WO2007001093A1 - 高純度シリコンの製造方法 - Google Patents

高純度シリコンの製造方法 Download PDF

Info

Publication number
WO2007001093A1
WO2007001093A1 PCT/JP2006/313363 JP2006313363W WO2007001093A1 WO 2007001093 A1 WO2007001093 A1 WO 2007001093A1 JP 2006313363 W JP2006313363 W JP 2006313363W WO 2007001093 A1 WO2007001093 A1 WO 2007001093A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
less
aluminum
silicon
purity
Prior art date
Application number
PCT/JP2006/313363
Other languages
English (en)
French (fr)
Inventor
Kunio Saegusa
Toshiharu Yamabayashi
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US11/921,940 priority Critical patent/US20090130015A1/en
Priority to BRPI0614048-3A priority patent/BRPI0614048A2/pt
Priority to DE112006001649T priority patent/DE112006001649T5/de
Publication of WO2007001093A1 publication Critical patent/WO2007001093A1/ja
Priority to NO20080519A priority patent/NO20080519L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents

Definitions

  • the present invention relates to a method for producing high-purity silicon.
  • the raw material silicon for solar cells is mainly made of semiconductor grade silicon non-standard products.
  • Semiconductor grade silicon is manufactured by refining metallurgical grade silicon.
  • Metallurgical grade silicon is produced by reducing carbon and silica in an arc furnace.
  • Trichlorosilane is synthesized by the reaction of this metallurgical grade silicon and HC1, and this is purified by rectification and then reduced at high temperature using hydrogen to produce semiconductor grade silicon.
  • this method can produce extremely high purity silicon, the conversion rate to silicon is low, a large amount of hydrogen is required to make this equilibrium favorable for silicon, and still a lot of unreacted due to the low conversion rate.
  • An object of the present invention is to provide a new and inexpensive production method of high-purity silicon that is suitably used as a raw material for solar cells, and high-purity silicon obtained by the production method.
  • the present invention is [1] a method for producing silicon by reducing silicon halide represented by the following formula (1) with aluminum, and the purity of the aluminum used as the reducing agent is 99.9. Provided is a method for producing high-purity silicon having a weight percent or more.
  • n is an integer of 0 to 3
  • X is one or more halogen atoms selected from F, Cl, Br, and I.
  • the purity of aluminum is 100 weight
  • the present invention provides [2] boron contained in aluminum at 5 ppm or less, and The method according to [1], wherein
  • Iron contained in aluminum is 10 ppm or less, copper is 1 Oppm or less, titanium is 1 ppm or less, and vanadium is 5 ppm or less. [1] The method according to any one of [6],
  • [14] A method for producing high-purity silicon, comprising purifying silicon obtained by the method according to any one of [1] to [13] by directional solidification.
  • the method for producing high-purity silicon according to the present invention is a method for producing silicon by reducing silicon octarogenide represented by the above formula (1) with aluminum, and the purity of aluminum used as a reducing agent is low. 9 9.9% by weight or more.
  • the purity of aluminum is from 100% by weight to the total weight of iron, copper, gallium, titanium, nickel, sodium, magnesium and zinc contained in the aluminum.
  • the purity of silicon is obtained by subtracting the total weight% of iron, copper, gallium, titanium, nickel, sodium, magnesium and zinc contained in silicon from 100% by weight.
  • the purity analysis is performed by glow discharge mass spectrometry.
  • silicon halide examples include silicon tetrachloride, trichlorosilane, dichlorosilane, and monochlorosilane. In view of cost, silicon tetrachloride is most preferable.
  • silicon halides high-purity products produced by a method well known in the industry can be used.
  • As a known production method in the coexistence of silica and carbon, 1 0 0 to 1 4 0
  • the purity of the silicon halide used as a raw material in the present invention is preferably 4 N or more, more preferably 6 N or more, and particularly preferably 7 N or more.
  • P, B The content of is preferably 0.5 ppm or less, more preferably 0.3 ppm or less, and particularly preferably 0.1 ppm or less.
  • the purity of aluminum used as a reducing agent is 99.9% by weight or more, more preferably 99.99% by weight or more, and most preferably 99.995% by weight or more.
  • Each element of iron, copper, gallium, titanium, nickel, sodium, magnesium, and zinc can be purified by directional solidification, but in order to increase the yield of directional solidification, the content of each element Is preferably 150 ppm or less, more preferably 3 Oppm or less, more preferably 10 ppm or less, particularly preferably 3 ppm or less; copper is preferably 290 ppm or less, more preferably 30 ppm or less, more preferably 10 ppm or less, particularly preferably 3 ppm or less;
  • Titanium is preferably 30 ppm or less, more preferably 10 ppm or less, more preferably 7 ppm or less, even more preferably 3 ppm or less, even more preferably 1 ppm or less, particularly preferably 0.3 ppm or less;
  • Nickel is preferably not more than 300 ppm, more preferably not more than 30 ppm, even more preferably not more than 10 ppm, even more preferably not more than 3 ppm, particularly preferably not more than 1 ppm;
  • Sodium is preferably 300 ppm or less, more preferably 30 ppm or less, more preferably 1 Oppm or less, particularly preferably 3 ppm or less;
  • Magnesium is preferably 300 ppm or less, more preferably 30 ppm or less; more preferably 10 ppm or less, particularly preferably 3 ppm or less;
  • Zinc is preferably at most 30 Oppm, more preferably at most 30 ppm, even more preferably at most 1 Oppm, particularly preferably at most 3 ppm.
  • the concentration of P contained in the nitrogen is preferably 0.5 p pm or less, more preferably 0.3 ppm or less, and particularly preferably 0.3 lp pm or less.
  • the concentration of boron contained in aluminum is preferably 5 ppm or less, more preferably 1 ppm or less, and particularly preferably 0.3 ppm or less.
  • Vanadium is preferably 20 ppm or less, more preferably 5 ppm or less, still more preferably 1 ppm or less, and particularly preferably 0.1 ppm or less.
  • the iron concentration in the aluminum is X Fe ppm
  • the copper concentration is X cu ppm
  • the titanium concentration is X Ti ppm
  • vanadium is X v ppm
  • the aluminum in the present invention can be obtained by purifying commercially available electrolytically reduced aluminum (ordinary aluminum 2) by a segregation solidification method, a three-layer electrolytic method, or the like.
  • the shape of the aluminum used for the reaction can be foil, powder, melt or the like. From the viewpoint of reaction speed, a shape having as large a surface area as possible is preferable. '
  • a method for reacting silicon halide with aluminum a method in which aluminum is previously charged in a heat-resistant reaction vessel and then silicon halide is blown at a predetermined temperature, or aluminum is introduced into the reaction vessel. And a method of reacting silicon halide with silicon halide at the same time.
  • the reaction temperature is preferably 400 ° (: ⁇ 1200 ° C, more preferably 500 ° C
  • ⁇ 1200 ° (:, more preferably 500 ° C to 1000 ° C, even more preferably 660
  • the material of the reaction vessel is preferably a material that has heat resistance at the reaction temperature and does not contaminate silicon, and examples thereof include carbon, silicon carbide, silicon nitride, alumina, and quartz.
  • silicon octagenide may be supplied after being diluted with an inert gas in order to control the reactivity.
  • the inert gas include argon and nitrogen.
  • a by-product is, for example, aluminum chloride. Since aluminum chloride is a gas at 200 ° C or higher, the reaction system is maintained at 200 ° C or higher, and a mixture of unreacted silicon halide, diluent gas, aluminum chloride gas and silicon is used. It is preferable to perform solid-gas separation
  • the aluminum chloride is turned into a solid and unreacted halogenated. It is preferable to separate it from silicon + diluent gas.
  • Unreacted silicon halide can be separated from the dilution gas if necessary and used again for reaction with aluminum. Separation from the dilution gas can be performed by gas-liquid separation after cooling to make the halogenated silicon liquid.
  • the obtained aluminum chloride is extremely high in purity, it can be used as a catalyst as anhydrous aluminum chloride as it is, or it can be reacted with water to form polyaluminum chloride. It can be converted into hydroxide by aluminum, or it can be reacted with water vapor or oxygen at high temperature to make alumina.
  • the reaction proceeds at a stoichiometric ratio in terms of equilibrium, but the kinetic point of view and later separation Considering the process, the amount of silicon halide is more than aluminum. Is preferred.
  • the reaction atmosphere is preferably a silicon halide gas, or a mixed gas of a halogenated silicon gas and an inert gas, and it is preferable that water, oxygen, and the like do not exist for the progress of the reaction.
  • the reaction time depends on the type of reaction, it is preferably 1 second or longer and 48 hours or shorter, more preferably 5 seconds or longer and 48 hours or shorter, more preferably 10 seconds or longer and 48 hours or shorter. It is not longer than time, more preferably not less than 10 seconds and not more than 60 minutes, particularly preferably not less than 10 seconds and not more than 10 minutes. Since the reaction proceeds more rapidly as the aluminum becomes finer, the preferred reaction time depends on the shape of the aluminum. If the reaction time is too short, unreacted aluminum remains and becomes an impurity in the silicon, which is not preferable. If the reaction time is too long, there is no disadvantage in yield, but wasteful time is wasted, leading to an increase in cost.
  • the silicon obtained by the method of the present invention some aluminum may remain depending on the reaction conditions, so if necessary, after dusting the silicon, it is pickled to remove the aluminum. It is preferable.
  • the acid to be used those having few metal impurities are preferable, and hydrochloric acid, nitric acid, sulfuric acid and the like can be suitably used as types.
  • the purity analysis in the following measurement utilized the glow discharge mass spectrometry (VG-9000, the product made from VG).
  • the diffusion length was measured by the surface photovoltage (SPV) surface photovoltage method (SDI, CMS4010). If the diffusion length is 50 or more, it can be used as a solar cell.
  • SPV surface photovoltage
  • SDI surface photovoltage
  • Three-layer electrolytic high-purity aluminum plate (manufactured by Sumitomo Chemical Co., Ltd., 1 mm thick, see Table 1 for component analysis values) 5 g was placed in an alumina crucible and placed in a quartz core tube of an electric furnace.
  • the obtained silicon was taken out, pulverized, washed with dilute hydrochloric acid and then with pure water, dried and analyzed for purity.
  • the obtained silicon was taken out, ground, washed with dilute hydrochloric acid and then with pure water, dried and analyzed for purity.
  • Example 4 To obtain a silicon by reducing S i C 1 4 and aluminum added 15 O p pm of Fe to that used in Example 1.
  • the main impurity in the obtained silicon is Fe 14 Oppm. It was.
  • This silicon was directionally solidified at a speed of 0.4 mm / min to obtain an ingot having a 180 mm mouth and a height of 120 mm. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 m or more was 70%.
  • Example 5 To give a silicon by reducing S i C 1 4 and 300 p pm added aluminum and Cu used in Example 1. The main impurity in the obtained silicon was Cu 28 Oppm. This silicon was directionally solidified at a speed of 0.4 mm / min to obtain an ingot with a 180 mm mouth and a height of 120 mm. When the diffusion length of this ingot was measured, the portion where the scattering length was 50 m or more was 75%.
  • Example 5 To give a silicon by reducing S i C 1 4 and 300 p pm added aluminum and Cu used in Example 1. The main impurity in the obtained silicon was Cu 28 Oppm. This silicon was directionally solidified at a speed of 0.4 mm / min to obtain an ingot with a 180 mm mouth and a height of 120 mm. When the diffusion length of this ingot was measured, the portion where the scattering length was 50 m or more was 75%.
  • Example 5 Example 5
  • Example 6 To obtain a silicon by reducing S i C 1 4 with aluminum 7 p pm added T i to that used in Example 1.
  • the main impurities in the obtained silicon were T i 7 p pm and F e 0.5 p pm.
  • the silicon was directionally solidified at a speed of 0.4 mmZ to obtain an ingot having a 180 mm mouth and a height of 120 mm. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 or more was 65%.
  • Silicon was obtained by adding 20 ppm to the aluminum used in Example 1 and reducing S i C.
  • the main impurity in the obtained silicon was V 1. l ppm. This silicon was directionally solidified at a speed of 0.4 mm and a 180 mm ingot with a height of 120 mm was obtained. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 m or more was 70%.
  • Example 7
  • Silicon was obtained by adding 1 Oppm of Fe to the aluminum used in Example 1 to reduce SicCl 4 .
  • the main impurity in the obtained silicon was F e 9 p pm.
  • the silicon was directionally solidified at a speed of 0.4 mm / min to obtain an ingot having an 18 Omm opening and a height of 12 Omm. When the diffusion length of this ingot was measured, the portion where the diffusion length was 50 m or more was 85%.
  • Example 9 To obtain a silicon by reducing S i C 1 4 and 3 p pm added F e aluminum used in Example 1.
  • the main impurity in the obtained silicon was Fe 3 p pm.
  • This silicon was directionally solidified at a speed of 0.4 mmZ to obtain an ingot with an 18 Omm mouth and a height of 12 Omm. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 m or more was 90%.
  • Example 10 To obtain a silicon by reducing S i C 1 4 to T i aluminum used in Example 1 was added 0. 3 p pm. The main impurity in the obtained silicon was T i 0.3 ppm. The silicon was directionally solidified at a speed of 0.4 mm / min to obtain an ingot having an 18 Omm opening and a height of 12 Omm. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 m or more was 85%.
  • V aluminum used in Example 1 was added 1 ppm.
  • the main impurity in the obtained silicon was V0.1 ppm.
  • This silicon is directionally solidified at a speed of 0.4 mmZ, with a 180 mm mouth and a 120 mm height. Got an ingot. When the diffusion length of this ingot was measured, the portion with a diffusion length of 50 m or more was 80%.
  • high-purity silicon that can be suitably used as a raw material for solar cells (for example, the purity is 5 N or more, preferably 6 N or more, boron is 1 ppm or less, and phosphorus is 0 3 ppm or less).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

高純度シリコンの製造方法が提供される。高純度シリコンの製造方法は下式(1)で表されるハロゲン化珪素をアルミニウムで還元してシリコンを製造する方法であって、還元剤として使用するアルミニウムの純度が99.9重量%以上である。 SiHnX4-n:      (1)(式中、nは、0~3の整数であり、Xは、F、Cl、Br、Iから選ばれた1種または2種以上のハロゲン原子である。ここでアルミニウムの純度は、100重量%から、アルミニウムに含まれる鉄と銅とガリウムとチタンとニッケルとナトリウムとマグネシウムと亜鉛の合計の重量%を差し引いたものである。)

Description

明 細 書 高純度シリコンの製造方法 技術分野
本発明は、 高純度シリコンの製造方法に関する。 背景技術
太陽電池用原料シリコンは、 半導体グレードシリコンの規格外品を主な原料とし ている。 半導体グレードシリコンは、 冶金グレードシリコンを精製して製造されて いる。 冶金グレードシリコンは、 炭素、 珪石を混合してアーク炉により還元製造さ れている。 この冶金グレードシリコンと H C 1の反応によりトリクロルシランを合 成し、 これを精留精製後、 水素を用いて高温で還元して半導体グレードシリコンが 製造される。 この方法では極めて高純度のシリコンを製造できるが、 シリコンへの 転換率が低く、 この平衡をシリコンに有利にするために多量の水素が必要なこと、 それでも転換率が低いために多くの未反応ガスを再度循環使用する必要があること
、 未反応ガス中に種々のハロゲン化シランが生成するため、 再度蒸留によって分離 が必要になること、 最終的に水素で還元できない四塩化珪素が多量に生成してくる こと、 などのために高コストである。
一方、 太陽電池は、 近年の炭酸ガスなどの環境問題に対しての有力な解決手段と して注目されていて、 需要も著しい伸びを示している。 しかしながら、 現在の太陽 電池は、 まだ高価なため、 これにより得られる電力の価格は商業電力の電気代に比 較して数倍である。 現在、 環境問題、 増加するエネルギー需要に対応して太陽電池 の需要が伸張して、 従来の半導体規格外シリコンだけでは原料に不足する事態にな りつつあり、 多量の低コスト太陽電池の供給が望まれている。 従来から、 四塩化珪素をアルミニウムで還元する方法 〔吉沢四郎、 端野朝康、 阪 口新、 四塩化ケィ素のアルミニウム還元、 工業化学雑誌 64 (8) 1347-50 (196 1) 、 特開平 2— 64006号公報、 特開昭 59 - 182221号公報〕 、 四塩ィ匕 建素の亜紛還元法 [Evaluation of selecdted chemical processes for productio n of low-cost silicon, J. M. Blocher, et. al. Jet propulsion laboratory f i nal report (1981)〕 、 トリクロルシランの流動床還元 〔昭和 55- 62年度新エネルギ 一総合開発機構委託業務成果報告書 「太陽光発電システム実用化技術開発 低コス トシリコン実験精製検証」 総括版 昭和 63年、 信越化学工業株式会社〕 など、 種々 の提案がなされているが、 いずれもまだ実用化されていない。 発明の開示
本発明の目的は、 太陽電池用原料として、 好適に用いられる高純度シリコンの新 規で安価な製造方法、 及び該製造方法で得られる高純度シリコンを提供することに ある。
本発明者らは、 高純度シリコンの製造方法について鋭意検討した結果、 本発明を 完成させるに至った。
すなわち、 本発明は、 〔1〕 下式 (1) で表されるハロゲン化珪素をアルミニゥ ムで還元してシリコンを製造する方法であって、 還元剤として使用するアルミニゥ ムの純度が 99. 9重量%以上である高純度シリコンの製造方法を提供する。
S i HnX4.n : (1)
(式中、 nは、 0〜 3の整数であり、 Xは、 F、 C l、 Br、 Iから選ばれた 1種 または 2種以上のハロゲン原子である。 ここでアルミニウムの純度は、 100重量
%から、 アルミニウムに含まれる鉄と銅とガリウムとチタンとニッケルとナトリウ ムとマグネシウムと亜鉛の合計の重量%を差し引いたものである。 ) 、
更に、 本発明は、 〔2〕 アルミニウムに含まれるホウ素が 5 ppm以下、 かつリ ンが 0. 5ppm以下である 〔1〕 記載の方法、
〔3〕 アルミニウムに含まれるホウ素が 0. 5 p pm以下、 かつリンが 0. 3pp m以下である 〔1〕 または 〔2〕 記載の方法、
〔4〕 アルミニウムに含まれる鉄が 150 p pm以下、 銅が 290 ppm以下、 チ タンが 7ppm以下、 バナジウムが 20 p pm以下である 〔1〕 〜 〔3〕 のいずれ かに記載の方法、
〔5〕 アルミニウムに含まれる鉄濃度を XFe P pm、 銅濃度を XCuppm、 チタン 濃度を XTippm、 バナジウム濃度を Xvp pmとしたとき、 XFノ 150+XCu /290 +XTiZ7 +XVZ20≤ 1である 〔1〕 〜 〔4〕 のいずれかに記載の方 法、
〔6〕 アルミニウムに含まれる鉄が 10 p pm以下である 〔1〕 〜 〔5〕 のいずれ かに記載の方法、
〔7〕 アルミニウムに含まれる鉄が 10 p pm以下、 銅が l Oppm以下、 チタン が lppm以下、 バナジウムが 5 p pm以下である 〔1〕 〜 〔6〕 のいずれかに記 載の方法、
〔8〕 アルミニウムに含まれる鉄が 3 ppm以下、 銅が 3ppm以下、 チタンが 0 . 3ppm以下、 バナジウムが 1 p pm以下である 〔1〕 〜 〔7〕 のいずれかに記 載の方法、
〔9〕 アルミニウムが 99. 99 %以上である 〔1〕 記載の方法、
〔10〕 アルミニウムに含まれる鉄が 10 p pm以下、 銅が l Oppm以下、 チタ ンが lppm以下、 バナジウムが 5 p pm以下である 〔9〕 記載の方法、
〔11〕 アルミニウムに含まれる鉄が 3 p pm以下、 銅が 3ppm以下、 チタンが 0. 3ppm以下、 バナジウムが 1 p pm以下である 〔9〕 または 〔10〕 記載の 方法、
〔12〕 アルミニウムに含まれるホウ素が 0. 5 p pm以下、 かつリンが 0. 3p 6 313363 p m以下である 〔9〕 〜 〔1 1〕 のいずれかに記載の方法、
〔1 3〕 ハロゲン化珪素の純度が 4 N以上である 〔1〕 〜 〔1 2〕 のいずれかに記 載の方法、 .
〔1 4〕 前記の 〔1〕 〜 〔1 3〕 のいずれかに記載の方法により得られたシリコン を方向凝固により精製する高純度シリコンの製造方法、 を提供する。 発明を実施するための最良の形態
本発明の高純度シリコンの製造方法は、 前記の式 (1 ) で表される八ロゲン化珪 素をアルミニウムで還元してシリコンを製造する方法であって、 還元剤として使用 するアルミニウムの純度が 9 9 . 9重量%以上であることを特徴とする。 本発明に おいて、 アルミニウムの純度は、 1 0 0重量%から、 アルミニウムに含まれる鉄と 銅とガリウムとチタンとニッケルとナトリウムとマグネシウムと亜鉛の合計の重量
%を差し引いたものである。 本発明において、 シリコンの純度は、 1 0 0重量%か ら、 シリコンに含まれる鉄と銅とガリウムとチタンとニッケルとナトリウムとマグ ネシゥムと亜鉛の合計の重量%を差し引いたものである。 本発明において、 純度分 析は、 グロ一放電質量分析法により行う。
該ハロゲン化珪素としては、 四塩化珪素、 トリクロロシラン、 ジクロロシラン、 モノクロルシランが挙げられる。 コストを考慮すると四塩化珪素が最も好ましい。 これらのハロゲン化珪素は、 工業的に良く知られている方法で製造された高純度品 を使用できる。 公知の製造方法としては、 珪石と炭素の共存下、 1 0 0 0〜1 4 0
0 °Cの高温で塩素化する方法、 又は冶金グレードシリコンと塩素もしくは塩化水素 の反応などにより製造する方法などがある。 このようにして得られたハロゲン化珪 素を蒸留することにより、 6 N以上の高純度ハロゲン化珪素を製造できる。
本発明における原料として用いるハロゲン化珪素の純度としては、 4 N以上が好 ましく、 6 N以上がさらに好ましく、 7 N以上が特に好ましい。 また、 特に P、 B の含有量は 0. 5ppm以下が好ましく、 0. 3 p pm以下が更に好ましく、 0. 1 pm以下が特に好ましい。
本発明において、 還元剤として用いるアルミニウムの純度は 99. 9重量%以上 であり、 更に好ましくは 99. 99重量%以上、 最も好ましくは 99. 995重量 %以上である。
鉄、 銅、 ガリウム、 チタン、 ニッケル、 ナトリウム、 マグネシウム、 亜鉛の各元 素は方向凝固で精製可能ではあるが、 方向凝固の収率を高めるためには、 それぞれ の元素の含有量については、 鉄は好ましくは 150 p pm以下、 より好ましくは 3 Oppm以下、 更に好ましくは 10 ppm以下、 特に好ましくは 3 p pm以下; 銅は好ましくは 290 ppm以下、 より好ましくは 30 p pm以下、 更に好ましく は 10 p p m以下、 特に好ましくは 3 p p m以下;
チタンは好ましくは 30 ppm以下、 より好ましくは 10 p pm以下、 更に好まし くは 7ppm以下、 より更に好ましくは 3 ppm以下、 もっとより更に好ましくは 1 ppm以下、 特に好ましくは 0. 3ppm以下;
ニッケルは好ましくは 300 p pm以下、 より好ましくは 30 p pm以下、 更に好 ましくは 10 ppm以下、 より更に好ましくは 3 p pm以下、 特に好ましくは l p pm以下;
ナトリウムは好ましくは 300 p pm以下、 より好ましくは 30 p pm以下、 更に 好ましくは 1 Oppm以下、 特に好ましくは 3 ppm以下;
マグネシウムは好ましくは 300 p pm以下、 より好ましくは 30 p pm以下;更 に好ましくは 10 p pm以下、 特に好ましくは 3 p pm以下;
亜鉛は好ましくは 30 Oppm以下、 より好ましくは 30 ppm以下、 更に好まし くは 1 Oppm以下、 特に好ましくは 3 p pm以下である。
アルミニウムに含まれるこれらの元素以外のもので、 Pについては、 後に用いる ことがあるシリコンの精製工程である方向凝固で除くことができないため、 アルミ 二ゥムに含まれる Pの濃度は、 好ましくは 0. 5 p pm以下、 さらに好ましくは 0 . 3 ppm以下、 特に好ましくは 0. l p pm以下がよい。
また、 ホウ素も方向凝固の精製が難しいために、 アルミニウムに含まれるホウ素 の濃度は、 好ましくは 5 ppm以下、 さらに好ましくは 1 ppm以下、 特に好まし くは 0. 3 ppm以下がよい。
また、 バナジウムは好ましくは 20 ppm以下、 更に好ましくは 5 p pm以下、 更に好ましくは 1 p pm以下、 特に好ましくは 0. l ppm以下である。
これら影響のある各元素の合計値が好ましい数値以下であるだけでなく、 好まし くは、 アルミニウムに含まれる鉄濃度を XFeppm、 銅濃度を Xcuppm、 チタン 濃度を XTi ppm、 バナジウム濃度を Xv ppmとしたとき、 XFeZl 50+XCu ,290 +XTi/7 +Xv/20≤ 1である。
本発明におけるアルミニウムは、 通常市販の電解還元アルミニウム (普通アルミ 二ゥム) を、 偏析凝固法、 三層電解法などによって精製することにより得られる。 反応に供するアルミニウムの形状としては、 箔、 粉末、 融液などがありうる。 反 応速度の面からはできるだけ表面積の大きい形状が好ましい。 '
本発明の製造方法において、 ハロゲン化珪素とアルミニウムの反応の方法として は、 耐熱性反応容器の中に予めアルミニウムを仕込んだ後、 所定温度にてハロゲン 化珪素を吹き込む方法、 または反応容器内にアルミニウムとハロゲン化珪素を同時 に供給して反応させる方法などが挙げられる。
反応温度としては、 好ましくは 400° (:〜 1200°C、 より好ましくは 500°C
〜1200° (:、 更に好ましくは 500°C〜 1000°C、 より更に好ましくは 660
°C〜1000°C、 特に好ましくは 700°C〜 1000°Cである。 400°C以上の温 度であれば、 反応速度が充分であり好ましく、 1200°C以下であれば、 ハロゲン 化珪素と反応生成物のシリコンの間の反応で低次のハロゲン化珪素が生成して、 シ リコンの収率が低下することが少なくなるので好ましい。 反応容器の材質は、 反応温度における耐熱性があり、 シリコンを汚染しない材料 が好ましく、 炭素、 炭化珪素、 窒化珪素、 アルミナ、 石英などが挙げられる。
本発明の方法において、 反応性を制御するために八ロゲン化珪素を不活性ガスに て希釈して供給しても良い。 不活性ガスとしては、 アルゴン、 窒素などが挙げられ る。
本発明の反応においては、 精製されたシリコンと副生物が生じる。 副生物は、 例 えば塩化アルミニウムである。 塩化アルミニウムは、 2 0 0 °C以上においてはガス であるので、 反応系を 2 0 0 °C以上に保持して、 未反応ハロゲン化珪素、 希釈ガス 、 塩化アルミニウムガスの混合ガスとシリコンとの固気分離を行なうことが好まし い
本発明の方法により生成した未反応ハロゲン化珪素、 希釈ガス、 塩化アルミニゥ ムガスの混合ガスを、 引き続き 2 0 0 °C以下に冷却することにより、 塩化アルミ二 ゥムを固体とし、 未反応ハロゲン化珪素 +希釈ガスの気体と分離することが好まし い。
未反応ハロゲン化珪素は、 必要に応じて希釈ガスから分離して、 再度アルミニゥ ムとの反応に用いることができる。 希釈ガスからの分離は、 冷却してハロゲン化珪 素を液体とし、 気液分離により行うことができる。
本発明の方法において、 得られた塩化アルミニウムは極めて高純度であるので、 そのまま無水塩化アルミニウムとして触媒などに利用することも可能であるし、 水 と反応させてポリ塩化アルミニウムとしたり、 それを中和することによって水酸化. アルミニウムとしたり、 水蒸気、 または酸素と高温で反応させてアルミナとするこ とも可能である。
本発明の方法において、 ハロゲン化珪素とアルミニウムは、 反応の自由エネルギ 一が大きな負のために反応は平衡論的には化学量論比で進行するが、 速度論的な観 点、 後の分離工程から考えて、 アルミニウムよりもハロゲン化珪素が過剰量とする ほうが好ましい。
本発明の方法において、 反応の雰囲気はハロゲン化珪素ガス、 又はハロゲン化珪 素ガスと不活性ガスの混合ガスが好ましく、 反応の進行のためには、 水、 酸素など が存在しないことが好ましい。
また、 塩化水素が存在すると、 それに応じてアルミニウムの原単位が悪化するが 、 シリコンの精製効果も期待されるため、 精製が必要な場合には必要最小限の使用 も考えられる。
本発明の方法において、 反応時間は、 反応の形式にもよるが、 好ましくは 1秒以 上 4 8時間以下、 より好ましくは 5秒以上 4 8時間以下、 更に好ましくは 1 0秒以 上 4 8時間以下、 より更に好ましくは 1 0秒以上 6 0分以下、 特に好ましくは 1 0 秒以上 1 0分以下である。 アルミニウムが微細なほど反応は速やかに進行するので 、 好ましい反応時間は、 アルミニウムの形状に依存する。 反応時間が短すぎると未 反応アルミニウムが残留してシリコン中の不純物となるために好ましくなく、 長す ぎると収率的に不利はないが、 無駄な時間を費やしてコストアップの要因となる。 本発明の方法において得られたシリコン中には、 反応条件により若干のアルミ二 ゥムが残存する場合があるため、 必要に応じてシリコンを粉碎後、 酸洗してアルミ 二ゥムを除去することが好ましい。 使用する酸としては、 金属不純物の少ないもの が好ましく、 種類としては塩酸、 硝酸、 硫酸などが好適に用いうる。
上記において、 本発明の実施の形態について説明を行なったが、 上記に開示され た本発明の実施の形態は、 あくまで例示であって、 本発明の範囲はこれらの実施の 形態に限定されない。 本発明の範囲は、 特許請求の範囲によって示され、 さらに特 許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。 実施例
以下、 本発明を実施例によって説明するが、 本発明はこれらによって限定される ものではない。
なお、 以下の測定における純度分析は、 グロ一放電質量分析法 (VG社製、 VG-9 000) を利用した。 また、 拡散長は、 Su r f a c e Pho t o Vo l t age (SPV) 表面光起電圧法 (SDI社製、 CMS4010) により行った。 拡散長 は 50 以上あれば太陽電池として使用可能である。 実施例 1
三層電解高純度アルミニウム板 (住友化学 (株) 製、 1mm厚、 成分分析値は表 1参照) 5 gをアルミナるつぼに入れ、 電気炉の石英製炉心管内に置いた。
次いで四塩化珪素 (トリケミカル (株) 製、 6N) を充填したボンベに、 Arを
400 c c/分の速度で通過させ、 四塩化珪素と A rの混合ガスを 900°Cに保つ た管状電気炉に導入し、 アルミニウムと四塩化珪素とを約 1時間反応させた。 その 後ガスを A rに切り替えて降温した。
反応終了後、 得られたシリコンを取り出し、 粉砕して希塩酸、 次いで純水で洗浄 後乾燥して純度分析を行った。
純度分析の結果、 高純度アルミニウムとそれにより得られるシリコン中の不純物 (単位 ppm) を表 1に示す。 極めて高純度のシリコンが得られた。 該高純度アル ミニゥムの純度は、 99. 9996 % (不純物合計 3. 72 ppm) であった。 得 られたシリコンの純度は、 99. 9999 % (不純物合計 0. 95 ppm) であつ た。 比較例 1
普通純度アルミニウム (住友化学 (株) 製、 1mm厚、 成分分析値は表 2参照)
5 gをアルミナるつぼに入れ、 電気炉の石英製炉心管内に置いた。 次いで四塩化珪 素 (とりケミカル (株) 製、 6N) を充填したボンベに、 八1"を400じ じ /分の 速度で通過させ、 四塩化珪素と A rの混合ガスを 900 °Cに保った管状電気炉に導 入し、 アルミニウムと四塩化珪素とを約 1時間反応させた。 その後ガスを A rに切 り替えて降温した。
反応終了後、 得られたシリコンを取り出し、 粉碎して希塩酸、 次いで純水で洗浄 後乾燥して純度分析を行った。
純度分析の結果、 普通アルミニウムとそれにより得られるシリコン中の不純物 ( 単位 ppm) を表 2に示す。 該普通アルミニウムの純度は、 99. 28 % (不純物 合計72 102 111) であった。 得られたシリコンの純度は、 99. 21% ( 不純物合計 79 X 102 p p m) であった。
アルミニウム中の不純物がシリコンに移動していることがわかる。 純度は 99重 量%程度であり、 この純度では、 後で精製をしても太陽電池用原料としては不十分 なものにしかならない。 実施例 2
表 3に示される不純物組成のアルミニウムを使用して S i C 14を還元し、 シリ コンを得た。 このシリコンの不純物を分析したところ、 表 3のような結果を得た。 この結果、 不純物の挙動をみると、 Fe、 Cu、 T i、 N i、 B、 Pに関しては、 A 1中の不純物は概ねそのままシリコン中に移行すること、 C r、 V、 Z r、 Mo 、 Znなどは A 1から S iへの転換時に 1/10に減少することがわかった。 従つ て、 シリコン中の許容濃度よりも約 10倍程度高濃度の C r、 V、 Z r、 Mo、 Z nを含有するアルミニウムを使用しても良いことがわかる。 実施例 3
実施例 1で用いたアルミニウムに Feを 15 O p pm添加して S i C 14を還元 してシリコンを得た。 得られたシリコン中の主要不純物は F e 14 Oppmであつ た。 このシリコンを 0. 4 mm/分の速度で方向凝固し、 180mm口、 高さ 12 0mmのインゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 5 0 m以上の部分が 70 %となった。 実施例 4
実施例 1で用いたアルミニウムに Cuを 300 p pm添加して S i C 14を還元 してシリコンを得た。 得られたシリコン中の主要不純物は Cu 28 Oppmであつ た。 このシリコンを 0. 4mm/分の速度で方向凝固し、 180mm口、 高さ 12 0mmのインゴットを得た。 このインゴットの拡散長を測定したところ、 お散長 5 0 m以上の部分が 75 %となった。 実施例 5
実施例 1で用いたアルミニウムに T iを 7 p pm添加して S i C 14を還元して シリコンを得た。 得られたシリコン中の主要不純物は T i 7 p pmと F e 0. 5 p pmであった。 このシリコンを 0. 4 mmZ分の速度で方向凝固し、 180mm口 、 高さ 120mmのインゴットを得た。 このインゴットの拡散長を測定したところ 、 拡散長 50 以上の部分が 65%となった。 実施例 6
実施例 1で用いたアルミニウムに Vを 20 p pm添加して S i C を還元して シリコンを得た。 得られたシリコン中の主要不純物は V 1. l ppmであった。 こ のシリコンを 0. 4 mm,分の速度で方向凝固し、 180mm口、 高さ 120mm のインゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 50 m 以上の部分が 70%となった。 実施例 7
実施例 1で用いたアルミニウムに Feを 1 Oppm添加して S i C 14を還元し てシリコンを得た。 得られたシリコン中の主要不純物は F e 9 p pmであった。 こ のシリコンを 0. 4 mm/分の速度で方向凝固し、 18 Omm口、 高さ 12 Omm のインゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 50 m 以上の部分が 85%となった。 実施例 8
実施例 1で用いたアルミニウムに F eを 3 p pm添加して S i C 14を還元して シリコンを得た。 得られたシリコン中の主要不純物は F e 3 p pmであった。 この シリコンを 0. 4 mmZ分の速度で方向凝固し、 18 Omm口、 高さ 12 Ommの インゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 50 m以 上の部分が 90 %となった。 実施例 9
実施例 1で用いたアルミニウムに T iを 0. 3 p pm添加して S i C 14を還元 してシリコンを得た。 得られたシリコン中の主要不純物は T i 0. 3ppmであつ た。 このシリコンを 0. 4 mm/分の速度で方向凝固し、 18 Omm口、 高さ 12 Ommのインゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 5 0 m以上の部分が 85%となった。 実施例 10
実施例 1で用いたアルミニウムに Vを 1 ppm添加して S i C 14を還元してシ リコンを得た。 得られたシリコン中の主要不純物は V0. 1 ppmであった。 この シリコンを 0. 4 mmZ分の速度で方向凝固し、 180 mm口、 高さ 120 mmの インゴットを得た。 このインゴットの拡散長を測定したところ、 拡散長 5 0 m以 上の部分が 8 0 %となった。
表 1
Figure imgf000014_0001
表 3
Figure imgf000015_0001
産業上の利用可能性
本発明の製造方法によれば、 太陽電池原料として好適に用いることができる高純 度シリコン (例えば、 純度が 5 N以上、 好ましくは 6 N以上であり、 かつホウ素が 1 p p m以下、 リンが 0 . 3 p p m以下) が得られる。

Claims

請求の範囲
1. 下式 (1) で表されるハロゲン化珪素をアルミニウムで還元してシリコンを製 造する方法であって、 還元剤として使用するアルミニウムの純度が 99. 9重 量%以上である高純度シリコンの製造方法。
S i H„X4.n : (1)
(式中、 nは、 0〜 3の整数であり、 Xは、 F、 C l、 B r、 Iから選ばれた 1種または 2種以上のハロゲン原子である。 ここでアルミニウムの純度は、 1 00重量%から、 アルミニウムに含まれる鉄と銅とガリウムとチタンとニッケ ルとナトリゥムとマグネシウムと亜鉛の合計の重量%を差し引いたものである
2. アルミニウムに含まれるホウ素が 5 p pm以下、 かつリンが 0. 5 ppm以下 である請求項 1記載の方法。
3. アルミニウムに含まれるホウ素が 0. 5 ppm以下、 かつリンが 0. 3 ppm 以下である請求項 1または 2記載の方法。
4. アルミニウムに含まれる鉄が 150 p pm以下、 銅が 290 p pm以下、 チタ ンが 7 p pm以下、 バナジウムが 20 p pm以下である請求項 1〜3のいずれ かに記載の方法。
5. アルミニウムに含まれる鉄濃度を XFe p pm、 銅濃度を XCuppm、 チタン濃 度を XTi p pm、 バナジウム濃度を Xvppmとしたとき、 XFe/150+XCu /290 +XTi/7 +Xv/20≤ 1である請求項 1〜4のいずれかに記載の 方法。
6. アルミニウムに含まれる鉄が 10 ppm以下である請求項 1〜 5のいずれかに 記載の方法。
7. アルミニウムに含まれる鉄が 10 p pm以下、 銅が l O ppm以下、 チタンが 1 p pm以下、 バナジウムが 5 p pm以下である請求項 1〜6のいずれかに記 載の方法。
8. アルミニウムに含まれる鉄が 3 p pm以下、 銅が 3 ppm以下、 チタンが 0.
3 p pm以下、 バナジウムが 1 p pm以下である請求項 1〜 7のいずれかに記 載の方法。
9. アルミニウムが 99. 99 %以上である請求項 1記載の方法。
10. アルミニウムに含まれる鉄が 10 p pm以下、 銅が 10 ppm以下、 チタン が 1 ppm以下、 バナジウムが 5 ppm以下である請求項 9記載の方法。
11. アルミニウムに含まれる鉄が 3 p pm以下、 銅が 3 ppm以下、 チタンが 0 . 3 ppm以下、 バナジウムが 1 ppm以下である請求項 9または 10記載の 方法。
12. アルミニウムに含まれるホウ素が 0. 5 ppm以下、 かつリンが 0. 3 pp m以下である請求項 9〜11のいずれかに記載の方法。
13. ハロゲン化珪素の純度が 4 N以上である請求項 1〜12のいずれかに記載の 方法。
14. 請求項 1〜13のいずれかに記載の方法により得られたシリコンを方向凝固 により精製する高純度シリコンの製造方法。
PCT/JP2006/313363 2005-06-29 2006-06-28 高純度シリコンの製造方法 WO2007001093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/921,940 US20090130015A1 (en) 2005-06-29 2006-06-28 Method for producing high purity silicon
BRPI0614048-3A BRPI0614048A2 (pt) 2005-06-29 2006-06-28 método para produção de silìcio de pureza elevada
DE112006001649T DE112006001649T5 (de) 2005-06-29 2006-06-28 Verfahren zur Herstellung von Silicium hoher Reinheit
NO20080519A NO20080519L (no) 2005-06-29 2008-01-28 Fremgangsmate for produksjon av hoyrenset silikon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-189454 2005-06-29
JP2005189454 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007001093A1 true WO2007001093A1 (ja) 2007-01-04

Family

ID=37595318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313363 WO2007001093A1 (ja) 2005-06-29 2006-06-28 高純度シリコンの製造方法

Country Status (7)

Country Link
US (1) US20090130015A1 (ja)
CN (1) CN101208267A (ja)
BR (1) BRPI0614048A2 (ja)
DE (1) DE112006001649T5 (ja)
NO (1) NO20080519L (ja)
TW (1) TW200704587A (ja)
WO (1) WO2007001093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080777A1 (en) * 2009-01-08 2010-07-15 Bp Corporation North America Inc. Impurity reducing process for silicon and purified silicon material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227374B (zh) * 2008-12-01 2013-08-21 住友化学株式会社 n型太阳能电池用硅及添加有磷的硅的制造方法
US8216539B2 (en) 2010-04-14 2012-07-10 Calisolar, Inc. Cascading purification
CN101979318A (zh) * 2010-11-26 2011-02-23 安阳市凤凰光伏科技有限公司 多晶碳头料的处理方法
US9156705B2 (en) * 2010-12-23 2015-10-13 Sunedison, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (ja) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト ケイ素の製法
JPH0264006A (ja) * 1988-07-15 1990-03-05 Bayer Ag 太陽のシリコンの製造方法
JPH11199216A (ja) * 1998-01-12 1999-07-27 Kawasaki Steel Corp シリコンの一方向凝固装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653976A (en) * 1967-05-05 1972-04-04 Gen Motors Corp Thermocouple probe assembly with nickel aluminide tip
US4222830A (en) * 1978-12-26 1980-09-16 Aluminum Company Of America Production of extreme purity aluminum
US4221590A (en) * 1978-12-26 1980-09-09 Aluminum Company Of America Fractional crystallization process
US4612179A (en) * 1985-03-13 1986-09-16 Sri International Process for purification of solid silicon
US4919912A (en) * 1985-10-18 1990-04-24 Ford, Bacon & Davis Incorporated Process for the treatment of sulfur containing gases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (ja) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト ケイ素の製法
JPH0264006A (ja) * 1988-07-15 1990-03-05 Bayer Ag 太陽のシリコンの製造方法
JPH11199216A (ja) * 1998-01-12 1999-07-27 Kawasaki Steel Corp シリコンの一方向凝固装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080777A1 (en) * 2009-01-08 2010-07-15 Bp Corporation North America Inc. Impurity reducing process for silicon and purified silicon material

Also Published As

Publication number Publication date
TW200704587A (en) 2007-02-01
US20090130015A1 (en) 2009-05-21
NO20080519L (no) 2008-01-28
BRPI0614048A2 (pt) 2011-03-09
CN101208267A (zh) 2008-06-25
DE112006001649T5 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
US7972584B2 (en) Magnesiothermic methods of producing high-purity silicon
Safarian et al. Processes for upgrading metallurgical grade silicon to solar grade silicon
TWI496741B (zh) Production method of trichlorosilane
JP4856738B2 (ja) 高純度シリコン材料の製造方法
JP5311930B2 (ja) シリコンの製造方法
WO2007139023A1 (ja) シリコンの製造方法
US20090232722A1 (en) Method for producing silicon
JP5256588B2 (ja) 高純度シリコンの製造方法
WO2007001093A1 (ja) 高純度シリコンの製造方法
KR20110069770A (ko) 고순도 결정 실리콘, 고순도 사염화규소 및 이들의 제조 방법
EP3554998B1 (en) Process for the production of commercial grade silicon
JP5194404B2 (ja) 珪素の製造方法
WO2006041272A1 (en) Method of silane production
US9487406B2 (en) Systems for producing silane
US8821825B2 (en) Methods for producing silane
JPWO2013089014A1 (ja) 高純度クロロポリシランの製造方法
JP2004210594A (ja) 高純度シリコンの製造方法
JP2007055891A (ja) 多結晶シリコンの製造方法
JP4831285B2 (ja) 多結晶シリコンの製造方法
JP4946774B2 (ja) シリコンの製造方法
WO2007013644A1 (ja) 多結晶シリコンの製造方法
JPH1160228A (ja) 亜鉛還元による高純度シリコンの製造方法
JP2008156208A (ja) シリコンの製造方法
JP4911488B2 (ja) 多結晶シリコンの製造方法
JP4594271B2 (ja) 六塩化二珪素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023138.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060016490

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001649

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 11921940

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06767869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0614048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071227