WO2006137179A1 - シリコン単結晶の育成方法 - Google Patents

シリコン単結晶の育成方法 Download PDF

Info

Publication number
WO2006137179A1
WO2006137179A1 PCT/JP2005/022109 JP2005022109W WO2006137179A1 WO 2006137179 A1 WO2006137179 A1 WO 2006137179A1 JP 2005022109 W JP2005022109 W JP 2005022109W WO 2006137179 A1 WO2006137179 A1 WO 2006137179A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
crystal
growing
gas
Prior art date
Application number
PCT/JP2005/022109
Other languages
English (en)
French (fr)
Inventor
Shuichi Inami
Nobumitsu Takase
Yasuhiro Kogure
Ken Hamada
Tsuyoshi Nakamura
Original Assignee
Sumco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corporation filed Critical Sumco Corporation
Priority to CN2005800501786A priority Critical patent/CN101203634B/zh
Priority to EP05811258.2A priority patent/EP1897977B1/en
Priority to DE05811258T priority patent/DE05811258T1/de
Publication of WO2006137179A1 publication Critical patent/WO2006137179A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a method for growing a silicon single crystal that is a material of a silicon wafer, and in particular, a method for growing a silicon single crystal that can suppress dislocations caused by thermal stress and grow a dislocation-free portion with a high yield. About.
  • CZ method There is a known growing method (hereinafter referred to as CZ method).
  • CZ method a technique for adjusting the temperature of a growing silicon single crystal in order to efficiently produce a silicon single crystal of a desired quality by the CZ method is known.
  • a technique for increasing the maximum pulling speed by rapidly cooling the vicinity of the solid-liquid interface of the silicon single crystal being pulled has been proposed (for example, Patent Document 1: JP-A-11 199385).
  • the silicon single crystal with a long dislocation is grown by melting the pulled silicon single crystal and pulling it again.
  • the time required for the pulling becomes longer and the productivity of the crystal decreases.
  • the growth of dislocation-free crystals is abandoned and the crystal growth is stopped, a large amount of silicon melt is left in the crucible, and the raw material is wasted.
  • the crucible and the heater may be damaged due to volume expansion when the silicon melt remaining in the crucible solidifies. For this reason, the number of occurrences of dislocations has been increased. Even if the silicon single crystal is melted and pulled up again, if it cannot be expected to pull up the silicon single crystal with a long dislocation, the silicon single crystal with the dislocations ⁇ is pulled up. .
  • a silicon single crystal in which dislocations are generated many times has a large crystal grain shift due to thermal stress during growth. Therefore, after the pulled silicon single crystal is cooled to room temperature, a large residual stress is generated due to the deviation of crystal grains. For this reason, when the pulled silicon single crystal is taken out of the furnace or when the silicon single crystal taken out of the furnace is transported, a strong impact is easily applied, so that a stress higher than the yield stress of silicon can be easily applied. There was the inconvenience that it occurred and the crystal broke.
  • the present invention has been made in view of the above circumstances, and suppresses dislocation defects caused by thermal stress generated when adjusting the temperature of the side surface portion of the growing silicon single crystal, and cracks. It is difficult to provide a method for growing a silicon single crystal excellent in productivity and capable of growing a silicon single crystal having a long dislocation-free portion with a high yield.
  • the method for growing a silicon single crystal of the present invention is a method for growing a silicon single crystal by a Tjokralski method under a condition in which thermal stress is applied to at least a part of the silicon single crystal being grown.
  • the atmosphere gas for growing the single crystal contains a gas containing a hydrogen atom-containing substance.
  • the thermal stress applied to at least a part of the growing silicon single crystal is the force that is in contact with the melt surface of the side part of the same part of the single crystal straight moon. It means the thermal stress applied to at least a part of the space.
  • the thermal stress may be 30 MPa or more.
  • the thermal stress may be 40 MPa or more.
  • the gas of the hydrogen atom-containing substance may be hydrogen gas.
  • the hydrogen molecular partial pressure of the gas of the hydrogen atom-containing substance in the atmospheric gas may be 40 to 400 Pa! /.
  • the silicon single crystal of the present invention is produced by the above-described silicon single crystal growth method.
  • FIG. 1 is a cross-sectional view for explaining the defect distribution state in the radial direction of a silicon single crystal obtained by the CZ method.
  • the Grown-in defects of silicon single crystals obtained by the CZ method have a size called an infrared diffuser defect or COP (Crystal Originated Particle) of 0.1-0.2 / It consists of vacancy defects of about zm and small dislocations of about 10 m in size called dislocation clusters.
  • COP Crystal Originated Particle
  • oxygen-induced stacking fault (hereinafter referred to as OSF (Oxygen
  • induced Stacking Fault ( ) Appears in a ring shape in the area of about 2/3 of the outer diameter. Inside the O SF generation region, there is a region (laser scattering tomography defect occurrence area) that laser scattering tomography defects are detected about 105 to 106 pieces ZCM 3, the outer portion, dislocation clusters is 10 3 to 10 4 Zcm is about 3 present region (dislocation cluster occurrence region).
  • FIG. 2 is a diagram for explaining a defect distribution state of a cross section of a silicon single crystal grown by gradually reducing the pulling speed at the time of pulling.
  • FIG. 1 is a cross-sectional view of a silicon single crystal grown at a pulling speed corresponding to the position A in FIG.
  • a ring-like OSF generation region appears around the crystal, and the inner part of the OSF generation region is an infrared scatterer defect generation region where many infrared scatterer defects are generated. ing.
  • the diameter of the OSF generation region gradually decreases, and a dislocation cluster generation region in which dislocation clusters are generated appears outside the OSF generation region.
  • the OSF generation region disappears, and the dislocation cluster generation region appears on the entire surface.
  • V region On the outside in contact with the ring-like OSF generation region, there is an oxygen precipitation promotion region (PV region) that can form oxygen precipitates (BMD: Bulk Micro Defects). Between the cluster generation region, there is an oxygen precipitation suppression region (PI region) where no oxygen precipitation occurs. Oxygen precipitation promotion region (PV region), oxygen precipitation suppression region (PI region), ring
  • the OSF occurrence area is a very small number of Grown-in defects! /, A defect-free area
  • a silicon single crystal in which infrared scatterer defects are detected is superior in productivity because it has a lower negative impact on the device than a silicon single crystal in which dislocation clusters are detected. .
  • a silicon single crystal in a desired defect state can be obtained by controlling the ratio of the pulling speed V (mmZmin) to the temperature gradient G (° CZmm) on the crystal side near the solid-liquid interface, VZG. .
  • the example of growing a silicon single crystal described with reference to FIGS. 1 and 2 is grown using a hot zone structure without adjusting the temperature to control the temperature gradient G on the side surface of the silicon single crystal. It is a thing.
  • the temperature gradient (Gc) at the crystal center is smaller than the temperature gradient (Ge) at the crystal periphery (Gc Ge).
  • the time during which the temperature of the growing silicon single crystal is in the range of 1000 to 800 ° C, in other words, the time for the growing silicon single crystal to pass through the temperature range of 1000 to 800 ° C exceeds 200 minutes. In the range of 1000 to 800 ° C, OSF nuclei grow in the silicon single crystal.
  • the side surface portion of the growing silicon single crystal Adjust the temperature to control the temperature gradient G on the crystal side near the solid-liquid interface, and set Gc ⁇ Ge in the temperature range from the melting point to around 1 250 ° C.
  • Figure 3 shows that the temperature gradient (Gc) at the center of the crystal is the same force as the temperature gradient (Ge) at the outer periphery of the crystal (Gc ⁇ Ge). It is a figure for demonstrating the defect distribution state of the cross section of the silicon single crystal grown using the crystal growth apparatus which has a tozone structure, and gradually raising the pulling speed at the time of pulling.
  • the temperature during which the temperature of the silicon single crystal being grown is in the range of 1000 to 800 ° C, in other words, the silicon single crystal being grown is The time to pass through the 800 ° C temperature range is 180-200 minutes. Therefore, in the silicon single crystal growth example described with reference to FIG. 3, the time during which the temperature of the silicon single crystal being grown is in the range of 1000 to 800 ° C. is shorter than the example shown in FIG. Therefore, the growth of OSF nuclei in the silicon single crystal is suppressed, and the pulling rate margin of defect-free crystals can be increased.
  • the temperature gradient G on the crystal side near the solid-liquid interface is controlled by adjusting the temperature of the side surface of the silicon single crystal being grown. To do. For this reason, the thermal stress applied to the growing silicon single crystal is increased compared to the example shown in FIG. 2 in which the temperature adjustment for controlling the temperature gradient G is not performed on the side surface of the silicon single crystal. Dislocations caused by thermal stress are likely to occur.
  • the thermal stress applied to the side surface of the silicon single crystal that passes through the hot zone without temperature adjustment to control the temperature gradient G at the side surface of the silicon single crystal. Is usually around 28MPa and less than 30MPa.
  • a thermal stress of 30 MPa or more is applied to the growing silicon unit. Loaded on the side of the crystal. Dislocation due to thermal stress becomes significant when the thermal stress is 30 MPa or more, and dislocation or cracking is very likely to occur when the thermal stress is 40 MPa or more.
  • the atmosphere gas for growing the single crystal is a gas containing a gas of a hydrogen atom-containing substance such as a mixed gas of an inert gas and a gas of a hydrogen atom-containing substance. Therefore, thermal stress is applied to the side surface of the growing silicon single crystal as in the case of controlling the temperature gradient G on the crystal side near the solid-liquid interface by adjusting the temperature of the side surface of the growing silicon single crystal. Even under the condition of loading, dislocations caused by thermal stress can be suppressed. This will be described below.
  • the occurrence of slip is an example of dislocations caused by thermal stress. Slip occurs from a dislocation cluster when the crystal cannot resist thermal stress.
  • the hydrogen element in the gas of the hydrogen atom-containing substance enters between the lattices of the silicon crystal. This results in the same state as when the concentration of silicon interstitial atoms is increased, and the number of interstitial atoms incorporated into the silicon melt crystal during the solidification process of silicon is reduced.
  • the hydrogen atom-containing substance gas may be hydrogen gas.
  • inorganic compounds containing hydrogen atoms such as H 0, CH, HCL, Contains hydrogen atoms such as silane gas, hydrocarbons such as CH-CH, alcohols, carboxylic acids, etc.
  • One or more selected gases can also be used.
  • hydrogen gas When hydrogen gas is used as the gas of the hydrogen atom-containing substance, hydrogen is introduced into the pulling furnace through a dedicated pipe from a commercially available hydrogen gas cylinder, a hydrogen gas storage tank, a hydrogen tank in which hydrogen is stored in a hydrogen storage alloy, etc. Can be supplied.
  • the inert gas (rare gas) one or more gases selected from Ar, He, Ne, Kr, and Xe can be used. Usually, an inexpensive argon (Ar) gas is used, but an Ar gas mixed with another inert gas such as He, Ne, Kr, or Xe may be used.
  • the concentration of oxygen gas (O 2) in the atmospheric gas is determined by the hydrogen content of the hydrogen atom-containing substance.
  • the concentration O of the hydrogen-containing substance gas in terms of hydrogen molecules does not satisfy the above formula, the effect of suppressing the generation of Grown-in defects by hydrogen atoms incorporated into the silicon single crystal cannot be obtained.
  • FIG. 4 is a view for explaining a defect distribution state of a cross section of a silicon single crystal obtained by using the method for growing a silicon single crystal of the present invention.
  • the silicon single crystal shown in FIG. 4 uses a crystal growth device having a hot zone structure (Gc ⁇ Ge) as in FIG. 3, and is a non-hydrogen crystal in which hydrogen is added so that the hydrogen partial pressure is 250 Pa in the pulling furnace. It was grown by supplying an active gas and gradually lowering the pulling speed during pulling.
  • the atmosphere gas for growing a single crystal is a mixed gas of an inert gas and hydrogen, as described above, the generation of dislocation clusters due to interstitial atoms is suppressed by hydrogen, so that The defective area shifts to the lower speed side of the pulling speed. Therefore, compared with the example shown in FIG. 3 in which the atmosphere gas is an inert gas, as shown in FIG. 4, the minimum pulling speed at which the defect-free crystal can be pulled up becomes slow, and the defect-free crystal can be pulled up.
  • the pulling speed range (defect-free crystal pulling speed margin (D force E range in Fig. 4)) increases.
  • the atmosphere gas is a mixed gas of an inert gas and hydrogen
  • hydrogen proportional to the partial pressure of hydrogen contained in the inert gas atmosphere is contained in the silicon melt. Dissolves and melts and distributes in solidifying silicon crystals.
  • the hydrogen concentration in the silicon melt depends on Henry's law force, the hydrogen partial pressure in the gas phase,
  • SH2 is the hydrogen concentration in the crystal, and is the segregation coefficient between the silicon melt and the crystal of hydrogen.
  • the hydrogen concentration in the silicon single crystal immediately after solidification is kept at a desired concentration in the axial direction of the crystal by controlling the hydrogen partial pressure in the atmosphere.
  • This hydrogen partial pressure can be controlled by the hydrogen concentration and furnace pressure.
  • FIG. 5 is a graph showing the relationship between the hydrogen partial pressure in the atmosphere and VZG. If the hot zone structure is the same, the temperature distribution inside the single crystal during pulling will hardly change even if the pulling rate changes. Therefore, the vertical axis VZG in Fig. 5 mainly shows the change in pulling speed. As shown in Fig. 5, as the hydrogen partial pressure in the atmosphere increases, the pulling speed at which defect-free crystals are obtained decreases. The pulling-up margin of defect-free crystals increases.
  • the pulling speed margin in the OSF region becomes narrower as the hydrogen partial pressure increases.
  • the PI region pulling speed margin will be greatly expanded as the hydrogen partial pressure increases.
  • the pulling speed margin in the PV region increases or decreases as the hydrogen partial pressure increases, and the pulling speed margin increases when the hydrogen partial pressure is 100 to 250 Pa.
  • the hydrogen molecular partial pressure exceeds 400 Pa, a giant cavity defect called a hydrogen defect tends to occur, which is not preferable. If the hydrogen molecular partial pressure of the hydrogen atom-containing substance gas in the atmospheric gas is 400 Pa or less, even if air flows into the silicon single crystal growth device due to leakage, hydrogen can be safely operated without burning. Is possible.
  • the silicon wafer As shown in FIG. 5, by setting the hydrogen molecular partial pressure of the gas of the hydrogen atom-containing substance in the atmospheric gas to 40 to 160 Pa (in the range of I in FIG. 5), the silicon wafer, which is the entire force region, is used. It is possible to easily grow a silicon single crystal from which is obtained. When the hydrogen molecular partial pressure exceeds 160 Pa, the PI region tends to coexist in the crystal, and it is possible to grow a silicon single crystal from which a silicon wafer whose entire surface is a PV region can be obtained.
  • the silicon surface whose entire surface is the PI region is used.
  • a silicon single crystal from which C can be obtained can be easily grown.
  • the hydrogen molecular partial pressure is less than 160 Pa, the PV region is likely to be mixed in the crystal, and it is possible to grow a silicon single crystal from which a silicon wafer with the entire surface being a PI region can be obtained.
  • the method for growing a silicon single crystal of the present invention includes an axial temperature gradient Gc at the center of the crystal from the melting point to 1350 ° C and an axial temperature gradient Ge at the outer periphery of the crystal from the melting point to 1350 ° C.
  • the ratio Gc / Ge is 1.1 to 1.4, and the axial temperature gradient Gc is 3.0 to 3.5 ° CZmm. It can also be suitably used for growing a silicon single crystal having a defect-free region force by using a crystal growth apparatus having a hot zone structure and supplying an inert gas containing hydrogen into the pulling furnace.
  • a thermal stress of about 30 to 45 MPa is usually applied to the side surface of the growing silicon single crystal, and the temperature of the growing silicon single crystal is 1000 to 800.
  • the time in the range of ° C in other words, the time for the growing silicon single crystal to pass through the temperature range of 1000 to 800 ° C is 80 to 180 minutes.
  • the atmosphere gas for growing the single crystal is a mixed gas of an inert gas and a hydrogen atom-containing substance
  • a crystal having a melting point up to 1350 ° C is used.
  • the ratio of the axial temperature gradient Gc at the center to the axial temperature gradient Ge at the outer periphery of the crystal from the melting point to 1350 ° C Gc / Ge is 1.1 to 1.4, and the axial temperature gradient Gc Even when a crystal growth apparatus having a hot zone structure with a temperature of 3.0 to 3.5 ° CZmm is used, dislocations caused by thermal stress can be effectively suppressed.
  • FIG. 7 is a view for explaining a defect distribution state of a cross section of another silicon single crystal obtained by using the method for growing a silicon single crystal of the present invention.
  • the silicon single crystal shown in Fig. 7 has a Gc / Ge ratio of 1.1 to 1.4 by improving the dimensions and position of the heat shield surrounding the single crystal immediately after solidification and the use of cooling members.
  • FIG. 6 shows the temperature gradient on the crystal side in the vicinity of the solid-liquid interface by adjusting the temperature of the side surface of the growing silicon single crystal using a crystal growth apparatus having the same hot zone structure as in Fig. 7.
  • FIG. 4 is a diagram for explaining a defect distribution state of a cross section of a silicon single crystal grown by controlling G, supplying only an inert gas into a pulling furnace, and gradually decreasing the pulling speed during pulling.
  • the growth rate of the defect-free crystal (from F in FIG. 6) compared to the example shown in FIG.
  • the range of G (in Fig. 7, from F to G) can be increased.
  • Gc / Ge is 1.1 to 1
  • the temperature gradient G on the crystal side in the vicinity of the solid-liquid interface is The pulling speed V can be increased without changing VZG, and the minimum pulling speed at which defect-free crystals can be pulled can be improved.
  • the controllability of VZG when pulling up the silicon single crystal can be improved. Also, as shown in Fig.
  • the pulling rate margin in the oxygen precipitation promotion region (PV region) and the pulling rate margin in the oxygen precipitation suppression region (PI region) (Fig. 7 also shows the H force). Since the range (G) becomes large, it is possible to obtain a silicon single crystal that becomes the PV region over the entire wafer surface and a silicon single crystal that becomes the PI region over the entire wafer surface.
  • nitrogen (N 2) at a concentration of 20% by volume or less in the atmospheric gas. May be present.
  • the silicon single crystal may dislocation.
  • dislocations caused by thermal stress caused by adjusting the temperature of the side surface of the growing silicon single crystal can be suppressed, and a dislocation-free portion that is difficult to crack can be grown with high yield. It is possible to provide a method for growing a silicon single crystal.
  • FIG. 1 is a cross-sectional view for explaining a defect distribution state in a radial direction of a silicon single crystal obtained by a CZ method.
  • FIG. 2 Using a crystal growth device with a hot zone structure in which the temperature gradient (Gc) at the center of the crystal is smaller than the temperature gradient (Ge) at the outer periphery of the crystal (G c ⁇ Ge),
  • FIG. 3 is a diagram for explaining a defect distribution state of a cross section of a silicon single crystal grown by gradually reducing the bowing speed.
  • FIG. 5 is a diagram for explaining a defect distribution state of a cross section of a silicon single crystal grown by gradually reducing the pulling rate of.
  • FIG. 4 is a view for explaining a defect distribution state of a cross section of a silicon single crystal obtained by using the method for growing a silicon single crystal of the present invention.
  • FIG. 5 is a graph showing the relationship between the hydrogen partial pressure in the atmosphere and VZG.
  • Gc / Ge is 1.1 to 1.4, and axial temperature gradient Gc is 3.0 to 3.5 ° CZmm. It is a figure for demonstrating the defect distribution state of the cross section of the silicon single crystal grown by reducing the speed gradually.
  • FIG. 5 is a diagram for explaining a defect distribution state of a cross section of a silicon single crystal grown by supplying an inert gas charged with hydrogen into the inside and gradually reducing the pulling rate during pulling.
  • FIG. 8 is a longitudinal sectional view of a CZ furnace suitable for carrying out the silicon single crystal growth method of the present invention.
  • FIG. 9 is a flowchart for explaining a heat transfer calculation method.
  • FIG. 10 is a flowchart for explaining a thermal stress calculation method.
  • FIG. 11 is a graph showing the number of dislocation shifts for each experimental example.
  • FIG. 12 is a graph showing the length of a dislocation-free part for each experimental example.
  • FIG. 8 is a longitudinal sectional view of a CZ furnace suitable for carrying out the method for growing a silicon single crystal in the present embodiment.
  • the CZ furnace shown in FIG. 8 includes a crucible 1 disposed in the center of the chamber 1, a heater 2 disposed outside the crucible 1, and a magnetic field supply device 9 disposed outside the heater 2. Yes.
  • the crucible 1 has a double structure in which a quartz crucible 1a containing a silicon melt 3 inside is held by an outer graphite crucible lb, and is rotated and moved up and down by a support shaft called a pedestal.
  • a cylindrical heat shield 7 is provided above the crucible 1.
  • the heat shield 7 has a structure in which an outer shell is made of graphite and graphite felt is filled inside.
  • the inner surface of the heat shield 7 is a tapered surface whose inner diameter gradually decreases from the upper end to the lower end.
  • the upper outer surface of the heat shield 7 is a tapered surface corresponding to the inner surface, and the lower outer surface is formed in a substantially straight surface so as to gradually increase the thickness of the heat shield 7 downward! RU
  • Gc / Ge is 1.1 to 1.4, more preferably 1.2 to 1.4
  • temperature gradient Gc is 3.0 to 3.5 ° CZmm, more preferably 3.2 to 3.3.
  • It has a hot zone structure, and the time during which the temperature of the growing silicon single crystal is in the range of 1000-800 ° C, in other words, the growing silicon
  • the time force for the single crystal to pass through the temperature range of 1000 to 800 ° C. is 80 to 180 minutes, more preferably 100 to 150 minutes.
  • Such a hot zone structure is constituted by the heat shield 7 and the water cooling means 8.
  • the heat shield 7 blocks the radiant heat to the side surface of the heater 2 and the silicon melt three-surface force silicon single crystal 6 and surrounds the side surface of the growing silicon single crystal 6. It surrounds the three sides of the silicon melt.
  • An example of the specification of the heat shield 7 is as follows.
  • the width W in the radial direction is, for example, 50 mm
  • the inclination ⁇ of the inner surface of the inverted truncated cone surface with respect to the vertical direction is, for example, 21 °
  • the height HI of the melt surface force at the lower end of the heat shield 7 is, for example, 60 mm.
  • the water cooling means 8 is attached to the inside of the heat shield 7. By attaching the water cooling means 8 to the inside of the heat shield 7, the side surface portion of the silicon single crystal 6 can be effectively cooled, and the water cooling means 8 is provided by an inert gas flow descending at a high speed inside the heat shield 7. SiO deposition on the surface is suppressed.
  • the water cooling means 8 a coiled water pipe made of copper or stainless steel, a water cooling jacket having a water partition, or the like can be used.
  • the water flow rate of the water cooling means 8 is preferably 10 liters Z minutes or more.
  • the cooling capacity of the water cooling means 8 can be adjusted by adjusting the installation distance from the melt surface to the height of the water cooling means 8 in the crystal pulling direction. It can be changed as appropriate. Also, by adjusting the cooling capacity of the water cooling means 8, the thermal stress applied to the side surface of the growing silicon single crystal changes in the range of 30 to 45 MPa, and the temperature of the growing silicon single crystal The time force that is in the range of 100-800 ° C changes in the range of 80-180 minutes.
  • the cooling member of the water cooling means 8 has an inner peripheral diameter of 1.20 Dc to 2.50 Dc and a length of 0.25 Dc or more. It is generally designed so that the distance to the lower end surface of the member is in the range of 0.30Dc to 0.85Dc.
  • the intensity of the magnetic field supplied from the magnetic field supply device 9 is 2000 to 4000G, more preferably 2500 to 3500G in a horizontal magnetic field (transverse magnetic field), and the height of the magnetic field center is on the melt surface.
  • Against Is set to be within a range of 150 to +100 mm, more preferably 75 to +50 mm.
  • the intensity of the magnetic field supplied from the magnetic field supply device 9 is 200 to 100 OG, more preferably 300 to 700 G, and the magnetic field center height is ⁇ 100 to + with respect to the melt surface. It is set to be within a range of 100 mm, more preferably 50 to +50 mm.
  • the axial temperature gradient Gc at the crystal center from the melting point to 1350 ° C is 3.0 to 3.2 ° CZmm.
  • the axial temperature gradient Ge at the outer periphery of the crystal is 2.3 to 2.5 ° CZmm, and GcZGe is about 1.3.
  • the thermal stress applied to the side surface of the growing silicon single crystal is 30 to 45 MPa. This state hardly changes even if the pulling speed is changed.
  • the operating conditions are set for growing a silicon single crystal in the target defect state.
  • setting operation conditions a method for setting operation conditions for growing defect-free crystals will be described.
  • the hydrogen molecular partial pressure in the atmospheric gas is 0, 20, 40, 160, 240, and 400 Pa mixing ratio.
  • a single crystal with a target diameter of, for example, 300 mm is grown under each condition.
  • the silicon melt 3 is obtained, the seed crystal attached to the seed chuck 5 is immersed in the silicon melt 3, and the crystal is pulled up while rotating the crucible 1 and the pulling shaft 4.
  • the crystal orientation is either ⁇ 100 ⁇ , ⁇ 111 ⁇ or ⁇ 110 ⁇ , and after carrying out the seed drawing for crystal dislocation, the shoulder is formed and the shoulder is changed to the target body diameter. .
  • the pulling speed is adjusted to be sufficiently larger than the critical speed, for example, 1. OmmZmin, and then the pulling speed is increased almost linearly according to the pulling length.
  • the body speed is reduced to, for example, 0.3 mm Zmin, which is smaller than the critical speed. After that, the crystal growth is completed.
  • each specimen is immersed in an aqueous copper sulfate solution, then air-dried, and heat-treated at 900 ° C for about 20 minutes in a nitrogen atmosphere. Then, in order to remove the Cu silicide layer on the surface of the specimen, it was immersed in a HF / HNO mixed solution,
  • the position of the OSF ring and the distribution of each defect area are investigated by X-ray topography. Further, the COP density of the slice piece is examined by, for example, the OPP method, and the dislocation cluster density is examined by, for example, the Secco etching method.
  • the pulling-up experiment As described above, the relationship between the VZG and the hydrogen concentration in each defect region of the infrared scatterer defect generation region, OSF generation region, PV region, PI region, and dislocation cluster generation region is obtained. Also, the pulling speed margin and the crystal of the target defect silicon single crystal can be changed by changing the pulling speed at several locations, such as 300mm to 600mm, 500mm to 800mm, and 700mm to 1000mm. The relationship with the axial direction position is required, and it is possible to set operating conditions for obtaining a defect-free crystal in a desired defect state. [0051] (Growth of silicon single crystal)
  • the atmospheric gas for growing the single crystal is a mixed gas of an inert gas and hydrogen gas, so that a thermal stress of 30 to 45 MPa is being grown. Even when a crystal growth apparatus having a hot zone structure loaded on the side surface of a silicon single crystal is used, dislocations caused by thermal stress can be effectively suppressed.
  • the present invention is not limited to the dislocations caused by the thermal stress. It is not limited to the case where thermal stress of 30 MPa or more where the wrinkles become prominent is applied to the side surface of the growing silicon single crystal.It is caused by thermal stress even when thermal stress of less than 30 MPa is applied. Thus, the effect of suppressing dislocation formation is obtained.
  • the method for growing the silicon single crystal 6 in which the straight body portion is a defect-free region that does not include a grown-in defect has been described as an example.
  • the present invention grows a defect-free crystal. It can be used as a method for growing a silicon single crystal in a desired defect state.
  • the cooling capacity of the water cooling means 8 is set so that the inner diameter is 600 mm, the height is 20 Omm, and its lower surface is 150 mm from the melt surface, and from the magnetic field feeder 9 A 3000G horizontal magnetic field is supplied so that the center height of the magnetic field is Omm with respect to the melt surface, and the axial temperature gradient Gc at the crystal center from the supply melting point to 1350 ° C is 3.2 ° CZmm.
  • the axial temperature gradient Ge at the crystal periphery was 2.2 ° CZmm and Gc / Ge was 1.3.
  • the cooling capacity of the water cooling means 8 is set so that the dimensions are 600 mm inside diameter and 15 Omm in height, and the bottom surface is 200 mm from the melt surface.
  • the axial temperature gradient Gc at the crystal center from the melting point to 1350 ° C is 3.0 ° CZmm
  • the axial temperature gradient Ge at the crystal periphery is 2.5 °.
  • the hot zone structure is CZmm and GcZGe is 1.2.
  • the axial temperature gradient Gc at the crystal center from the melting point to 1350 ° C is 2.8.
  • a hot zone structure in which the temperature gradient at ° CZmm, the axial temperature gradient Ge at the outer periphery of the crystal was 2.5 ° CZmm, and GcZGe was 1.1.
  • the thermal stress was obtained using the result of the heat transfer calculation shown in FIG.
  • the lifting furnace was modeled (S1).
  • the numerical values of the external shape and mesh shape are digitized, the thermal conductivity and The physical property value of the material for setting the surface radiation rate according to the material was set.
  • a view factor calculation (S2) was performed to show how the two surface elements looked at each other. The form factor was calculated for each surface element.
  • the convergence calculation based on the heat balance was performed as shown below under the convergence condition that the pulling speed is stable within the set range.
  • Hso is the heat flow rate flowing through the silicon single crystal
  • Hla is the solidification line heat generated at the solid-liquid interface
  • Hlq is the heat flow rate flowing through the silicon melt.
  • Thermal stress was performed as shown in FIG. First, crystal modeling (S4) was performed. In crystal modeling, the shape of the silicon single crystal was quantified, and the thermal expansion coefficient, Young's modulus, and Poisson's ratio, which are physical properties of the silicon single crystal, were set.
  • the temperature distribution was input (S5) by inputting the heat transfer calculation result.
  • the thermal stress in the crystal was calculated by performing the thermal stress calculation by the finite element method (S6).
  • hydrogen gas is mixed as an atmospheric gas for growing a single crystal so that the hydrogen molecular partial pressure is 240 Pa in argon gas.
  • a silicon single crystal which is a defect-free crystal, was grown under the operating conditions set by the method described above.
  • the silicon single crystal is a defect-free crystal under the operating conditions set by the method described above. Was trained.
  • a mixed gas in which hydrogen gas is mixed in an argon gas so that the hydrogen molecular partial pressure is 240 Pa is used as an atmosphere gas for growing a single crystal.
  • a silicon single crystal, which is a defect-free crystal was grown under the operating conditions set by the method described above.
  • Table 2 shows the bow I lifting speed (mm / min) of the silicon single crystals of Experimental Examples 1 to 5 thus obtained and the pulling speed margin (mmZmin) of defect-free crystals.
  • The average length of dislocation-free parts exceeds 1400 mm, and the average number of dislocations is less than 0.5.
  • the average length of dislocation-free parts is in the range of 1000 to 1400 mm, and the average number of dislocations is in the range of 0.5 to 1 times.
  • the average length of dislocation-free parts is less than 1000 mm, and the average number of dislocations exceeds one.
  • Example 1 in which the thermal stress is 40 MPa (hot zone structure 1), which is an example of the present invention, and in Experimental example 5 in which the thermal stress is 28 MPa (hot zone structure 3), there is no dislocation. And The evaluation of crack was ⁇ .
  • the experimental example 4 which is a comparative example of the present invention having a thermal stress of 40 MPa (hot zone structure 1), is evaluated for dislocation and cracking. Became X. Therefore, by adding hydrogen to the atmospheric gas, the dislocation-free property can be improved. Compared to the case where hydrogen is not added to the atmospheric gas, the length of the dislocation-free portion has less dislocations. It was confirmed that a silicon single crystal can be grown for a long time. Also, from Table 2, in Experimental Example 3 using the hot zone structure 2 with a thermal stress of 35.7 MPa, the evaluation of dislocation and cracking is ⁇ even though the thermal stress is smaller than in Experimental Example 1. Atsuta o
  • the thermal stress is 28 MPa (Hot Zone Structure 3), which is less in the number of dislocations than in Experimental Example 3 where the thermal stress is 35.7 MPa (Hot Zone Structure 2). Although the number of dislocations was large, the result was inferior.
  • the present invention it is possible to suppress dislocations caused by thermal stress generated when adjusting the temperature of the side surface of the growing silicon single crystal, and to yield a silicon single crystal having a long dislocation-free portion that is difficult to crack. Can be nurtured well.
  • the present invention it is possible to efficiently produce a high-quality silicon single crystal having a defect-free region force suitable for miniaturization of an integrated circuit, in which neither an infrared scatterer defect nor a dislocation cluster is detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明はシリコン単結晶の育成方法に関する。育成中のシリコン単結晶の側面部に熱応力が負荷される条件でチョクラルスキー法によりシリコン単結晶を育成する。単結晶を育成する雰囲気ガスを、不活性ガスと水素原子含有物質の気体との混合ガスとする。

Description

明 細 書
シリコン単結晶の育成方法
技術分野
[0001] 本発明は、シリコンゥエーハの素材であるシリコン単結晶の育成方法に関し、特に 熱応力に起因する有転位ィ匕を抑制でき、無転位部を歩留まりよく育成できるシリコン 単結晶の育成方法に関する。
本願は、 2005年 6月 20日に出願された特願 2005— 179995号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] シリコンゥエーハの素材であるシリコン単結晶の製造方法として、チヨクラルスキー法
(以下、 CZ法という)による育成方法が知られている。従来から、 CZ法で所望の品質 のシリコン単結晶を効率よく製造するために、育成中のシリコン単結晶の温度を調整 する技術が知られている。例えば、引き上げ中のシリコン単結晶の固液界面近傍を 急冷することにより、最大引き上げ速度を増大する技術が提案されている(例えば、 特許文献 1:特開平 11 199385号公報)。
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、特許文献 1に記載されて 、る技術では、シリコン単結晶を冷却するこ とにより、結晶は熱応力に起因する有転位化を生じやすぐ生産性や歩留まりが悪い ことが問題となっていた。
通常、引き上げ中のシリコン単結晶に有転位ィ匕が生じた場合、引き上げたシリコン 単結晶を溶かし、再度引き上げることにより、無転位部の長いシリコン単結晶を育成 する。しかし、シリコン単結晶の引き上げと溶解を繰り返すと、引き上げに要する時間 が長くなり、結晶の生産性が低下する。また、無転位結晶の育成を断念し、結晶育成 を中止した場合、坩堝内に多量のシリコン融液が残され、原料の無駄となる。また、 坩堝内に残ったシリコン融液が凝固するときの体積膨張により、坩堝やヒーターが破 損する可能性がある。このため、従来から、有転位化の発生回数が多ぐ引き上げた シリコン単結晶を溶力して再度引き上げたとしても、無転位部の長いシリコン単結晶 の引き上げが期待できない場合には、有転位ィ匕が生じたままのシリコン単結晶が引 き上げられている。
[0004] 有転位ィ匕が多数回発生したシリコン単結晶は、育成中の熱応力に起因する結晶粒 のずれが大きい。そのため、引き上げたシリコン単結晶を室温まで冷却した後、結晶 粒のずれによる大きな残留応力が発生する。このため、引き上げたシリコン単結晶を 炉外に取り出す際や、炉外に取り出したシリコン単結晶を運搬する際などにわず力な 衝撃が加わることにより、容易にシリコンの降伏応力以上の応力が発生し、結晶が割 れるという不都合があった。
[0005] 本発明は、上記の事情に鑑みてなされたものであり、育成中のシリコン単結晶の側 面部の温度を調整する際に生じる熱応力に起因する有転位ィ匕を抑制し、割れにくく 、長い無転位部を有するシリコン単結晶を歩留まりよく育成できる、生産性に優れた シリコン単結晶の育成方法を提供するものである。
課題を解決するための手段
[0006] 本発明のシリコン単結晶の育成方法は、育成中のシリコン単結晶の少なくとも一部 に熱応力が負荷される条件でチヨクラルスキー法によりシリコン単結晶を育成する方 法であって、単結晶を育成する雰囲気ガスが水素原子含有物質の気体を含む。ここ で、育成中のシリコン単結晶の少なくとも一部に負荷される熱応力とは、単結晶直月同 部の側面部の融液表面に接しているところ力 融液表面力 高さ 400mmまでの間 の少なくとも一部に付加される熱応力を意味する。
上記のシリコン単結晶の育成方法においては、前記熱応力は 30MPa以上であつ てもよい。
上記のシリコン単結晶の育成方法においては、前記熱応力は 40MPa以上であつ てもよい。
上記のシリコン単結晶の育成方法にお!、ては、前記水素原子含有物質の気体は、 水素ガスであってもよい。
上記のシリコン単結晶の育成方法においては、前記雰囲気ガス中における水素原 子含有物質の気体の水素分子分圧は、 40〜400Paであってもよ!/、。 本発明のシリコン単結晶は、上記のシリコン単結晶育成方法により製造される。
[0007] ここで、 CZ法で製造されたシリコン単結晶の品質 (欠陥状態)と生産性 (引き上げ速 度)について説明する。
CZ法で製造されたシリコン単結晶には、デバイスの製造過程で顕在化する微細欠 陥、すなわち Grown- in欠陥が生じることが知られている。図 1は、 CZ法にて得られ たシリコン単結晶の径方向における欠陥分布状態を説明するための断面図である。 図 1に示すように、 CZ法にて得られたシリコン単結晶の Grown-in欠陥は、赤外線散 乱体欠陥または COP (Crystal Originated Particle)などと呼ばれる大きさが 0. 1〜0 . 2 /z m程度の空孔欠陥、および転位クラスターと呼ばれる大きさが 10 m程度の微 小転位からなる。
[0008] 図 1に示すシリコン単結晶では、酸素誘起積層欠陥(以下、 OSF (Oxygen
induced Stacking Fault)という。)が外径の約 2/3の領域にリング状に現れている。 O SF発生領域の内側には、赤外線散乱体欠陥が 105〜106個 Zcm3程度検出される 領域 (赤外線散乱体欠陥発生領域)があり、外側部分には、転位クラスターが 103〜 104個 Zcm3程度存在する領域 (転位クラスター発生領域)がある。
[0009] 図 2は、引き上げ時の引き上げ速度を徐々に低下させて育成したシリコン単結晶の 断面の欠陥分布状態を説明するための図である。図 1は、図 2における Aの位置に相 当する引き上げ速度で育成されたシリコン単結晶の断面図である。
図 2に示すように、引き上げ速度の大きい段階では、結晶周辺部にリング状の OSF 発生領域が現れ、 OSF発生領域の内側部分が赤外線散乱体欠陥の多数発生する 赤外線散乱体欠陥発生領域となっている。引き上げ速度の低下にしたがって、 OSF 発生領域の径が次第に小さくなつて OSF発生領域の外側部分に転位クラスターの 発生する転位クラスター発生領域が現れる。さらに引上げ速度が低下すると、 OSF 発生領域が消滅し、全面に転位クラスター発生領域が現れる。
[0010] リング状の OSF発生領域に接する外側には、酸素析出物(BMD : Bulk Micro Defe ct)を形成させることのできる酸素析出促進領域 (PV領域)があり、酸素析出促進領 域と転位クラスター発生領域との間には、酸素析出を生じない酸素析出抑制領域 (P I領域)がある。酸素析出促進領域 (PV領域)、酸素析出抑制領域 (PI領域)、リング 状の OSF発生領域は、 、ずれも Grown- in欠陥の極めて少な!/、無欠陥領域である
[0011] 赤外線散乱体欠陥が検出されるシリコン単結晶は、転位クラスターが検出されるシ リコン単結晶と比較してデバイスへの悪影響力 S小さぐ引き上げ速度を速くできるため 生産性に優れている。
しカゝし近年、集積回路の微細化に伴って、赤外線散乱体欠陥による酸化膜耐圧性 の低下が指摘されている。そのため、赤外線散乱体欠陥も転位クラスターも検出され ない無欠陥領域力 なる高品質なシリコン単結晶が求められている。
[0012] 所望の欠陥状態のシリコン単結晶は、引き上げ速度 V (mmZmin)と固液界面近 傍での結晶側の温度勾配 G (°CZmm)との比、 VZGを制御することによって得られ る。
図 1および図 2を用いて説明したシリコン単結晶の育成例は、シリコン単結晶の側面 部にお 、て温度勾配 Gを制御するための温度調整を行なわな 、ホットゾーン構造を 用いて育成されたものである。このようなホットゾーン構造では、結晶中心部での温度 勾配 (Gc)は結晶外周部での温度勾配 (Ge)より小さい(Gcく Ge)。また、育成中の シリコン単結晶の温度が 1000〜800°Cの範囲である時間、言い換えると、育成中の シリコン単結晶が 1000〜800°C温度範囲を通過する時間は、 200分を越える。 100 0〜800°Cの範囲では、シリコン単結晶中に OSF核が成長する。
[0013] ここで、固液界面近傍での結晶側の温度勾配 Gを制御することにより、所望の欠陥 状態のシリコン単結晶を育成する方法について、例を挙げて説明する。
例えば、結晶中心部での温度勾配 (Gc)が結晶外周部での温度勾配 (Ge)と同一 力これより大きく(Gc≥Ge)なるホットゾーン構造を用いて、ゥエーハ面全面にわたつ て均一な無欠陥領域力 なるシリコン単結晶を育成する方法が考えられる。
[0014] 具体的には、凝固直後の単結晶の周囲を取り囲む熱遮蔽体の寸法、位置、冷却用 部材の使用などホットゾーン構造を改良することにより、育成中のシリコン単結晶の側 面部の温度を調整して固液界面近傍での結晶側の温度勾配 Gを制御し、融点から 1 250°C近傍までの温度域において Gc≥Geとする。図 3は、結晶中心部での温度勾 配 (Gc)が結晶外周部での温度勾配 (Ge)と同一力これより大きく(Gc≥Ge)なるホッ トゾーン構造をもつ結晶育成装置を用い、引き上げ時の引き上げ速度を徐々に低下 させて育成したシリコン単結晶の断面の欠陥分布状態を説明するための図である。
[0015] 図 3より(Gc≥Ge)となるホットゾーン構造を有する結晶育成装置にて、図 3に示す B力 Cの範囲の引き上げ速度で結晶を育成すると、固液界面近傍での結晶側の温 度勾配 Gが制御され、結晶内部が無欠陥領域となるシリコン単結晶が得られることが わかる。また、図 3を用いて説明したシリコン単結晶の育成例では、図 2に示す例と比 較して、無欠陥結晶を引き上げ得る引き上げ速度を相対的に速くできる。無欠陥結 晶を引き上げることのできる引き上げ速度範囲(図 3では Bから Cの範囲)を無欠陥結 晶の引き上げ速度マージンという。
図 3を用 、て説明したシリコン単結晶の育成例では、育成中のシリコン単結晶の温 度が 1000〜800°Cの範囲である時間、言い換えると、育成中のシリコン単結晶が 10 00〜800°C温度範囲を通過する時間は、 180〜200分である。したがって、図 3を用 いて説明したシリコン単結晶の育成例では、図 2に示す例と比較して、育成中のシリ コン単結晶の温度が 1000〜800°Cの範囲である時間が短くなり、シリコン単結晶中 での OSF核の成長が抑制され、無欠陥結晶の引き上げ速度マージンを大きくするこ とがでさる。
[0016] しかし、図 3を用いて説明したシリコン単結晶の育成例では、育成中のシリコン単結 晶の側面部の温度を調整して固液界面近傍での結晶側の温度勾配 Gを制御する。 そのため、、シリコン単結晶の側面部において温度勾配 Gを制御するための温度調 整を行なわない図 2に示す例と比較して、育成中のシリコン単結晶に負荷される熱応 力が大きくなり、熱応力に起因する有転位ィ匕が発生しやすい。
図 2に例を示すように、シリコン単結晶の側面部において温度勾配 Gを制御するた めの温度調整を行なわな 、場合、ホットゾーンを通過するシリコン単結晶の側面部に 負荷される熱応力は、通常 28MPa程度であり 30MPa未満となる。これに対し、図 3 に示す例のように、 (Gc≥Ge)となるホットゾーン構造を有する結晶育成装置を用い る場合、 30MPa以上、通常 30〜45MPa程度の熱応力が育成中のシリコン単結晶 の側面部に負荷される。熱応力に起因する有転位化は、熱応力が 30MPa以上で顕 著となり、熱応力が 40MPa以上では、有転位化や割れが非常に生じやすくなる。 [0017] 本発明のシリコン単結晶の育成方法は、育成中のシリコン単結晶の側面部に 30〜
45MPa程度の熱応力が負荷される (Gc≥ Ge)であるホットゾーン構造を有する結晶 育成装置を用いる場合にも好適に使用できる。
本発明のシリコン単結晶の育成方法では、単結晶を育成する雰囲気ガスを、不活 性ガスと水素原子含有物質の気体との混合ガスなど、水素原子含有物質の気体を 含むガスとする。そのため、育成中のシリコン単結晶の側面部の温度を調整して固液 界面近傍での結晶側の温度勾配 Gを制御する場合のように、育成中のシリコン単結 晶の側面部に熱応力が負荷される条件でも、熱応力に起因する有転位ィヒを抑制で きる。これについて、以下に説明する。
[0018] スリップの発生は、熱応力に起因する有転位ィ匕の一例である。スリップは、結晶が 熱応力に抗することができないとき、転位クラスターを起点として発生する。本発明で は、水素原子含有物質の気体中の水素元素が、シリコン結晶の格子間に入り込む。 そのため、シリコンの格子間原子の濃度を高めたのと同じ状態となり、シリコンの凝固 の過程でシリコン融液力 結晶内に取り込まれる格子間原子の数は低減する。
[0019] このように、水素によって格子間原子に起因する転位クラスターの発生を抑制する ことができるので、転位クラスターを起点とするスリップは発生しにくくなり、有転位ィ匕 が抑制される。その結果、雰囲気ガス中に水素を添加しない場合と比較し、有転位 化が少なぐ割れにくぐ長い無転位部を有する高品質なシリコン単結晶を育成でき る。
[0020] 本発明によれば、熱応力に起因する有転位ィ匕が顕著となる 30MPa以上の熱応力 が育成中のシリコン単結晶の側面部に負荷される条件でも、効果的に熱応力に起因 する有転位ィ匕を抑制できる。
40MPa以上の熱応力が育成中のシリコン単結晶の側面部に負荷される条件では 、従来、有転位化が多数回発生し、育成して冷却した後のシリコン単結晶に、シリコ ンの降伏応力に近い残留応力が発生していた。このような条件でも、本発明は、効果 的に熱応力に起因する有転位ィ匕を抑制できる。
[0021] 本発明のシリコン単結晶の育成方法において、水素原子含有物質の気体は、水素 ガスでもよい。また例えば、 H 0、 CH、 HCL等の水素原子を含む無機化合物や、 シランガス、 CH - C Hなどの炭化水素、アルコール、カルボン酸等の水素原子を含
4 2 2
む各種物質の気体力 選択される 1種または複数のガスも用いることができる。
なお、水素原子含有物質の気体として水素ガスを用いる場合、市販の水素ガスボ ンべ、水素ガス貯蔵タンク、水素吸蔵合金に水素を吸蔵させた水素タンク等から専用 の配管を通じ、引き上げ炉内に水素を供給することができる。
また、不活性ガス (希ガス)としては、 Ar、 He、 Ne、 Kr、 Xeカゝら選択される 1種または 複数のガスを用いることができる。通常、安価なアルゴン (Ar)ガスが用いられるが、 A rガスに He、 Ne、 Kr、 Xeなどの他の不活性ガスを混合したものを用いてもよい。
[0022] 雰囲気ガス中における酸素ガス (O )の濃度は、水素原子含有物質の気体の水素
2
分子換算での濃度を aとし、酸素ガス (O )濃度を βとしたとき、 α— 2 ≥ 3% (体
2
積%)を満たすものとされる。雰囲気ガス中における酸素ガス (Ο )の濃度 j8と水素原
2
子含有物質の気体の水素分子換算での濃度 Oとが上記式を満たさない場合、シリコ ン単結晶中に取り込まれた水素原子による Grown-in欠陥の生成を抑制する効果は 得られない。
[0023] 図 4は、本発明のシリコン単結晶の育成方法を用いて得られたシリコン単結晶の断 面の欠陥分布状態を説明するための図である。図 4に示すシリコン単結晶は、図 3と 同じく(Gc≥Ge)となるホットゾーン構造を有する結晶育成装置を用い、引き上げ炉 内に水素分圧が 250Paとなるように水素が添加された不活性ガスを供給し、引き上 げ時の引き上げ速度を徐々に低下させて育成したものである。
[0024] 単結晶を育成する雰囲気ガスを不活性ガスと水素との混合ガスとした場合、上述し たように、水素によって格子間原子に起因する転位クラスターの発生が抑制されるの で、無欠陥領域が引き上げ速度の低速側に移行する。したがって、雰囲気ガスを不 活性ガスとした図 3に示す例と比較して、図 4に示すように、無欠陥結晶を引き上げる ことのできる最低引き上げ速度が遅くなり、無欠陥結晶を引き上げることのできる引き 上げ速度範囲(無欠陥結晶の引き上げ速度マージン(図 4では D力 Eの範囲))が 大きくなる。
なお、 Grown-in欠陥の形成に影響を及ぼした水素のほとんどは、その後の冷却 の過程でシリコン単結晶外に逸散する。 [0025] また、雰囲気ガスを不活性ガスと水素の混合ガスとした場合、育成中の装置内では 、不活性ガス雰囲気中に含まれる水素の分圧に比例した水素が、シリコン融液中に 溶け込み、融液力 凝固するシリコン結晶中に分配される。
シリコン融液中の水素濃度は、ヘンリーの法則力 気相中の水素分圧に依存して 決まり、
P =kC と表される。
H2 LH2
ここで、 P は雰囲気中の水素分圧、 C はシリコン融液中の水素濃度、 kは両者
H2 LH2
の間の係数である。
一方、シリコン単結晶中の濃度は、シリコン融液中の濃度と偏祈との関係で決まり C =kf C = (kf /k) P と表される。
SH2 LH2 H2
ここで、 C
SH2は結晶中の水素濃度、 は水素のシリコン融液ー結晶間の偏析係 数である。
以上から、水素を含む不活性ガス雰囲気中で育成する際、凝固直後のシリコン単 結晶中の水素濃度は、雰囲気中の水素分圧を制御することで結晶の軸方向に一定 に所望する濃度で制御できる。この水素分圧は水素濃度と炉内圧力により制御でき る。
[0026] 図 5は、雰囲気中の水素分圧と VZGとの関係を示したグラフである。引き上げ中の 単結晶内部の温度分布は、ホットゾーン構造が同じであれば引き上げ速度が変化し てもほとんど変化しない。したがって、図 5の縦軸 VZGは、主に引き上げ速度の変化 を示している。図 5に示すように、雰囲気中の水素分圧の増加にしたがって、無欠陥 結晶の得られる引き上げ速度は低下している力 無欠陥結晶の引き上げ速度マージ ンは大きくなつている。
また、 OSF領域の引き上げ速度マージンは、水素分圧の増加にしたがって、狭くな つている。 PI領域の引き上げ速度マージンは、水素分圧の増加にしたがって、大幅 に拡大される。また、 PV領域の引き上げ速度マージンは、水素分圧の増加にしたが つて、広がったり狭まったりしている力 水素分圧が 100〜250Paのときに引き上げ 速度マージンが大きくなつて 、る。 [0027] 本発明のシリコン単結晶の育成方法においては、雰囲気ガス中における水素原子 含有物質の気体の水素分子分圧を 40〜400Paとすることで、効果的に熱応力に起 因する有転位化を抑制できる。水素分子分圧を 40Pa未満とした場合、有転位化を 抑制する効果が十分に得られない可能性がある。また、水素分子分圧が 400Paを越 える場合、水素欠陥と呼ばれる巨大空洞欠陥が発生しやすくなるため好ましくない。 雰囲気ガス中における水素原子含有物質の気体の水素分子分圧を 400Pa以下で あれば、シリコン単結晶の育成装置内に、リークにより空気が流入した場合でも、水 素が燃焼することなく安全に操業することが可能である。
[0028] 図 5に示すように、雰囲気ガス中における水素原子含有物質の気体の水素分子分 圧を 40〜400Paとすることで、無欠陥結晶の引き上げ速度マージンを大きくすること ができる。水素分子分圧を 40Pa未満とした場合、無欠陥結晶の引き上げ速度マー ジンを大きくする効果が十分に得られな 、。
[0029] 図 5に示すように、雰囲気ガス中における水素原子含有物質の気体の水素分子分 圧を 40〜160Pa (図 5では Iの範囲)とすることで、全面力 領域であるシリコンゥェ ーハが得られるシリコン単結晶を容易に育成することができる。水素分子分圧が 160 Paを越える場合、 PI領域が結晶に混在しやすくなり、全面が PV領域であるシリコンゥ エーハが得られるシリコン単結晶を育成しに《なる。 PV領域は酸素析出物を形成し やすぐ PV領域からなるシリコンゥヱーハでは、例えば、表面にいわゆる DZ (Denude d Zone)層形成処理を施したときに、内部にゲッタリング作用を有する BMDを容易に 形成することができる。
[0030] 図 5に示すように、雰囲気ガス中における水素原子含有物質の気体の水素分子分 圧を 160〜400Pa (図 5では IIの範囲)とすることで、全面が PI領域であるシリコンゥェ ーハが得られるシリコン単結晶を容易に育成することができる。水素分子分圧を 160 Pa未満とした場合、結晶中に PV領域が混在しやすくなり、全面が PI領域であるシリ コンゥヱーハが得られるシリコン単結晶を育成しに《なる。
[0031] 本発明のシリコン単結晶の育成方法は、融点から 1350°Cまでの結晶中心部での 軸方向温度勾配 Gcと、融点から 1350°Cまでの結晶外周部での軸方向温度勾配 Ge との比 Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 Gcが 3. 0〜3. 5°CZmmとなる ホットゾーン構造の結晶育成装置を用い、水素を含む不活性ガスを引き上げ炉内に 供給することにより、無欠陥領域力 なるシリコン単結晶を育成する場合にも好適に 使用できる。ホットゾーン構造を有する結晶育成装置を用いる場合にも、通常 30〜4 5MPa程度の熱応力が育成中のシリコン単結晶の側面部に負荷され、育成中のシリ コン単結晶の温度が 1000〜800°Cの範囲である時間、言い換えると、育成中のシリ コン単結晶が 1000〜800°C温度範囲を通過する時間は、 80〜180分となる。
[0032] 本発明のシリコン単結晶の育成方法では、単結晶を育成する雰囲気ガスを、不活 性ガスと水素原子含有物質の気体との混合ガスとするので、融点から 1350°Cまでの 結晶中心部での軸方向温度勾配 Gcと融点から 1350°Cまでの結晶外周部での軸方 向温度勾配 Geとの比 Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 Gcが 3. 0〜3. 5°CZmmとなるホットゾーン構造を有する結晶育成装置を用いる場合であっても、熱 応力に起因する有転位ィ匕を効果的に抑制できる。
[0033] 図 7は、本発明のシリコン単結晶の育成方法を用いて得られた他のシリコン単結晶 の断面の欠陥分布状態を説明するための図である。図 7に示すシリコン単結晶は、 凝固直後の単結晶の周囲を取り囲む熱遮蔽体の寸法、位置、冷却用部材の使用な どを改良することにより、 Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 Gcが 3. 0〜3 . 5°CZmmとなるホットゾーン構造を有する結晶育成装置を用いて、育成中のシリコ ン単結晶の側面部の温度を調整して固液界面近傍での結晶側の温度勾配 Gを制御 し、かつ、引き上げ炉内に水素分圧が 240Paとなるように水素が添加された不活性 ガスを供給し、引き上げ時の引き上げ速度を徐々に低下させて育成したものである。 また、図 6は、図 7と同様のホットゾーン構造を有する結晶育成装置を用いて、育成 中のシリコン単結晶の側面部の温度を調整して固液界面近傍での結晶側の温度勾 配 Gを制御し、引き上げ炉内に不活性ガスのみを供給し、引き上げ時の引き上げ速 度を徐々に低下させて育成したシリコン単結晶の断面の欠陥分布状態を説明するた めの図である。
[0034] 図 7に示すように、上記の方法で育成することにより、雰囲気ガスを不活性ガスとし た図 6に示す例と比較して、無欠陥結晶の引き上げ速度マージン(図 6では Fから G の範囲、図 7では Fから Gの範囲)を大きくすることができる。また、 Gc/Geが 1. 1〜1 . 4であり、軸方向温度勾配 Gcが 3. 0〜3. 5°CZmmとなるホットゾーン構造を有す る結晶育成装置を用いることで、固液界面近傍での結晶側の温度勾配 Gが大きくな り、 VZGを変更することなく引き上げ速度 Vを大きくすることができ、無欠陥結晶を引 き上げることのできる最低引き上げ速度を向上させることができる。また、上記の方法 で育成することにより、シリコン単結晶を引き上げる際における VZGの制御性を向上 させることができる。また、図 7に示すように、上記の方法で育成することにより、酸素 析出促進領域 (PV領域)の引き上げ速度マージンおよび酸素析出抑制領域 (PI領 域)の引き上げ速度マージン(図 7では H力も Gの範囲)が大きくなるので、ゥエーハ 面全面にわたって PV領域となるシリコン単結晶や、ゥエーハ面全面にわたって PI領 域となるシリコン単結晶を得ることができる。
また、図 6および図 7に示すように、 Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 G cが 3. 0〜3. 5°CZmmとなるホットゾーン構造を有する結晶育成装置を用いること で、 PV領域と OSF発生領域との間で形成される境界面において、図 6に示すように 中央部が結晶軸方向に盛り上がつている部分 mの育成に相当する速度を fpDとし、 図 6に示すようにリング状に盛り上がって 、る部分 (結晶の径方向で結晶中心と最外 部との中間位置で結晶軸方向に凸状をなす部分) nの育成に相当する速度を fpRと すると、
(ipD-lpR) /fpD X 100 =士 20 (%)となるように制御できる。
[0035] なお、本発明にお 、ては、炉内圧が 4〜6. 7kPa (30〜50Torr)の範囲である場 合、雰囲気ガス中には、 20体積%以下の濃度で窒素 (N )が存在してもよい。窒素
2
濃度が 20体積%を超える場合、シリコン単結晶が有転位ィ匕する可能性がある。 発明の効果
[0036] 本発明によれば、育成中のシリコン単結晶の側面部の温度を調整することで生じる 熱応力に起因する有転位ィ匕を抑制でき、割れにくぐ無転位部を歩留まりよく育成で きるシリコン単結晶の育成方法を提供することができる。
図面の簡単な説明
[0037] [図 1]CZ法にて得られたシリコン単結晶の径方向における欠陥分布状態を説明する ための断面図である。 [図 2]結晶中心部での温度勾配 (Gc)が結晶外周部での温度勾配 (Ge)より小さく(G c < Ge)なるホットゾーン構造をもつ結晶育成装置を用い、弓 Iき上げ時の弓 |き上げ速 度を徐々に低下させて育成したシリコン単結晶の断面の欠陥分布状態を説明するた めの図である。
[図 3]結晶中心部での温度勾配 (Gc)が結晶外周部での温度勾配 (Ge)と同一かこれ より大きく(Gc≥Ge)なるホットゾーン構造をもつ結晶育成装置を用い、引き上げ時の 引き上げ速度を徐々に低下させて育成したシリコン単結晶の断面の欠陥分布状態を 説明するための図である。
[図 4]本発明のシリコン単結晶の育成方法を用いて得られたシリコン単結晶の断面の 欠陥分布状態を説明するための図である。
[図 5]雰囲気中の水素分圧と VZGとの関係を示したグラフである。
[図 6]Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 Gcが 3. 0〜3. 5°CZmmである ホットゾーン構造を有する結晶育成装置を用い、引き上げ時の引き上げ速度を徐々 に低下させて育成したシリコン単結晶の断面の欠陥分布状態を説明するための図で ある。
[図 7]Gc/Geが 1. 1〜1. 4であり、軸方向温度勾配 Gcが 3. 0〜3. 5°CZmmである ホットゾーン構造を有する結晶育成装置を用い、かつ、引き上げ炉内に水素が添カロ された不活性ガスを供給し、引き上げ時の引き上げ速度を徐々に低下させて育成し たシリコン単結晶の断面の欠陥分布状態を説明するための図である。
[図 8]本発明のシリコン単結晶の育成方法を実施するのに適した CZ炉の縦断面図で ある。
[図 9]伝熱計算の方法を説明するためのフローチャートである。
[図 10]熱応力計算の方法を説明するためのフローチャートである。
[図 11]実験例ごとの有転位ィ匕回数を示したグラフである。
[図 12]実験例ごとの無転位部の長さを示したグラフである。
符号の説明
1 坩堝、
la 石英坩堝 lb 黒鉛坩堝
2 ヒータ
3 シリコン融液
4 引上げ軸
5 シードチャック
6 単結晶
7 熱遮蔽体
8 水冷手段
9 磁場供給装置
発明を実施するための最良の形態
[0039] 以下、本発明に係る第 1実施形態を、図面に基づいて説明する。
図 8は、本実施形態におけるシリコン単結晶の育成方法を実施するのに適した CZ 炉の縦断面図である。
図 8に示す CZ炉は、チャンバ一内の中心部に配置された坩堝 1と、坩堝 1の外側に 配置されたヒータ 2と、ヒータ 2の外側に配置された磁場供給装置 9とを備えている。 坩堝 1は、内側にシリコン融液 3を収容する石英坩堝 1 aを外側の黒鉛坩堝 lbで保持 する二重構造であり、ぺデイスタルと呼ばれる支持軸により回転および昇降駆動され る。
坩堝 1の上方には、円筒形状の熱遮蔽体 7が設けられている。熱遮蔽体 7は、黒鉛 で外殻を作り、内部に黒鉛フェルトを充填した構造である。熱遮蔽体 7の内面は、上 端部から下端部にかけて内径が漸減するテーパー面になっている。熱遮蔽体 7の上 部外面は内面に対応するテーパー面であり、下部外面は、熱遮蔽体 7の厚みを下方 に向力つて漸増させるようにほぼストレート面に形成されて!、る。
[0040] この CZ炉は、結晶育成時に、融点から 1350°Cまでの結晶中心部での軸方向温度 勾配 Gcと融点から 1350°Cまでの結晶外周部での軸方向温度勾配 Geとの比 Gc/G eが 1. 1〜1. 4より好ましくは、 1. 2〜1. 4、温度勾配 Gcが 3. 0〜3. 5°CZmmより 好ましくは、 3. 2〜3. 3となるホットゾーン構造を備えたものであり、育成中のシリコン 単結晶の温度が 1000〜800°Cの範囲である時間、言い換えると、育成中のシリコン 単結晶が 1000〜800°C温度範囲を通過する時間力 80〜180分、より好ましくは 1 00〜 150分とされるものである。このようなホットゾーン構造は、熱遮蔽体 7および水 冷手段 8により構成される。
[0041] 熱遮蔽体 7は、ヒータ 2およびシリコン融液 3面力 シリコン単結晶 6の側面部への輻 射熱を遮断するものであり、育成中のシリコン単結晶 6の側面を包囲するとともに、シ リコン融液 3面を包囲するものである。熱遮蔽体 7の仕様例を挙げると次のとおりであ る。
半径方向の幅 Wは例えば 50mm、逆円錐台面である内面の垂直方向に対する傾 き Θは例えば 21° 、熱遮蔽体 7の下端の融液面力もの高さ HIは例えば 60mmとす る。
[0042] 水冷手段 8は、熱遮蔽体 7の内側に取り付けられている。水冷手段 8を熱遮蔽体 7 の内側に取り付けることで、効果的にシリコン単結晶 6の側面部を冷却できるとともに 、熱遮蔽体 7の内側を高速で下降する不活性ガス流により、水冷手段 8への SiOの析 出が抑制されるようになる。
水冷手段 8としては、銅やステンレス等力 なるコイル状の通水管や、通水隔壁を有 する水冷ジャケット等を用いることができる。水冷手段 8の通水量は、 10リットル Z分 以上とすることが好ましい。水冷手段 8の冷却能力は、水冷手段 8の結晶引上方向の 高さゃ融液表面からの設置距離を調整することによって調整可能であり、通水量に 応じて通水管や水冷ジャケットの構成を適宜変更することができる。また、水冷手段 8 の冷却能力を調整することで、育成中のシリコン単結晶の側面部に負荷される熱応 力が 30〜45MPaの範囲で変化するとともに、育成中のシリコン単結晶の温度が 10 00〜800°Cの範囲である時間力 80〜180分の範囲で変化する。
引き上げる単結晶の直径を Dcとするとき、水冷手段 8の冷却用部材は、その内周 面の径が 1. 20Dc〜2. 50Dc、長さが 0. 25Dc以上であり、融液表面力 冷却用部 材の下端面までの距離が 0. 30Dc〜0. 85Dcの範囲となるように一般的に設計され る。
[0043] 磁場供給装置 9から供給される磁場の強度は、水平磁場 (横磁場)にあっては 200 0〜4000G、より好ましくは 2500〜3500Gとされ、磁場中心高さが融液液面に対し て一 150〜 + 100mm,より好ましくは 75〜 + 50mmの範囲内になるように設定さ れる。
カスプ磁場にあっては、磁場供給装置 9から供給される磁場の強度は、 200〜100 OG、より好ましくは 300〜700Gとされ、磁場中心高さが融液液面に対して— 100〜 + 100mm,より好ましくは 50〜 + 50mmの範囲内〖こなるように設定される。
上記の磁場の強度で上記の磁場中心高さ範囲で磁場供給装置 9から磁場を供給 することで、対流を抑えることができ、固液界面の形状を好ましい形状とすることがで きる。
[0044] 図 8に示す CZ炉を用いてシリコン単結晶 6の引き上げを行う場合、融点から 1350 °Cまでの結晶中心部での軸方向温度勾配 Gcが 3. 0〜3. 2°CZmmであり、結晶外 周部での軸方向温度勾配 Geが 2. 3〜2. 5°CZmmであり、 GcZGeは 1. 3程度と なる。また、育成中のシリコン単結晶の側面部に負荷される熱応力は、 30〜45MPa となる。この状態は、引き上げ速度を変えてもほとんど変わらない。
[0045] 次に、図 8に示す CZ炉を用い、単結晶を育成する雰囲気ガスとして、不活性ガスと 水素ガスとの混合ガスを用いて、シリコン単結晶 6の育成を行う方法について説明す る。
(操業条件の設定)
まず、目標とする欠陥状態のシリコン単結晶を育成するための操業条件の設定を 行なう。ここでは、操業条件の設定の一例として、無欠陥結晶を育成するための操業 条件の設定方法について説明する。まず、水素濃度と無欠陥結晶が得られる引き上 げ速度の許容範囲を把握するために、雰囲気ガス中における水素分子分圧を例え ば、 0、 20、 40、 160、 240、 400Paの混合比率とし、それぞれの条件で目標直径、 例えば 300mmの単結晶を育成する。
[0046] すなわち、るつぼ内に高純度シリコンの多結晶を例えば 300Kg装入し、単結晶の 電気抵抗率を所望の値、例えば 10 Ω cmになるように p型 (B, Al, Ga等)または 11型( P, As, Sb等)のドーパントを添加する。装置内をアルゴン雰囲気で、減圧の 1. 33 〜26. 7kPa (10〜200torr)とし、雰囲気ガス中で水素分子分圧が上記の所定の混 合比率となるように設定してガスを炉内に流入させる。 [0047] 次いで、磁場供給装置 9から例えば 3000Gの水平磁場を磁場中心高さが融液液 面に対して一 75〜 + 50mmとなるように供給するとともに、ヒータ 2によりシリコンの多 結晶を加熱してシリコン融液 3とし、シードチャック 5に取り付けた種結晶をシリコン融 液 3に浸漬し、るつぼ 1および引き上げ軸 4を回転させつつ結晶引き上げをおこなう。 結晶方位は { 100}、 { 111 }または { 110}のいずれかとし、結晶無転位化のためのシ ード絞りをおこなった後、ショルダー部を形成させ、肩変えして目標ボディ径とする。
[0048] そして、ボディ長さが例えば 300mmに達した時点で、引き上げ速度を臨界速度よ りも充分大きな、例えば 1. OmmZminに調整し、その後引き上げ長さに応じてほぼ 直線的に引き上げ速度を低下させ、ボディ長さが例えば 600mmに達したときに臨界 速度よりも小さい例えば 0. 3mmZminとなるようにし、その後はこの引き上げ速度で 例えば 1600mmまでボディ部を育成し、通常条件でティル絞りを行った後、結晶成 長を終了する。
[0049] このようにして、異なる水素濃度で育成された単結晶を引き上げ軸に沿って縦割り し、引き上げ軸近傍を含む板状試片を作製し、 Grown— in欠陥の分布を観察するた めに、 Cuデコレーションを行う。まず、それぞれの試片を硫酸銅水溶液に浸漬した後 自然乾燥し、窒素雰囲気中で 900°Cで、 20分程度の熱処理を施す。その後、試片 表層の Cuシリサイド層を除去するために、 HF/HNO混合溶液中に浸漬し、表層
3
数十ミクロンをエッチング除去した後、 X線トポグラフ法により OSFリングの位置や各 欠陥領域の分布を調査する。また、このスライス片の COPの密度を、例えば OPP法 、転位クラスタの密度を例えば Seccoエッチング法にてそれぞれ調査する。
[0050] 上記のような引き上げ実験によって、赤外線散乱体欠陥発生領域、 OSF発生領域 、 PV領域、 PI領域、転位クラスター発生領域の各欠陥領域の VZGと水素濃度との 関係が得られる。また、引き上げ速度を変化させる位置を、 300mmから 600mm、 5 00mmから 800mmおよび 700mmから 1000mmように異なる部位で数箇所実施す ることで、目標とする欠陥状態のシリコン単結晶の引き上げ速度マージンと結晶軸方 向位置との関係が求められ、所望の欠陥状態である無欠陥結晶を得るための操業 条件の設定が可能となる。 [0051] (シリコン単結晶の育成)
次に、図 8に示す CZ炉を用い、単結晶を育成する雰囲気ガスとして、不活性ガスと 水素ガスとの混合ガスを用いて、上述した方法により設定された適切な操業条件で、 直月同部が Grown— in欠陥を含まない無欠陥領域であるシリコン単結晶 6の育成を行
[0052] 本実施形態のシリコン単結晶の育成方法によれば、単結晶を育成する雰囲気ガス を、不活性ガスと水素ガスとの混合ガスとするので、 30〜45MPaの熱応力が育成中 のシリコン単結晶の側面部に負荷されるホットゾーン構造を有する結晶育成装置を 用いる場合であっても、熱応力に起因する有転位ィ匕を効果的に抑制できる。
なお、上述した実施形態では、育成中のシリコン単結晶の側面部に 30〜45MPa の熱応力が負荷される場合を例に挙げて説明したが、本発明は、熱応力に起因する 有転位ィ匕が顕著となる 30MPa以上の熱応力が育成中のシリコン単結晶の側面部に 負荷される場合のみに限定されるものではなぐ 30MPa未満の熱応力が負荷される 場合においても、熱応力に起因する有転位化を抑制する効果が得られる。
また、上述した実施形態では、直胴部が Grown— in欠陥を含まない無欠陥領域で あるシリコン単結晶 6の育成方法を例に挙げて説明したが、本発明は、無欠陥結晶を 育成する方法に限定されるものではなぐ所望の欠陥状態のシリコン単結晶を育成 する方法として使用できる。
実施例 1
[0053] (実験例)
本発明を検証するために以下に示す実験を行なった。
すなわち、表 1および以下に示す 1〜3のホットゾーン構造を有する結晶育成装置 を用い、雰囲気ガスとして、アルゴンガスまたはアルゴンガスと水素ガスとの混合ガス を用いて、外径 300mm、ボディ長さ 1800mmの無欠陥結晶であるシリコン単結晶の 育成を行った。
[0054] [表 1] ホットゾーン構造 結晶側面熱応力(Mpa)
1 40
2 35. 7
3 28
[0055] (ホットゾーン構造 1)
図 8に示す CZ炉を用い、水冷手段 8の冷却能力を、寸法が内径 600mm、高さ 20 Ommとし、その下面が融液表面から 150mmとなるように設置するとともに、磁場供 給装置 9から 3000Gの水平磁場を磁場中心高さが融液液面に対して Ommとなるよう に供給し、供給融点から 1350°Cまでの結晶中心部での軸方向温度勾配 Gcが 3. 2 °CZmmであり、結晶外周部での軸方向温度勾配 Geが 2. 2°CZmmであり、 Gc/ Geが 1. 3となるホットゾーン構造とした。
[0056] (ホットゾーン構造 2)
図 8に示す CZ炉を用い、水冷手段 8の冷却能力を、寸法が内径 600mm、高さ 15 Ommとし、その下面が融液表面から 200mmとなるように設置するとともに、ホットゾ ーン構造 1と同様にして水平磁場を供給し、融点から 1350°Cまでの結晶中心部での 軸方向温度勾配 Gcが 3. 0°CZmmであり、結晶外周部での軸方向温度勾配 Geが 2 . 5°CZmmであり、 GcZGeが 1. 2となるホットゾーン構造とした。
[0057] (ホットゾーン構造 3)
水冷手段 8および熱遮蔽体 7のない CZ炉を用い、ホットゾーン構造 1と同様にして 水平磁場を供給し、融点から 1350°Cまでの結晶中心部での軸方向温度勾配 Gcが 2. 8°CZmmであり、結晶外周部での軸方向温度勾配 Geが 2. 5°CZmmであり、 G cZGeが 1. 1となるホットゾーン構造とした。
[0058] このような 1〜3のホットゾーン構造を有する結晶育成装置を用いてシリコン単結晶 を育成した場合に、育成中のシリコン単結晶の側面部に負荷される熱応力を以下に 示す方法により求めた。
[0059] (伝熱計算)
熱応力は、図 9に示す伝熱計算を行った結果を用いて求めた。
伝熱計算では、まず、引き上げ炉のモデリング (S1)を行なった。引き上げ炉のモデ リングでは、外形およびメッシュ形状の数値化を行なう形状の数値化と、熱伝導率と 表面ふく射率を材質により設定する材料の物性値の設定とを行なった。 次に、 2つの表面要素が互いにどのように見えて 、るか表す形態係数の計算(S2) を行なった。形態係数の計算は、表面の要素ごとに行なった。
続いて、伝熱計算を実行 (S3)した。伝熱計算では、 SOR法により繰り返し計算を 実行して、ふく射伝熱を求め、熱バランスに基づく収束計算を行なった。
熱バランスに基づく収束計算は、引上速度が設定範囲内で安定するという収束条 件で以下に示すように行なった。
1. n回目の伝熱計算終了後に、シリコン単結晶内を流れる熱流速を Hso、固液界 面で発生する凝固線熱を Hla、シリコン融液内を流れる熱流速を Hlqとしたとき、 Hso = Hla + Hlqを満足するように Hlaを決める。ここで、 Hlaは引上速度の関数なので、 熱バランスを満足する引上速度が求められる。
2. 引上速度が収束目標よりも速ければヒーターの発熱量を増やし、収束目標より も遅ければヒーターの発熱量を減らす。
3. n+ 1回目の伝熱計算を実行する。
[0060] (熱応力計算)
熱応力は、図 10に示すように行なった。まず、結晶のモデリング(S4)を行なった。 結晶のモデリングでは、シリコン単結晶の外形およびメッシュ形状の数値ィ匕を行なう 形状の数値化と、シリコン単結晶の物性値である熱膨張率、ヤング率、ポアソン比の 設定とを行なった。
次に、伝熱計算結果の入力を行なうことにより、温度分布の入力(S5)を行なった。 その後、有限要素法による熱応力計算を行うことにより結晶中の熱応力を計算 (S6 )した。
[0061] このようにして求めた、 1〜3のホットゾーン構造を有する結晶育成装置を用いてシ リコン単結晶を育成した場合に、育成中のシリコン単結晶の側面部に負荷される熱応 力の結果を表 1に示す。
[0062] (実験例 1)
表 1に示すホットゾーン構造 1を有する結晶育成装置を用い、単結晶を育成する雰 囲気ガスとして、アルゴンガス中に水素分子分圧が 240Paとなるように水素ガスを混 合した混合ガスを用いて、上述した方法により設定された操業条件で、無欠陥結晶 であるシリコン単結晶の育成を行った。
[0063] (実験例 2)
表 1に示すホットゾーン構造 3を有する結晶育成装置を用い、単結晶を育成する雰 囲気ガスとしてアルゴンガスを用いて、無欠陥結晶であるシリコン単結晶の育成を行 つた o
(実験例 3)
表 1に示すホットゾーン構造 2を有する結晶育成装置を用い、単結晶を育成する雰 囲気ガスとしてアルゴンガスを用いて、無欠陥結晶であるシリコン単結晶の育成を行 つた o
(実験例 4)
表 1に示すホットゾーン構造 1を有する結晶育成装置を用い、単結晶を育成する雰 囲気ガスとしてアルゴンガスを用いて、上述した方法により設定された操業条件で、 無欠陥結晶であるシリコン単結晶の育成を行った。
[0064] (実験例 5)
表 1に示すホットゾーン構造 3を有する結晶育成装置を用い、単結晶を育成する雰 囲気ガスとして、アルゴンガス中に水素分子分圧が 240Paとなるように水素ガスを混 合した混合ガスを用いて、上述した方法により設定された操業条件で、無欠陥結晶 であるシリコン単結晶の育成を行った。
[0065] このようにして得られた実験例 1〜実験例 5のシリコン単結晶の弓 Iき上げ速度 (mm /min)と無欠陥結晶の引き上げ速度マージン (mmZmin)とを表 2に示す。
[0066] [表 2] 実験例 引き上げ速度 マージン 割れ
1 0. 51 0. 043 〇 O
2 0. 42 0. 015 〇 o
3 0. 534 0. 027 厶
4 0. 55 0. 03 X X
5 0, 4 0. 023 O O [0067] また、実験例 1〜実験例 5のシリコン単結晶をそれぞれ複数育成して試験体とし、育 成時の 1弓 I上試験あたりの有転位ィ匕回数を以下に示すようにして求めた。
弓 I上長 1000mm以降で有転位ィ匕したものは結晶を溶カゝし再度無転位の結晶弓 |上 を試みる。このような作業を繰り返し、全長に渡って無転位な結晶を得られた場合は 、引き上げた結晶を溶力した回数が有転位ィ匕回数であり、 1000mm以降に有転位 化した結晶が得られた場合には、引き上げた結晶を溶力した回数 + 1回が有転位ィ匕 回数となる。
実験例 1〜実験例 5の結果の平均値を図 11に示す。
[0068] また、実験例 1〜実験例 5のシリコン単結晶をそれぞれ複数育成して試験体とし、育 成後に無転位部の長さを調べた。実験例 1〜実験例 5の結果の平均値を図 12に示 す。
[0069] さらに、実験例 1〜実験例 5のシリコン単結晶の無転位性を以下に示す評価基準に 基づいて評価した。その結果を表 2に示す。
〇:無転位部の長さの平均値が 1400mmを越え、なおかつ有転位化回数の平均 値が 0. 5回未満である。
△:無転位部の長さの平均値が 1000〜 1400mmの範囲であり、有転位化回数 の平均値が 0. 5〜1回の範囲である。
X:無転位部の長さの平均値が 1000mm未満であり、なおかつ有転位化回数の 平均値が 1回を越える。
[0070] さらに、実験例 1〜実験例 5のシリコン単結晶のうち、一部でも有転位部を含むシリ コン単結晶につ 、て、炉外に取り出す作業および炉外に取り出したシリコン単結晶を 運搬する作業による割れの有無を以下に示す評価基準に基づいて評価した。その 結果を表 2に示す。
〇:全ての試験体に割れが生じな力つた。
△:一部の試験体に割れが生じた。
X:全ての試験体に割れが生じた。
[0071] 表 2より、本発明の実施例であり熱応力が 40MPa (ホットゾーン構造 1)である実験 例 1および熱応力が 28MPa (ホットゾーン構造 3)である実験例 5では、無転位性およ び割れの評価が〇となった。
また、雰囲気ガス中に水素を添加しないことのみ実験例 1と異なり、熱応力が 40M Pa (ホットゾーン構造 1)である本発明の比較例である実験例 4では、無転位性および 割れの評価が Xとなった。よって、雰囲気ガス中に水素を添加することで、無転位性 を向上させることができ、雰囲気ガス中に水素を添加しない場合と比較して、有転位 化が少なぐ無転位部の長さの長 、シリコン単結晶を育成できることが確認できた。 また、表 2より、熱応力が 35. 7MPaであるホットゾーン構造 2を用いた実験例 3では 、実験例 1よりも熱応力が小さいにも関わらず、無転位性および割れの評価が△であ つた o
[0072] また、表 2より、実験例 1の引き上げ速度は、実験例 2および実験例 5と比較して非 常に早ぐ実験例 3および実験例 4よりも遅くはなったものの、遜色ない結果となった。 さらに、実験例 5の引き上げ速度は、実験例 2よりも遅くはなったものの、遜色ない結 果となった。
また、表 2より、実験例 1の引き上げ速度マージンは、実験例 2と比較して非常に広 ぐ実験例 3〜実験例 5と比較しても広い結果となった。さらに、実験例 5の引き上げ 速度マージンは、実験例 2と比較して非常に広い結果となった。
[0073] また、図 11より、実験例 1では、実験例 4と比較して、有転位ィ匕回数が非常に少な いことが確認できた。
また、実験例 1では、熱応力が 35. 7MPa (ホットゾーン構造 2)である実験例 3よりも 有転位ィ匕回数が少なぐ熱応力が 28MPa (ホットゾーン構造 3)である実験例 2よりも 有転位化回数が多 、ものの、遜色な 、結果となった。
よって、実験例 1では、熱応力が 30MPa未満である場合と同等の有転位化回数で シリコン単結晶を育成できることが確認できた。
[0074] また、図 12より、実験例 1では、実験例 4と比較して、無転位部の長さが 400mm以 上長くなつた。よって、雰囲気ガス中に水素を添加することで、無転位部の長さの長 V、シリコン単結晶を育成できることが確認できた。
また、図 12より、実験例 1では、実験例 2および実験例 3よりも無転位部の長さが短 いものとなったが、無転位部の長さの差は 250mm未満であり、実験例 1と実験例 4と の差と比較してわずかであった。
産業上の利用可能性
本発明によれば、育成中のシリコン単結晶の側面部の温度を調整する際に生じる 熱応力に起因する有転位ィ匕を抑制し、割れにくぐ長い無転位部を有するシリコン単 結晶を歩留まりよく育成することができる。
本発明によれば、集積回路の微細化に好適な、赤外線散乱体欠陥も転位クラスタ 一も検出されない無欠陥領域力 なる高品質なシリコン単結晶を効率的に生産でき る。本発明を用いれば、全面が酸素析出抑制領域であるシリコンゥ ーハが得られる シリコン単結晶、あるいは全面が酸素析出促進領域であるシリコンゥ ーハが得られ るシリコン単結晶を効率的に生産することができる。

Claims

請求の範囲
[1] シリコン単結晶の育成方法であって、
チヨクラルスキー法により前記シリコン単結晶を育成する際に、育成中のシリコン単 結晶の少なくとも一部に熱応力が負荷され、
単結晶を育成する雰囲気ガスが水素原子含有物質の気体を含むシリコン単結晶の 育成方法。
[2] 前記熱応力が 30MPa以上である請求項 1に記載のシリコン単結晶の育成方法。
[3] 前記熱応力が 40MPa以上である請求項 1に記載のシリコン単結晶の育成方法。
[4] 前記水素原子含有物質の気体が、水素ガスである請求項 1記載のシリコン単結晶 育成方法。
[5] 前記雰囲気ガス中における水素原子含有物質の気体の水素分子分圧を 40〜400
Paとする請求項 1記載のシリコン単結晶育成方法。
[6] 請求項 1から 5の 、ずれかに記載のシリコン単結晶育成方法により製造されたシリ コン単結晶。
PCT/JP2005/022109 2005-06-20 2005-12-01 シリコン単結晶の育成方法 WO2006137179A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800501786A CN101203634B (zh) 2005-06-20 2005-12-01 单晶硅的生长方法
EP05811258.2A EP1897977B1 (en) 2005-06-20 2005-12-01 Method of growing silicon single crystal
DE05811258T DE05811258T1 (de) 2005-06-20 2005-12-01 Verfahren zur herstellung von siliciumeinkristall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005179995A JP4821179B2 (ja) 2005-06-20 2005-06-20 シリコン単結晶の育成方法
JP2005-179995 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006137179A1 true WO2006137179A1 (ja) 2006-12-28

Family

ID=37570217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022109 WO2006137179A1 (ja) 2005-06-20 2005-12-01 シリコン単結晶の育成方法

Country Status (7)

Country Link
EP (1) EP1897977B1 (ja)
JP (1) JP4821179B2 (ja)
KR (1) KR100953693B1 (ja)
CN (1) CN101203634B (ja)
DE (1) DE05811258T1 (ja)
TW (1) TWI308605B (ja)
WO (1) WO2006137179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265151A (ja) * 2009-05-18 2010-11-25 Sumco Corp シリコン単結晶の育成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136518B2 (ja) * 2008-06-16 2013-02-06 株式会社Sumco シリコン単結晶の育成方法
KR101266701B1 (ko) * 2010-02-12 2013-05-22 주식회사 엘지실트론 단결정 냉각장치 및 이를 포함하는 단결정 성장장치
CN102220634B (zh) * 2011-07-15 2012-12-05 西安华晶电子技术股份有限公司 一种提高直拉硅单晶生产效率的方法
JP6044530B2 (ja) * 2013-12-05 2016-12-14 株式会社Sumco シリコン単結晶の育成方法
SG11201701480VA (en) 2014-08-29 2017-03-30 Tokuyama Corp Process for producing silicon single crystal
CN106591944B (zh) * 2015-10-15 2018-08-24 上海新昇半导体科技有限公司 单晶硅锭及晶圆的形成方法
US10772059B2 (en) 2016-02-03 2020-09-08 Cognosos, Inc. Methods and systems for on demand network MIMO
JP7099175B2 (ja) * 2018-08-27 2022-07-12 株式会社Sumco シリコン単結晶の製造方法及びシリコンウェーハ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115185A (ja) * 1989-09-29 1991-05-16 Fujitsu Ltd 単結晶の成長方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147599B2 (ja) * 1997-12-26 2008-09-10 株式会社Sumco シリコン単結晶及びその製造方法
JP2003002785A (ja) * 2001-06-15 2003-01-08 Shin Etsu Handotai Co Ltd 表層部にボイド無欠陥層を有する直径300mm以上のシリコン単結晶ウエーハおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115185A (ja) * 1989-09-29 1991-05-16 Fujitsu Ltd 単結晶の成長方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1897977A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265151A (ja) * 2009-05-18 2010-11-25 Sumco Corp シリコン単結晶の育成方法

Also Published As

Publication number Publication date
CN101203634A (zh) 2008-06-18
JP2006347853A (ja) 2006-12-28
TW200700592A (en) 2007-01-01
DE05811258T1 (de) 2008-08-14
CN101203634B (zh) 2011-06-08
EP1897977A4 (en) 2014-01-22
KR100953693B1 (ko) 2010-04-19
EP1897977B1 (en) 2015-01-21
KR20080007277A (ko) 2008-01-17
TWI308605B (en) 2009-04-11
JP4821179B2 (ja) 2011-11-24
EP1897977A1 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2006137179A1 (ja) シリコン単結晶の育成方法
JP4806974B2 (ja) シリコン単結晶育成方法
JP4806975B2 (ja) シリコン単結晶の育成方法
WO2006112054A1 (ja) シリコン単結晶の製造方法およびシリコンウェーハ
TWI277665B (en) Apparatus for manufacturing semiconductor single crystal
JP2010155762A (ja) シリコン単結晶の製造方法
JP2003002780A (ja) シリコン単結晶の製造装置及びそれを用いたシリコン単結晶の製造方法
JP2007022864A (ja) シリコン単結晶の製造方法
JP2007045682A (ja) シリコン単結晶の育成方法およびシリコンウェーハ
US7819972B2 (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
US7442251B2 (en) Method for producing silicon single crystals and silicon single crystal produced thereby
JP2002145698A (ja) 単結晶シリコンウェーハ、インゴット及びその製造方法
JP4461781B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶製造装置の設計方法並びにシリコン単結晶製造装置
US7473314B2 (en) Method for growing silicon single crystal
TWI303676B (en) Apparatus for manufacturing semiconductor single crystal
JP2009292662A (ja) シリコン単結晶育成における肩形成方法
JP5136518B2 (ja) シリコン単結晶の育成方法
JP3823717B2 (ja) シリコン単結晶の製造方法
JP2008087994A (ja) シリコン種結晶およびシリコン単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005811258

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077028614

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580050178.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005811258

Country of ref document: EP