamber preferably has a gas atmosphere with a hydrogen content of less than 5 vol .-%, in particular less than 3 vol .-%.
  • the gas atmospheres in the spaces of the roller chamber in addition to hydrogen substantially only have nitrogen, apart from unavoidable gas contamination and other unavoidable gas elements.
  • the device for hot dip coating a metal strip has a furnace and a subsequent in the conveying direction of the metal strip roller chamber and the molten coating metal receiving container, wherein in the bottom region of the container an opening is provided through which the metal strip is supplied to the container and wherein in the bottom region of the container an electromagnetic inductor for retaining the coating metal in the container is present.
  • At least one partition wall is arranged in the roller chamber, which delimits at least two rooms from each other.
  • each space of the roller chamber has at least one gas supply, can be passed through the gas defined type and / or composition in the room. Furthermore, it can be provided that each space of the roller chamber has at least one gas sensor with which the type and / or the composition and / or the concentration of a gas in the room can be determined.
  • control means are provided with which the gas composition and / or the concentration of a gas in at least one of the rooms, preferably in all rooms, can be maintained at desired values.
  • the roller chamber is preferably provided with a ceramic inner lining, which favors the cleanliness of the chamber. It preferably has a steel housing. However, the roller chamber can also be made of steel without inner lining.
  • roller chamber it is provided that it has an essentially rectangular contour in section, with a guide channel for the metal strip being connected to the first space as seen in the conveying direction of the metal strip.
  • an embodiment of the roller chamber provides that it has a substantially rectangular in cross section contour which forms one of the spaces, followed by a second space adjoins, which is formed by a guide channel for the metal strip.
  • the proposed invention makes it possible to maintain more favorable operating conditions, in particular in the case of abnormal operating conditions, such as in the case of power loss or in the event of an accident, or when starting up or shutting down the hot-dip coating installation.
  • the present invention thus provides a procedure and design with which an important component for the operation of a hot-dip coating plant with high reliability is created.
  • the area of the soil entry into the coating vessel i. H. the area immediately below the coating vessel or the associated area of the roller chamber (the last space of the roller chamber, seen in the conveying direction of the metal strip) is operated with a different atmosphere than the remaining oven area.
  • the hydrogen content here is less than 5 vol .-%.
  • FIG. 1 is a schematic representation of a hot dip coating plant in the side view
  • Fig. 2 shows a first embodiment of the roller chamber according to the invention of the hot dip coating plant in the side view
  • FIG 3 shows a second embodiment of the roller chamber according to the invention of the hot-dip coating installation in a side view.
  • a hot dip coating plant is to see, which works with the so-called.
  • CVGL method Continuous Vertical Galvanizing Line - method.
  • a container 5 is molten coating metal 4.
  • the container 5 has in its bottom portion an opening 6, passes through the vertically upwards a metal strip 1 for the purpose of coating with coating metal 4. So that the liquid coating metal does not run down through the opening 6, an electromagnetic inductor 9 is provided, which causes a closure of the opening 6 in a known manner.
  • the metal strip 1 to be coated passes, as seen in the conveying direction F, first into an oven 2, in which it is brought to the required process temperature, as explained above.
  • a roller chamber 3 Connected to the furnace 2 via a connecting flange 17 is a roller chamber 3, which has the task of redirecting the preheated belt 1 from the direction of entry into the roller chamber 3 into the vertical and introducing it exactly into the opening 6 of the container 5.
  • two rollers 18 and 19 are present, wherein - as Fig. 3 shows - one may be sufficient.
  • the roller chamber 3 in the exemplary embodiment consists of two spaced-apart spaces 7 and 8, the separation being effected by a partition 10.
  • the roller chamber 3 according to FIG. 2 is rectangular in cross-section (in side view), with both rooms 7, 8 being substantially rectangular.
  • a guide channel 16 for the metal strip 1 adjoins the right.
  • the one space 7 can also be formed only by this guide channel 16.
  • a gas supply 11 or 12 is provided in each room, via which a gas or gas mixture in the room 7, 8 can be entered.
  • the gas may be nitrogen N 2 or hydrogen H 2 or a mixture thereof.
  • Gas sensors 13, 14 in each room 7, 8 determine the parameters of the gas atmosphere. For example, with the sensors 13, 14, the concentration of hydrogen gas H 2 can be measured. The measured values are fed to a control means 15 in the exemplary embodiment (see FIG. The control means 15 cause the supply of gas or gas mixture via the gas feeds 11, 12, so that in the chambers 7, 8 respectively desired gas compositions or gas concentrations are present.
  • a separation of the gas atmosphere in the roller chamber 3 and separated from the furnace 2 thus takes place via different gas spaces, which are interconnected by openings for the passage of the steel strip, ie in the RoI Lenhunt 3 partitions 10 are arranged, which divides the roller chamber 3 in at least two gas chambers.
  • the atmosphere is monitored via at least one measurement per gas space and the desired concentrations are set in a control loop.
  • nitrogen is added without oxygen in the gas region directly below the coating container 5.
  • the gas flow within the roller chamber is directed in the operating state in the direction of the furnace inlet. In the case of the discharge of the coating metal 4 from the container 5, the escape of the hydrogen-enriched furnace atmosphere is avoided by the described nitrogen lock.
  • the roller chamber 3 is made of ceramic on the inside. It consists of a steel housing with a ceramic inner lining, which forms the different gas chambers. The injected inert gas is heated and thereby serves to maintain the internal temperature of the roller chamber. 3
  • the liner In addition to the insulation effect (reduced heat conduction to the outside), the liner is designed in the event of an accident and the associated risk of liquid metal breakage in the roller chamber 3 so that it is resistant to liquid metals, such. As zinc or aluminum and their alloys, is. LIST OF REFERENCE NUMBERS
  • H 2 is hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Schmelztauchbeschichtung eines Metallbandes (1 ), insbesondere eines Stahlbandes, bei dem das Metallband (1 ) durch einen Ofen (2) und eine sich in Förderrichtung (F) des Metallbandes (1 ) anschliessende Rollenkammer (3) einem das geschmolzene Beschichtungsmetall (4) aufnehmenden Behälter (5) durch eine Öffnung (6) im Bodenbereich des Behälters (5) zugeführt wird, wobei im Bodenbereich des Behälters (5) ein elektromagnetisches Feld zum Zurückhalten des Beschichtungsmetalls (4) im Behälter (5) erzeugt wird. Um insbesondere bei Leistungsabfall der Schmelztauchbeschichtungsanlage günstigere Betriebsbedingungen zu erhalten, ist erfindungsgemäss vorgesehen, dass in der Rollenkammer (3) in mindestens zwei voneinander abgegrenzten Räumen (7, 8) unterschiedliche Gasatmosphären aufrecht erhalten werden. Des weiteren betrifft die Erfindung eine Vorrichtung zur Schmelztauchbeschichtung.

Description

Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes
Die Erfindung betrifft ein Verfahren zur Schmelztauchbeschichtung eines Metallbandes, insbesondere eines Stahlbandes, bei dem das Metallband durch einen Ofen und eine sich in Förderrichtung des Metallbandes anschließende Rollenkammer einem das geschmolzene Beschichtungsmetall aufnehmenden Behälter durch eine Öffnung im Bodenbereich des Behälters zugeführt wird, wobei im Bodenbereich des Behälters ein elektromagnetisches Feld zum Zurückhalten des Beschichtungsmetalls im Behälter erzeugt wird. Des weiteren betrifft die Erfindung eine Vorrichtung zur Schmelztauchbeschichtung.
Klassische Metall-Tauchbeschichtungsanlagen für Metallbänder, wie sie bei- spielsweise aus der EP 0 172 681 B1 bekannt sind, weisen einen wartungsintensiven Teil auf, nämlich das Beschichtungsgefäß mit der darin befindlichen Ausrüstung. Die Oberflächen der zu beschichtenden Metallbänder müssen vor der Beschichtung von Oxidresten gereinigt und für die Verbindung mit dem Beschichtungsmetall aktiviert werden. Aus diesem Grunde werden die Bandober- flächen vor der Beschichtung in Wärmeprozessen in einer reduzierenden Atmosphäre behandelt. Da die Oxidschichten zuvor chemisch oder abrasiv entfernt werden, werden mit dem reduzierenden Wärmeprozess die Oberflächen so aktiviert, dass sie nach dem Wärmeprozess metallisch rein vorliegen.
Mit der Aktivierung der Bandoberfläche steigt aber die Affinität dieser Bandoberflächen für den umgebenden Luftsauerstoff. Um zu verhindern, dass Luftsauerstoff vor dem Beschichtungsprozess wieder an die Bandoberflächen gelangen kann, werden die Bänder in einem Tauchrüssel von oben in das Tauchbe- schichtungsbad eingeführt. Da das Beschichtungsmetall in flüssiger Form vor- liegt und man die Gravitation zusammen mit Abblasvorrichtungen zur Einstellung der Beschichtungsdicke nutzen möchte, die nachfolgenden Prozesse je- doch eine Bandberührung bis zur vollständigen Erstarrung des Beschichtungs- metalls verbieten, muss das Band im Beschichtungsgefäß in senkrechte Richtung umgelenkt werden. Das geschieht mit einer Rolle, die im flüssigen Metall läuft. Durch das flüssige Beschichtungsmetall unterliegt diese Rolle einem starken Verschleiß und ist Ursache von Stillständen und damit Ausfällen im Produk- tionsbetrieb.
Um ein Oxidieren des zur Schmelztauchbeschichtung vorbereiteten Metallbandes zu verhindern, ist bei der genannten klassischen Verfahrensweise vorgesehen, dass das Stahlband über eine Bürstendichtung in den Ofen eintritt und den Ofen durch Eintauchen in den Beschichtungsbehälter verlässt. Der Ofenrüssel taucht zur Abdichtung gegenüber dem Luftsauerstoff dabei ebenfalls in das flüssige Metall ein.
Zur Vermeidung bzw. Unterdrückung der Zinkverdampfung beim Schmelz- tauchbeschichten mit der genannten klassischen Technologie mit Umlenkrolle wird in der WO 2004/003250 A1 vorgeschlagen, dass sich oberhalb des Metallbades ein Gas oder ein Gasgemisch als Trenngas befindet, das eine schlechte Wärmeleitfähigkeit aufweist und die Eigenschaften hat, Turbulenzen des Gases bzw. Gasgemisches über der Oberfläche des Metallbades zu reduzieren bzw. zu unterbinden.
Um die Probleme zu vermeiden, die im Zusammenhang mit den im flüssigen Beschichtungsmetall laufenden Rollen stehen, sind auch Lösungen bekannt bei denen ein nach unten offenes Beschichtungsgefäß zur vertikalen Banddurch- führung nach oben eingesetzt wird, wobei zur Abdichtung ein elektromagnetischer Verschluss zum Einsatz kommt. Es handelt sich hierbei um elektromagnetische Induktoren, die mit zurückdrängenden, pumpenden bzw. einschnürenden elektromagnetischen Wechsel- bzw. Wanderfeldern arbeiten, die das Beschichtungsgefäß nach unten abdichten. Eine solche Lösung ist beispielsweise aus der EP 0 673 444 B1 , aus der WO 96/03533 oder aus der JP 5086446 bekannt. Bei dieser auch als CVGL (Continuous Vertical Galvanizing Line) bekannten Technologie setzt sich die Anlage im wesentlichen aus drei Hauptkomponenten zusammen, nämlich aus dem Beschichtungsgefäß, der elektromagnetischen Abdichtung und der Rollenkammer mit Bandumlenkung in die Vertikale. Die Rollenkammer lenkt das aus einem Glühofen kommende heiße Stahlband in die Vertikale um und führt es weiter senkrecht zum Verbindungskanal und Be- schichtungsbehälter. Der Beschichtungsbehälter ist mit dem Ofen über einen Kanalbereich und die Rollenkammer verbunden.
Eine solche Lösung ist aus der EP 0 630 421 B1 bekannt.
Im Glühprozess, der im Ofen stattfindet, werden die mechanischen Eigenschaften und die Oberflächenbedingungen für das Beschichten mit flüssigem Metall eingestellt. Abhängig von den gewünschten Materialeigenschaften wird das Stahlband unter Schutzgasatmosphäre geglüht und nachfolgend auf Beschich- tungstemperatur gebracht, die beim Verzinken oberhalb von 500 0C liegt. Verwendet werden dabei Schutzgasatmosphären, die sich hauptsächlich aus Stickstoff und Wasserstoff zusammensetzen.
Hinsichtlich Detail zur zum Einsatz kommenden Atmosphäre wird auf die JP 06145937 A und auf die JP 03056654 A verwiesen.
Bei der Warmbandschmelztauchveredelung entfällt die Glühbehandlung. Das Stahlband wird abhängig vom Beschichtungsmedium direkt auf Beschichtungs- temperatur von 460 0C bis 700 0C gebracht.
Befinden sich größere Mengen Sauerstoff im Ofen, oxidiert die Oberfläche des geglühten und vor dem Beschichtungsprozess heißen Stahlbands und es findet keine bzw. nur eine eingeschränkte Haftung des flüssigen Metalls auf dem Band statt. Es treten Haftungsprobleme auf, die die Qualität des beschichteten Stahlbandes reduzieren. Bei dem genannten CVGL-Verfahren ist es systembedingt nicht möglich, ein Abdichten der Schutzgasatmosphäre gegenüber der Umgebung durch Eintauchen des Ofenrüssels in das Metall zu bewerkstelligen, da vor dem Beginn des Beschichtungsprozesses der Ofenbereich über die Rollenkammer und der Be- Schichtungsbehälter offen ist. Nach dem Einfüllen des flüssigen Metalls und dem Starten des Beschichtungsprozesses wird dieser Bereich dann durch das Medium abgedichtet.
Vor dem Beginn des Beschichtungsprozesses wird die Ofenatmosphäre ent- sprechend den Startbedingungen eingestellt. Hierbei ist besonders auf einen geringen Sauerstoffgehalt im Ofen zu achten. Dies wird durch Spülen des O- fens mit Stickstoff erreicht.
Obwohl vor dem Betriebsstart bei der CVGL-Technologie der Ofen über die Öff- nung im Boden des Beschichtungsgefäßes geöffnet ist, darf die Schutzgasatmosphäre des Glühofens insgesamt nicht durch eintretenden Luftsauerstoff beeinträchtigt werden.
Während des Betriebs des CVGL-Verfahrens, d. h. im abgedichteten Zustand, liegt bei den Lösungen gemäß dem Stand der Technik überall in der Rollenkammer die Ofenatmosphäre vor. Diese setzt sich je nach Prozesseinstellung aus Stickstoff und Wasserstoff (in Konzentrationen gleich oder größer als 5 Vol.-%) zusammen.
Nachteile ergeben sich hieraus insbesondere bei einem Leistungsabfall der Anlage oder im Falle einer Havarie. Dann nämlich dringt Luftsauerstoff durch den geöffneten Kanalbereich in die Rollenkammer ein, was infolge des relativ hohen Anteils an Wasserstoff problematisch ist.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine zugehörige Vorrichtung zum Schmelztauchbeschichten eines Metallbandes zu schaffen, mit dem bzw. mit der es möglich ist, die genannten Nachteile zu ü- berwinden. Es soll also sichergestellt werden, dass es auch bei Unregelmäßigkeiten im Prozessablauf zu keiner ungünstigen Gaszusammensetzung in der Anlage kommt.
Die Lösung dieser Aufgabe durch die Erfindung ist dadurch gekennzeichnet, dass in der Rollenkammer in mindestens zwei voneinander abgegrenzten Räumen, die von dem Metallband passiert werden, unterschiedliche Gasatmosphären aufrecht erhalten werden.
Dabei ist insbesondere vorgesehen, dass eine in Förderrichtung des Metallbandes nachfolgenden Gasatmosphäre eines Raumes der Rollenkammer einen geringeren Wasserstoffanteil aufweist als ein diesem Raum vorausgehender Raum der Rollenkammer.
Bevorzugt weist der in Förderrichtung des Metallbandes erste Raum der Rollenkammer eine Gasatmosphäre mit einem Wasserstoffanteil von über 5 Vol.-% auf, insbesondere von mehr als 7 Vol.-%.
Demgegenüber hat bevorzugt der in Förderrichtung des Metallbandes letzte Raum der Rollenkammer eine Gasatmosphäre mit einem Wasserstoffanteil von unter 5 Vol.-%, insbesondere von weniger als 3 Vol.-%.
Bevorzugt ist vorgesehen, dass die Gasatmosphären in den Räumen der Rollenkammer neben Wasserstoff im wesentlichen nur noch Stickstoff aufweisen, abgesehen von unvermeidbaren Gasverunreinigungen und sonstigen unvermeidbaren Gaselementen.
Damit ein möglichst stabiler Betrieb ermöglicht wird, ist vorzugsweise vorgesehen, dass die Gasatmosphären in den Räumen der Rollenkammer im ge- schlossenen Regelkreis in gewünschten Zusammensetzungen aufrecht erhalten werden. Die Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes hat einen Ofen und eine sich in Förderrichtung des Metallbandes anschließende Rollenkammer sowie einen das geschmolzene Beschichtungsmetall aufnehmenden Behälter, wobei im Bodenbereich des Behälters eine Öffnung vorhanden ist, durch die das Metallband dem Behälter zugeführt wird und wobei im Bodenbereich des Behälters ein elektromagnetischer Induktor zum Zurückhalten des Beschichtungsmetalls im Behälter vorhanden ist.
Erfindungsgemäß ist vorgesehen, dass in der Rollenkammer mindestens eine Trennwand angeordnet ist, die mindestens zwei Räume voneinander abgrenzt.
Dabei hat vorzugsweise jeder Raum der Rollenkammer mindestens eine Gas- Zuführung, über die Gas definierter Art und/oder Zusammensetzung in den Raum geleitet werden kann. Ferner kann vorgesehen sein, dass jeder Raum der Rollenkammer mindestens einen Gas-Sensor aufweist, mit dem die Art und/oder die Zusammensetzung und/oder die Konzentration eines Gases in dem Raum ermittelt werden kann.
Weiterhin sind vorzugsweise Regelmittel vorhanden, mit denen die Gaszusam- mensetzung und/oder die Konzentration eines Gases in mindestens einem der Räume, vorzugsweise in allen Räumen, auf gewünschten Werten gehalten werden kann bzw. können.
Die Rollenkammer ist vorzugsweise mit einer keramischen Innenauskleidung versehen, was die Reinhaltung der Kammer begünstigt. Sie hat bevorzugt ein Stahlgehäuse. Die Rollenkammer kann jedoch ebenfalls aus Stahl bestehen ohne Innenauskleidung.
Von Vorteil ist es auch, wenn Mittel vorhanden sind, mit denen das in einen Raum der Rollenkammer eingeleitete Gas auf eine gewünschte Temperatur erwärmt werden kann. Nach einer Konzeption der Rollenkammer ist vorgesehen, dass sie eine im Schnitt im wesentlichen rechteckige Kontur aufweist, wobei sich an den in Förderrichtung des Metallbandes gesehen ersten Raum ein Führungskanal für das Metallband anschließt.
Alternativ dazu sieht eine Ausgestaltung der Rollenkammer vor, dass sie eine im Schnitt im wesentlichen rechteckige Kontur aufweist, die einen der Räume bildet, an den sich ein zweiter Raum anschließt, der durch einen Führungskanal für das Metallband gebildet wird.
Mit dem Erfindungsvorschlag wird es möglich, insbesondere bei abnormalen Betriebsbedingungen, wie beim Leistungsabfall oder bei einer Havarie, oder beim Anfahren oder Herunterfahren der Schmelztauchbeschichtungsanlage günstigere Betriebsbedingungen aufrecht zu erhalten.
Die vorliegende Erfindung liefert somit eine Vorgehensweise und Ausgestaltung, mit der ein wichtiger Baustein für das Betreiben einer Schmelztauchbe- schichtungsanlage mit hoher Betriebssicherheit geschaffen wird.
Um insbesondere bei einem Leistungsabfall sowie im Falle einer Havarie und somit beim Ablassen des Beschichtungsmetalls aus dem Beschichtungsgefäß keine Durchmischung von Wasserstoff mit eindringendem Luftsauerstoff zu bekommen, wird der Bereich des Bodeneintritts in das Beschichtungsgefäß, d. h. der Bereich unmittelbar unterhalb des Beschichtungsgefäßes bzw. der zugehö- rige Bereich der Rollenkammer (der letzte Raum der Rollenkammer, in Förderrichtung des Metallbandes gesehen) mit einer anderen Atmosphäre betrieben als der restliche Ofenbereich. Der Wasserstoffanteil liegt hier bei weniger als 5 Vol.-%.
In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
Fig. 1 eine Prinzipdarstellung einer Schmelztauchbeschichtungsanlage in der Seitenansicht,
Fig. 2 eine erste Ausführungsform der erfindungsgemäßen Rollenkammer der Schmelztauchbeschichtungsanlage in der Seitenansicht und
Fig. 3 eine zweite Ausführungsform der erfindungsgemäßen Rollenkammer der Schmelztauchbeschichtungsanlage in der Seitenansicht.
In Fig. 1 ist eine Schmelztauchbeschichtungsanlage zu sehen, die mit dem sog. CVGL-Verfahren (Continuous Vertical Galvanizing Line - Verfahren) arbeitet. In einem Behälter 5 befindet sich geschmolzenes Beschichtungsmetall 4. Der Behälter 5 hat in seinem Bodenbereich eine Öffnung 6, durch die vertikal nach oben ein Metallband 1 zwecks Beschichtung mit Beschichtungsmetall 4 hindurchtritt. Damit das flüssige Beschichtungsmetall nicht nach unten durch die Öffnung 6 abläuft, ist ein elektromagnetischer Induktor 9 vorgesehen, der in bekannter Weise einen Verschluss der Öffnung 6 bewirkt.
Das zu beschichtende Metallband 1 gelangt, in Förderrichtung F gesehen, zunächst in einen Ofen 2, in dem es - wie oben erläutert - auf die benötigte Prozesstemperatur gebracht wird. An den Ofen 2 schließt sich über einen Verbindungsflansch 17 eine Rollenkammer 3 an, die die Aufgabe hat, das vorgewärmte Band 1 von der Richtung des Eintritts in die Rollenkammer 3 in die Vertikale umzulenken und es genau in die Öffnung 6 des Behälters 5 einzuführen. Hierzu sind zwei Rollen 18 und 19 vorhanden, wobei - wie Fig. 3 zeigt - auch eine ausreichend sein kann.
Wie in den Figuren 2 und 3 am besten zu sehen ist, besteht die Rollenkammer 3 im Ausführungsbeispiel aus zwei voneinander abgegrenzten Räumen 7 und 8, wobei die Abtrennung durch eine Trennwand 10 erfolgt. Die Rollenkammer 3 gemäß Fig. 2 ist im Querschnitt (in der Seitenansicht) rechteckig ausgebildet, wobei sich beide Räume 7, 8 im wesentlichen rechteckig darstellen. An den in Förderrichtung F ersten Raum 7 schließt sich rechts ein Führungskanal 16 für das Metallband 1 an. In Fig. 3 ist zu sehen, dass der eine Raum 7 auch lediglich durch diesen Führungskanal 16 gebildet werden kann.
Wesentlich ist, dass beide Räume 7, 8 so ausgeführt sind, dass unterschiedliche Gasatmosphären in ihnen aufrecht erhalten werden können.
Hierzu ist in jedem Raum eine Gas-Zuführung 11 bzw. 12 vorgesehen, über die ein Gas oder Gasgemisch in den Raum 7, 8 eingegeben werden kann. Bei dem Gas kann es sich um Stickstoff N2 oder um Wasserstoff H2 oder ein Gemisch hieraus handeln.
Gas-Sensoren 13, 14 in jedem Raum 7, 8 ermitteln die Parameter der Gasatmosphäre. Beispielsweise kann mit den Sensoren 13, 14 die Konzentration von Wasserstoffgas H2 gemessen werden. Die Messwerte werden im Ausführungsbeispiel (s. Fig. 2) einem Regelmittel 15 zugeleitet. Die Regelmittel 15 veranlas- sen die Zufuhr von Gas oder Gasgemisch über die Gas-Zuführungen 11 , 12, so dass in den Räumen 7, 8 jeweils gewünschte Gas-Zusammensetzungen bzw. Gas-Konzentrationen vorliegen.
Besonders wünschenswert ist es, wenn (im Ofen 2 und) im ersten Raum 7 eine Wasserstoffkonzentration von über 5 Vol.-% vorliegt, während dieser Wert im zweiten Raum 8 unterschritten werden sollte.
Eine Trennung der Gasatmosphäre in der Rollenkammer 3 und abgetrennt vom Ofen 2 erfolgt also über unterschiedliche Gasräume, die untereinander durch Öffnungen für den Durchtritt des Stahlbandes verbunden sind, d. h. in der RoI- lenkammer 3 sind Trennwände 10 angeordnet, die die Rollenkammer 3 in mindestens zwei Gasräume unterteilt.
Über zwei oder mehrere Einspeisestellen für das Schutzgas (mindestens eine je Gasraum) werden wie erläutert unterschiedliche Konzentrationen von Stick- stoff und Wasserstoff eingespeist.
Über mindestens eine Messung pro Gasraum wird die Atmosphäre überwacht und in einem Regelkreis die gewünschten Konzentrationen eingestellt. Dabei wird im Gasbereich direkt unterhalb des Beschichtungsbehälters 5 Stickstoff ohne Sauerstoff zugegeben. Der Gasstrom innerhalb der Rollenkammer ist im Betriebszustand in Richtung Ofeneintritt gerichtet. Für den Fall des Ablassens des Beschichtungsmetalls 4 aus dem Behälter 5 wird der Austritt der Wasser- stoff-angereicherten Ofenatmosphäre durch die beschriebene Stickstoffschleuse vermieden.
Die Rollenkammer 3 ist innen keramisch ausgeführt. Sie besteht aus einem Stahlgehäuse mit keramischer Innenauskleidung, die die unterschiedlichen Gasräume bildet. Das eingespeiste Schutzgas wird erwärmt und dient dadurch zur Aufrechterhaltung der Innentemperatur der Rollenkammer 3.
Neben der Isolationswirkung (reduzierte Wärmeleitung nach außen) ist die Auskleidung für den Fall einer Havarie und dem damit verbundenen Risiko eines Flüssigmetalleinbruchs in die Rollenkammer 3 so ausgeführt, dass sie beständig gegen flüssige Metalle, wie z. B. Zink oder Aluminium sowie deren Legie- rungen, ist. Bezugszeichenliste:
1 Metallband
2 Ofen
3 Rollenkammer
4 geschmolzenes Beschichtungsmetall
5 Behälter
6 Öffnung im Bodenbereich des Behälters
7 erster Raum
8 zweiter Raum
9 elektromagnetischer Induktor
10 Trennwand
11 Gas-Zuführung
12 Gas-Zuführung
13 Gas-Sensor
14 Gas-Sensor
15 Regelmittel
16 Führungskanal
17 Verbindungsflansch
F Förderrichtung
H2 Wasserstoff
N2 Stickstoff

Claims

Patentansprüche:
1. Verfahren zur Schmelztauchbeschichtung eines Metallbandes (1 ), insbesondere eines Stahlbandes, bei dem das Metallband (1 ) durch einen Ofen (2) und eine sich in Förderrichtung (F) des Metallbandes (1 ) anschließende Rollenkammer (3) einem das geschmolzene Beschichtungsmetall (4) aufnehmenden Behälter (5) durch eine Öffnung (6) im Bodenbereich des Behälters (5) zugeführt wird, wobei im Bodenbereich des Behälters (5) ein elektromagnetisches Feld zum Zurückhalten des Beschichtungsmetalls (4) im Behälter (5) erzeugt wird,
dadurch gekennzeichnet,
dass in der Rollenkammer (3) in mindestens zwei voneinander abgegrenz- ten Räumen (7, 8) unterschiedliche Gasatmosphären aufrecht erhalten werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass eine in Förderrichtung (F) des Metallbandes (1 ) nachfolgenden Gasatmosphäre eines Raumes (8) der Rollenkammer (3) einen geringeren Wasserstoffanteil aufweist als ein diesem Raum (8) vorausgehender Raum (7) der Rollenkammer (3).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der in Förderrichtung (F) des Metallbandes (1 ) erste Raum (7) der Rollenkammer (3) eine Gasatmosphäre mit einem Wasserstoffanteil von über 5 Vol.-% aufweist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der in Förderrichtung (F) des Metallbandes (1 ) letzte Raum (8) der Rollenkammer (3) eine Gasatmosphäre mit einem Wasserstoffanteil von unter 5 Vol.-% aufweist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gasatmosphären in den Räumen (7, 8) der Rollenkammer (3) neben Wasserstoff im wesentlichen nur Stickstoff aufweisen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gasatmosphären in den Räumen (7, 8) der Rollenkammer (3) im geschlossenen Regelkreis in gewünschten Zusammensetzungen aufrecht erhalten werden.
7. Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes (1), insbesondere eines Stahlbandes, mit einem Ofen (2) und einer sich in Förderrichtung (F) des Metallbandes (1 ) anschließenden Rollenkammer (3) sowie einem das geschmolzene Beschichtungsmetall (4) aufnehmenden
Behälter (5), wobei im Bodenbereich des Behälters (5) eine Öffnung (6) vorhanden ist, durch die das Metallband (1 ) dem Behälter (5) zugeführt wird und wobei im Bodenbereich des Behälters (5) ein elektromagnetischer Induktor (9) zum Zurückhalten des Beschichtungsmetalls (4) im Behälter (5) vorhanden ist, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass in der Rollenkammer (3) mindestens eine Trennwand (10) angeordnet ist, die mindestens zwei Räume (7, 8) voneinander abgrenzt.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass jeder Raum (7, 8) der Rollenkammer (3) mindestens eine Gas- Zuführung (11 , 12) aufweist, über die Gas definierter Art und/oder Zusammensetzung in den Raum (7, 8) geleitet werden kann.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass jeder Raum (7, 8) der Rollenkammer (3) mindestens einen Gas- Sensor (13, 14) aufweist, mit dem die Art und/oder die Zusammensetzung und/oder die Konzentration eines Gases in dem Raum (7, 8) ermittelt werden kann.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass Regelmittel (15) vorhanden sind, mit denen die Gaszusammenset- zung und/oder die Konzentration eines Gases in mindestens einem der Räume (7, 8), vorzugsweise in allen Räumen (7, 8), auf gewünschten Werten gehalten werden kann bzw. können.
11. Vorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Rollenkammer (3) mit einer keramischen Innenauskleidung versehen ist.
12. Vorrichtung nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass die Rollenkammer (3) ein Stahlgehäuse aufweist.
13. Vorrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass Mittel vorhanden sind, mit denen das in einen Raum (7, 8) der Rollenkammer (3) eingeleitete Gas auf eine gewünschte Temperatur erwärmt werden kann.
14. Vorrichtung nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Rollenkammer (3) eine im Schnitt im wesentlichen rechteckige Kontur aufweist, wobei sich an den in Förderrichtung (F) des Metallbandes
(1 ) gesehen ersten Raum (7) ein Führungskanal (16) für das Metallband (1 ) anschließt.
15. Vorrichtung nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Rollenkammer (3) eine im Schnitt im wesentlichen rechteckige Kontur aufweist, die einen der Räume (8) bildet, an den sich ein zweiter Raum (7) anschließt, der durch einen Führungskanal (16) für das Metallband (1 ) gebildet wird.
PCT/EP2006/006350 2005-07-01 2006-06-30 Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes WO2007003357A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BRPI0609611-5A BRPI0609611A2 (pt) 2005-07-01 2006-06-30 método e dispositivo para recobrimento em banho quente de uma tira metálica
DE502006002323T DE502006002323D1 (de) 2005-07-01 2006-06-30 Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes
MX2007012579A MX2007012579A (es) 2005-07-01 2006-06-30 Procedimiento y dispositivo para el recubrimiento por inmersion en bano fundido de una banda de metal.
JP2008514037A JP4733179B2 (ja) 2005-07-01 2006-06-30 金属ストリップの溶融メッキ法及び装置
US11/884,416 US20080145569A1 (en) 2005-07-01 2006-06-30 Method and Device For Hot-Dip Coating a Metal Strip
PL06762294T PL1838892T3 (pl) 2005-07-01 2006-06-30 Sposób i urządzenie do zanurzeniowego powlekania taśmy metalowej
EP06762294A EP1838892B1 (de) 2005-07-01 2006-06-30 Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes
AU2006265394A AU2006265394B2 (en) 2005-07-01 2006-06-30 Method and device for hot-dip coating a metal strip
CN2006800091697A CN101384746B (zh) 2005-07-01 2006-06-30 对金属带进行热浸镀的方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005030772 2005-07-01
DE102005030772.8 2005-07-01
DE102005033288.9 2005-07-16
DE102005033288A DE102005033288A1 (de) 2005-07-01 2005-07-16 Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes

Publications (1)

Publication Number Publication Date
WO2007003357A1 true WO2007003357A1 (de) 2007-01-11

Family

ID=36942533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006350 WO2007003357A1 (de) 2005-07-01 2006-06-30 Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes

Country Status (16)

Country Link
US (1) US20080145569A1 (de)
EP (1) EP1838892B1 (de)
JP (1) JP4733179B2 (de)
KR (1) KR100941626B1 (de)
CN (1) CN101384746B (de)
AT (1) ATE417138T1 (de)
AU (1) AU2006265394B2 (de)
BR (1) BRPI0609611A2 (de)
DE (2) DE102005033288A1 (de)
ES (1) ES2316081T3 (de)
MX (1) MX2007012579A (de)
MY (1) MY141758A (de)
PL (1) PL1838892T3 (de)
RU (1) RU2358033C1 (de)
TW (1) TW200702489A (de)
WO (1) WO2007003357A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037259A1 (de) * 2008-08-08 2010-02-25 Doncasters Precision Castings-Bochum Gmbh Elektromagnetischer Stopfen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108155A (en) * 1981-09-11 1983-05-11 Stein Heurtey Process and device for gaseous atmosphere separation in plants for heat treatment under pressure
US4557953A (en) * 1984-07-30 1985-12-10 Armco Inc. Process for controlling snout zinc vapor in a hot dip zinc based coating on a ferrous base metal strip
DE4208578A1 (de) * 1992-03-13 1993-09-16 Mannesmann Ag Verfahren zum beschichten der oberflaeche von strangfoermigem gut
DE10343648A1 (de) * 2003-06-27 2005-01-13 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges und Verfahren zur Schmelztauchbeschichtung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914481A (en) * 1973-03-01 1975-10-21 Theodore Bostroem Process of hot dip metallizing of metallic articles
JPS57177964A (en) * 1981-04-28 1982-11-01 Nippon Kokan Kk <Nkk> One side hot dipping plating device
JPS61186464A (ja) * 1985-02-15 1986-08-20 Nippon Kokan Kk <Nkk> ストリツプの片面・両面兼用溶融金属メツキラインにおける片面メツキ・両面メツキ切換方法
JPS61190056A (ja) * 1985-02-18 1986-08-23 Nippon Steel Corp 耐熱性と高温強度にすぐれた溶融アルミメツキTi含有鋼板の製造法
JPS6237361A (ja) * 1985-08-09 1987-02-18 Sumitomo Metal Ind Ltd 溶融金属めつき法および装置
JPH0356654A (ja) * 1989-07-21 1991-03-12 Kawasaki Steel Corp 溶融アルミニウムめっきクロム含有鋼板の製造方法
JPH06145937A (ja) * 1992-11-11 1994-05-27 Nisshin Steel Co Ltd 酸化スケ−ル付着熱延鋼板の溶融亜鉛めっき方法
JPH0953164A (ja) * 1994-10-07 1997-02-25 Kawasaki Steel Corp 溶融金属のめっき方法及び装置
JPH09118969A (ja) * 1995-10-23 1997-05-06 Nisshin Steel Co Ltd 溶融めっき鋼帯の製造方法
JPH1143755A (ja) * 1997-07-23 1999-02-16 Nisshin Steel Co Ltd 溶融めっき金属の排出が容易な溶融めっき用空中ポット
JPH1143756A (ja) * 1997-07-23 1999-02-16 Nisshin Steel Co Ltd 加工性,めっき密着性に優れた溶融めっき鋼帯の製造方法及び装置
FR2782326B1 (fr) * 1998-08-13 2000-09-15 Air Liquide Procede de galvanisation d'une bande metallique
JP2001200353A (ja) * 2000-01-21 2001-07-24 Nkk Corp 溶融金属めっき鋼板の製造方法
JP4028990B2 (ja) * 2002-02-21 2008-01-09 新日本製鐵株式会社 冷延鋼板と溶融亜鉛めっき鋼板の兼用製造ライン
BE1015109A3 (fr) * 2002-09-13 2004-10-05 Drever Internat S A Procede de traitemant thermique de bande metallique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108155A (en) * 1981-09-11 1983-05-11 Stein Heurtey Process and device for gaseous atmosphere separation in plants for heat treatment under pressure
US4557953A (en) * 1984-07-30 1985-12-10 Armco Inc. Process for controlling snout zinc vapor in a hot dip zinc based coating on a ferrous base metal strip
DE4208578A1 (de) * 1992-03-13 1993-09-16 Mannesmann Ag Verfahren zum beschichten der oberflaeche von strangfoermigem gut
DE10343648A1 (de) * 2003-06-27 2005-01-13 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges und Verfahren zur Schmelztauchbeschichtung

Also Published As

Publication number Publication date
DE502006002323D1 (de) 2009-01-22
TW200702489A (en) 2007-01-16
RU2007136479A (ru) 2009-04-10
US20080145569A1 (en) 2008-06-19
AU2006265394A1 (en) 2007-01-11
CN101384746A (zh) 2009-03-11
ES2316081T3 (es) 2009-04-01
EP1838892A1 (de) 2007-10-03
KR20070102601A (ko) 2007-10-18
MX2007012579A (es) 2007-12-10
ATE417138T1 (de) 2008-12-15
AU2006265394B2 (en) 2009-10-29
BRPI0609611A2 (pt) 2010-04-20
RU2358033C1 (ru) 2009-06-10
DE102005033288A1 (de) 2007-01-04
JP4733179B2 (ja) 2011-07-27
EP1838892B1 (de) 2008-12-10
CN101384746B (zh) 2011-07-06
KR100941626B1 (ko) 2010-02-11
MY141758A (en) 2010-06-30
JP2008542539A (ja) 2008-11-27
PL1838892T3 (pl) 2009-05-29

Similar Documents

Publication Publication Date Title
DE69623424T2 (de) Verfahren und Vorrichtung zum Stranggiessen mittels Doppelwalzen
DE69800158T2 (de) Vorrichtung und Verfahren zum Wärmebehandeln
DE10146791A1 (de) Verfahren und Vorrichtung zum Beschichten der Oberfläche von strangförmigem metallischem Gut
DE2904318A1 (de) Verfahren zum sintern von teilen aus pulverfoermigem metall
DE69913617T2 (de) Verfahren und Vorrichtung zur Erzeugung einer Atmosphere für die Wärmebehandlung von Werkstoffen
EP1838892B1 (de) Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallbandes
DE3908027C2 (de) Verfahren und Vorrichtung zum Glühen metallischer Gegenstände
CH493646A (de) Verfahren zum Auftragen von Kupfer auf einen Kupferdraht
EP2617838B1 (de) Verfahren zum Betreiben eines Ofens und Ofen
EP0106113A1 (de) Verfahren und Vorrichtung zum Blankglühen von metallischen Werkstücken mit Stickstoff als Schutzgas
EP3638823B1 (de) Rüssel für eine schmelztauchbeschichtungsanlage sowie verfahren für dessen betrieb
DE1912936A1 (de) Verfahren und Vorrichtung zum Reinigen und Vakuumentgasen von schmelzfluessigen Metallen
EP0630420B1 (de) Verfahren zum mehrlagigen beschichten von strangförmigem gut
DE112016006868B4 (de) Vorrichtung zum Bilden einer Stickstoffwolke zur Herstellung eines schmelztauchbeschichteten Stahlblechs mit hervorragender Oberflächenqualität und Verfahren zur Herstellung eines mit Zink-Aluminium schmelztauchbeschichteten Stahlblechs unter Verwendung desselben
DE2207719B2 (de) Vorrichtung zum Feuerverzinnen von elektrischen Schaltungsdrahten
DE3313218C2 (de) Vorrichtung zum wahlweisen ein- und beidseitigen Verzinken von endlos durchlaufendem Stahlband
EP1518004B1 (de) Trenngaseinsatz bei der kontinuierlichen schmelztauchveredelung
EP1091181A1 (de) Expansionskühldüse
EP1430162B1 (de) Verfahren zur schmelztauchveredelung
DE10208963A1 (de) Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen
WO2018228662A1 (de) Rüssel für eine schmelztauchbeschichtungsanlage
DE60127456T2 (de) Verfahren zum verzinken von stahl
DE1157743B (de) Verfahren zur kontinuierlichen Herstellung von Halbzeug
DE3104003C2 (de)
DE69917553T2 (de) Vorrichtung und Verfahren zum kontinuierlichen Abkühlen von Stahlblechen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009169.7

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006762294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077020356

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007136479

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006762294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012579

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008514037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11884416

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 518/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006265394

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006265394

Country of ref document: AU

Date of ref document: 20060630

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006265394

Country of ref document: AU

ENP Entry into the national phase

Ref document number: PI0609611

Country of ref document: BR

Kind code of ref document: A2